Note

Graham's pebbling conjecture on product of thorn graphs of complete graphs

Zhiping Wang ${ }^{\text {a }}$, Yutang Zou ${ }^{\text {b }}$, Haiying Liu ${ }^{\text {c }}$, Zhongtuo Wang ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Dalian Maritime University, 116026, Dalian, PR China
${ }^{\text {b }}$ College of Traffic and Logistics Engineering, 116026, Dalian, PR China
${ }^{\text {c }}$ Department of Foundational Education, Yantai Nanshan University, 265713, Yantai, PR China
${ }^{\text {d }}$ School of Management, Dalian University of Technology, 116024, Dalian, PR China

ARTICLE INFO

Article history:

Received 28 June 2006
Received in revised form 15 September 2008
Accepted 16 September 2008
Available online 4 November 2008

Keywords:

Pebbling number
Graham's conjecture
Thorn graph
Complete graph
Cartesian product

Abstract

The pebbling number of a graph $G, f(G)$, is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers and G be such a graph, $V(G)=n$. The thorn graph of the graph G, with parameters $p_{1}, p_{2}, \ldots, p_{n}$, is obtained by attaching p_{i} new vertices of degree 1 to the vertex u_{i} of the graph $G, i=1,2, \ldots, n$. Graham conjectured that for any connected graphs G and $H, f(G \times H) \leq f(G) f(H)$. We show that Graham's conjecture holds true for a thorn graph of the complete graph with every $p_{i}>1(i=1,2, \ldots, n)$ by a graph with the two-pebbling property. As a corollary, Graham's conjecture holds when G and H are the thorn graphs of the complete graphs with every $p_{i}>1(i=1,2, \ldots, n)$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Pebbling in graphs was first studied by Chung [1]. Consider a connected graph with a fixed number of pebbles which are nonnegative integer weights distributed on the vertices. A pebbling move consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. Chung defined the pebbling number of a vertex v in a graph G as the smallest number $f(G, v)$ such that from every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of a graph G, denoted by $f(G)$, is the maximum $f(G, v)$ over all the vertices v in G. The t-pebbling number of a vertex v in a graph G is the smallest number $f_{t}(G, v)$ with the property that from every placement of $f_{t}(G, v)$ pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves.

There are some known results regarding $f(G)$ (see Refs. [1-7]). If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if ω is at distance d from v, and $2^{d}-1$ pebbles are placed on ω, then no pebble can be moved to v. So it is clear that $f(G) \geq \max \left(|V(G)|, 2^{D}\right)$ [1], where $|V(G)|$ is the number of vertices of the graph G and D is the diameter of the graph G. Furthermore, we know from [1] that $f\left(K_{n}\right)=n$, where K_{n} is the complete graph on n vertices, and $f\left(P_{n}\right)=2^{n-1}$, where P_{n} is the path on n vertices. Given a configuration of pebbles placed on G, let q be the number of vertices with at least one pebble, and let r be the number of vertices with an odd number of pebbles. We say that G satisfies the two-pebbling property (respectively, weak or odd two-pebbling property), if it is possible to move two pebbles to any specified target vertex when the total starting number of pebbles is $2 f(G)-q+1$ (respectively, $2 f(G)-r+1$). Note that any graph which satisfies the two-pebbling property also satisfies the weak or odd two-pebbling property.

[^0]This paper explores the pebbling number of the Cartesian product of the thorn graph of the complete graph with every $p_{i}>1(i=1,2, \ldots, n)$. The idea for a Cartesian product comes from a conjecture of Graham [1]. This conjecture states that for any graphs G and $H, f(G \times H) \leq f(G) f(H)$. There are a few results that verify Graham's conjecture, among them, the conjecture holds for a tree by a tree [2], a cycle by a cycle [3], and a complete graph by a graph with the two-pebbling property [1] and a complete bipartite graph by a graph with the two-pebbling property [4], a fan graph by a fan graph and a wheel graph by a wheel graph [5]. In this paper, we show that Graham's conjecture holds for a thorn graph of the complete graph with every $p_{i}>1(i=1,2, \ldots, n)$ by a graph with the two-pebbling property.

