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a b s t r a c t

For integers n ≥ 1, k ≥ 0, and k ≤ n, the graph Γ kn has vertices the 2
n vectors of

Fn2 and adjacency defined by two vectors being adjacent if they differ in k coordinate
positions. In particular Γ 1n is the n-cube, usually denoted by Qn. We examine the binary
codes obtained from the adjacency matrices of these graphs when k = 1, 2, 3, following
the results obtained for the binary codes of the n-cube in Fish [Washiela Fish, Codes
from uniform subset graphs and cyclic products, Ph.D. Thesis, University of the Western
Cape, 2007] and Key and Seneviratne [J.D. Key, P. Seneviratne, Permutation decoding for
binary self-dual codes from the graph Qn where n is even, in: T. Shaska, W. C Huffman,
D. Joyner, V. Ustimenko (Eds.), Advances in Coding Theory and Cryptology, in: Series on
Coding Theory and Cryptology, vol. 2, World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2007, pp. 152–159 ]. We find the automorphism groups of the graphs and of their
associated neighbourhood designs for k = 1, 2, 3, and the dimensions of the ternary
codes for k = 1, 2. We also obtain 3-PD-sets for the self-dual binary codes from Γ 2n when
n ≡ 0 (mod 4), n ≥ 8.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In Fish [6] and Key and Seneviratne [12], the binary codes obtained from the row span over F2 of an adjacency matrix for
the n-cube Qn were examined, and the codes in the case of n even found to be self-dual with minimum weight n. Further,
3-PD-setswere found in [12] for partial permutation decoding. The n-cubes belong to the class of graphsΓ kn , for n ≥ 1, k ≥ 0
integers and k ≤ n, with vertices the 2n vectors of Fn2 and adjacency defined by two vectors being adjacent if they differ in k
coordinate positions. The n-cube is Γ 1n , which is also a Hamming graph, H(n, 2).
In this paper we will examine the binary codes from an adjacency matrix for the graphs Γ kn for k = 2, 3. We show that

for n ≡ 0 (mod 4) the codes from Γ 2n are self-dual and, when the same point ordering is used, distinct from those from
the n-cube Γ 1n = Qn: see Proposition 1, Lemma 3 and Proposition 8. We obtain the dimensions of these codes, and also
those of the ternary codes for Γ 1n and Γ

2
n : see Propositions 6 and 7. The automorphism groups of the codes (see Section 2

for our terminology) contain those of the defining graph and design; we identify the groups of the graphs and designs in
Propositions 3 and 4.
We summarize in a theorem what we have found for the dimensions of the binary codes for k = 1, 2, 3, including the

result for the binary codes for k = 1 for completeness (see Result 2). We also include our results on the ternary codes for
k = 1, 2, noting that the ternary codes for k = 3 seem to be quite different and to merit separate study. We include our
results on the automorphism groups of the graphs and designs. In the theorem we have used the same point ordering for
the vectors of Fn2 for the graphs Γ

k
n for distinct k in order to compare the codes.

Theorem 1. For integers n ≥ 1, k ≥ 0, and n ≥ k, let Γ kn denote the graph with vertices the 2
n vectors of Fn2 and adjacency

defined by two vectors being adjacent if they differ in k coordinate positions. Let Cp(Γ kn ) denote the p-ary code obtained by the
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row span of an adjacency matrix for Γ kn over Fp where p is a prime. Let Dk
n denote the 1-design with points the vertices of Γ

k
n

and blocks given by the set of neighbours of each vertex.

1. For p = 2:
(a) C2(Γ 1n ) has dimension 2

n for n odd, and dimension 2n−1 for n even. Further, the code is self-dual and has minimumweight
n if n is even.

(b)

dim(C2(Γ 2n )) =


2n−1 for n ≡ 0 (mod 4)
2n for n ≡ 2, 3 (mod 4)
2n−1 − 2

n−1
2 for n ≡ 1 (mod 4).

Furthermore, C2(Γ 2n ) is self-dual for n ≡ 0 (mod 4), self-orthogonal for n ≡ 1 (mod 4). For n ≡ 0 (mod 4), n ≥ 8,
dim(C2(Γ 1n ) ∩ C2(Γ

2
n )) = 2

n−2
+ 2

n
2−1.

(c) For n ≥ 2,

dim(C2(Γ 3n )) =


2n−1 for n ≡ 0 (mod 4), C2(Γ 3n ) = C2(Γ

1
n )

2n−1 − 2
n−1
2 for n ≡ 1 (mod 4), C2(Γ 3n ) = C2(Γ

2
n )

2n−2 − 2
n−2
2 for n ≡ 2 (mod 4), C2(Γ 3n ) ⊂ C2(Γ

1
n )

2n for n ≡ 3 (mod 4).
2. For p = 3:
(a)

dim(C3(Γ 1n )) =


2
3
(2n − 1) if n is even

2
3
(2n + 1) if n is odd

(b)

C3(Γ 2n ) =


C3(Γ 1n ) for n ≡ 0 (mod 3)
C3(Γ 1n )

⊥ for n ≡ 1 (mod 3)
F2
n

3 for n ≡ 2 (mod 3).
Furthermore C ∩ C⊥ = {0} for C any of these ternary codes.

3. If T denotes the translation group on the vector space Fn2, T
∗ the subgroup of T of translations of even weight vectors, and Sn

is the symmetric group of degree n, then Aut(Γ 1n ) = T o Sn, and, for n ≥ 6,

Aut(D1
n) = Aut(D

2
n) = Aut(Γ

2
n ) = (T

∗ o Sn) o S2,

and for n ≥ 8,

Aut(D3
n) = Aut(D

1
n), Aut(Γ 3n ) = Aut(Γ

1
n ).

The proof of the theorem follows from the propositions in the following sections. In addition, as in [6,12], we obtain 2-
and 3-PD-sets for the self-dual binary codes from Γ 2n in Proposition 5.
Sections 2 and 3 give the necessary background material and definitions. Sections 4 and 5 give the results for the binary

codes of Γ kn for k = 1, 2. Section 6 finds the automorphism groups of the designs and graphs. In Section 7 we find 3-PD-sets
for the self-dual binary code of Γ 2n when n ≡ 0 (mod 4). Sections 8 and 9 deal with the ternary codes for Γ

k
n for k = 1, 2,

and the final sections look at the dual codes in the binary and ternary cases.

2. Background and terminology

The notation for designs and codes is as in [1]. An incidence structureD = (P ,B,J), with point setP , block setB and
incidence J is a t-(v, k, λ) design, if |P | = v, every block B ∈ B is incident with precisely k points, and every t distinct
points are together incident with precisely λ blocks. The design is symmetric if it has the same number of points and blocks.
The code CF (D) of the design D over the finite field F is the space spanned by the incidence vectors of the blocks over F . If
Q is any subset of P , then we will denote the incidence vector ofQ by vQ. IfQ = {P}where P ∈ P , then we will write vP
instead of v{P}. Thus CF (D) =

〈
vB | B ∈ B

〉
, and is a subspace of FP , the full vector space of functions from P to F . If F = Fp

then the p-rank of the design, written rankp(D), is the dimension of its code CF (D), which we usually write as Cp(D).
All the codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C of length n, dimension k, and

minimumweight d, where theweightwt(v) of a vector v is the number of non-zero coordinate entries. The distance d(u, v)
between two vectors u, v is the number of coordinate positions in which they differ, i.e., wt(u− v). If u = (u1, . . . , un) and
v = (v1, . . . , vn), then we write u∩ v = (u1v1, . . . , unvn). A generator matrix for C is a k× nmatrix made up of a basis for
C , and the dual code C⊥ is the orthogonal under the standard inner product (, ), i.e. C⊥ = {v ∈ F n|(v, c) = 0 for all c ∈ C}.
A code C is self-dual if C = C⊥ and, if C is binary, doubly-even if all codewords have weight divisible by 4. A check matrix
for C is a generator matrix for C⊥. The all-one vector will be denoted by ȷ, and is the vector with all entries equal to 1.
Two linear codes of the same length and over the same field are isomorphic if they can be obtained from one another by
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permuting the coordinate positions. An automorphism of a code C is an isomorphism from C to C . The automorphism group
will be denoted by Aut(C). Any code is isomorphic to a code with generator matrix in the so-called standard form, i.e. the
form [Ik | A]; a check matrix then is given by [−AT | In−k]. The first k coordinates in the standard form are the information
symbols and the last n− k coordinates are the check symbols.
The graphs, Γ = (V , E)with vertex set V and edge set E, discussed here are undirected with no loops. A graph is regular

if all the vertices have the same valency. An adjacencymatrix A of a graph of order n is an n× nmatrix with entries aij such
that aij = 1 if vertices vi and vj are adjacent, and aij = 0 otherwise. The neighbourhood design of a regular graph is the
1-design formed by taking the points to be the vertices of the graph and the blocks to be the sets of neighbours of a vertex,
for each vertex. The code of a graph Γ over a finite field F is the row span of an adjacency matrix A over the field F , denoted
by CF (Γ ) or CF (A). The dimension of the code is the rank of the matrix over F , also written rankp(A) if F = Fp, in which case
we will speak of the p-rank of A or Γ , and write Cp(Γ ) or Cp(A) for the code.

Permutation decoding, first developed by MacWilliams [14], involves finding a set of automorphisms of a code called
a PD-set. The method is described fully in MacWilliams and Sloane [15, Chapter 16, p. 513] and Huffman [10, Section 8].
In [11,13] the definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then a PD-set for C is a set S of
automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the
check positions C.
For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by

at least one member of S into C.

