ELSEVIER

Note

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Graham's pebbling conjecture on product of thorn graphs of complete graphs

Zhiping Wang^a, Yutang Zou^b, Haiying Liu^c, Zhongtuo Wang^d

^a Department of Mathematics, Dalian Maritime University, 116026, Dalian, PR China

^b College of Traffic and Logistics Engineering, 116026, Dalian, PR China

^c Department of Foundational Education, Yantai Nanshan University, 265713, Yantai, PR China

^d School of Management, Dalian University of Technology, 116024, Dalian, PR China

ARTICLE INFO

Article history: Received 28 June 2006 Received in revised form 15 September 2008 Accepted 16 September 2008 Available online 4 November 2008

Keywords: Pebbling number Graham's conjecture Thorn graph Complete graph Cartesian product

1. Introduction

ABSTRACT

The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p_1, p_2, \ldots, p_n be positive integers and G be such a graph, V(G) = n. The thorn graph of the graph G, with parameters p_1, p_2, \ldots, p_n , is obtained by attaching p_i new vertices of degree 1 to the vertex u_i of the graph G, $i = 1, 2, \ldots, n$. Graham conjectured that for any connected graphs G and H, $f(G \times H) \le f(G)f(H)$. We show that Graham's conjecture holds true for a thorn graph of the complete graph with every $p_i > 1$ ($i = 1, 2, \ldots, n$). By a graph with the two-pebbling property. As a corollary, Graham's conjecture holds when G and H are the thorn graphs of the complete graphs with every $p_i > 1$ ($i = 1, 2, \ldots, n$).

© 2008 Elsevier B.V. All rights reserved.

Pebbling in graphs was first studied by Chung [1]. Consider a connected graph with a fixed number of pebbles which are nonnegative integer weights distributed on the vertices. A pebbling move consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. Chung defined the pebbling number of a vertex v in a graph G as the smallest number f(G, v) such that from every placement of f(G, v) pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of a graph G, denoted by f(G), is the maximum f(G, v) over all the vertices v in G. The t-pebbling number of a vertex v in a graph G is the smallest number $f_t(G, v)$ with the property that from every placement of $f_t(G, v)$ pebbles to v by a sequence of pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves.

There are some known results regarding f(G) (see Refs. [1–7]). If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if ω is at distance d from v, and $2^d - 1$ pebbles are placed on ω , then no pebble can be moved to v. So it is clear that $f(G) \ge \max(|V(G)|, 2^D)$ [1], where |V(G)| is the number of vertices of the graph G and D is the diameter of the graph G. Furthermore, we know from [1] that $f(K_n) = n$, where K_n is the complete graph on n vertices, and $f(P_n) = 2^{n-1}$, where P_n is the path on n vertices. Given a configuration of pebbles placed on G, let q be the number of vertices with at least one pebble, and let r be the number of vertices with an odd number of pebbles. We say that G satisfies the two-pebbling property (respectively, weak or odd two-pebbling property), if it is possible to move two pebbles to any specified target vertex when the total starting number of pebbles is 2f(G) - q + 1 (respectively, 2f(G) - r + 1). Note that any graph which satisfies the two-pebbling property also satisfies the weak or odd two-pebbling property.

E-mail address: wangzhiping5006@tom.com (Z. Wang).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.09.045

This paper explores the pebbling number of the Cartesian product of the thorn graph of the complete graph with every $p_i > 1$ (i = 1, 2, ..., n). The idea for a Cartesian product comes from a conjecture of Graham [1]. This conjecture states that for any graphs *G* and *H*, $f(G \times H) \leq f(G)f(H)$. There are a few results that verify Graham's conjecture, among them, the conjecture holds for a tree by a tree [2], a cycle by a cycle [3], and a complete graph by a graph with the two-pebbling property [1] and a complete bipartite graph by a graph with the two-pebbling property [4], a fan graph by a fan graph and a wheel graph by a wheel graph [5]. In this paper, we show that Graham's conjecture holds for a thorn graph of the complete graph with the two-pebbling property.

