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a b s t r a c t

The statistics concerning the number of appearances of a string τ in Dyck paths aswell as its
appearances in odd and even level have been studied extensively by several authors using
mostly algebraic methods. In this work a different, bijective approach is followed giving
some known as well as some new results.
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1. Introduction

A Dyck path of semilength n is a lattice path in the first quadrant, which begins at the origin (0, 0), ends at (2n, 0) and
consists of steps (1, 1) (called rises) and (1,−1) (called falls). We can encode each rise by the letter u and each fall by d
obtaining the encoding of a Dyck path by a so called Dyck word. For example, the encoding of the Dyck path of Fig. 1 is the
Dyck word α = uuduuddududduduudd.
Throughout this paper we denote withD the set of all Dyck paths (or equivalently Dyck words). Furthermore, the subset

ofD that contains all the paths α of semilength l(α) = n is denoted byDn. We note thatD0 consists only of the empty Dyck
path, denoted by ε.
It is well-known that |Dn| = Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number (A000108 of [16]).

A word τ ∈ {u, d}∗, called in this context string, occurs in a Dyck path α if α = βτγ , where β, γ ∈ {u, d}∗. A string τ
occurs at height j in a Dyck path if the minimum height of the points of τ in this occurrence is equal to j. For example, the
Dyck path of Fig. 1 has three occurrences of the string udu; two at height 1 and one at height 0.
In this paper we deal with the statistics Nτ ‘‘number of occurrences of τ ’’, Eτ ‘‘number of occurrences of τ at even height’’

and Oτ ‘‘number of occurrences of τ at odd height’’.
A wide range of articles dealing with occurrences of various strings appear frequently in the literature (e.g., see [2,8,

11–15,18,19]). Recently, a systematic work concerning all strings of length up to four was given in [17]. There it has been
proved that for every string τ of length up to three (except τ = ud) there exist strings τ1, τ2 of length one more than the
length of τ such that the statistics Eτ and Oτ are equidistributed with the statistics Nτ1 and Nτ2 respectively. These results
have been proved algebraically, by identifying the corresponding generating functions. In this paper we give combinatorial
proofs of these results as well as some new results for strings of length four.
Several bijections on Dyck paths appear in the literature (e.g., see [3–7,9,10]), usually introduced in order to show the

equidistribution of statistics. Here two length-preserving bijections onD , and some variations of them are presented. It is
shown that some of the introduced bijections (depending on the string τ ) send the statistic Eτ to the statistic Nτ1 and some
send the statistic Oτ to the statistic Nτ2 , thus verifying the required equidistribution.
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Fig. 1. The Dyck path α = uuduuddududduduudd.

Fig. 2. The decomposition of a Dyck path into prime components.

Fig. 3. Decompositions ofB.

It iswell known that every non-emptyDyck pathα can be decomposed uniquely in the formα = uβdγ , whereβ, γ ∈ D .
This is the so called first return decomposition.
For the construction of the required bijections we will consider some finer decompositions.
A Dyck path α which is the elevation of some β ∈ D , i.e. α = β̂ = uβd, is called a prime Dyck path. We denote with D̂

the set of all prime Dyck paths.
Using recursively the first return decomposition we obtain the decomposition of a Dyck path α into prime Dyck paths

(usually called prime components), i.e. α = β̂1β̂2 · · · β̂l, where β1, β2, . . . , βl ∈ D; (see Fig. 2).
LetA (resp.B) be the set of all Dyck paths with length of the first ascent equal to (resp. greater than) one. In other words

every path ofA (resp.B) starts with ud (resp. uu). The setsA,B form a partition of the set of all non-empty Dyck paths.
Using the first prime component of a Dyck path α ∈ B we obtain several types of decompositions of α.
Firstly, if we decompose β into prime components we obtain the following decomposition of α:

α = uβ̂1β̂2 · · · β̂ldβl+1

where β1, β2, . . . , βl+1 ∈ D; (see Fig. 3(a)).
Next, by using the first ascent of β̂ we obtain the following decomposition of α

α = ul+1dβ1dβ2d · · ·βldβl+1

where β1, β2, . . . , βl+1 ∈ D; (see Fig. 3(b)).
The key to the construction of the required bijections is to send Dyck paths of the form of Fig. 3(a) to Dyck paths of either

the form of Fig. 2 or the form of Fig. 3(b).