The algorithm for permutation decoding is given in [10] and requires that the generator matrix is in standard form. Thus
an information set needs to be known. The property of having a PD-set will not, in general, be invariant under isomorphism
of codes, i.e. it depends on the choice of information set. Furthermore, there is a bound on the minimum size of S (see [8,
18], or [10]):

Result 1. If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥

⌈
n
r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t + 1
r − t + 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula.

3. The graphs Γ kn and designs Dk
n

The graph Γ kn , for n, k integers, n ≥ 1, k ≥ 0, and k ≤ n, has vertices the 2
n vectors of Vn = Fn2 and adjacency defined by

two vectors being adjacent if they differ in k coordinate positions. Thus x is adjacent to y in Γ kn if and only if wt(x+ y) = k
where wt(v) denotes the weight of v ∈ Vn. LetDk

n be the neighbourhood design for Γ
k
n , i.e. the 1-design with point set Vn

and whose block set, denoted by Bkn, is given by the rows of an adjacency matrix for Γ
k
n , i.e. the neighbours of the vertex

defined by each row. This is a symmetric 1-(2n,
( n
k

)
,
( n
k

)
) design unless n = 2k, in which case there are repeated blocks.

We will denote the block of the designDk
n defined by x ∈ Vn by x̄k, so that

x̄k = {y | y ∈ Vn, wt(x+ y) = k}.

The adjacency matrix for Γ kn is an incidence matrix for the design Dk
n (including repeated blocks in the n = 2k case). For

k = 1, Γ 1n is also the Hamming graph H(n, 2) and the n-cube Qn.
We will use the following notation: for r ∈ Z and 0 ≤ r ≤ 2n − 1, if r =

∑n
i=1 ri2

i−1 is the binary representation of r ,
let r = (r1, . . . , rn) be the corresponding vector in Fn2. We will also use e1, e2, . . . , en to denote the standard basis for Vn, so
that ei = 2i

− 1, for 1 ≤ i ≤ n, in our notation.
The complement of v ∈ Vn will be denoted by vc . Thus vc(i) = 1 + v(i) for 1 ≤ i ≤ n, where v(i) denotes the ith

coordinate entry of v. Similarly, for α ∈ F2, αc = α + 1. Clearly vc = v + 2n
− 1, i.e. vc = v + ȷn, where ȷn is the all-one

vector of Vn. Then note that

(xc)k = {y | y ∈ Vn, wt(x+ y+ ȷn) = k}
= {y | y ∈ Vn, wt(x+ y) = n− k} = x̄n−k,

soDk
n = Dn−k

n .
In this paper we will concentrate on k = 1, 2, 3. For these cases, for n > 2,D1

n is a 1-(2
n, n, n) symmetric design with

the property that two distinct blocks meet in zero or two points and similarly any two distinct points are together on zero
or two blocks. Similarly, for n > 4, D2

n is a 1-(2
n,
( n
2

)
,
( n
2

)
) symmetric design. We will show in Lemma 3 that any two

distinct blocks meet in zero, six or 2(n− 2) points and dually for any two distinct points. For n > 6,D3
n is a 1-(2

n,
( n
3

)
,
( n
3

)
)

symmetric design. We will show in Lemma 5 that any two distinct blocks meet in zero, 20, 6(n− 4) or (n− 2)(n− 3) points
and dually for points.
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For the adjacency matrices for the graphs we will always (with the exception of Section 7) use the natural ordering of
the vectors in Fn2 according to the ordering of the numbers between 0 and 2

n
− 1, in increasing order. With this ordering

we denote the adjacency matrix of Γ kn by M(n, k), for n ≥ 1, k ≥ 0 and n ≥ k. Thus M(n, 0) = I , the identity matrix, and
M(n, n) is the matrix with entries 1 on the reverse diagonal. Using block matrices, we have, for k ≥ 1, n ≥ 2,

M(n, k) =
[
M(n− 1, k) M(n− 1, k− 1)
M(n− 1, k− 1) M(n− 1, k)

]
.

Lemma 1. For any n ≥ 1, 0 ≤ k, l ≤ n, the matrices M(n, k) and M(n, l) commute over any field.
Proof. This is true for n = 1 and all 0 ≤ k, l ≤ n. Suppose it is true for some n and all 0 ≤ k, l ≤ n. We use block matrices
and the easily verified fact that if X =

[
X1 X2
X2 X1

]
and Y =

[
X3 X4
X4 X3

]
, and all the Xi commute, then so do X and Y . Thus for

k, l ≤ nwe haveM(n+ 1, k) andM(n+ 1, l) commuting by induction. For l = n+ 1 we have

M(n+ 1, k)M(n+ 1, n+ 1) =
[
M(n, k) M(n, k− 1)
M(n, k− 1) M(n, k)

] [
M(n, n+ 1) M(n, n)
M(n, n) M(n, n+ 1)

]
=

[
M(n, k) M(n, k− 1)
M(n, k− 1) M(n, k)

] [
0 M(n, n)

M(n, n) 0

]
,

and all the blocks commute, by induction. �

For any prime p, integers n, k, Cp(Dk
n) = Cp(Γ

k
n ) = Cp(M(n, k)). A different ordering of the vectors of Vn (points of the

design) will give an isomorphic code. We have a specific ordering as defined above so that we can use inductive procedures
on the matrices to deduce the rank. We only consider p = 2, 3 in this paper but the other primes could give interesting
codes.

4. Binary codes for Γ 2
n

We will write An = M(n, 1), Bn = M(n, 2) and I for the identity matrix of the appropriate size. Then, for n ≥ 2,

An =
[
An−1 I
I An−1

]
and Bn =

[
Bn−1 An−1
An−1 Bn−1

]
. (1)

In [6,12] the following result was obtained:

Result 2. For n ≥ 1, C2(Γ 1n ) is [2
n, 2n, 1]2 for n odd, and [2n, 2n−1, n]2 and self-dual for n even.

We now look at the binary codes for Γ 2n , i.e. the row span of Bn over F2. Thus in this section all the matrices will be over
F2. From Lemma 1, AnBn = BnAn for all n.

Lemma 2. For n ≥ 1,
(1) A2n = nI; (2) B2n =

{
0 if n ≡ 0, 1 (mod 4)
I if n ≡ 2, 3 (mod 4).

Proof. (1) Use induction. It is true for n = 1. Assume that for n ≥ 2, A2n−1 = (n − 1)I . Then A2n =
[
An−1 I
I An−1

]2
=[

A2n−1 + I 0
0 A2n−1 + I

]
= nI by induction.

(2) B2n =
[
Bn−1 An−1
An−1 Bn−1

]2
=

[
B2n−1 0
0 B2n−1

]
+ (n− 1)I. Since B21 = 0, this gives B

2
n =

( n
2

)
I , which gives the stated result. �

If we write B = Bn−2 and A = An−2, then using elementary row operations over F2 and∼ to denote row equivalence, for
n ≥ 3,

Bn =

B A A I
A B I A
A I B A
I A A B

 ∼
 I A A B
A I B A
A B I A
B A A I

 . (2)

Proposition 1. For n ≥ 1,

rank2(Bn) =


2n−1 for n ≡ 0 (mod 4)
2n−1 − 2

n−1
2 for n ≡ 1 (mod 4)

2n for n ≡ 2, 3 (mod 4).

Proof. For n ≡ 0 (mod 4), n − 1 ≡ 3 (mod 4), so A2n−1 = I and B
2
n−1 = I , by Lemma 2. Also, by Lemma 1, Bn−1An−1 =

An−1Bn−1, so
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Bn =
[
Bn−1 An−1
An−1 Bn−1

]
∼

[
I An−1Bn−1
An−1 Bn−1

]
∼

[
I An−1Bn−1
0 0

]
, (3)

which gives the result for n ≡ 0 (mod 4).
For n ≡ 2, 3 (mod 4), Bn is invertible from Lemma 2, so this follows immediately.
For n ≡ 1 (mod4), we first show that rank2(Bn) = 2n−2+2rank2(Bn−2+I). Let B = Bn−2, A = An−2. Using the observation

of Eq. (2), note that now we have B2 = A2 = I . Thus, using elementary row operations,

Bn ∼

 I A A B
0 0 B+ I A+ AB
0 B+ I 0 A+ AB
0 A+ AB A+ AB 0

 ∼
 I A A B
0 B+ I 0 A+ AB
0 0 B+ I A+ AB
0 0 0 0

 ,
which proves the first assertion.
Nowwe show that for n ≡ 3 (mod 4), rank2(Bn+I) = 2n−2+2rank2(Bn−2). Herewe have B2 = 0, A2 = I and (B+I)2 = I .

Using these and elementary row operations, we get

Bn + I =

B+ I A A I
A B+ I I A
A I B+ I A
I A A B+ I

 ∼
 I A A B+ I
0 B 0 AB
0 0 B AB
0 0 0 0

 ,
as required.
Now we prove the result for n ≡ 1 (mod 4) using induction on n, noting that it is true for n = 5. Suppose it is true for

5 ≤ k < n, k ≡ 1 (mod 4).
For n ≡ 1 (mod 4), we have n − 2 ≡ 3 (mod 4), and n − 4 ≡ 1 (mod 4) so that, by the above two deductions,

rank2(Bn) = 2n−2 + 2(2n−4 + 2(rank2(Bn−4))) which can be solved as a recurrence relation or by induction to obtain
rank2(Bn) = 2n−1 − 2

n−1
2 .