Definition 1.1 ([8]). Let p_1, p_2, \ldots, p_n be positive integers and *G* be such a graph, V(G) = n. The thorn of the graph *G*, with parameters p_1, p_2, \ldots, p_n , is obtained by attaching p_i new vertices of degree 1 to the vertex u_i of the graph G ($i = 1, 2, \ldots, n$).

The thorn graph of the graph *G* will be denoted by G^* or by G^* $(p_1, p_2, ..., p_n)$, if the respective parameters need to be specified. In this paper, we will consider the thorn graph with every $p_i > 1$ (i = 1, 2, ..., n).

Definition 1.2 ([9]). Given a configuration of pebbles placed on *G*, a transmitting subgraph of *G* is a path x_1, x_2, \ldots, x_n such that there are at least two pebbles on x_1 and at least one pebble on each of the other vertices in the path, possibly except x_n . In this case, we can transmit a pebble from x_1 to x_n .

Throughout this paper *G* will denote a simple connected graph with vertex set V(G) and edge set E(G). For any vertex *v* of a graph *G*, p(v) refers to the number of pebbles on *v*.

2. Pebbling of K_n^*

Definition 2.1 ([7]). Let *T* be a tree with a specified vertex *v*. *T* can be viewed as a directed tree denoted by $\overrightarrow{T_v}$ with edges directed toward a specified vertex, also called the root. A path-partition $P = \{\overrightarrow{P_1}, \ldots, \overrightarrow{P_r}\}$ is a set of nonoverlapping directed paths, the union of which is $\overrightarrow{T_v}$. Throughout this paper, unless stated otherwise, we will always assume that $|E(\overrightarrow{P_i})| > |E(\overrightarrow{P_j})|$ whenever $i \le j$. A path-partition $P = \{\overrightarrow{P_1}, \ldots, \overrightarrow{P_r}\}$ is said to majorize another (say $Q = \{\overrightarrow{P_1}, \ldots, \overrightarrow{P_r'}\}$) if the non-increasing sequence of its path size majorizes that of the other. That is, if $a_i = |E(\overrightarrow{P_i})|$ and $b_j = |E(\overrightarrow{P_j'})|$, then $(a_1, \ldots, a_r) > (b_1, \ldots, b_t)$ if and only if $a_i > b_i$ where $i = min\{j : a_j \ne b_j\}$. A path-partition of a tree *T* is said to be maximum if it majorizes all other path-partitions.

Theorem 2.2 ([1]). The pebbling number $f_k(t, v)$ for a vertex v in a tree T is $k2^{a_1} + 2^{a_2} + \cdots + 2^{a_t} - t + 1$ where a_1, a_2, \ldots, a_t is the sequence of the path (i.e., the number of edges in the path) in a maximum path-partition of $\overrightarrow{T_v}$.

Lemma 2.3. Suppose M_n is a graph which satisfies the following properties: (1) the subgraph which consists of $v_1, \ldots, v_n, v_{n+1}$ is a K_{n+1} , (2) v_r is adjacent to u_{rj} ($r \neq j$; $j = 1, \ldots, p_r$). If the number of pebbles on M_n except v_i is at least $2n + 4t - 3 + \Sigma p_j - p_i$, then t pebbles can be moved to v_i .