2. Main results

We start by giving two involutions, which are used in order to prove several equidistributions.

2.1. The involutions χ and θ

We define recursively two mappings χ , θ : D → D as follows:
χ(ε) = θ(ε) = ε, χ(udγ ) = udχ(γ ), χ(uβ̂δdγ ) = uχ̂(γ )θ(δ)dχ(β) and
θ(β̂γ ) = θ(γ )χ̂(β); (see Fig. 4).
For example for the Dyck path α of Fig. 1 we obtain

χ(α) = uuχ(uduudd)dθ(uuddudud)dχ(ε) = uuuduudddududuuddd
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Fig. 4. The involutions χ and θ .

and

θ(α) = θ(uduudd)uχ(uduuddudud)d = uudduduuduuududddd.

By iterating the recursion of the definition of θ we obtain

θ(β̂1β̂2 · · · β̂l) = χ̂(βl) · · · χ̂(β2)χ̂(β1).

Furthermore, using induction on path length it is shown simultaneously that the above two mappings are involutions.
Indeed,

χ2(udγ ) = χ(udχ(γ )) = udχ2(γ ) = udγ ,

χ2(uβ̂δdγ ) = χ(uχ̂(γ )θ(δ)dχ(β)) = uχ̂2(β)θ2(δ)dχ2(γ ) = uβ̂δdγ

and

θ2(β̂1β̂2 · · · β̂l) = θ(χ̂(βl) · · · χ̂(β2)χ̂(β1)) = χ̂2(β1)χ̂2(β2) · · · χ̂2(βl) = β̂1β̂2 · · · β̂l.

These involutions have interesting properties: χ maps the setsA,B to themselves and θ preserves the number of prime
components and the length of each component. In addition, the following equalities can be proved inductively.

i. Euuu(α) = Eddu(χ(α)), (A116424), Ouuu(α) = Oddu(θ(α)), (A114492).
ii. Euuuu(α) = Edduu(χ(α)), Ouuuu(α) = Odduu(θ(α)).
iii. Euuud(α) = Eddud(χ(α)), Ouuud(α) = Oddud(θ(α)).

We show only equalities ii since the proofs of i and iii are similar. For the first equality we restrict ourselves to the non-
trivial case where α = uβ̂δdγ .

Euuuu(α) = Euuuu(β)+ Ouuuu(δ)+ Euuuu(γ )+ [β ∈ B]

= Edduu(χ(β))+ Odduu(θ(δ))+ Edduu(χ(γ ))+ [χ(β) ∈ B] = Edduu(χ(α))

where [P] is the Iverson notation: [P] = 1 if P is true and [P] = 0 if P is false.
Furthermore, for α = β̂γ we have

Ouuuu(β̂γ ) = Euuuu(β)+ Ouuuu(γ ) = Edduu(χ(β))+ Odduu(θ(γ )) = Odduu(θ(α)).

From the previous equalities we deduce that the statistics Eτ , Eτ ′ as well as Oτ , Oτ ′ are equidistributed when (τ , τ ′) =
(uuu, ddu), or (uuuu, dduu), or (uuud, ddud).

2.2. The bijection φ

We define recursively a mapping φ : D → D as follows:
φ(ε) = ε, φ(udγ ) = udφ(γ ) and
for α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B, φ(α) = ul+1dφ(β1)dφ(β2) · · · dφ(βl)dφ(βl+1); (see Fig. 5).
For example for the Dyck path α of Fig. 1 we obtain

φ(α) = uuuuudφ(ε)dφ(ud)dφ(ε)dφ(ε)dφ(uduudd) = uuuuuddudddduduudd.

It is easy to check that φ is a bijection, it maps the setsA,B to themselves, it preserves the length of the Dyck path, the
number of prime components, the length of each component and it satisfies the product (concatenation) property

φ(α1α2 · · ·αk) = φ(α1)φ(α2) · · ·φ(αk)

for every αi ∈ D , i ∈ [k].
The (non-empty) fixed points of φ are of the form

∏k
i=1 αi where every αi is a pyramid of height either 1 or 2. These paths

are usually called Fibonacci paths; (see for example [1]).
Furthermore, φ can be used in order to show inductively the equidistribution of several statistics. In fact the following

equalities are valid for every α ∈ D .
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Fig. 5. The bijection φ.

