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Available online 4 November 2008 of the graph G, with parameters pq, py, .. ., pn, is obtained by attaching p; new vertices of
degree 1 to the vertex u; of the graph G,i = 1, 2, ..., n. Graham conjectured that for any

connected graphs Gand H, f (G x H) < f(G)f (H). We show that Graham'’s conjecture holds

gﬁybﬁ?ﬁfﬁumber true for a thorn graph of the complete graph witheveryp; > 1(i =1, 2, ..., n) byagraph
Graham's conjecture with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H
Thorn graph are the thorn graphs of the complete graphs witheveryp; > 1 (i=1,2,...,n).

Complete graph © 2008 Elsevier B.V. All rights reserved.

Cartesian product

1. Introduction

Pebbling in graphs was first studied by Chung [1]. Consider a connected graph with a fixed number of pebbles which
are nonnegative integer weights distributed on the vertices. A pebbling move consists of taking two pebbles off one vertex
and placing one pebble on an adjacent vertex. Chung defined the pebbling number of a vertex v in a graph G as the smallest
number f (G, v) such that from every placement of (G, v) pebbles, it is possible to move a pebble to v by a sequence of
pebbling moves. Then the pebbling number of a graph G, denoted by f(G), is the maximum f (G, v) over all the vertices v
in G. The t-pebbling number of a vertex v in a graph G is the smallest number f; (G, v) with the property that from every
placement of f; (G, v) pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves.

There are some known results regarding f (G) (see Refs. [1-7]). If one pebble is placed on each vertex other than the vertex
v, then no pebble can be moved to v. Also, if w is at distance d from v, and 2¢ — 1 pebbles are placed on w, then no pebble can
be moved to v. So it is clear that f (G) > max(|V(G)|, 2P) [1], where |V (G)| is the number of vertices of the graph G and D is
the diameter of the graph G. Furthermore, we know from [1] that f (K,) = n, where K, is the complete graph on n vertices,
and f(P,) = 2"!, where P, is the path on n vertices. Given a configuration of pebbles placed on G, let g be the number of
vertices with at least one pebble, and let r be the number of vertices with an odd number of pebbles. We say that G satisfies
the two-pebbling property (respectively, weak or odd two-pebbling property), if it is possible to move two pebbles to any
specified target vertex when the total starting number of pebbles is 2f (G) — q + 1 (respectively, 2f (G) — r 4+ 1). Note that
any graph which satisfies the two-pebbling property also satisfies the weak or odd two-pebbling property.
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This paper explores the pebbling number of the Cartesian product of the thorn graph of the complete graph with every
pi > 1( = 1,2,...,n). The idea for a Cartesian product comes from a conjecture of Graham [1]. This conjecture states
that for any graphs G and H, f(G x H) < f(G)f (H). There are a few results that verify Graham’s conjecture, among them,
the conjecture holds for a tree by a tree [2], a cycle by a cycle [3], and a complete graph by a graph with the two-pebbling
property [1] and a complete bipartite graph by a graph with the two-pebbling property [4], a fan graph by a fan graph and a
wheel graph by a wheel graph [5]. In this paper, we show that Graham’s conjecture holds for a thorn graph of the complete
graph witheveryp; > 1(i =1, 2, ..., n) by a graph with the two-pebbling property.

Definition 1.1 (/8]). Let p1, p2, . . ., pn be positive integers and G be such a graph, V(G) = n. The thorn of the graph G, with
parameters p1,ps, . . ., Pn, iS Obtained by attaching p; new vertices of degree 1 to the vertex u; of the graph G (i = 1, 2, ..., n).

The thorn graph of the graph G will be denoted by G* or by G* (p1, p2, ..., Dn), if the respective parameters need to be
specified. In this paper, we will consider the thorn graph witheveryp; > 1({ =1, 2,...,n).

Definition 1.2 (/9]). Given a configuration of pebbles placed on G, a transmitting subgraph of G is a path xq, x5, . . ., X, such
that there are at least two pebbles on x; and at least one pebble on each of the other vertices in the path, possibly except x,,.
In this case, we can transmit a pebble from x; to x,,.