Proof. Give the following distribution of $2n + 4t - 4 + \Sigma p_j - p_i$ pebbles on M_n : $p(u_{11}) = 4t - 1$, $p(u_{j1}) = 3$ (j = 2, ..., i-1, i+1, ..., n+1), $p(u_{rj}) = 1$ (r = 1, ..., i-1, i+1, ..., n+1; $j = 2, ..., p_r$), then t pebbles can not be moved to v_i . Thus if we can move t pebbles to v_i , then f_t (M_n , v_i) > $2n + 4t - 4 + \Sigma p_j - p_i$. If we remove all edges between v_{j_1} ($j_1 \neq i$) and v_{j_2} ($j_2 \neq i$), then the remaining graph is a tree T. By Theorem 2.2, we know that $f_t(T, v_i) = 2n + 4t - 3 + \Sigma p_j - p_i$. Since (T, v_i) is a spanning subgraph of (M_n , v_i), $f_t(M_n, v_i) \leq f_t(T, v_i)$. Then $f_t(M_n, v_i) \leq 2n + 4t - 3 + \Sigma p_j - p_i$. Hence $f_t(M_n, v_i) = 2n + 4t - 3 + \Sigma p_j - p_i$.

Theorem 2.4. Let K_n^* be the thorn graph of K_n with $n \ge 2$ vertices. Then

$$f(K_n^*) = 2(n+1) + \Sigma p_i.$$

Proof. Label the vertices of K_n by v_1, \ldots, v_n . Let the vertex v_i of the graph K_n attach to u_{ij} $(j = 1, \ldots, p_i)$. The graph which is composed of these vertices is K_n^* . Consider the following distribution of $2n + 1 + \Sigma p_j$ pebbles on K_n^* : $p(u_{11}) = 7$, $p(u_{1j}) = 1$ $(j = 2, \ldots, p_1)$, $p(u_{i1}) = 3$ $(i = 2, \ldots, n - 1)$, $p(u_{ij}) = 1$ $(i = 2, \ldots, n - 1, j = 2, \ldots, p_i)$, $p(u_{nj}) = 1$ $(j = 2, \ldots, p_n)$. Then no pebble can be moved to u_{n1} . So $f(K_n^*) > 2n + 1 + \Sigma p_j$. Now let us consider any distribution of $2(n + 1) + \Sigma p_j$ pebbles on K_n^* . There are only two types of possible target vertices.

Case 1. Suppose that the target vertex is v_i , where i = 1, 2, ..., n. If $p(u_{ij}) \ge 2$ for some j, then we can move one pebble from u_{ij} to v_i . We may assume that $p(u_{ij}) < 2$ for all j. When these vertices $u_{i1}, ..., u_{ip_i}$ and their edges are removed, the remaining graph is M_{n-1} . The number of pebbles on M_{n-1} is at least $2(n + 1) + \Sigma p_j - p_i$. Since $2(n + 1) + \Sigma p_j - p_i > 2(n - 1) + 4 \times 1 - 3 + \Sigma p_j - p_i$, by Lemma 2.3, one pebble can be moved to v_i .

Case 2. Suppose that the target vertex is u_{ij} , where i = 1, ..., n and $j = 1, ..., p_i$. If $p(v_i) \ge 2$, then we can move one pebble from v_i to u_{ij} . Assuming that $p(v_i) < 2$, we may consider the following two subcases.

(2.1) If $p(v_i) = 1$, then we consider the following two sub-subcases.

(2.1.1) If there exists at least one vertex u_{ij_1} ($j_1 \neq j$) with $p(u_{ij_1}) \ge 2$, then $\{u_{ij_1}, v_i, u_{ij}\}$ forms a transmitting subgraph. (2.1.2) If $p(u_{ir}) < 2$ for all r ($r \neq j$), as in the proof of case 1, by Lemma 2.3, one pebble can be moved to v_i . So we can move one pebble from v_i to u_{ij} .

(2.2) If $p(v_i) = 0$, and if there exist at least two vertices u_{ij_1} ($j_1 \neq j$), u_{ij_2} ($j_2 \neq j$) with $p(u_{ij_1}) \ge 2$, $p(u_{ij_2}) \ge 2$ among these vertices u_{i1}, \ldots, u_{ip_i} , then we move one pebble from u_{ij_1} to v_i . So $\{u_{ij_2}, v_i, u_{ij}\}$ forms a transmitting subgraph. Otherwise, we consider the following three sub-subcases.