This completes the proof of the proposition. �

Lemma 3. Let n ≥ 2. For x, y ∈ Vn, if wt(x + y) = 2, x and y are together in 2(n − 2) blocks of D2
n, and if wt(x + y) = 4, x

and y are together in six blocks of D2
n; otherwise they are not together in any block of D2

n. Further, distinct blocks of D2
n meet in

0, 6 or 2(n− 2) points.
For n ≡ 1 (mod 4), C2(Γ 2n ) is self-orthogonal, and for n ≡ 0 (mod 4), C2(Γ

2
n ) is self-dual.

Proof. First notice that for points x, y ∈ Vn, for the design D2
n, if x, y ∈ z̄2 then wt(x + y) is 2 or 4. For we have

wt(x+ z) = wt(y+ z) = 2, so

wt(x+ y) = wt(x+ z + y+ z) = wt(x+ z)+wt(y+ z)− 2wt((x+ z) ∩ (y+ z)) = 4− 2wt((x+ z) ∩ (y+ z)).

For x 6= y, clearly wt((x+ z) ∩ (y+ z)) is 0 or 1, since these are weight-2 vectors. So wt(x+ y) is 2 or 4.
If x, y are adjacent inΓ 2n thenwt(x+y) = 2.We show that x and y are together on 2(n−2) blocks ofD

2
n. This follows since,

without loss of generality, we take x = (x1, x2, x3, . . . , xn), y = (x1+1, x2+1, x3, . . . , xn), sincewt(x+y) = 2. If wt(x+z) =
wt(y + z) = 2, then z = (x1, x2 + 1, x3, . . . , xi−1, xi + 1, xi+1 . . . , xn) or z = (x1 + 1, x2, . . . , xi−1, xi + 1, xi+1 . . . , xn) for
some i in the range 3 ≤ i ≤ n. This gives 2(n− 2) blocks.
If x, y ∈ Vn and wt(x + y) = 4, then x, y are together on six blocks of D2

n. For let x = (x1, x2, x3, x4, x5, . . . , xn) and
y = (x1 + 1, x2 + 1, x3 + 1, x4 + 1, x5, . . . , xn). If x, y ∈ z̄2 then z can only differ from x, y in the first four coordinate
positions, which gives

(
4
2

)
= 6 possibilities.

Thus two points are together on 0, six or 2(n − 2) blocks and dually any two blocks meet in 0, six or 2(n − 2) points.
Blocks have size

( n
2

)
which is even if n ≡ 0, 1 (mod 4). Thus in these cases C ⊆ C⊥, and equality holds for n ≡ 0 (mod 4)

since the dimensions of C and C⊥ are the same. �

Note: From Lemma 2, (An + I)2 = 0 for n odd showing that the binary code from An + I is self-orthogonal. We show in [5]
that it is a [2n, 2n−1, n+ 1]2 self-dual code. Similarly B2n = 0 for n ≡ 0, 1 (mod 4), and (Bn + I)

2
= 0 for n ≡ 2, 3 (mod 4),

implies that the codes are self-orthogonal. For n ≡ 2 (mod 4), Bn + I gives a self-dual code.

5. Binary codes for Γ 3
n

Now consider the graph Γ 3n and its design D3
n. For n > 6, the latter is a symmetric 1-(2

n,
( n
3

)
,
( n
3

)
) design. Using the

natural ordering of the vectors in Vn = Fn2, as before, if we denote the adjacency matrix for Γ
3
n by Dn = M(n, 3), we have,

for n ≥ 2,

Dn =
[
Dn−1 Bn−1
Bn−1 Dn−1

]
. (4)

With notation as used before for Bn and An we have the following lemma. All the matrices here are binary, i.e. over F2.
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Lemma 4. Over F2, for n ≥ 1 odd, BnAn = Dn; for n ≥ 2 even, Dn = BnAn + An. Further,

D2n =
{
I if n ≡ 3 (mod 4)
0 if n ≡ 0, 1, 2 (mod 4).

Proof. For the first statement, consider the first row of the product BnAn for n odd. This corresponds to the row given by 0̄2
multiplied by the columns of An. For this one gets n− 1 for the columns labelled by the ei, 3 for the columns labelled by the
ei + ej + ek, and 0 for the rest. Thus if n is odd this row gives the first row of the adjacency matrix for the Γ 3n graph, and this
clearly follows for the remaining rows, by transitivity. (This can also be proved by induction, using Eq. (4).)
If n is even, then writing B = Bn−1 and A = An−1, we have, since A2 = I ,

BnAn =
[
B A
A B

] [
A I
I A

]
=

[
AB+ A B+ A2

B+ A2 AB+ A

]
= Dn + An.

For D2n, note that for n even, D
2
n = B

2
nA
2
n+ A

2
n = 0 since A

2
n = 0. If n ≡ 1 (mod 4) then B

2
n = 0, so D

2
n = 0. If n ≡ 3 (mod 4)

then D2n = B
2
nA
2
n = I . �

Recall that the matrices An, Bn and Dn all commute, by Lemma 1.

Proposition 2. For n ≥ 2,

rank2(Dn) =


2n−1 for n ≡ 0 (mod 4) and Dn ∼ An
2n−1 − 2

n−1
2 for n ≡ 1 (mod 4) and Dn ∼ Bn

2n−2 − 2
n−2
2 for n ≡ 2 (mod 4)

2n for n ≡ 3 (mod 4).

Proof. For n ≡ 3 (mod 4), Dn is invertible by the lemma.
For n ≡ 0 (mod 4), write B = Bn−1, A = An−1 and D = Dn−1. Then n− 1 ≡ 3 (mod 4) so B2 = A2 = D2 = I and D = AB.

Thus

Dn =
[
D B
B D

]
∼

[
I BD
B D

]
∼

[
I A
0 0

]
∼ An.

For n ≡ 2 (mod 4), n− 1 ≡ 1 (mod 4), so, with the same notation as above, A2 = I and D = AB. So

Dn =
[
D B
B D

]
=

[
AB B
B AB

]
∼

[
B AB
0 0

]
,

so that rank2(Dn) = rank2(Bn−1) = 2n−2 − 2
n−2
2 .

If n ≡ 1 (mod 4), then n − 1 ≡ 0 (mod 4), take B = Bn−2, A = An−2, D = Dn−2, where n − 2 ≡ 3 (mod 4). So
B2 = A2 = D2 = I , D = AB, DA = B, and DB = A. Then

Dn =

D B B A
B D A B
B A D B
A B B D

 ∼
 I A A B
0 0 A+ AB B+ I
0 A+ AB 0 B+ I
0 B+ I B+ I 0

 ∼
 I A A B
0 B+ I 0 A+ AB
0 0 B+ I A+ AB
0 0 0 0


which is row equivalent to Bn, from the proof of Proposition 1. �

Thus the only new binary codes we have from Dn are when n ≡ 2 (mod 4). These are self-orthogonal (as are those from
n ≡ 0, 1 (mod 4), as noticed earlier).

Lemma 5. Let n ≥ 6. For x, y ∈ Vn, if wt(x+ y) = 2, x and y are together in (n− 2)(n− 3) blocks of D3
n; if wt(x+ y) = 4, x

and y are together in 6(n − 4) blocks of D3
n; if wt(x + y) = 6, x and y are together in 20 blocks of D3

n; otherwise they are not
together in any block of D3

n. Further, distinct blocks of D3
n meet in 0, 20, 6(n− 4) or (n− 2)(n− 3) points.

For n ≡ 2 (mod 4), n ≥ 6, C2(Γ 3n ) is self-orthogonal, doubly-even, C2(Γ
3
n ) ⊂ C2(Γ

1
n ), and the minimum weight of C2(Γ

3
n )

is at least n+ 2.

Proof. As in theΓ 2n case, it is easier to count thenumber of blocks through twopoints. For x, y ∈ z̄3, x 6= y, wt(x+y) = 2, 4, 6.
A simple count shows that if wt(x + y) = 6 then they are together on 20 blocks; if wt(x + y) = 4 they are together on
6(n−4) blocks; if wt(x+y) = 2, they are together on (n−2)(n−3) blocks, which gives the result about block intersections.
If n ≡ 2 (mod 4), D2n = 0 so the code is self-orthogonal. Further,

( n
3

)
is even, divisible by 4, so the code is doubly-even.

Since Dn = AnBn + An, DnAn = 0 so C2(Γ 3n ) ⊆ C2(Γ
1
n )
⊥
= C2(Γ 1n ). Since the minimum weight of C2(Γ

1
n ) for n even is n and

n ≡ 2 (mod 4), the minimum weight of C2(Γ 3n ) is at least n+ 2, since it is doubly-even. �
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6. Automorphism groups

We look here at the automorphism groups of the graphs, designs and codes. It is clear that the group of the graph
is a subgroup of that of the design which is a subgroup of that of the code. We have not, in general, identified the full
automorphism groups of the codes. For any n, wewrite T for the translation group of order 2n on Vn, and Sn for the symmetric
group acting on the n coordinate positions of the points v ∈ Vn. For eachw ∈ Vn, write T (w) for the translation on Vn given
byw, i.e. T (w) : v 7→ v+w for each v ∈ Fn2. The identity map will be denoted by ι = T (0). Then T = {T (w) | w ∈ Vn}. The
group TSn = T o Sn acts imprimitively on Vn for n ≥ 4 with {v, vc}, for each v ∈ Vn, a block of imprimitivity (see [12]). It is
the automorphism group of the graph Qn = Γ 1n (see [3,9,17]). It is clear that, for all k such that 1 ≤ k ≤ n, the group TSn is a
subgroup of Aut(Γ kn ) and Aut(D

k
n), since, for u ∈ Vn, T (u) has the property that if x, y ∈ z̄k, then wt(x+ z) = wt(y+ z) = k,

so wt(xT (u)+ zT (u)) = wt(x+ u+ z + u) = wt(y+ u+ z + u) = k, so that xT (u), yT (u) ∈ (z + u)k. Clearly any element
in Sn also preserves wt(x+ y). Furthermore, we clearly always have Aut(Γ kn ) ≤ Aut(D

k
n).