Definition 1.1 ([8]). Let $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers and G be such a graph, $V(G)=n$. The thorn of the graph G, with parameters $p_{1}, p_{2}, \ldots, p_{n}$, is obtained by attaching p_{i} new vertices of degree 1 to the vertex u_{i} of the graph $G(i=1,2, \ldots, n)$.
The thorn graph of the graph G will be denoted by G^{*} or by $G^{*}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, if the respective parameters need to be specified. In this paper, we will consider the thorn graph with every $p_{i}>1(i=1,2, \ldots, n)$.

Definition 1.2 ([9]). Given a configuration of pebbles placed on G, a transmitting subgraph of G is a path $x_{1}, x_{2}, \ldots, x_{n}$ such that there are at least two pebbles on x_{1} and at least one pebble on each of the other vertices in the path, possibly except x_{n}. In this case, we can transmit a pebble from x_{1} to x_{n}.

Throughout this paper G will denote a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex v of a graph $G, p(v)$ refers to the number of pebbles on v.

2. Pebbling of K_{n}^{*}

Definition 2.1 ([7]). Let T be a tree with a specified vertex $v . T$ can be viewed as a directed tree denoted by $\overrightarrow{T_{v}}$ with edges directed toward a specified vertex, also called the root. A path-partition $P=\left\{\overrightarrow{P_{1}}, \ldots, \vec{P}_{r}\right\}$ is a set of nonoverlapping directed paths, the union of which is $\overrightarrow{T_{v}}$. Throughout this paper, unless stated otherwise, we will always assume that $\left|E\left(\overrightarrow{P_{i}}\right)\right|>\left|E\left(\overrightarrow{P_{j}}\right)\right|$ whenever $i \leq j$. A path-partition $P=\left\{\overrightarrow{P_{1}}, \ldots, \overrightarrow{P_{r}}\right\}$ is said to majorize another (say $Q=\left\{\overrightarrow{P_{1}^{\prime}}, \ldots, \overrightarrow{P_{r}^{\prime}}\right\}$) if the non-increasing sequence of its path size majorizes that of the other. That is, if $a_{i}=\left|E\left(\overrightarrow{P_{i}}\right)\right|$ and $b_{j}=\left|E\left(\overrightarrow{P_{j}^{\prime}}\right)\right|$, then $\left(a_{1}, \ldots, a_{r}\right)>\left(b_{1}, \ldots, b_{t}\right)$ if and only if $a_{i}>b_{i}$ where $i=\min \left\{j: a_{j} \neq b_{j}\right\}$. A path-partition of a tree T is said to be maximum if it majorizes all other path-partitions.

Theorem 2.2 ([1]). The pebbling number $f_{k}(t, v)$ for a vertex v in a tree T is $k 2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{t}}-t+1$ where $a_{1}, a_{2}, \ldots, a_{t}$ is the sequence of the path (i.e., the number of edges in the path) in a maximum path-partition of $\overrightarrow{T_{v}}$.

Lemma 2.3. Suppose M_{n} is a graph which satisfies the following properties: (1) the subgraph which consists of $v_{1}, \ldots, v_{n}, v_{n+1}$ is a K_{n+1}, (2) v_{r} is adjacent to $u_{r j}\left(r \neq j ; j=1, \ldots, p_{r}\right)$. If the number of pebbles on M_{n} except v_{i} is at least $2 n+4 t-3+\Sigma p_{j}-p_{i}$, then t pebbles can be moved to v_{i}.
Proof. Give the following distribution of $2 n+4 t-4+\Sigma p_{j}-p_{i}$ pebbles on M_{n} : $p\left(u_{11}\right)=4 t-1, p\left(u_{j 1}\right)=3(j=$ $2, \ldots, i-1, i+1, \ldots, n+1), p\left(u_{r j}\right)=1\left(r=1, \ldots, i-1, i+1, \ldots, n+1 ; j=2, \ldots, p_{r}\right)$, then t pebbles can not be moved to v_{i}. Thus if we can move t pebbles to v_{i}, then $f_{t}\left(M_{n}, v_{i}\right)>2 n+4 t-4+\Sigma p_{j}-p_{i}$. If we remove all edges between $v_{j_{1}}\left(j_{1} \neq i\right)$ and $v_{j_{2}}\left(j_{2} \neq i\right)$, then the remaining graph is a tree T. By Theorem 2.2 , we know that $f_{t}\left(T, v_{i}\right)=2 n+4 t-3+\Sigma p_{j}-p_{i}$. Since $\left(T, v_{i}\right)$ is a spanning subgraph of $\left(M_{n}, v_{i}\right), f_{t}\left(M_{n}, v_{i}\right) \leq f_{t}\left(T, v_{i}\right)$. Then $f_{t}\left(M_{n}, v_{i}\right) \leq 2 n+4 t-3+\Sigma p_{j}-p_{i}$. Hence $f_{t}\left(M_{n}, v_{i}\right)=2 n+4 t-3+\Sigma p_{j}-p_{i}$.