(2.2.1) If $p(u_{ij_1}) \ge 4$ for only j_1 ($j_1 \ne j$) and $p(u_{ir}) < 2$ for all r ($r \ne j_1, j$), then $\{u_{ij_1}, v_i, u_{ij}\}$ forms a transmitting subgraph. (2.2.2) If $2 \le p(u_{ij_1}) < 4$ for only j_1 ($j_1 \ne j$) and $p(u_{ir}) < 2$ for all r ($r \ne j_1, j$), then we can move one pebble from u_{ij_1} to v_i , as in the proof of case 1, by Lemma 2.3, one pebble can be moved to v_i . So $\{v_i, u_{ij}\}$ forms a transmitting subgraph.

(2.2.3) If $p(u_{ir}) < 2$ for all r ($r \neq j$), as in the proof of case 1, by Lemma 2.3, two pebbles can be moved to v_i . So $\{v_i, u_{ij}\}$ forms a transmitting subgraph. Hence $f(K_n^*) = 2(n+1) + \Sigma p_i$. \Box

Theorem 2.5. Let K_n^* be the thorn graph of the complete graph K_n . Then K_n^* satisfies the two-pebbling property.

Proof. Let *p* be the number of pebbles on the thorn graph K_n^* , *q* be the number of the vertices with at least one pebble and $p + q = 2[2(n + 1) + \Sigma p_j] + 1$. Clearly, K_n^* is a tree when n = 1 or n = 2. From Ref. [1], we know that a tree satisfies the two-pebbling property. We may assume that $n \ge 3$. Then we consider the following two types of possible target vertices.

Case 1. Suppose that the target vertex is v_i , where i = 1, 2, ..., n. Without loss of generality, we assume that the target vertex is v_1 . If $p(v_1) = 1$, then the number of pebbles on all the vertices except v_1 is $2[2(n + 1) + \Sigma p_j] + 1 - q - 1 > 2(n + 1) + \Sigma p_j$ (since $q \le n + \Sigma p_j$). Since $f(K_n^*) = 2(n + 1) + \Sigma p_j$, we can put one more pebble on v_1 using $2[2(n + 1) + \Sigma p_j] + 1 - q - 1$ pebbles. If $p(v_1) = 0$, then we consider the following two subcases.

(1.1) Suppose that $p(u_{1j}) \ge 2$ for some u_{1j} . Then we can move one pebble from u_{1j} to v_1 . Using the remaining $2[2(n+1) + \Sigma p_j] + 1 - q - 2$ pebbles, we can move another pebble to v_1 .

(1.2) Suppose that $p(u_{1j}) < 2$ for all u_{1j} . As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we can move two pebbles to v_1 .

Case 2. Suppose that the target vertex is u_{ij} , where i = 1, 2, ..., n and $j = 1, 2, ..., p_i$. Without loss of generality, we assume the target vertex is u_{11} . If $p(u_{11}) = 1$, then the number of pebbles on all the vertices except u_{11} is $2[2(n + 1) + \Sigma p_j] + 1 - q - 1 > 2(n + 1) + \Sigma p_j$ (since $q \le n + \Sigma p_j$). Since $f(K_n^*) = 2(n + 1) + \Sigma p_j$, we can put one more pebble on u_{11} using $2[2(n + 1) + \Sigma p_j] + 1 - q - 1$ pebbles. If $p(u_{11}) = 0$, then we consider the following three subcases.

(2.1) If $p(v_1) \ge 2$, then we can move one pebble from v_1 to u_{11} . Using the remaining $2[2(n + 1) + \Sigma p_j] + 1 - q - 2$ pebbles, we can move another pebble to u_{11} .