Proposition 3. For n ≥ 6,

Aut(D1
n) = Aut(D

2
n) = Aut(Γ

2
n ) = (T

∗ o Sn) o S2
where T ∗ = {T (u) | u ∈ Vn,wt(u) is even}.
Proof. We first show that Aut(D1

n) = Aut(Γ
2
n ). Two points x, y are together on a block ofD

1
n if and only if wt(x+ y) = 2,

and any two points are on exactly two blocks or no blocks ofD1
n. Thus if blocks ofD

1
n are preserved then so are edges of Γ

2
n ,

and conversely, giving the assertion.
Next we show that if σ ∈ Aut(D2

n) and n ≥ 6, then σ ∈ Aut(Γ
2
n ). For if x and y are on an edge of Γ

2
n then wt(x+ y) = 2,

so x, y are together on 2(n−2) blocks ofD2
n, by Lemma 3. Thus xσ , yσ are together on 2(n−2) blocks ofD

2
n. So wt(xσ+yσ)

is 2 or 4. If wt(xσ + yσ) = 4 then xσ , yσ are together on six blocks, by Lemma 3. Now 6 < 2(n − 2) for n ≥ 6, so this is
impossible, i.e. wt(xσ + yσ) = 2 and hence they are on an edge of Γ 2n .
Finally, to complete the proof, equality of the first three groups follows from the preceding statements, since clearly

Aut(Γ 2n ) ≤ Aut(D
2
n). To prove the final equality, note that Γ

2
n consists of two connected components, i.e. the vectors of

even weight and those of odd weight. The group T ∗o Sn preserves each of these components, and since they can bemapped
to one another, the wreath product with S2 will also act. Equality follows from a result to be found in [7]. �

Note: The group (T ∗ o Sn) o S2 also acts imprimitively on the points of the graphs and designs, with the same blocks of
imprimitivity as the smaller group T o Sn.

Proposition 4. For n ≥ 8,
(1) Aut(D3

n) = Aut(D
1
n); (2) Aut(Γ 3n ) = Aut(Γ

1
n ).

Proof. We first prove (1). For n ≥ 6, Aut(D1
n) = Aut(D

2
n) = Aut(Γ

2
n ), from Proposition 3.

Suppose that σ ∈ Aut(D1
n). Then σ permutes the points of D3

n. If x, y are distinct points on a block of D3
n, then

wt(x + y) = 2, 4, 6, and conversely, any two points whose sum has weight 2, 4, 6 are on a block of D3
n. If wt(x + y) = 2

then x, y are on a block of D1
n and hence so are xσ , yσ , and so wt(xσ + yσ) = 2 and hence they are on a block of D

3
n. If

wt(x+ y) = 4, then x, y are on a block ofD2
n and hence so are xσ , yσ , and so wt(xσ + yσ) = 2, 4, and so they are on a block

ofD3
n. If wt(x+ y) = 6, then without loss of generality we can take x = e1+ e2+ e3, y = e4+ e5+ e6. The point z = e4 has

wt(x+ z) = 4, wt(y+ z) = 2. So x and z are on a block ofD2
n, y and z are on a block ofD

1
n. Thus wt(xσ + zσ) = 2, 4 and

wt(yσ + zσ) = 2. This implies that

0 < wt(xσ + yσ) = wt(xσ + zσ)+wt(yσ + zσ)− 2i ≤ 6,

and is even, so xσ , yσ are on a block ofD3
n. Thus σ ∈ Aut(D

3
n).

Now suppose σ ∈ Aut(D3
n). If x, y are in a block ofD

1
n, then wt(x+y) = 2 and so they are on a block ofD

3
n, and hence so

are xσ , yσ . Thus wt(xσ + yσ) = 2, 4, 6. Now x and y are in (n− 2)(n− 3) blocks ofD3
n, by Lemma 5, and so xσ and yσ are

together in (n−2)(n−3) blocks ofD3
n. If wt(xσ +yσ) = 2 then xσ , yσ are in a block ofD

1
n, as required. If wt(xσ +yσ) = 4

then we must have 6(n − 4) = (n − 2)(n − 3), i.e. n = 5, 6 which is impossible since n ≥ 8. If wt(xσ + yσ) = 6 then
20 = (n− 2)(n− 3) and n = 7, again impossible. Thus σ ∈ Aut(D1

n).
Nowweprove (2). LetG = Aut(Γ 3n ),A = Aut(Γ

1
n ). Thenwehave already established thatG ≥ A, and, sinceG ≤ Aut(D

3
n),

that G acts imprimitively on Vn with {v, vc} forming blocks of imprimitivity, for v ∈ Vn. Let H = G0, the stabilizer of 0, the
zero vector of Vn, inG. Since A0 ∼= Sn, we need to show thatH does not contain any non-identity element that fixes e1, . . . , en.
Let σ ∈ H . We first introduce some notation: for 0 ≤ i ≤ n let

W i = {x | x ∈ Vn,wt(x) = i}.

Further, let d(x), for x ∈ Vn, denote the distance in Γ 3n of x from 0. Then d(x) = d(xσ) for all x. Since H ≥ Sn, each x ∈ W i

is at the same distance from 0 in the graph Γ 3n , and we denote this distance by di. Thus d0 = 0, d3 = 1, d2 = d4 = d6 = 2,
and d1 = 3, for example, and di = 1

3 (i+ 2(imod3)) in general for i 6= 1. For i ≥ 2, write i = 3t − jwhere j = 0, 2, 4; then
di = t . If
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St = {x | x ∈ Vn, d(x) = t}

then S0 = 0, S1 = W3,

St = W3t−4 ∪W3t−2 ∪W3t

for t ≥ 2, t 6= 3 (where some of theW i may be empty), and

S3 = W1 ∪W5 ∪W7 ∪W9.

So σ fixes the classes St , for all t . Before commencing the proof of the proposition, we note that x ∈ W i for i ≥ 3 has
neighbours inW j for j = i+3, i+1, i−1, i−3 (where someof these setsmay be empty, for example if i > n−3). For i = 1, x ∈
W1 has neighbours inW j for j = 2, 4, i.e. only in the one class S2, and for i = 2, x ∈ W2 has neighbours inW j for j = 1, 3, 5.
We now show that for n > 7 all theW i are fixed by H = G0. We first show that all the weight classes in S2 must be fixed

and then follow with induction on t for the classes in St . We know thatW3 is fixed. The number of weight-3 neighbours of
x ∈ W2 is (n−2)(n−3), that of x ∈ W4 is 6(n−4), and that of x ∈ W6 is 20. No two of these numbers can be equal for n ≥ 8,
and it follows that these weight classes cannot be interchanged for n ≥ 8 and soW2,W4 andW6 are fixed. It then follows
thatW1 is fixed, since none of the otherW i in S3 have neighbours in only the two weight classesW2 andW4. Thus the sets
W i for i = 0, 1, 2, 3, 4, 6 are all fixed. We show that all theW i are fixed, using induction and the fact that ifW i is fixed then
its set of neighbouring weight classes is fixed. The fact that eachmember of S2 is fixed immediately gives thatW i is fixed for
i = 5, 7, 9, i.e. that all members of S3 are fixed. Suppose that all members of St are fixed, where t ≥ 3. We use induction on
t ≥ 3. To consider St+1, we look at the members of St and their neighbours. The neighbours of vectors inW3t−4 are inW i
where i = 3(t+1)−4, 3(t−1), 3(t−1)−2, 3(t−1)−4, which tells us thatW3(t+1)−4 is fixed, by induction. The neighbours
of vectors inW3t−2 are inW i where i = 3(t + 1) − 2, 3(t + 1) − 4, 3(t − 1), 3(t − 1) − 2, which tells us thatW3(t+1)−2
is fixed, by induction. The neighbours of vectors inW3t are inW i where i = 3(t + 1), 3(t + 1)− 2, 3(t + 1)− 4, 3(t − 1),
which tells us thatW3(t+1) is fixed, by induction. This covers St+1, so all theW i are fixed.
Let σ ∈ G0. Then σ fixesW1, so there is an element τ ∈ A0 such that στ ∈ G[0,e1,...,en], the pointwise stabilizer. Since G0 ≥

A0, τ ∈ G0, so we can take σ ∈ G[0,e1,...,en] and show it must be the identity. Then it will follow that G0 = A0 and the proof is
complete. Suppose then that σ ∈ G[0,e1,...,en]. We first show that σ also fixes every weight-2 vector. Let x = e1+ e2. Then x is
a neighbour in Γ 3n of ei for i = 3, . . . , n. Wewant to show that it is the only common neighbour of this set of points. Suppose
thatw is a neighbour to all these points. Thenwt(w+ei) = 3 for i = 3, . . . , n. So, for i = 3, . . . , n, we have 3 = wt(w)+1−
2wt(w∩ei), so wt(w) = 2+2wt(w∩ei).Nowwt(w∩ei) is 0 or 1. Suppose wt(w∩ei) = 1 for some i ≥ 3. Thenwt(w) = 4,
and thus wt(w ∩ ei) = 1 for all i ≥ 3, so that wt(w) ≥ n − 2 > 4, giving a contradiction. So wt(w ∩ ei) = 0 for all i ≥ 3
and sow = x. Since each of the ei are fixed, this unique common neighbour is also fixed. Thus any weight-2 vector is fixed.
Finally we show that every vector is fixed by σ . We do this by induction on i forW i. It is true for i = 1, 2. If x ∈ W3 then

it is neighbour to precisely 3(n− 3)weight-2 vectors, all of which are fixed, and no other weight-3 can be neighbour to this
set. Thus every weight-3 vector is fixed. Suppose that the result is true for i = j− 1 ≥ 3, and let x ∈ W j. Then x is neighbour

to
(
j
3

)
vectors of weight j − 3, and no other weight-j can be a neighbour to this set, so by the same argument, x is fixed.

