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We derive an upper bound on the number of vertices in regular graphs of given degree and
diameter arising as regular coverings of dipoles over abelian groups.
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1. Introduction

The problem of finding the largest order nd,k of a graph of a given maximum degree d and a given diameter k has been
known for nearly five decades as the degree diameter problem. We refer the reader to the recent survey article [1] for history
and background. An obvious upper bound on nd,k is the Moore boundMd,k = 1+ d+ d(d− 1)+ · · · + d(d− 1)k−1. Graphs
of degree d, diameter k and order Md,k are called Moore graphs, where the equality nd,k = Md,k holds trivially if k = 1 and
d ≥ 1 (complete graphs), or k ≥ 3 and d = 2 (cycles). The only other cases where this equality holds are for k = 2 and
d = 3, 7 and, possibly, 57 [2,3].
Some of the known examples of current largest graphs of given degree and diameter were found using regular coverings

of dipoles, that is, graphs with exactly two vertices and a certain number of loops and multiple edges [5]. In particular,
the McKay–Miller–Širáň graphs [4] can be constructed as regular covering constructions of dipoles [6] over abelian groups.
Also, the Petersen and the Hoffman–Singleton graphs (the unique Moore graphs of order M3,2 and M7,2 respectively) can
be constructed as regular covering constructions of dipoles with the voltage groups Z5 and Z5 × Z5, respectively. Regular
covering constructions will be briefly explained in Section 2.
Let Dd,k denote the largest order of a regular graph of degree d and diameter k, which regularly covers a dipole over an

abelian group. In particularDl,c,k is the largest order of a regular covering of a dipolewith l loops and cmultiple edges over an
abelian group (note that d = 2l+ c). It was shown in [8,9] respectively that when d is arbitrarily large then Dd,2 < 0.93Md,2
and Dd,3 < 0.6Md,3.
We present explicit upper bounds Ud,k and Ul,c,k on the quantities Dd,k and Dl,c,k respectively in Section 3. A special case

where additional constraints on the selection of group elements are applied is in Section 4. In Section 5we give an asymptotic
upper bound for Ud,k for k ≥ 2 and arbitrarily large values of d, and thus showing Dd,k to be much smaller thanMd,k for large
values of k. We also present some approximate values for Ud,k, k ∈ {2, . . . , 20}, in tabular form for both the general and
special cases, confirming and extending the results of [8,9].
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2. Voltage assignments, lifts, dipoles and bouquets

Let Γ be a finite, undirected graph, possibly with loops and multiple edges. To facilitate the description of voltages, we
will think of the (undirected) edges of Γ as pairs of oppositely directed edges, called darts. The number of elements in the
set D of all darts of Γ is therefore twice the number of all edges of Γ . If e is a dart, then e−1 will denote the dart reverse to
e. Let G be a finite group. A mapping α : D→ Gwill be called a voltage assignment if α(e−1) = (α(e))−1, for any dart e ∈ D.
Thus, a voltage assignment sends a pair of mutually reverse darts onto a pair of mutually inverse elements of the group. The
pair (Γ , α) is the voltage graph, which determines the lift Γ α of Γ as follows. Let V be the vertex set of Γ . The vertex set
and the dart set of the lift are V α = V × G and Dα = D × G. In the lift, (e, g) is a dart from the vertex (u, g) to the vertex
(v, h) if and only if e is a dart from u to v in Γ and h = gα(e). The lift itself is considered to be undirected, since (e, g) and
(e−1, gα(e)) form a pair of mutually reverse darts and therefore give rise to an undirected edge of Γ α .
The projection π : Γ α

→ Γ given by π(e, g) = e and π(v, g) = v is, topologically, a regular covering of Γ by Γ α . This
is why Γ is often called a (regular) quotient. For any vertex v and any dart e of the quotient, the sets π−1(v) and π−1(e) are
called fibers above v and e. For any fixed h ∈ G the mapping (e, g) 7→ (e, hg) determines an automorphism of the lift Γ α .
This way, the voltage group G acts regularly (that is, transitively and freely) on each fiber as a group of automorphisms of
the lift.
A sequence e1e2 . . . et of darts in Γ such that the terminal vertex of ei coincides with the initial vertex of ei+1(1 ≤ i < t)

is a walk in Γ of length t . IfW = e1e2 . . . et is a walk in Γ then we set α(W ) = α(e1)α(e2) . . . α(et). Examining walks in Γ
we are able to determine the diameter of Γ α as stated in the following lemma [4].

Lemma 1. Let α be a voltage assignment on a graph Γ in a group G. Then, diam(Γ α) ≤ k if and only if for each ordered pair of
vertices u, v (possibly, u = v) of Γ and for each g ∈ G there exists a u→ v walk of length at most k of net voltage g.