1. Euu(α) = Nuud(φ(α)), (A091156).
2. Eud(α) = Ndud(φ(α)), (A091867).
3. Odu(α) = Nuuu(φ(α)), (A092107).
4. Euuu(α) = Nuudu(φ(α)), (A116424).
5. Euud(α) = Nuudd(φ(α)), (A098978).
6. Euuuu(α) = Nuuduu(φ(α)).
7. Euudu(α) = Nuuudd(φ(α)).
8. Euuud(α) = Nuudud(φ(α)).
9. Euudd(α) = Nduudd(φ(α)).
10. Eudud(α) = Ndudud(φ(α)),

where Ndτ (α) = Ndτ (α)+ [α begins with τ ].
Since the proofs are similar we show only equalities 3 and 8 for the non-trivial case where α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B.

Odu(α) =
l+1∑
i=1

Odu(βi)+ l− 1 =
l+1∑
i=1

Nuuu(φ(βi))+ l− 1

= Nuuu(φ(α)).

Euuud(α) =
l+1∑
i=1

Euuud(βi)+ [β1 ∈ A] =
l+1∑
i=1

Nuudud(φ(βi))+ [φ(β1) ∈ A]

= Nuudud(φ(α)).

We remark that equalities 2, 9, 10 are special cases of the following result:

Eτ (α) = Ndτ (φ(α))

for every Fibonacci path τ .
For the proof we use the fact that φ satisfies the product property and τ is a fixed point of φ.
First for α = udγ ∈ Awe have

Eτ (α) = Eτ (γ )+ [α begins with τ ]

= Ndτ (φ(γ ))+ [φ(α) begins with τ ]
= Ndτ (φ(γ ))+ [φ(γ ) begins with τ ] + [φ(α) begins with τ ]
= Ndτ (φ(α))+ [φ(α) begins with τ ]
= Ndτ (φ(α)).

Now, for α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B we have

Eτ (α) =
l+1∑
i=1

Eτ (βi)+ [α begins with τ ]

=

l+1∑
i=1

Ndτ (φ(βi))+ [φ(α) begins with τ ]
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Fig. 6. The bijection φ1 .

=

l+1∑
i=1

(Ndτ (φ(βi))+ [φ(βi) begins with τ ])+ [φ(α) begins with τ ]

= Ndτ (φ(α))+ [φ(α) begins with τ ]
= Ndτ (φ(α)).

There are two variations φ1, φ2 of φ obtained by changing the order of βi’s. The variation φ1 is obtained by changing the
order of φ(βi)’s, i ∈ [l+ 1] in Fig. 3(b), placing φ(βl+1) first.
More precisely, we define recursively φ1 : D → D as follows:
φ1(ε) = ε, φ1(udγ ) = udφ1(γ ) and
for α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B, φ1(α) = ul+1dφ1(βl+1)dφ1(βl) · · · dφ1(β2)dφ1(β1); (see Fig. 6).
For example for the Dyck path α of Fig. 1 we obtain

φ1(α) = uuuuudφ1(uduudd)dφ1(ε)dφ1(ε)dφ1(ud)dφ1(ε) = uuuuududuudddddudd.

Using induction on path length it is shown that φ1 = φ ◦ χ . Indeed,

(φ ◦ χ)(udγ ) = φ(udχ(γ )) = udφ(χ(γ )) = udφ1(γ ) = φ1(udγ )

and

(φ ◦ χ)(uβ̂1β̂2 · · · β̂ldβl+1) = φ(u ̂χ(βl+1)θ(β̂2 · · · β̂l)dχ(β1))

= φ(u ̂χ(βl+1)χ̂(βl) · · · χ̂(β2)dχ(β1))
= ul+1dφ(χ(βl+1))dφ(χ(βl)) . . . dφ(χ(β2))dφ(χ(β1))
= ul+1dφ1(βl+1)dφ1(βl) . . . dφ1(β2)dφ1(β1)
= φ1(uβ̂1β̂2 · · · β̂ldβl+1).