Throughout this paper G will denote a simple connected graph with vertex set V(G) and edge set E(G). For any vertex v of
a graph G, p(v) refers to the number of pebbles on v.

2. Pebbling of K7

Definition 2.1 ([7]). Let T be a tree with a specified vertex v. T can be viewed as a Eirected ir)ee denoted by fj} with edges
directed toward a specified vertex, also called the root. A path-partition P = {P;,..., P;} is a set of nonoverlapping
directed paths, the union of which is Tv) Throughout this paper, unless stated otherwise, we will always assume that
|E(F,»))| > |E(Fj))| whenever i < j. A path-partition P = {F:, ey Fr)} is said to majorize another (say Q = {FZ, Cl, FZ})

— —
if the non-increasing sequence of its path size majorizes that of the other. That is, if ; = |E(P;)| and b; = |[E(P/)|, then
(a1,...,a;) > (by,...,b) if and only if a; > b; wherei = min{j : a; # b;}. A path-partition of a tree T is said to be
maximum if it majorizes all other path-partitions.

Theorem 2.2 ([1]). The pebbling number fi(t, v) for a vertex vinatree T is k21 +2% 4 ...+ 2% —t + 1 whereay, aa, ..., a;
—
is the sequence of the path (i.e., the number of edges in the path) in a maximum path-partition of T,.

Lemma 2.3. Suppose M,, is a graph which satisfies the following properties: (1) the subgraph which consists of v1, ..., Un, Uny1
isaKny1, (2) v isadjacenttou,; (r #j;j =1, ..., pr). If the number of pebbles on M, except v; is at least 2n+4t —3+ Xp; —p;,
then t pebbles can be moved to v;.

Proof. Give the following distribution of 2n 4 4t — 4 4 X'p; — p; pebbles on My: p(u11) = 4t — 1, p(ujn) = 3 ( =
2, i=1i+1,...,n+D),pu)) =1 =1,...,i—1,i+1,...,n+1;j=2,..., p;), thent pebbles can not be moved
to v;. Thus if we can move t pebbles to v;, then f; (My, v;) > 2n+4t —4+ Xp;—p;. If we remove all edges between vj, (j; # 1)
and vj, (j; # i), then the remaining graph is a tree T. By Theorem 2.2, we know that f;(T, v;) = 2n + 4t — 3 + Xp; — p;.
Since (T, v;) is a spanning subgraph of (Mp, v;), fi (Mn, vi) < fi(T, v;). Then f;(M,, vi) < 2n + 4t — 3 4+ Xp; — p;. Hence
fiMp,vi)) =2n+4t -3+ Xpj—p;. O

Theorem 2.4. Let K be the thorn graph of K, with n > 2 vertices. Then
fEKH) =2(n+1)+ Xp;.

Proof. Label the vertices of K, by v, . .., v,. Let the vertex v; of the graph K, attach tou; (j = 1, ..., p;). The graph which
is composed of these vertices is K. Consider the following distribution of 2n 41+ X'p; pebbleson K: p(u11) = 7, p(uyj) =
1G=2,...,p0),pwpn) =30=2,....,n—=D,p(uy) =10=2,....,n—=1,j=2,...,p),pUs) =1G=2,...,pn).
Then no pebble can be moved to u,;. So f(K) > 2n 4+ 1 4 Xp;. Now let us consider any distribution of 2(n 4+ 1) 4+ X'p;
pebbles on K¥. There are only two types of possible target vertices.

Case 1. Suppose that the target vertex is v;, wherei =1, 2, ..., n.If p(u;) > 2 for some j, then we can move one pebble
from u;; to v;. We may assume that p(u;) < 2 for all j. When these vertices u;y, . . ., ujp, and their edges are removed, the
remaining graph is M,_,. The number of pebbles on M,_; is at least 2(n 4 1) 4+ Xp; — p;. Since 2(n 4+ 1) + Xp; — p; >
2(n—1)+4 x 1 -3+ Xp; — p;, by Lemma 2.3, one pebble can be moved to v;.