(2.2) If $p(v_1) = 1$, and if there is at least one vertex u_{1j_1} ($j_1 \neq 1$) with $p(u_{1j_1}) \ge 2$, then { u_{1j_1} , v_1 , u_{11} } forms a transmitting subgraph. Using the $2[2(n+1) + \Sigma p_j] + 1 - q - 3$ pebbles, we can move another pebble to u_{11} . If $p(u_{1r}) < 2$ for all $r (r \neq j)$, as in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move another three pebbles to v_1 . So we move two pebbles from v_1 to u_{11} .

(2.3) If $p(v_1) = 0$, and if there are at least two vertices $u_{1j_1}, u_{1j_2}(j_1, j_2 \neq 1)$ with $p(u_{1j_1}) \ge 2$, $p(u_{1j_2}) \ge 2$, then we can move one pebble from u_{1j_2} to v_1 . Then $\{u_{1j_1}, v_1, u_{11}\}$ forms a transmitting subgraph. Using the remaining $2[2(n+1)+\Sigma p_j]+1-q-4$ pebbles, we can move another pebble to u_{11} . If there is only one vertex u_{1j_1} ($j_1 \neq 1$) with $p(u_{1j_1}) \ge 4$ and $p(u_{1j}) < 2$ for all j ($j \neq 1, j_1$), then we can move two pebbles from u_{1j_1} to v_1 . So $\{v_1, u_{11}\}$ forms a transmitting subgraph. Using the remaining $2[2(n + 1) + \Sigma p_j] + 1 - q - 4$ pebbles, we can move another pebble to u_{11} . If there is only one vertex u_{1j_1} ($j_1 \neq 1$) with $3 \ge p(u_{1j_1}) \ge 2$ and for all j ($j \neq 1, j_1$), then we can move one pebble from u_{1j_1} to v_1 . And if we delete these vertices $u_{11}, u_{12}, \ldots, u_{1p_1}$, then the remaining graph is M_{n-1} . The number of pebbles on M_{n-1} except v_1 is at least $2[2(n + 1) + \Sigma p_j] + 1 - q - (p_1 + 1)$. Since $q \le n + \Sigma p_j - 2$, $f(K_n^*) = 2(n + 1) + \Sigma p_j$, then $2[2(n + 1) + (\Sigma p_j)] + 1 - q - (p_1 + 1) \ge 3n + 6 + \Sigma p_j - p_1 > 2(n - 1) + 4 \times 3 + \Sigma p_j - p_1$. By Lemma 2.3, we move another three pebbles to v_1 . So we move two pebbles from v_1 to u_{11} . We may assume that $p(u_{1j_1}) < 2$ for all j ($j \neq 1$). As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move four pebbles to v_1 . So we move two pebbles from v_1 to u_{11} .

3. Cartesian product

Let *G* and *H* be two graphs, the (Cartesian) product of *G* and *H*, denoted by $G \times H$, is the graph whose vertex set is the Cartesian product

$$V(G \times H) = V(G) \times V(H) = \{(x, y) : x \in V(G), y \in V(H)\}$$

and two vertices (x, y) and (x', y') are adjacent if and only if x = x' and $\{y, y'\} \in E(H)$, or $\{x, x'\} \in E(G)$ and y = y'. We can depict $G \times H$ pictorially by drawing a copy of H at every vertex of G and connecting each vertex in one copy of H to the corresponding vertex in an adjacent copy of H. We write $\{x\} \times H$ (respectively, $G \times \{y\}$) for the subgraph of vertices whose projection onto V(G) is the vertex x (respectively, whose projection onto V(H) is y). If the vertices of G are labeled by x_i , then for any distribution of pebbles on $G \times H$, we write p_i for the number of pebbles on $\{x_i\} \times H$ and r_i for the number of vertices of $\{x_i\} \times H$ with an odd number of pebbles.

The following conjecture, by Ronald Graham, suggests a constraint on the pebbling number of the product of two graphs.