Theorem 2.4. Let K_{n}^{*} be the thorn graph of K_{n} with $n \geq 2$ vertices. Then

$$
f\left(K_{n}^{*}\right)=2(n+1)+\Sigma p_{j}
$$

Proof. Label the vertices of K_{n} by v_{1}, \ldots, v_{n}. Let the vertex v_{i} of the graph K_{n} attach to $u_{i j}\left(j=1, \ldots, p_{i}\right)$. The graph which is composed of these vertices is K_{n}^{*}. Consider the following distribution of $2 n+1+\Sigma p_{j}$ pebbles on $K_{n}^{*}: p\left(u_{11}\right)=7, p\left(u_{1 j}\right)=$ $1\left(j=2, \ldots, p_{1}\right), p\left(u_{i 1}\right)=3(i=2, \ldots, n-1), p\left(u_{i j}\right)=1\left(i=2, \ldots, n-1, j=2, \ldots, p_{i}\right), p\left(u_{n j}\right)=1\left(j=2, \ldots, p_{n}\right)$. Then no pebble can be moved to $u_{n 1}$. So $f\left(K_{n}^{*}\right)>2 n+1+\Sigma p_{j}$. Now let us consider any distribution of $2(n+1)+\Sigma p_{j}$ pebbles on K_{n}^{*}. There are only two types of possible target vertices.

Case 1 . Suppose that the target vertex is v_{i}, where $i=1,2, \ldots, n$. If $p\left(u_{i j}\right) \geq 2$ for some j, then we can move one pebble from $u_{i j}$ to v_{i}. We may assume that $p\left(u_{i j}\right)<2$ for all j. When these vertices $u_{i 1}, \ldots, u_{i p_{i}}$ and their edges are removed, the remaining graph is M_{n-1}. The number of pebbles on M_{n-1} is at least $2(n+1)+\Sigma p_{j}-p_{i}$. Since $2(n+1)+\Sigma p_{j}-p_{i}>$ $2(n-1)+4 \times 1-3+\Sigma p_{j}-p_{i}$, by Lemma 2.3 , one pebble can be moved to v_{i}.

Case 2 . Suppose that the target vertex is $u_{i j}$, where $i=1, \ldots, n$ and $j=1, \ldots, p_{i}$. If $p\left(v_{i}\right) \geq 2$, then we can move one pebble from v_{i} to $u_{i j}$. Assuming that $p\left(v_{i}\right)<2$, we may consider the following two subcases.
(2.1) If $p\left(v_{i}\right)=1$, then we consider the following two sub-subcases.
(2.1.1) If there exists at least one vertex $u_{i j_{1}}\left(j_{1} \neq j\right)$ with $p\left(u_{i j_{1}}\right) \geq 2$, then $\left\{u_{i j_{1}}, v_{i}, u_{i j}\right\}$ forms a transmitting subgraph.
(2.1.2) If $p\left(u_{i r}\right)<2$ for all $r(r \neq j)$, as in the proof of case 1 , by Lemma 2.3, one pebble can be moved to v_{i}. So we can move one pebble from v_{i} to $u_{i j}$.
(2.2) If $p\left(v_{i}\right)=0$, and if there exist at least two vertices $u_{i j_{1}}\left(j_{1} \neq j\right), u_{i j_{2}}\left(j_{2} \neq j\right)$ with $p\left(u_{i j_{1}}\right) \geq 2, p\left(u_{i j_{2}}\right) \geq 2$ among these vertices $u_{i 1}, \ldots, u_{i p_{i}}$, then we move one pebble from $u_{i j_{1}}$ to v_{i}. So $\left\{u_{i j_{2}}, v_{i}, u_{i j}\right\}$ forms a transmitting subgraph. Otherwise, we consider the following three sub-subcases.
(2.2.1) If $p\left(u_{i j_{1}}\right) \geq 4$ for only $j_{1}\left(j_{1} \neq j\right)$ and $p\left(u_{i r}\right)<2$ for all $r\left(r \neq j_{1}, j\right)$, then $\left\{u_{i j_{1}}, v_{i}, u_{i j}\right\}$ forms a transmitting subgraph.
(2.2.2) If $2 \leq p\left(u_{i j_{1}}\right)<4$ for only $j_{1}\left(j_{1} \neq j\right)$ and $p\left(u_{i r}\right)<2$ for all $r\left(r \neq j_{1}, j\right)$, then we can move one pebble from $u_{i j_{1}}$ to v_{i}. as in the proof of case 1, by Lemma 2.3, one pebble can be moved to v_{i}. So $\left\{v_{i}, u_{i j}\right\}$ forms a transmitting subgraph.
(2.2.3) If $p\left(u_{i r}\right)<2$ for all $r(r \neq j)$, as in the proof of case 1 , by Lemma 2.3 , two pebbles can be moved to v_{i}. So $\left\{v_{i}, u_{i j}\right\}$ forms a transmitting subgraph. Hence $f\left(K_{n}^{*}\right)=2(n+1)+\Sigma p_{j}$.