Case 2. Suppose that the target vertex is uj, wherei = 1,...,nandj = 1, ..., p;. If p(v;) > 2, then we can move one
pebble from v; to u;;. Assuming that p(v;) < 2, we may consider the following two subcases.

(2.1) If p(v;) = 1, then we consider the following two sub-subcases.
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(2.1.1) If there exists at least one vertex u;;, (j1 # j) with p(u,) > 2, then {u;,, v;, u;} forms a transmitting subgraph.

(2.1.2) If p(uy) < 2 forallr (r # j), as in the proof of case 1, by Lemma 2.3, one pebble can be moved to v;. So we can
move one pebble from v; to uy.

(2.2)If p(v;) = 0, and if there exist at least two vertices u;;, (j1 # j), Ujj, (2 # j) with p(u,) > 2, p(u;;,) > 2 among these
vertices ujq, . . ., Ui, then we move one pebble from uy, to v;. So {uy;,, v;, u;} forms a transmitting subgraph. Otherwise, we
consider the following three sub-subcases.

(2.2.1)If p(u;j,) > 4foronly j; (ji # j) and p(u;r) < 2forallr (r # jq, j), then {u, , v;, u;} forms a transmitting subgraph.

(2.2.2)1f2 < p(uy,) < 4foronlyji (1 #Jj) and p(u;;) < 2 forallr (r # ji, j), then we can move one pebble from u;;, to
v;. as in the proof of case 1, by Lemma 2.3, one pebble can be moved to v;. So {v;, u;} forms a transmitting subgraph.

(2.2.3)If p(uir) < 2 forallr (r # j), as in the proof of case 1, by Lemma 2.3, two pebbles can be moved to v;. So {v;, u;}
forms a transmitting subgraph. Hence f(K}) = 2(n+ 1)+ Xp;. O

Theorem 2.5. Let K be the thorn graph of the complete graph K. Then K} satisfies the two-pebbling property.

Proof. Let p be the number of pebbles on the thorn graph K, q be the number of the vertices with at least one pebble and
p+q=2[2(n+ 1)+ Xp;] + 1. Clearly, K} is a tree when n = 1 or n = 2. From Ref. [1], we know that a tree satisfies the
two-pebbling property. We may assume that n > 3. Then we consider the following two types of possible target vertices.

Case 1. Suppose that the target vertex is v;, wherei = 1, 2, ..., n. Without loss of generality, we assume that the target
vertex is vy. If p(v1) = 1, then the number of pebbles on all the vertices except vy is 2[2(n + 1) + Xpj]+1—-q—1 >
2(n + 1) + Xp; (since ¢ < n + Xp;). Since f(K;) = 2(n + 1) + Xp;, we can put one more pebble on v; using
2[2(n+ 1) + Xp;j] + 1 — q — 1 pebbles. If p(v1) = 0, then we consider the following two subcases.

(1.1) Suppose that p(uy;) > 2 for some uy;. Then we can move one pebble from uj; to vq. Using the remaining
2[2(n+ 1) + Xp;1 + 1 — q — 2 pebbles, we can move another pebble to v;.

(1.2) Suppose that p(uy;) < 2 for all uy;. As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we can move two pebbles
to vy.

Case 2. Suppose that the target vertex is u;, wherei = 1,2,...,nandj = 1,2, ..., p;. Without loss of generality, we
assume the target vertex is uy. If p(uy;) = 1, then the number of pebbles on all the vertices except uqq is 2[2(n + 1) +
2pil+1—q—1> 2+ 1)+ Xpj(since g < n+ Xp;). Since f(K}) = 2(n + 1) + X'p;, we can put one more pebble on
uq7 using 2[2(n 4+ 1) + Xpj] + 1 — g — 1 pebbles. If p(u;1) = 0, then we consider the following three subcases.

(2.1)If p(v1) > 2, then we can move one pebble from v; to uy;. Using the remaining 2[2(n + 1) + Xp;j] + 1 —q — 2
pebbles, we can move another pebble to u;.