Thus σ is the identity and G = A. �

Note: It seems that this argument can be adapted to hold for Γ kn for any odd k. It clearly will not work for k even.

7. Permutation decoding for the self-dual C2(Γ 2
n )

We will show that the same 2-PD-sets as found in [6] and 3-PD-sets as found in [12] for C2(Γ 1n ) for n even will work for
C2(Γ 2n ) for n ≡ 0 (mod 4), n ≥ 8, although a different information set needs to be chosen. We do not have a formula for the
minimum weight of C2(Γ 2n ), although we know it is 2 for n = 4, 8 for n = 8, and at least 12 for n = 12.

1 For n ≥ 16, using
Eq. (3) and Lemma 4, we have Bn ∼

[
I Dn−1

]
∼
[
Dn−1 I

]
for n ≡ 0 (mod 4), since D2n−1 = I . Supposing the minimum

weight is less than 8, it must be 2,4 or 6. We need only look at sums of one, two or three rows of
[
I Dn−1

]
. From Lemma 5

we see that the sum of two blocks ofD3
n−1 has weight at least 2

((
n−1
3

)
− (n− 3)(n− 4)

)
and the sum of three blocks has

weight at least 3
((

n−1
3

)
− 2(n− 3)(n− 4)

)
. For n ≥ 12 the sum of two or three rows of the the equivalent matrices for

Bn thus has weight greater than 6, which shows that the minimum weight of C2(Γ 2n ) is at least 8 for n ≥ 12 and thus the
code will always correct three errors for n ≥ 8.

Lemma 6. For n ≡ 0 (mod 4), an information set can be obtained for the binary code C2(Γ 2n ) by making the following
interchanges between the information and check sets from the natural ordering of the vectors: move e1 + e2 + e3 + ȷn =
(0, 0, 0, 1, . . . , 1) and e2 + e3 + ȷn = (1, 0, 0, 1, . . . , 1) into the information set, and move

∑n−1
i=2 ei = (0, 1, . . . , 1, 0) and∑n−1

i=1 ei = (1, . . . , 1, 0) into the check positions.

1 We thank John Cannon for computing this lower bound for us.
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Proof. In this case, [Bn−1 | An−1] is a generator matrix for the code, and this is equivalent to [I | Bn−1An−1] since
B2n−1 = I by Lemma 2. From Lemma 4 Bn−1An−1 is an adjacency matrix for Γ

3
n−1. Thus the last two rows of the column

for e1 + e2 + e3 + ȷn = (0, 0, 0, 1, . . . , 1) = 2n
− 8 have entries 0 and 1 respectively, while the last two rows of the

column for e2+ e3+ ȷn = (1, 0, 0, 1, . . . , 1) = 2n
− 7 have entries 1 and 0. Thus the last two columns of I , representing the

points 2n−1
− 2 = (0, 1, . . . , 1, 0) =

∑n−1
i=2 ei and 2

n−1
− 1 = (1, . . . , 1, 0) =

∑n−1
i=1 ei, can be replaced by these columns,

preserving the rank, and giving an isomorphic code. �

For each i such that 1 ≤ i < n let ti = (i, n) ∈ Sn, i.e. the automorphism of C2(Γ 2n ) defined by the transposition of the
coordinate positions. For n ≥ 4 let

Pn = {ti | 1 ≤ i ≤ n− 1} ∪ {ι}
Tn = TPn.

Since the translation group T is normalized by Sn, elements of the form T (w)tiT (u) are all in Tn, i.e. σ−1T (u)σ = T (uσ−1),
so that for transpositions t , tT (u) = T (ut)t . Let P∗n = {tn−1, ι} and

T ∗n = TP
∗

n = T {tn−1, ι}.

We will write

I1 = {r | 0 ≤ r ≤ 2n−1 − 3} = {(r1, . . . , rn−1, 0) | ri ∈ F2} \ {(0, 1, . . . , 1, 0), (1, . . . , 1, 0)}
C1 = {r | 2n−1 ≤ r ≤ 2n − 1} \ {2n

− 8, 2n
− 7}

= {(r1, . . . , rn−1, 1) | ri ∈ F2} \ {(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1)}
I2 = {2n

− 8, 2n
− 7} = {(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1)}

C2 = {2n−1
− 2, 2n−1

− 1} = {(0, 1, . . . , 1, 0), (1, . . . , 1, 0)},

and I = I1 ∪ I2, C = C1 ∪ C2. Write

a = 2n
− 8 = (0, 0, 0, 1, . . . , 1), b = a+ 1 = 2n

− 7 = (1, 0, 0, 1, . . . , 1),
α = 2n−1

− 2 = (0, 1, . . . , 1, 0), β = α + 1 = 2n−1
− 1 = (1, . . . , 1, 0).

Proposition 5. With I as information set, for n ≡ 0 (mod 4), n ≥ 8, T ∗n is a 2-PD-set of size 2
n+1 for C2(Γ 2n ), and Tn is a 3-PD-set

of size n2n for C2(Γ 2n ).

Proof. First consider the case of 2-PD-sets. Let T = {x, y} be a set of two points in Vn. We need to show that there is an
element in T ∗n thatmaps T intoC.We consider the various possibilities for the points in T . If T ⊆ C then use ι. Thus suppose
at least one of the points is in I and, by using a translation, suppose that one of the points, say y, is 0.
If x ∈ I, then suppose first that x ∈ I1. Then T ((0, . . . , 0, 1)) will work unless x = (0, 0, 0, 1, . . . , 1, 0) or

(1, 0, 0, 1, . . . , 1, 0), in which case T ((0, . . . , 0, 1, 1)) will work. If x ∈ I2, then T ((1, 1, 1, 0, . . . , 0, 1)) will map y into
C1 and x into C2.
If x ∈ C, then suppose first that x ∈ C1. Then x = (x1, . . . , xn−1, 1) and (x1, . . . , xn−1) 6=

(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1). Then T ((1, . . . , 1, 0)) will map y into C2 and x to (x1 + 1, . . . , xn−1 + 1, 1) ∈ C1
unless x = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), in which case tn−1T ((0, . . . , 0, 1)) will work. If x ∈ C2, then
T ((0, . . . , 0, 1))will work. This completes the case of the 2-PD-set.
Now let T = {x, y, z} be a set of three points in Vn. We need to show that there is an element in Tn that maps T into C.

We consider the various possibilities for the points in T . If T ⊆ C then use ι. Thus suppose at least one of the points is in I
and, by using a translation, suppose that one of the points, say z, is 0.
If T ⊆ I, then suppose first that x, y ∈ I1. Then T ((0, . . . , 0, 1)) will work unless x or y is (0, 0, 0, 1, . . . , 1, 0) or

(1, 0, 0, 1, . . . , 1, 0). If x and y are these two points then T ((0, . . . , 0, 1, 1)) will work. If x is one of these points and
y is not, then T ((0, . . . , 0, 1, 1)) will work unless y is (0, 0, 0, 1, . . . , 1, 0, 0) or (1, 0, 0, 1, . . . , 1, 0, 0), in which case
T ((0, . . . , 0, 1, 0, 1))will work.
If x, y ∈ I2, then T ((0, 1, 1, 0 . . . , 0, 1)) will work. Now suppose x ∈ I2, y ∈ I1, and suppose x = (0, 0, 0, 1 . . . 1), y =

(y1, . . . , yn−1, 0). Then T ((1, 1, 1, 0, . . . , 0, 1)) will work; similarly if x = (1, 0, 0, 1, . . . , 1), then T ((0, 1, 1, 0, . . . , 0, 1))
will work, since in the first case yT = ((y1)c, (y2)c, (y3)c, y4 . . . , yn−1, 1) 6∈ C only if yT = a, b, i.e. y = α, β , which is
impossible.
The other cases for T involve one or two points in C.

Case (i) x ∈ I1 and y ∈ C1. Then x = (x1, . . . , xn−1, 0), y = (y1, . . . , yn−1, 1), x 6= α, β , y 6= a, b.