Theorem 2.5. Let K_{n}^{*} be the thorn graph of the complete graph K_{n}. Then K_{n}^{*} satisfies the two-pebbling property.
Proof. Let p be the number of pebbles on the thorn graph K_{n}^{*}, q be the number of the vertices with at least one pebble and $p+q=2\left[2(n+1)+\Sigma p_{j}\right]+1$. Clearly, K_{n}^{*} is a tree when $n=1$ or $n=2$. From Ref. [1], we know that a tree satisfies the two-pebbling property. We may assume that $n \geq 3$. Then we consider the following two types of possible target vertices.

Case 1 . Suppose that the target vertex is v_{i}, where $i=1,2, \ldots, n$. Without loss of generality, we assume that the target vertex is v_{1}. If $p\left(v_{1}\right)=1$, then the number of pebbles on all the vertices except v_{1} is $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-1>$ $2(n+1)+\Sigma p_{j}$ (since $q \leq n+\Sigma p_{j}$). Since $f\left(K_{n}^{*}\right)=2(n+1)+\Sigma p_{j}$, we can put one more pebble on v_{1} using $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-1$ pebbles. If $p\left(v_{1}\right)=0$, then we consider the following two subcases.
(1.1) Suppose that $p\left(u_{1 j}\right) \geq 2$ for some $u_{1 j}$. Then we can move one pebble from $u_{1 j}$ to v_{1}. Using the remaining $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-2$ pebbles, we can move another pebble to v_{1}.
(1.2) Suppose that $p\left(u_{1 j}\right)<2$ for all $u_{1 j}$. As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we can move two pebbles to v_{1}.