Clearly, φ1 is also a bijection, it maps the setsA,B into themselves and it preserves the length of the Dyck path, although
it does not preserve the number of prime components. Furthermore, φ1 satisfies equalities 1, 2 and 3 of φ as well as the
following equalities:

11. Edu(α) = Nudu(φ1(α)), (A091869).
12. Ouuu(α) = Ndduu(φ1(α)), (A114492).
13. Ouud(α) = Nddud(φ1(α)), (A116424).
14. Edud(α) = Nudud(φ1(α)), (A094507).
15. Eddu(α) = Nuudu(φ1(α)), (A116424).
16. Edudu(α) = Nududu(φ1(α)).
17. Edduu(α) = Nuuduu(φ1(α)).
18. Eddud(α) = Nuudud(φ1(α)).
19. Ouudu(α) = Nddudu(φ1(α)).

The proofs of the above equalities are in the same spirit as the proofs of equalities 1–10 and they are omitted.
Equalities 14, 16, 17 can be proved directly, or by using 1, 6 and 8 respectively, together with φ1 = φ ◦ χ and i, ii and iii.
We will show now a generalization of equalities 11 and 16, namely:
E(du)r (α) = Nu(du)r (φ1(α)), for every r ∈ N∗.
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Fig. 7. The bijection φ2 .

Indeed, restricting again ourselves to the non-trivial case α = uβ̂1β̂2 · · · β̂ldβl+1 we have

E(du)r (α) =
l+1∑
i=1

E(du)r (βi)+ [βl+1 begins with u(du)r−1]

=

l+1∑
i=1

Nu(du)r (φ1(βi))+ [φ1(βl+1) begins with u(du)r−1]

= Nu(du)r (φ1(α)).
In addition, from i and 12 we can easily show the following equality:

20. Oddu(α) = Ndduu((φ1 ◦ θ)(α)), (A114492).

We note that since φ1 satisfies equalities 3 and 11, it sends the statistic Ndu to the statistic Nuxu (uxu is either uuu or udu).
Furthermore, if h is the reverse path involution (i.e., the mapping that flips every path with respect to a vertical axis) then
h ◦ φ1 is a du to dxd bijection. In [4] another du to dxd bijection has been constructed showing that the statistic Ndxd follows
the Narayana distribution. The present du to dxd bijection has the advantage that sends also the statistics Edu and Odu to the
statistics Ndud and Nddd respectively.
The second variation φ2 : D → D is defined recursively as follows:
φ2(ε) = ε, φ2(udγ ) = udφ2(γ ) and
for α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B, φ2(α) = ul+1dφ2(βl)dφ2(βl+1) · · · dφ2(β2)dφ2(β1); (see Fig. 7).
For example, for the Dyck path α of Fig. 1 we obtain

φ2(α) = uuuuudφ2(ε)dφ2(uduudd)dφ2(ε)dφ2(ud)dφ2(ε)
= uuuuudduduuddddudd.

Clearly, φ2 is a bijection, it maps the sets A,B to themselves and it preserves the length of the Dyck path, although it
does not preserve the number of prime components.
Furthermore, it can be proved that φ2 satisfies the following equality for every α ∈ D:

21. Euddu(α) = Nuuddu(φ2(α)).

2.3. The bijection ψ

We define recursively a mapping ψ : D → D as follows:
ψ(ε) = ε, ψ(udγ ) = ψ̂(γ ) and
for a = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B, ψ(α) = ψ̂(β1)ψ̂(β2) · · · ψ̂(βl)ψ̂(βl+1); (see Fig. 8).
For example, for the Dyck path α of Fig. 1 we obtain

ψ(α) = ψ̂(ε)ψ̂(ud)ψ̂(ε)ψ̂(ε)uψ(uduudd)d
= ε̂ûd̂ε̂εuuψ(uudd)dd = uduuddududuuududdd.

It is easy to check that themappingψ is a bijection, itmaps the setsA,B to the sets of prime and non-prime (non-empty)
Dyck paths respectively and it preserves the length of the Dyck path. The non-empty fixed points ofψ are of the form (ud)r ,
r ∈ N∗.
Furthermore, ψ satisfies the following equalities:
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Fig. 8. The bijection ψ .