Conjecture (*Graham*). The pebbling number of $G \times H$ satisfies

$$f(G \times H) \le f(G)f(H).$$

Lemma 3.1 ([3]). Let $\{x_i, x_j\}$ be an edge in *G*. Suppose that in $G \times H$, we have p_i pebbles on $\{x_i\} \times H$, and r_i of these vertices have an odd number of pebbles. If $r_i \le k \le p_i$, and if k and p_i have the same parity, then k pebbles can be retained on $\{x_i\} \times H$, while transferring $\frac{p_i-k}{2}$ pebbles on to $\{x_j\} \times H$. If k and p_i have opposite parity, we must leave k + 1 pebbles on $\{x_i\} \times H$, so we can only transfer $\frac{p_i-(k+1)}{2}$ pebbles onto $\{x_j\} \times H$. In particular, we can always transfer $\frac{p_i-r_i}{2}$ pebbles on to $\{x_j\} \times H$, since p_i and r_i have the same parity. In all these cases, the number of vertices of $\{x_i\} \times H$ with an odd number of pebbles is unchanged by these transfers.

Lemma 3.2 ([2]). Let q_1, q_2, \ldots, q_n be the non-increasing sequence of path lengths of a maximum path partition $Q = \{Q_1, \ldots, Q_m\}$ of a tree T. Then

$$f(T) = \left(\sum_{i=1}^{m} 2^{q_i}\right) - m + 1.$$

Lemma 3.3 ([2]). If T is a tree, and G satisfies the odd two-pebbling property, then $f((T, G), (x, y)) \leq f(T, x)f(G)$ for every vertex v in G.

4. Pebbling $K_n^* \times K_m^*$

In this section, we show that Graham's conjecture holds for the product of the thorn graph of the complete graph and a graph with the two-pebbling property.

Theorem 4.1. If G satisfies the two-pebbling property, then

$$f(K_n^* \times G) \le f(K_n^*)f(G).$$

Proof. Label the vertices of K_n by v_1, \ldots, v_n , and let the new vertex that attaches to the vertex v_i of the graph be u_{ij} ($i = 1, 2, \ldots, n, j = 1, \ldots, p_i$). The graph which is composed of these vertices is K_n^* . Let G_{ij} denote the subgraph $\{u_{ij}\} \times G \subsetneq K_n^* \times G$, and H_i denote the subgraph $\{v_i\} \times G \subsetneq K_n^* \times G$. Let m_{ij} denote the number of pebbles on the vertices of G_{ij} , and n_i denote the number of pebbles on the vertices of H_i . Let r_{ij} denote the number of vertices in G_{ij} which have an odd number of pebbles, and t_i denote the number of vertices in H_i which have an odd number of pebbles. Take any arrangement of $[2(n + 1) + \Sigma p_j]f(G)$ pebbles on the vertices of $K_n^* \times G$.

First we assume that the target vertex is (v_i, y) for some y, where i = 1, 2, ..., n. Without loss of generality, we may assume that the vertex is (v_1, y) . Let $K_n^* - \{u_{11}, ..., u_{1p_1}, u_{21}, ..., u_{2p_2}, ..., u_{n1}, u_{n2}, ..., u_{np_n}\} = K_n$. From ref [1], we know that $f(K_n \times G, (v_1, y)) = f(K_n \times G) \le nf(G)$. Since $r_{ij} \le |V(G)| \le f(G), \sum_{i=1}^n \sum_{j=1}^{p_i} m_{ij} \le [2(n+1) + \Sigma p_i]f(G)$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{p_i} (m_{ij} + r_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{p_i} m_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{p_i} r_{ij}$$

$$\leq [2(n+1) + \Sigma p_j] f(G) + \Sigma p_j f(G)$$

$$= [2(n+1) + 2\Sigma p_j] f(G).$$

By Lemma 3.1, we apply pebbling moves to all the vertices in $G_{11}, \ldots, G_{1p_1}, G_{21}, \ldots, G_{2p_2}, \ldots, G_{n1}, \ldots, G_{np_n}$ and we can move at least $\sum_{i=1}^{n} \sum_{j=1}^{p_i} (\frac{m_{ij}-r_{ij}}{2})$ pebbles from $G_{11}, \ldots, G_{1p_1}, G_{21}, \ldots, G_{2p_2}, \ldots, G_{n1}, \ldots, G_{np_n}$ to the vertices of $K_n \times G$. Therefore, in $K_n \times G$, we have at least altogether