Case 2. Suppose that the target vertex is $u_{i j}$, where $i=1,2, \ldots, n$ and $j=1,2, \ldots, p_{i}$. Without loss of generality, we assume the target vertex is u_{11}. If $p\left(u_{11}\right)=1$, then the number of pebbles on all the vertices except u_{11} is $2[2(n+1)+$ $\left.\Sigma p_{j}\right]+1-q-1>2(n+1)+\Sigma p_{j}\left(\right.$ since $\left.q \leq n+\Sigma p_{j}\right)$. Since $f\left(K_{n}^{*}\right)=2(n+1)+\Sigma p_{j}$, we can put one more pebble on u_{11} using $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-1$ pebbles. If $p\left(u_{11}\right)=0$, then we consider the following three subcases.
(2.1) If $p\left(v_{1}\right) \geq 2$, then we can move one pebble from v_{1} to u_{11}. Using the remaining $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-2$ pebbles, we can move another pebble to u_{11}.
(2.2) If $p\left(v_{1}\right)=1$, and if there is at least one vertex $u_{1 j_{1}}\left(j_{1} \neq 1\right)$ with $p\left(u_{1 j_{1}}\right) \geq 2$, then $\left\{u_{1 j_{1}}, v_{1}, u_{11}\right\}$ forms a transmitting subgraph. Using the $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-3$ pebbles, we can move another pebble to u_{11}. If $p\left(u_{1 r}\right)<2$ for all $r(r \neq j)$, as in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move another three pebbles to v_{1}. So we move two pebbles from v_{1} to u_{11}.
(2.3) If $p\left(v_{1}\right)=0$, and if there are at least two vertices $u_{1 j_{1}}, u_{1 j_{2}}\left(j_{1}, j_{2} \neq 1\right)$ with $p\left(u_{1 j_{1}}\right) \geq 2, p\left(u_{1 j_{2}}\right) \geq 2$, then we can move one pebble from $u_{1 j_{2}}$ to v_{1}. Then $\left\{u_{1 j_{1}}, v_{1}, u_{11}\right\}$ forms a transmitting subgraph. Using the remaining $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-4$ pebbles, we can move another pebble to u_{11}. If there is only one vertex $u_{1 j_{1}}\left(j_{1} \neq 1\right)$ with $p\left(u_{1 j_{1}}\right) \geq 4$ and $p\left(u_{1 j}\right)<2$ for all $j\left(j \neq 1, j_{1}\right)$, then we can move two pebbles from $u_{1_{1}}$ to v_{1}. So $\left\{v_{1}, u_{11}\right\}$ forms a transmitting subgraph. Using the remaining $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-4$ pebbles, we can move another pebble to u_{11}. If there is only one vertex $u_{1 j_{1}}\left(j_{1} \neq 1\right)$ with $3 \geq p\left(u_{1 j_{1}}\right) \geq 2$ and for all $j\left(j \neq 1, j_{1}\right)$, then we can move one pebble from $u_{1 j_{1}}$ to v_{1}. And if we delete these vertices $u_{11}, u_{12}, \ldots, u_{1 p_{1}}$, then the remaining graph is M_{n-1}. The number of pebbles on M_{n-1} except v_{1} is at least $2\left[2(n+1)+\Sigma p_{j}\right]+1-q-\left(p_{1}+1\right)$. Since $q \leq n+\Sigma p_{j}-2, f\left(K_{n}^{*}\right)=2(n+1)+\Sigma p_{j}$, then $2\left[2(n+1)+\left(\Sigma p_{j}\right)\right]+1-q-\left(p_{1}+1\right) \geq 3 n+6+\Sigma p_{j}-p_{1}>2(n-1)+4 \times 3+\Sigma p_{j}-p_{1}$. By Lemma 2.3, we move another three pebbles to v_{1}. So we move two pebbles from v_{1} to u_{11}. We may assume that $p\left(u_{1 j_{1}}\right)<2$ for all $j(j \neq 1)$. As in the proof of case 1 of Theorem 2.4, by Lemma 2.3, we move four pebbles to v_{1}. So we move two pebbles from v_{1} to u_{11}.

3. Cartesian product

Let G and H be two graphs, the (Cartesian) product of G and H, denoted by $G \times H$, is the graph whose vertex set is the Cartesian product

$$
V(G \times H)=V(G) \times V(H)=\{(x, y): x \in V(G), y \in V(H)\}
$$

and two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if $x=x^{\prime}$ and $\left\{y, y^{\prime}\right\} \in E(H)$, or $\left\{x, x^{\prime}\right\} \in E(G)$ and $y=y^{\prime}$. We can depict $G \times H$ pictorially by drawing a copy of H at every vertex of G and connecting each vertex in one copy of H to the corresponding vertex in an adjacent copy of H. We write $\{x\} \times H$ (respectively, $G \times\{y\}$) for the subgraph of vertices whose projection onto $V(G)$ is the vertex x (respectively, whose projection onto $V(H)$ is y). If the vertices of G are labeled by x_{i}, then for any distribution of pebbles on $G \times H$, we write p_{i} for the number of pebbles on $\left\{x_{i}\right\} \times H, q_{i}$ for the number of occupied vertices of $\left\{x_{i}\right\} \times H$ and r_{i} for the number of vertices of $\left\{x_{i}\right\} \times H$ with an odd number of pebbles.

The following conjecture, by Ronald Graham, suggests a constraint on the pebbling number of the product of two graphs.