22. Ouu(α) = Nddu(ψ(α)), (A091894).
23. Oud(α) = Nudu(ψ(α)), (A091869).
24. Odud(α) = Ndudu(ψ(α)), (A102405).
25. Ouudd(α) = Nuuddu(ψ(α)), (A114848).
26. Oudud(α) = Nududu(ψ(α)).
27. Oddud(α) = Nddudu(ψ(α)).

Since the proofs are similar, we show only equalities 22 and 27. For the non-trivial casewhere a = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B
we have

Ouu(α) =
l+1∑
i=1

Ouu(βi)+
l∑
i=1

[βi 6= ε] =

l+1∑
i=1

Nddu(ψ(βi))+
l∑
i=1

[ψ(βi) 6= ε]

= Nddu(ψ(α)).

Oddud(α) =
l+1∑
i=1

Oddud(βi)+
l−1∑
i=1

[βi 6= ε][βi+1 = ε]

=

l+1∑
i=1

Nddudu(ψ(βi))+
l−1∑
i=1

[ψ(βi) 6= ε][ψ(βi+1) = ε]

= Nddudu(ψ(α)).

From iii and 27 we obtain the following result:

28. Ouuud(α) = Nddudu((ψ ◦ θ)(α)).

Equalities 23, 25, 26 are special cases of the following result:

Oτ (α) = Nτu(ψ(α))

for every Fibonacci path τ .
For the proof, we restrict ourselves to the non-trivial case α = uβ̂1β̂2 · · · β̂ldβl+1 ∈ B.

Oτ (α) =
l+1∑
i=1

Oτ (βi)+
l−|τ |∑
i=1

[βi = ε][βi+1 = ε] · · · [βi+|τ | = ε]

=

l+1∑
i=1

Oτu(ψ(βi))+
l−|τ |∑
i=1

[ψ(βi) = ε][ψ(βi+1) = ε] · · · [ψ(βi+|τ |) = ε]

= Nτu(ψ(α)).

The bijections so far do not cover the equidistributions of all strings of length 4. One of these cases concerns the statistic
Ouddu. We will prove, using another bijection, that the statistic Ouddu is equidistributed with the statistic Nuuduu.
Indeed, since the parameters Edduu and Nuuduu are equidistributed it is enough to prove the equidistribution of the

parameters Edduu and Ouddu. For this, we notice that for every j ∈ N there exists an involution ωj of D (constructed in a
similar way as φj of Section 3.1 in [17]) such that
(i) the number of dduu’s at height j in α is equal to the number of uddu’s at height j+ 1 in ωj(α) and
(ii) the number of dduu’s (resp. uddu’s) at height i (resp. i+1) in α is equal to the number of dduu’s (resp. uddu’s) inωj(α)

for i 6= j.
Furthermore, it is easy to check that the mapping ω : D → D such that ω(ε) = ε and for α 6= ε, ω(α) =

ω2ρ ◦ ω2(ρ−1) ◦ · · · ◦ ω2 ◦ ω0(α)where ρ =
[ h−1
2

]
(h is the height of the path α) is a bijection with Edduu(α) = Ouddu(ω(α)).
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The remaining cases concern the statistics Ouuuu (or, its equidistributed statistic Odduu), Odudu, Edddu, Odddu.
By direct countingwe have checked that even for small values of the semilength the first two of the above statistics do not

have the same distribution as any Nτ (or Nτ ) for every string of length 5. On the other hand, it can be proved using standard
algebraic methods (see [17]) that the statistics Edddu and Odddu have the same distribution as Nddudu and Ndduuu respectively.
For the time being we cannot provide suitable mappings for the justification of the above results bijectively.
We close by giving tables that summarize all the above results.

τ Eτ Oτ
uu Nuud Nduu
ud Ndud Nudu
du Nudu Nuuu
τ Eτ Oτ
uuu Nuudu Ndduu
uud Nuudd Nuudu
dud Nudud Ndudu
ddu Nuudu Ndduu

τ Eτ Oτ
uuuu Nuuduu
uudu Nuuudd Nddudu
dudu Nududu
dduu Nuuduu
uuud Nuudud Nddudu
uudd Nduudd Nuuddu
udud Ndudud Nududu
ddud Nuudud Nddudu
uddu Nuuddu Nuuduu
dddu Nddudu Ndduuu
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