(2.2)If p(vy) = 1, and if there is at least one vertex uy;, (j; # 1) with p(uyj,) > 2, then {uy;,, vq, u1;} forms a transmitting
subgraph. Using the 2[2(n+ 1) + X'p;] + 1 —q — 3 pebbles, we can move another pebble to u;1.If p(uy,;) < 2forallr (r # j),
as in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move another three pebbles to v;. So we move two pebbles from
v1 to uq;.

(2.3)Ifp(vq) = 0,andif there are at least two vertices uyj, , uqj, 1, j2 # 1) withp(uqj,) > 2,p(u4j,) > 2, then we can move
one pebble from uyj, to vi. Then {uy;,, vq, U1} forms a transmitting subgraph. Using the remaining 2[2(n+1)+ X p;]+1—q—4
pebbles, we can move another pebble to uy;. If there is only one vertex uy;, (1 # 1) with p(uy;,) > 4 and p(uy;) < 2
forall j G # 1,j1), then we can move two pebbles from u4;, to vy. So {vy, uy;} forms a transmitting subgraph. Using
the remaining 2[2(n + 1) + Xp;] + 1 — q — 4 pebbles, we can move another pebble to uy;. If there is only one vertex
uqj, 1 # 1) with 3 > p(uy,) = 2and forallj G # 1,j;), then we can move one pebble from uy;, to vy. And if
we delete these vertices uyq, Uy, ..., Ujp,, then the remaining graph is M,_;. The number of pebbles on M,_; except
vy is at least 2[2(n + 1) + Xpjl + 1 —q — (p1 + 1). Sinceq < n+ Xp; — 2, f(K;) = 2(n + 1) + Xpj, then
2Rn+1D+ Eppl+1—-—q—(P1+1) = 3n+6+ Xpj—p1 > 2(n— 1)+ 4 x 3+ Xp; — p;. By Lemma 2.3, we
move another three pebbles to v;. So we move two pebbles from v; to u;;. We may assume that p(uj,) < 2 forallj (j # 1).
As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move four pebbles to v;. So we move two pebbles from v; to uy;.

O

3. Cartesian product

Let G and H be two graphs, the (Cartesian) product of G and H, denoted by G x H, is the graph whose vertex set is the
Cartesian product

V(GxH)=V(G) xV(H) ={(x,y) : x€ V(G),y e V(H)}

and two vertices (x, y) and (x, y') are adjacent if and only if x = X" and {y,y’} € E(H), or {x, X'} € E(G) andy = y'. We
can depict G x H pictorially by drawing a copy of H at every vertex of G and connecting each vertex in one copy of H to the
corresponding vertex in an adjacent copy of H. We write {x} x H (respectively, G x {y}) for the subgraph of vertices whose
projection onto V (G) is the vertex x (respectively, whose projection onto V (H) is y). If the vertices of G are labeled by x;, then
for any distribution of pebbles on G x H, we write p; for the number of pebbles on {x;} x H, g; for the number of occupied
vertices of {x;} x H and r; for the number of vertices of {x;} x H with an odd number of pebbles.

The following conjecture, by Ronald Graham, suggests a constraint on the pebbling number of the product of two graphs.
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Conjecture (Graham). The pebbling number of G x H satisfies
f(G x H) < f(G)f (H).

Lemma 3.1 ([3]). Let {x;, x;} be an edge in G. Suppose that in G x H, we have p; pebbles on {x;} x H, and r; of these vertices have
an odd number ofpebbles If r; < k < p;, and if k and p; have the same parity, then k pebbles can be retained on {x;} x H, while
transferring "' pebbles on to {x;} x H.If k and p; have opposite parity, we must leave k + 1 pebbles on {x;} x H, so we can only

transfer =4 “‘H) pebbles onto {x;} x H. In particular, we can always transfer p,2 pebbles on to {x]} X H, since p; and r; have the
same parity. In all these cases, the number of vertices of {x;} x H with an odd number of pebbles is unchanged by these transfers.