$$\begin{split} [2(n+1) + \Sigma p_j]f(G) &- \sum_{i=1}^n \sum_{j=1}^{p_i} m_{ij} + \sum_{i=1}^n \sum_{j=1}^{p_i} \left(\frac{m_{ij} - r_{ij}}{2}\right) = [2(n+1) + \Sigma p_j]f(G) - \sum_{i=1}^n \sum_{j=1}^{p_i} \left(\frac{m_{ij} + r_{ij}}{2}\right) \\ &\geq [2(n+1) + \Sigma p_j]f(G) - (n+1 + \Sigma p_j)f(G) \\ &= (n+1)f(G) \end{split}$$

pebbles. Since $f(K_n \times G, (v_1, y)) \le (n + 1)f(G)$, then we can move one pebble to (v_1, y) .

Next we assume that the target vertex is (u_{ij}, y) for some y, where i = 1, 2, ..., n and $j = 1, 2, ..., p_i$. Without loss of generality, we assume that the target vertex is (u_{11}, y) . If we delete all edges between the vertex v_i (i = 2, ..., n) and v_j (j = 2, ..., n) in the graph K_n^* , we get a tree T. By Lemma 3.2, we know that $f(T, u_{11}) = 2(n + 1) + \Sigma p_j$. By Lemma 3.3, we know that $f(T \times G, (u_{11}, y)) \le f(T, u_{11})f(G)$. From ref [1], we know that if G' is a spanning subgraph of G, then $f(G) \le f(G')$. Since T is a spanning subgraph of K_n^* , then $T \times G$ is a spanning subgraph of $K_n^* \times G$. So $f(K_n^* \times G, (u_{11}, y)) \le f(T \times G, (u_{11}, y))$, and consequently $f(K_n^* \times G, (u_{11}, y)) \le [2(n+1) + \Sigma p_j]f(G)$. One pebble can be moved to (u_{11}, y) . A thorn graph of a complete graph satisfies the two-pebbling property. The following corollary is obvious.

Corollary 4.2.

$$f(K_n^* \times K_m^*) \le \left[2(n+1) + \sum_{i=1}^n p_i\right] \left[2(m+1) + \sum_{j=1}^m p_j\right], \quad n > 1, m > 1.$$

Acknowledgements

The authors would like to thank the anonymous referees for their constructive suggestions and critical comments which resulted in a much improved paper. The work was supported by the National Science Foundation of China under contracts No. 70431001 and No. 70620140115.

References

- F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467–472.
 D. Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992) 244–252.
- [3] D. Herscovici, Graham's conjecture on products of cycles, J. Graph Theory 42 (2003) 141-154.
- [4] R. Feng, J. Kim, Graham's pebbling conjecture of production complete bipartite graph, Sci. China Ser. A 44 (2001) 817–822.
- [5] R. Feng, J.Y. Kim, Pebbling numbers of some graphs, Sci. China Ser. A 45 (2002) 470-478.
- [6] L. Pachter, H.S. Snevily, B. Voxman, On pebbling graphs, Gc. Congr. Numer. 107 (1995) 65–80.
 [7] H.S. Snevily, J.A. Foster, The 2-pebbling property and a conjecture of Graham's, Graphs Combin. 16 (2000) 231–244.
- [8] A. Kirlangic, The scattering number of thorn graphs, Int. J. Comput. Math. 82 (2004) 299-311.
- [9] D.S. Herscovici, A.W. Higgins, The pebbling number of $C_5 \times C_5$, Discrete Math. 187 (1998) 123–135.