Conjecture (Graham). The pebbling number of $G \times H$ satisfies

$$
f(G \times H) \leq f(G) f(H) .
$$

Lemma 3.1 ([3]). Let $\left\{x_{i}, x_{j}\right\}$ be an edge in G. Suppose that in $G \times H$, we have p_{i} pebbles on $\left\{x_{i}\right\} \times H$, and r_{i} of these vertices have an odd number of pebbles. If $r_{i} \leq k \leq p_{i}$, and if k and p_{i} have the same parity, then k pebbles can be retained on $\left\{x_{i}\right\} \times H$, while transferring $\frac{p_{i}-k}{2}$ pebbles on to $\left\{x_{j}\right\} \times H$. If k and p_{i} have opposite parity, we must leave $k+1$ pebbles on $\left\{x_{i}\right\} \times H$, so we can only transfer $\frac{p_{i}-(k+1)}{2}$ pebbles onto $\left\{x_{j}\right\} \times$. In particular, we can always transfer $\frac{p_{i}-r_{i}}{2}$ pebbles on to $\left\{x_{j}\right\} \times H$, since p_{i} and r_{i} have the same parity. In all these cases, the number of vertices of $\left\{x_{i}\right\} \times H$ with an odd number of pebbles is unchanged by these transfers.

Lemma 3.2 ([2]). Let $q_{1}, q_{2}, \ldots, q_{n}$ be the non-increasing sequence of path lengths of a maximum path partition $Q=$ $\left\{Q_{1}, \ldots, Q_{m}\right\}$ of a tree T. Then

$$
f(T)=\left(\sum_{i=1}^{m} 2^{q_{i}}\right)-m+1 .
$$

Lemma 3.3 ([2]). If T is a tree, and G satisfies the odd two-pebbling property, then $f((T, G),(x, y)) \leq f(T, x) f(G)$ for every vertex v in G.

4. Pebbling $K_{n}^{*} \times K_{m}^{*}$

In this section, we show that Graham's conjecture holds for the product of the thorn graph of the complete graph and a graph with the two-pebbling property.
Theorem 4.1. If G satisfies the two-pebbling property, then

$$
f\left(K_{n}^{*} \times G\right) \leq f\left(K_{n}^{*}\right) f(G) .
$$

Proof. Label the vertices of K_{n} by v_{1}, \ldots, v_{n}, and let the new vertex that attaches to the vertex v_{i} of the graph be $u_{i j}$ ($i=$ $\left.1,2, \ldots, n, j=1, \ldots, p_{i}\right)$. The graph which is composed of these vertices is K_{n}^{*}. Let $G_{i j}$ denote the subgraph $\left\{u_{i j}\right\} \times G \nsubseteq K_{n}^{*} \times G$, and H_{i} denote the subgraph $\left\{v_{i}\right\} \times G \nsubseteq K_{n}^{*} \times G$. Let $m_{i j}$ denote the number of pebbles on the vertices of $G_{i j}$, and n_{i} denote the number of pebbles on the vertices of H_{i}. Let $r_{i j}$ denote the number of vertices in $G_{i j}$ which have an odd number of pebbles, and t_{i} denote the number of vertices in H_{i} which have an odd number of pebbles. Take any arrangement of $\left[2(n+1)+\Sigma p_{j}\right] f(G)$ pebbles on the vertices of $K_{n}^{*} \times G$.

First we assume that the target vertex is $\left(v_{i}, y\right)$ for some y, where $i=1,2, \ldots, n$. Without loss of generality, we may assume that the vertex is $\left(v_{1}, y\right)$. Let $K_{n}^{*}-\left\{u_{11}, \ldots, u_{1 p_{1}}, u_{21}, \ldots, u_{2 p_{2}}, \ldots, u_{n 1}, u_{n 2}, \ldots, u_{n p_{n}}\right\}=K_{n}$. From ref [1], we know that $f\left(K_{n} \times G,\left(v_{1}, y\right)\right)=f\left(K_{n} \times G\right) \leq n f(G)$. Since $r_{i j} \leq|V(G)| \leq f(G), \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} m_{i j} \leq\left[2(n+1)+\Sigma p_{j}\right] f(G)$, then

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{p_{i}}\left(m_{i j}+r_{i j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{p_{i}} m_{i j}+\sum_{i=1}^{n} \sum_{j=1}^{p_{i}} r_{i j} \\
& \leq\left[2(n+1)+\Sigma p_{j}\right] f(G)+\Sigma p_{j} f(G) \\
& =\left[2(n+1)+2 \Sigma p_{j}\right] f(G) .
\end{aligned}
$$