1. Suppose x = yc . Then τ = T ((x1, . . . , xn−1, 1)) will have zτ = (x1, . . . , xn−1, 1), xτ = (0, . . . , 0, 1), yτ =
(1, . . . , 1, 0) which will work unless zτ = a, b, i.e. x = (0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . 1, 0). In this case
σ = tn−1T ((0, 1, 1, 0, . . . , 0, 1, 1))will work.

2. Suppose xi = yi for 1 ≤ i ≤ n − 1. Then x = (x1, . . . , xn−1, 0) and y = (x1, . . . , xn−1, 1). Then if τ = T (xc), zτ = xc ,
xτ = (1, . . . , 1), yτ = (1, . . . , 1, 0) are all in C unless xc = a, b, i.e. x = (1, 1, 1, 0, . . . , 0) or (0, 1, 1, 0 . . . 0). In this
case σ = tn−1T ((0, . . . , 0, 1))will work.
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3. Suppose there exists i such that xi = yi = 0, and xj 6= yj for some j. Then σ = T ((1, . . . , 1))ti will work as long as
xσ , yσ 6= a or b. In this case tiT ((0, . . . , 0, 1)) or tiT ((0, 1, 0 . . . , 0, 1))will work.

4. Suppose there is no i for which xi = yi = 0, and x 6= yc . If y = (1, . . . , 1) then T ((1, 0, . . . , 0, 1)) will do unless
x = (0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0), in which case tn−1T ((1, . . . , 1, 0)) will work. Otherwise yj = 0 for
some j, 1 ≤ j ≤ n − 1. The possibility y = (0, . . . , 0, 1) cannot arise, so xi = yi = 1 for some i ≤ n − 1 and
then σ = tiT ((1, . . . , 1, 0))will do, unless xσ or yσ is a, b. If xσ = a, then i ≥ 4 and x = (1, 1, 1, 0, . . . , 0)+ 2i−1, y =
(y1, y2, y3, 1, . . . , 1), where yj for j = 1, 2, 3 are not all 0 and not all 1. The translation T (((y1)c, (y2)c, (y3)c, 0, . . . , 0, 1))
will work. If xσ = b then i = 1 or i ≥ 4, x = (1, 1, 1, 0, . . . , 0) if i = 1, or x = (0, 1, 1, 0, . . . , 0) + 2i−1 if i ≥ 4, and
y = (1, y2, y3, 1, . . . , 1) in either case. Then T ((0, (y2)c, (y3)c, 0, . . . , 0, 1)) will work. Similarly, if yσ = a or b, then
y = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), respectively and tn−1T (((x1)c, (x2)c, (x3)c, 0, . . . , 0, 1, 1))will work.

Case (ii) x ∈ I1 and y ∈ C2. Then x = (x1, . . . , xn−1, 0) and y = α or β . Then in either case for y, T ((0, . . . , 0, 1))will work
unless x = (0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0). In this case, T ((1, . . . , 1))will do.
Case (iii) x ∈ I2 and y ∈ C2. In all the four cases the map tn−1T (β)will work.
Case (iv) x ∈ I2 and y ∈ C1. Then x = a, b and y = (y1, . . . , yn−1, 1). If x = a, then T (β) will work unless
y = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), in which case tn−1T ((1, 1, 1, 0, . . . , 0, 1))will work. Similarly if x = b.
Case (v) x ∈ C2 and y ∈ C2. Then T ((0, . . . , 0, 1))will do.
Case (vi) x ∈ C1 and y ∈ C2. Then if x = (x1, . . . , xn−1, 1) and y = β , σ = T (((x1)c, . . . , (xn−1)c, 1)) will work unless
zσ = ((x1)c, . . . , (xn−1)c, 1) = a, b. If it is a, then x = (1, 1, 1, 0, . . . , 0, 1), and if b, then x = (0, 1, 1, 0, . . . , 0, 1).
In either case, tn−1T ((0, . . . , 0, 1, 1)) will work. If y = α, then, as above, T ((x1, (x2)c, . . . , (xn−1)c, 1)) will work unless
(x1, (x2)c . . . , (xn−1)c, 1) = a, b, i.e. x = (0, 1, 1, 0, . . . , 0, 1) or (1, 1, 1, 0, . . . , 0, 1). The samemap tn−1T ((0, . . . , 0, 1, 1))
will work.
Case (vii) x, y ∈ C1. Then x = (x1, . . . , xn−1, 1), y = (y1, . . . , yn−1, 1), 6= a, b. Then T (β) will work unless one or both of
x, y are either u = (1, 1, 1, 0, . . . , 0, 1) or v = (0, 1, 1, 0, . . . , 0, 1). If x = u and y = v then tn−1T ((1, . . . , 1)) will work.
If x = u or v and y = (1, . . . , 1) then tn−1T ((0, . . . , 0, 1)) will work. Thus suppose x = u or v and yi = 0 for some i, but
y 6= u, v. If there is no j ≥ 4 for which xj = yj = 0 then y = (y1, y2, y3, 1, . . . , 1) where yi = 0 for some 1 ≤ i ≤ 3. In this
case tn−1T ((y1)c, (y2)c, (y3)c, 0 . . . , 0, 1) will work. Otherwise yi = 0 for some 4 ≤ i ≤ n − 1. Then tiT ((0, . . . , 0, 1)) will
work unless y = (0, 0, 0, 1, . . . , 1, 0, 1, . . . , 1) or (1, 0, 0, 1, . . . , 1, 0, 1, . . . , 1) where the 0 is in the ith position. In this
case, tiT ((1, . . . , 1))will work.
This completes all the cases. �

Note: The combinatorial lower bound for the size of an s-PD-set from Result 1 is 14 for s = 3, and 6 for s = 2.

8. Ternary codes for Γ 1
n

We now look at the ternary codes from the graph Γ 1n , i.e. from the design D1
n. All the spans are now over F3. We first

establish a general result for all the Γ kn , k ≥ 1. Using the notation of Section 3:

Lemma 7. Over F3, if k ≥ 0, n ≥ 1, then M3(n, k) = M(n, k), (M2(n, k)+ I)2 = I , and rank3(M(n, k)) = rank3(M2(n, k)).

Proof. We prove this by induction on n and k ≤ n. It is true for n = 1 and k = 0, 1 since M(1, 1) = A1 =
[
0 1
1 0

]
and

M(1, 0) = I . Suppose by induction that it is true for n and all 0 ≤ k ≤ n. Then, writing M(n + 1, k) = M , M(n, k) = N ,
M(n, k− 1) = L,

M3 =
[
N2 + L2 2NL
2NL N2 + L2

] [
N L
L N

]
=

[
N3 L3

L3 N3

]
= M,

by induction if k ≤ n. If k = n+ 1, thenM(n+ 1, n+ 1) is the reverse diagonal matrix, which does have this property.
For the other statements, just notice that (M2 + I)2 = I , and rank3(M) ≥ rank3(M2) ≥ rank3(M3) = rank3(M). �

We now return to the ternary codes of Γ 1n , i.e. we take An = M(n, 1) over F3.

Lemma 8. For n ≥ 3, rank3(An) = 2n−1 + rank3(An−2).

Proof. Writing A = An−2, using A3 = A and elementary row operations over F3, we have

An =

A I I 0
I A 0 I
I 0 A I
0 I I A

 ∼
 I 0 A I
0 I I A
0 I I + 2A2 2A
0 A 2A 0

 ∼

I 0 0 A2 + I
0 I A2 + I 0
0 0 A 2A2

0 0 0 0

 .
This gives the result. �
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Proposition 6. For n ≥ 1,

rank3(An) =


2
3
(2n − 1) if n is even

2
3
(2n + 1) if n is odd.

Proof. We can verify directly that the result is true for n = 1, 2. Let n ≥ 3 and write rank3(An) = an. Then by Lemma 8
an = 2n−1 + an−2. Solving this recurrence with a1 = a2 = 2, gives an = 2

3 (2
n
− 1) for n even, an = 2

3 (2
n
+ 1) for n odd,

proving the assertion. �

Note:1. Since
∑
x∈Vn v

x̄
= nȷ, it follows that ȷ ∈ C3(Γ 1n ) for n ≡ 1, 2 (mod 3). Clearly ȷ ∈ C3(Γ

1
n )
⊥ for n ≡ 0 (mod 3).

2. Peeters [16] obtains the p-rank for graphs that include the class of Hamming graphs in a different, more general, way.

9. Ternary codes for Γ 2
n

Now we consider the codes generated by the adjacency matrices Bn of Γ 2n over F3. All spans will now be over F3 with
notation as before. Recall that A3n = An and B

3
n = Bn, by Lemma 7.

Lemma 9. For all n ≥ 1, A2n = nI + 2Bn, AnBn = (n− 1)An, and B
2
n =

{
2Bn if n ≡ 0 (mod 3)
Bn if n ≡ 1 (mod 3)
I if n ≡ 2 (mod 3).

Proof. The proof of the first statement is by induction. It is true for n = 1 since A21 = I and B1 = 0. Suppose it is true for all
k < n. Then

A2n =
[
A2n−1 + I 2An−1
2An−1 A2n−1 + I

]
=

[
2Bn−1 + nI 2An−1
2An−1 2Bn−1 + nI

]
= 2Bn + nI,

as required. The other statements follow from the first. �

Writing now B = Bn−2, A = An−2, we have

Bn =

B A A I
A B I A
A I B A
I A A B

 ∼

I A A B
0 I + 2A2 B+ 2A2 A+ 2AB
0 B+ 2A2 I + 2A2 A+ 2AB
0 A+ 2AB A+ 2AB I + 2B2

 . (5)

Proposition 7. For n ≥ 1,

rank3(Bn) =



2
3
(2n − 1) for n ≡ 0 (mod 6) and Bn ∼ An
2
3
(2n + 1) for n ≡ 3 (mod 6) and Bn ∼ An
2
3
(2n−1 − 1) for n ≡ 1 (mod 6)

2
3
(2n−1 + 1) for n ≡ 4 (mod 6)

2n for n ≡ 2 (mod 3).