Lemma 3.2 ([2]). Let q1, q2, ..., q, be the non-increasing sequence of path lengths of a maximum path partition Q =
{Qq,...,Qun}ofatree T. Then

£(T) = (Xm:zqr) —m+1.

i=1

Lemma 3.3 ([2]). If T is a tree, and G satisfies the odd two-pebbling property, then f ((T, G), (x,y)) < f(T, x)f (G) for every
vertex v in G.

4. Pebbling K;; x K,

In this section, we show that Graham'’s conjecture holds for the product of the thorn graph of the complete graph and a
graph with the two-pebbling property.

Theorem 4.1. If G satisfies the two-pebbling property, then
fFEKY x G) < f(K)f(G).

Proof. Label the vertices of K, by vy, ..., v,, and let the new vertex that attaches to the vertex v; of the graph be u; (i =
1,2,...,n,j=1,..., py).The graph which is composed of these vertices is K. Let G; denote the subgraph {u;} x GEZK x G,
and H; denote the subgraph {vi} x GZK x G. Let m; denote the number of pebbles on the vertices of G;;, and n; denote the
number of pebbles on the vertices of H;. Let r;; denote the number of vertices in G; which have an odd number of pebbles, and
t; denote the number of vertices in H; which have an odd number of pebbles. Take any arrangement of [2(n+ 1) + X'p;1f (G)
pebbles on the vertices of K} x G.

First we assume that the target vertex is (v;, y) for some y, wherei = 1, 2, ..., n. Without loss of generality, we may
assume that the vertexis (vy, y). Let Ky — {uq1, ..., 1py, U1, - oo, Uzpys o o, Unts unz, ..+, Unp,} = Ky. Fromref [1], we know

that f (K, x G, (v1,¥)) = f(Kn x G) < nf(G).Since rj < |[V(G)| < f(G), Z:’l:] L,my < [2(n+ 1) + Zp;If (G), then

n DPi n Dbi n bi
PIDBUEIOED I BLED BB

i=1 j=1 i=1 j=1 i=1 j=1
= [2(n+ 1) + Zplf (G) + Zpif (G)
= [2(n+ 1) +22pIf (G).

By Lemma 3.1, we apply pebbling moves to all the vertices in Gy, ..., Gip,, G21, ..., Gopys -+ -5 Gp1,y - . ., Gyp, and we

can move at least ) ., 1(m’j—r”) pebbles from Gi1, ..., Gip,, Go1, - - - Gapys - - - Gt - - . , Gnp, to the vertices of K, x G.
Therefore, in K, x G, we have at least altogether

2+ 1) + Zplf(©) ~ ZZWWZZ(mU ) 260+ 1) + SpIf(G) Zz<mu+nj>

i=1 j=1 i=1 j=1 i=1 j=1
> [2(n+ 1) + Zpilf(G) — (n+ 1+ Zp))f (G)

= (n+ DG
pebbles. Since f (K, x G, (v1,y)) < (n+ 1)f(G), then we can move one pebble to (vy, y).
Next we assume that the target vertex is (u;;, y) for some y, wherei = 1,2,...,nandj = 1,2, ..., p;. Without loss of
generality, we assume that the target vertex is (u11, y). If we delete all edges between the vertex v; (i = 2,...,n) and v;

(G =2,...,n)inthe graph K, we get a tree T. By Lemma 3.2, we know that f (T, u;;) = 2(n+ 1) + X'p;. By Lemma 3.3, we
know that f (T x G, (u11,y)) < f(T, uq1)f (G). From ref [ 1], we know that if G’ is a spanning subgraph of G, then f (G) < f(G').
Since T is a spanning subgraph of K}, then T x G is a spanning subgraph of K} x G.So f (K x G, (u11,¥)) < f(T x G, (u11,¥)),
and consequently f (K} xG, (u11,¥)) < [2(n4+1)+2p;1f (G). One pebble can be moved to (uy1, ). A thorn graph of a complete
graph satisfies the two-pebbling property. The following corollary is obvious. O
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Corollary 4.2.

n m
FEE <KD < 20+ D+ pi| [2m+ D+ p|. n>1m>1.
j=1

i=1
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