By Lemma 3.1, we apply pebbling moves to all the vertices in $G_{11}, \ldots, G_{1 p_{1}}, G_{21}, \ldots, G_{2 p_{2}}, \ldots, G_{n 1}, \ldots, G_{n p_{n}}$ and we can move at least $\sum_{i=1}^{n} \sum_{j=1}^{p_{i}}\left(\frac{m_{j j}-r_{i j}}{2}\right)$ pebbles from $G_{11}, \ldots, G_{1 p_{1}}, G_{21}, \ldots, G_{2 p_{2}}, \ldots, G_{n 1}, \ldots, G_{n p_{n}}$ to the vertices of $K_{n} \times G$. Therefore, in $K_{n} \times G$, we have at least altogether

$$
\begin{aligned}
{\left[2(n+1)+\Sigma p_{j}\right] f(G)-\sum_{i=1}^{n} \sum_{j=1}^{p_{i}} m_{i j}+\sum_{i=1}^{n} \sum_{j=1}^{p_{i}}\left(\frac{m_{i j}-r_{i j}}{2}\right) } & =\left[2(n+1)+\Sigma p_{j}\right] f(G)-\sum_{i=1}^{n} \sum_{j=1}^{p_{i}}\left(\frac{m_{i j}+r_{i j}}{2}\right) \\
& \geq\left[2(n+1)+\Sigma p_{j}\right] f(G)-\left(n+1+\Sigma p_{j}\right) f(G) \\
& =(n+1) f(G)
\end{aligned}
$$

pebbles. Since $f\left(K_{n} \times G,\left(v_{1}, y\right)\right) \leq(n+1) f(G)$, then we can move one pebble to $\left(v_{1}, y\right)$.
Next we assume that the target vertex is $\left(u_{i j}, y\right)$ for some y, where $i=1,2, \ldots, n$ and $j=1,2, \ldots, p_{i}$. Without loss of generality, we assume that the target vertex is (u_{11}, y). If we delete all edges between the vertex $v_{i}(i=2, \ldots, n)$ and v_{j} $(j=2, \ldots, n)$ in the graph K_{n}^{*}, we get a tree T. By Lemma 3.2, we know that $f\left(T, u_{11}\right)=2(n+1)+\Sigma p_{j}$. By Lemma 3.3, we know that $f\left(T \times G,\left(u_{11}, y\right)\right) \leq f\left(T, u_{11}\right) f(G)$. From ref [1], we know that if G^{\prime} is a spanning subgraph of G, then $f(G) \leq f\left(G^{\prime}\right)$. Since T is a spanning subgraph of K_{n}^{*}, then $T \times G$ is a spanning subgraph of $K_{n}^{*} \times G$. So $f\left(K_{n}^{*} \times G,\left(u_{11}, y\right)\right) \leq f\left(T \times G,\left(u_{11}, y\right)\right)$, and consequently $f\left(K_{n}^{*} \times G,\left(u_{11}, y\right)\right) \leq\left[2(n+1)+\Sigma p_{j}\right] f(G)$. One pebble can be moved to $\left(u_{11}, y\right)$. A thorn graph of a complete graph satisfies the two-pebbling property. The following corollary is obvious.

Corollary 4.2.

$$
f\left(K_{n}^{*} \times K_{m}^{*}\right) \leq\left[2(n+1)+\sum_{i=1}^{n} p_{i}\right]\left[2(m+1)+\sum_{j=1}^{m} p_{j}\right], \quad n>1, m>1
$$

Acknowledgements

The authors would like to thank the anonymous referees for their constructive suggestions and critical comments which resulted in a much improved paper. The work was supported by the National Science Foundation of China under contracts No. 70431001 and No. 70620140115.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467-472.
[2] D. Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992) 244-252.
[3] D. Herscovici, Graham's conjecture on products of cycles, J. Graph Theory 42 (2003) 141-154.
[4] R. Feng, J. Kim, Graham's pebbling conjecture of production complete bipartite graph, Sci. China Ser. A 44 (2001) 817-822.
[5] R. Feng, J.Y. Kim, Pebbling numbers of some graphs, Sci. China Ser. A 45 (2002) 470-478.
[6] L. Pachter, H.S. Snevily, B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995) 65-80.
[7] H.S. Snevily, J.A. Foster, The 2-pebbling property and a conjecture of Graham's, Graphs Combin. 16 (2000) 231-244.
[8] A. Kirlangic, The scattering number of thorn graphs, Int. J. Comput. Math. 82 (2004) 299-311.
[9] D.S. Herscovici, A.W. Higgins, The pebbling number of $C_{5} \times C_{5}$, Discrete Math. 187 (1998) 123-135.

[^0]: E-mail address: wangzhiping5006@tom.com (Z. Wang).