Proof. First take n ≡ 0 (mod 3). Then n−2 ≡ 1 (mod 3), and B2 = B, AB = 0, and A2 = I+2B. By Eq. (5), using elementary
row operations,

Bn ∼

 I A A B
0 B 2I + 2B A
0 2I + 2B B A
0 A A I + 2B

 ∼

I 0 0 A2 + I
0 I A2 + I 0
0 0 A 2A2

0 0 0 0

 ∼ An,
by the proof of Lemma 8.
For n ≡ 1 (mod 3), n− 2 ≡ 2 (mod 3), n− 1 ≡ 0 (mod 3), so B2 = I , A2 = 2I + 2B, and AB = A. By Eq. (5),

Bn ∼

 I A A B
0 2I + B I + 2B 0
0 I + 2B 2I + B 0
0 0 0 0

 ∼
 I A A B
0 2I + B 2B+ I 0
0 0 0 0
0 0 0 0

 ,
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and so rank3(Bn) = 2n−2 + rank3(Bn−2 + 2I) for n ≡ 1 (mod 3). Now Bn−2 + 2I = I + 2A2n−2 and

A2n−2 − I =
[
An−3 I
I An−3

]2
−

[
I 0
0 I

]
=

[
A2n−3 2An−3
2An−3 A2n−3

]
∼

[
A2n−3 2An−3
0 0

]
.

So rank3(I + 2A2n−2) = rank3(An−3) and this is given by the formula in Proposition 6, giving the stated result.
For n ≡ 2 (mod 3), B2n = I by Lemma 9, so Bn is invertible and hence of full rank. �

10. The self-dual binary codes

For n ≡ 0 (mod 4), both the codes C2(Γ 1n ) and C2(Γ
2
n ) are self-dual, from [12,6] for the first case, and from Lemma 3, for

the second. The graph Γ 3n only yields new codes when n ≡ 2 (mod 4), in which case C2(Γ
3
n )
⊥
⊃ C2(Γ 1n ) by Result 2 and

Lemma 5.

Lemma 10. For n ≥ 4, n ≡ 0 (mod 4), C2(Γ 1n ) 6= C2(Γ
2
n ).

Proof. Since these are self-dual, we need only show that there are blocks of the designs that do not meet evenly. Thus
consider u = e1 = (1, 0, . . . , 0) and w = 0 = (0, 0, . . . , 0) in Vn. Then |ū1 ∩ w̄2| = n − 1, which is odd, so vū1 6∈ C2(Γ 2n )
and so the codes are distinct. �

Note: For n = 4, C2(Γ 2n ) has minimum weight 2; for n = 8 it has minimum weight 8 and two types of minimum words:
if P 1 = {0, e1 + e2, e3 + e4, e1 + e2 + e3 + e4}, P 2 = {0, e1 + e2 + e7 + e8, e3 + e4 + e7 + e8, e1 + e2 + e3 + e4} and
if P ci = {xc | x ∈ P i}, and Si = P i ∪ P ci , then w = vSi ∈ C2(Γ 2n ), and v

Si 6∈ C2(Γ 1n ), for i = 1, 2. This was discovered
computationally (using Magma [2,4]) but can easily be verified by checking that w meets every block ofD2

n evenly, but for
v = (0, 0, 0, 0, 1, 0, 0, 0), |S1 ∩ v̄1| = 1, and similarly for S2. Computational results showed that the number of minimum
weight words of C2(Γ 1n ) for n = 8 is 256, i.e. the incidence vectors of the blocks of the design, and that the minimumweight
of C2(Γ 2n ) is 8, and that there are 10080 minimum words, 6720 of the first type, and 3360 of the second, as counting will
verify. The intersection of these codes has dimension 72, minimum weight 16, and 1680 minimum words.

Proposition 8. For n ≥ 4, n ≡ 0 (mod 4), dim(C2(Γ 1n ) ∩ C2(Γ
2
n )) = 2

n−2
+ 2

n
2−1.

Proof. Since (C2(Γ 1n )∩ C2(Γ
2
n ))
⊥
= C2(Γ 1n )

⊥
+ C2(Γ 2n )

⊥
= C2(Γ 1n )+ C2(Γ

2
n ), we consider the row span of the matrices An

and Bn. Thus, with A = An−1 and B = Bn−1, n ≡ 0 (mod 4) implies n− 1 ≡ 3 (mod 4) so A2 = B2 = I by Lemma 2, and[
An
Bn

]
=

A I
I A
B A
A B

 ∼
 I A
0 B+ I
0 0
0 0

 .
By the proof of Proposition 1, rank2(B + I) = 2n−3 + 2(2n−4 − 2

n−4
2 ) = 2n−2 − 2

n−2
2 , thus dim(C2(Γ 1n ) + C2(Γ

2
n )) =

2n−1 + 2n−2 − 2
n−2
2 , and it follows that dim(C2(Γ 1n ) ∩ C2(Γ

2
n )) = 2

n−2
+ 2

n−2
2 . �

We can identify somewords in C2(Γ 2n ) and in C2(Γ
1
n )∩C2(Γ

2
n ), for n ≡ 0 (mod 4), n ≥ 4, althoughwe have not yet found

the minimum weight of these codes for n ≥ 12. Similarly, we have found some words in C2(Γ 2n )
⊥ when n ≡ 1 (mod 4),

n ≥ 5, that are of minimum weight in the smallest case. The constructions of these words are similar.
Our words will be constructed as follows: writeΩn = {1, . . . , n}. For n ≡ 0 (mod 4) let {N i | 1 ≤ i ≤ n

2 } be the partition
ofΩn into 2-subsets given byN i = {2i−1, 2i} for 1 ≤ i ≤ n

2 , and let fi = e2i−1+ e2i. Let g = f1+ f2. Thus the fi are weight-2
vectors in Vn and g has weight 4. Let

Un =
〈
fi | 1 ≤ i ≤

n
2

〉
Wn =

〈{
fk | 3 ≤ k ≤

n
2

}
∪ {g}

〉
,

i.e. subspaces of dimension n2 and
n
2 − 1, respectively.

For n ≡ 1 (mod 4)we partition up to n− 1 and define

Yn =
〈
fi | 1 ≤ i ≤

n− 1
2

〉
.

Thus Yn is a subspace of Vn of dimension n−12 . With this notation we get:

Proposition 9. For n ≡ 0 (mod 4), n ≥ 4, the code C2(Γ 1n ) ∩ C2(Γ
2
n ) has a word of weight 2

n
2 given by the incidence vector

vUn of the subspace Un. Further, C2(Γ 2n ) has a word of weight 2
n
2−1 given by the incidence vector vWn of the subspace Wn.

For n ≡ 1 (mod 4), n ≥ 5, C2(Γ 2n )
⊥ has a word of weight 2

n−1
2 given by vYn .
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Proof. First we deal with the n ≡ 0 (mod 4) case. Notice that Un is the union of the subspace Wn and the coset f1 + Wn.
Thus if we can show that the incidence vector ofWn is in the code C2(Γ 2n ) then its translate by f1 will also be in C2(Γ

2
n ) and

hence the incidence vector of Un will be in C2(Γ 2n ).
For x ∈ Vn let

S1x = {y | y ∈ Un,wt(x+ y) = 1};

S2x = {y | y ∈ Wn, wt(x+ y) = 2}.

Then for z ∈ Un, S1(x+z) = S
1
x + z and for z ∈ Wn, S

2
(x+z) = S

2
x + z. Proving the first of these,

S1(x+z) = {y | y ∈ Un,wt(x+ z + y) = 1} = {(r + z) | r ∈ Un,wt(x+ r) = 1} = S
1
x + z.

The other follows similarly.
First we show that vUn ∈ C2(Γ 1n ), and that Un is in fact an arc for D1

n, i.e. blocks of the design meet it in 0 or 2 points.
If x ∈ Vn has even weight then x̄1 ∩ Un = ∅. If x ∈ Vn has odd weight, we can reduce it by adding suitable elements of Un
so that the entries at the coordinate pairs in N i are 1, 0 or 0, 0. Thus, without loss of generality, suppose x has this form.
Suppose there are i of the first type where 0 ≤ i ≤ n

2 , and i is odd, since wt(x) = i. For any y ∈ Un, wt(x+ y) ≥ i, so if i ≥ 2,
x̄1 ∩ Un = ∅. If i = 1 then x = ej for some j, and x̄1 meets Un in precisely two points. This shows that vUn ∈ C2(Γ 1n ), and that
Un is an arc forD1

n.
Now we prove vWn ∈ C2(Γ 2n ). If x ∈ Vn has odd weight then x̄2 ∩ Un = ∅. If x ∈ Vn has even weight, we can reduce it by

adding suitable elements ofWn so that the entries at the coordinate pairs in N i for i ≥ 3 are 1, 0 or 0, 0, and such that the
first four entries have r 1’s where 0 ≤ r ≤ 2. Suppose there are i of the type 1, 0, where 0 ≤ i ≤ n

2 − 2. Then for y ∈ Wn,
wt(x+ y) ≥ i+ r . Thus if i ≥ 3, x̄2 ∩Wn = ∅. If i = 2 then we need r = 0 for a non-trivial intersection, and we get |S2x | = 4.
If i = 1 then r = 1 and |S2x | = 2. If i = 0 then r = 0 or r = 2. In the first case |S

2
x | =

n
2 − 2, which is even, and in the second,

|S2x | = 2. Thus v
Wn ∈ C2(Γ 2n ).

For n ≡ 1 (mod 4), we show that vYn ∈ C2(Γ 2n )
⊥. For x ∈ Vn we write Tx = {y | y ∈ Yn,wt(x + y) = 2}, and note that

as before, for z ∈ Yn, T(x+z) = Tx + z. Thus we can employ the same method of proof as in the previous cases. If wt(x) is
odd, then x̄2 ∩ Yn = ∅. If x ∈ Vn has even weight, we can reduce it by adding suitable elements of Yn so that the entries at
the coordinate pairs in N i for 1 ≤ i ≤ n−1

2 are 1, 0 or 0, 0. The entry at n is xn. Suppose x now has i pairs with entries 1, 0,
where 0 ≤ i ≤ n−1

2 . Then for y ∈ Yn, wt(x+ y) ≥ i. Thus if i ≥ 3, x̄2 ∩ Yn = ∅. If i = 2 then xn = 0 and |Tx| = 4. If i = 1 then
xn = 1 and again |Tx| = 2. If i = 0 then x = 0 and |T0| = n−1

2 which is even for n ≡ 1 (mod 4). Thus v
Yn ∈ C2(Γ 2n )

⊥. �

11. The dual codes when p = 3

Proposition 10. Let C = C3(Γ 1n ) or C3(Γ
2
n ) for n ≥ 4. Then C ∩ C

⊥
= {0}.

Further, for n ≡ 1 (mod 3), C3(Γ 1n )
⊥
= C3(Γ 2n ); for n ≡ 0, 2 (mod 3), the minimum weight of C3(Γ

1
n )
⊥ is at most

( n
2

)
+ 1.

Proof. Recall that C3(Γ 1n ) = C3(Γ
2
n ) for n ≡ 0 (mod 3) by Proposition 7.

In both cases we show that FVn3 = C + C
⊥ by showing that the incidence vector of any point can be written as u + w

where u ∈ C andw ∈ C⊥, which will prove the assertion.
First letC = C3(Γ 1n ). For brevity,write 0 = (0, . . . , 0) and z̄ for z̄1 in this part of the proof.We show thatw = v

0
−
∑
0∈z̄ v

z̄

is in C⊥. Since the automorphism group is transitive on points, this will show that all the weight-1 vectors are in C + C⊥.
The blocks containing 0 are the blocks ēi, so w = v0 −

∑n
i=1 v

ēi .We show that the inner product (w, vx̄) = 0 for all
blocks x̄.
First suppose 0 ∈ x̄. Then wt(x) = 1, so x = ei for some i. Without loss of generality take x = e1. Then

(w, ve1) = (v0, ve1)−

n∑
i=1

(vei , ve1) = 1−
n∑
i=1

(vei , ve1).

Now (vē1 , vē1) = n and (vēi , vē1) = 2 for i 6= 1, since, for each i, ēi = {0, ei+ ej | j 6= i}. So (w, vē1) = 1−n−2(n−1) = 0.
Now suppose 0 6∈ x̄. For y ∈ x̄, wt(x+ y) = 1 and since

wt(x+ y) = wt(x)+wt(y)− 2wt(x ∩ y) = 1,

if x̄meets ēi then y ∈ x̄ ∩ ēi has wt(y) = 2, so wt(x) = 2wt(x ∩ y) − 1 ≤ 3 (since wt(x ∩ y) ≤ 2), and wt(x) is odd. Since
0 6∈ x̄, if x̄meets any of the ēi then wt(x) = 3 and x = ei+ ej+ ek for some distinct i, j, k. Then ēl ∩ x̄ = ∅ unless l = i, j, k, so

n∑
l=1

(vēl , vx̄) = (vēi , vx̄)+ (vēj , vx̄)+ (vēk , vx̄) = 6 = 0.

This covers all blocks, sow ∈ C⊥ for C = C3(Γ 1n ).
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Table 1
Minimum weight for C3(Γ 1n ), small n

n Dim(C) Dim (Dual(C)) MW(C) MW (Dual(C))

3 6 2 2 4
4 10 6 2 4
5 22 10 4 8
6 42 22 4 8
7 86 42 7 16

Now let C = C3(Γ 2n ). From Proposition 7 we need only consider n ≡ 1 (mod 3). Now z̄ will denote z̄2.
Using a similar argument as in the case of Γ 1n , the blocks containing 0 are the blocks ei + ej, so let

w = v0 −
∑
0∈z̄

vz̄ = v0 −
∑
i6=j

vei+ej ,

where z̄ denotes the neighbourhood block of z ∈ Vn in Γ 2n , i.e. z̄2. We show that the inner product (w, v
x̄) = 0 for all blocks

x̄. Recall that ei + ej = {0, ei + ek, ej + ek, ei + ej + ek + el | k, l 6= i, j, k 6= `}.
As before, let us first suppose that 0 ∈ x̄ so that wt(x) = 2, and x = ei+ ej for some i 6= j. Without loss of generality take

x = e1 + e2. Notice that

e1 + e2 = {0, e1 + ei, e2 + ei, e1 + e2 + ei + ej | i, j 6= 1, 2, i 6= j}.

Then (vx̄, vx̄) =
( n
2

)
= 0 since n ≡ 1 (mod 3).

e1 + e2 ∩ e1 + e3 = {0, e1 + ei, e2 + e3, e1 + e2 + e3 + ei | i 6= 1, 2, 3},

of size 2(n− 2). There are 2(n− 2) blocks of the form e1 + ei or e2 + ei, i 6= 1, 2, so 4(n− 2)2 = 1 is the contribution to the
inner product from these blocks.

e1 + e2 ∩ e3 + e4 = {0, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e1 + e2 + e3 + e4}

of size 6, so these blocks do not contribute to the inner product. Thus we have, for 0 ∈ x̄, (w, vx̄) = 1− 1 = 0, as required.
If 0 6∈ x̄ then wt(x) 6= 2. Every y in Support(w) has weight 0, 2 or 4. If y is also in x̄ then wt(x + y) = 2 =

wt(x) + wt(y) − 2wt(x ∩ y), and taking wt(y) to be 2 or 4 gives wt(x) = 2 + 2wt(x ∩ y) − wt(y). Thus wt(x) is even
and at most 6. If x = 0 then x̄ ∩ ei + ej = 2(n− 2) for each pair i, j, and each occurs

( n
2

)
times, thus giving (w, vx̄) = 0.

If wt(x) = 4, then taking x =
∑4
i=1 ei, we have x̄ ∩ ei + ej = ∅ if i or j 6= 1, 2, 3, 4. Also

x̄ ∩ e1 + e5 = {e1 + e2, e1 + e3, e1 + e4, e1 + e5 + e2 + e3, e1 + e5 + e2 + e4, e1 + e5 + e3 + e4}

of size 6, so these blocks make no contribution, and

x̄ ∩ e1 + e2 = {e1 + e3, e1 + e4, e2 + e3, e2 + e4, e1 + e2 + e3 + ei, e1 + e2 + e4 + ei | i 6= 1, 2, 3, 4},

of size 4 + 2(n − 4) = 2(n − 2). There are
(
4
2

)
= 6 choices of these so they also cancel in the inner product, giving

(w, vx̄) = 0.
If wt(x) = 6, taking x =

∑6
i=1 ei say, then only blocks of the form ei + ej for 1 ≤ i, j ≤ 6 intersect x̄; for example,

x̄ ∩ e1 + e2 = {e1 + e2 + ei + ej | 3 ≤ i, j ≤ 6}

has size
(
4
2

)
= 6, and thus does not contribute to the inner product. This completes the proof thatw ∈ C⊥ for C = C3(Γ 2n ).

Thus C ∩ C⊥ = {0} for C = C3(Γ kn ), k = 1, 2.
For the remaining assertions, notice that, from Lemma 9, AnBn = 0 for n ≡ 1 (mod 3), so C3(Γ 1n )

⊥
⊇ C3(Γ 2n ). Since they

have the same dimensions, they are equal. For the final assertion, we have, for n ≡ 0, 2 (mod 3), w = v0 −
∑
z∈0̄1

vz̄1 ∈

C3(Γ 1n )
⊥ has weight

( n
2

)
+ 1. �

Table 1 shows the minimum weight of C3(Γ 1n ) for small values of n that were computable easily with Magma. The
supports of words in the dual were of the form a subspace of Vn (with coordinate value 1) and a translate of the subspace
(with coordinate value−1). From Proposition 10 we get the results also for the codes of Γ 2n . That proposition also gives an
upper bound for the minimumweight that, for n large, will be better than a bound given by a subspace of Vn and a translate.
Thus we have not pursued the construction of such words, although we have found them to exist in this form for values of
n up to n = 11.
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12. Conclusion

The minimum weight of the codes has not been established in general. This seems to be a hard problem. Similarly, the
ternary codes for Γ 3n are certainly interesting but as yet we have no general method of finding out more about them.
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