We denote the dipole with l loops attached to each of its two adjacent vertices u and v, and c multiple edges connecting
u to v, as δl,c . Denote the set of all voltages assigned to the u→ v darts of δl,c as C and the set of their inverses (or voltages
assigned to the oppositely directed darts) as C . In what follows we never assign the same voltage to distinct u → v darts
and therefore we will always have c = |C | = |C |. We denote the set of voltages assigned to the loops attached to u as Lu,
and that for the loops attached to v as Lv , with the set L = Lu ∪ Lv . Again, we will assume that all voltages in both Lu and Lv
are distinct and hence l = |Lu| = |Lv| = L

2 .
A bouquet is the graph composed of a single vertex with a collection of loops and semi-edges (edges with just one end-

vertex and with the other end dangling) attached to it. Note that all Cayley graphs CG over a finite group G and a generating
set from G are isomorphic to lifts of bouquets, where the generators are the voltages assigned to the loops and semi-edges.
However, in this paper we do not consider semi-edges. We denote the bouquet with l loops as βl. We will use the fact that
βl is a subgraph of δl,c .

3. Explicit upper bounds

We define the following three sums:

Sl,k =
l∑
i=0

2i
(
l
i

)(
k
i

)

Uul,c,k = Sl,k + S2l,k−2 − Sl,k−2 +
b
k
2 c∑
j=1

S2l,k−2j
∑
i=0

( c
i

)( j− 1
i− 1

)(
c + j− i− 1

j

)

Uvl,c,k =
d
k
2 e∑
j=1

S2l,k−2j+1
∑
i=0

( c
i

)( j− 1
i− 1

)(
c + j− i− 2
j− 1

)
.

Our first proposition now follows:

Proposition 1. Let α be a voltage assignment on δl,c in an abelian group G such that the lift δαl,c has diameter k. Then the number
of vertices of δαl,c is at most Ul,c,k, where

Dl,c,k ≤ Ul,c,k = 2min{Uul,c,k,U
v
l,c,k}.

Proof. Assume that δαl,c has diameter k. By Lemma 1, the number of vertices in the fiber above u cannot exceed the number
of distinct voltages on the u→ u walks in δl,c of length at most k. On the other hand, the number of vertices in δαl,c cannot
exceed two times the number of distinct voltages on u→ v walks in δl,c of length at most k. We proceed with the following
three claims in order to justify the expressions for Sl,k, Uul,c,k and U

v
l,c,k.
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Claim 1. The number of distinct voltages on the u→ u walks in δl,c of length at most k such that all the voltages collected in the
walks are from Lu is bounded above by Sl.k.

It is straightforward to show that the preimage of the vertex u and the set Lu in δαl,c is a Cayley subgraph CG of δ
α
l,c , as βl is a

subgraph of δl,c . The upper bound on the order of the vertex set of CG of diameter k (with the generators set Lu) is given by
Sl,k [7].

Claim 2. The number of distinct voltages on the u→ u walks in δl,c of length at most k is bounded above by Uul,c,k.

From Claim 1 we see that the number of distinct voltages on the walks of length at most kwith voltages from Lu is bounded
above by Sl,k. The next crucial observation is that the parity of the number of voltages collected from C ∪ C in any given
δl,c walk will determine the fiber in which the terminal vertex lies; any u → v walk will have an odd number of voltages
collected from C ∪ C (where if j ≥ 1 voltages were collected from C then j − 1 voltages were collected from C) and any
u→ uwalk will have an even number of voltages collected from C ∪ C (with j ≥ 0 voltages collected from C and j from C).
If the sum of the set of voltages collected from C ∪ C in the group G is zero, then only the voltages collected from L in the

u → u walk will determine the voltage of the walk. Suppose, without loss of generality, that a u → u walk in δl,c collects
g ∈ C and −g ∈ C where all other voltages in the walk were collected from L; then from Claim 1 there are at most S2l,k−2
distinct voltages on such a walk of length k, as the voltage of the walk is independent from the ordering of the voltages
collected from L in the walk (as G is abelian). From S2l,k−2 we need to subtract Sl,k−2 voltages that were already counted in
Sl.k.
Suppose that the sum of the set of voltages collected from C ∪ C in the group G is non-zero. Denote the number of the

voltages collected from C as j; thus, there are exactly j voltages collected from C . Therefore, we need to sum over all possible
selections of i ∈ {1, . . . , j} voltages from C to collect words of length j followed by words of length jwith voltages collected
from C , where no voltage g from C that was collected will have its inverse−g collected from C in the same walk, as this will
create over-counting of walks already considered for smaller values of j, thus allowing for at most min{c − i, j} voltages to
be selected from C . Hence, the summation below is the upper bound on the number of distinct voltages on walks of length
2j collected from C ∪ C . We can simplify this summation using Vandermonde’s identity:∑

i=1

( c
i

)( j− 1
i− 1

)min{c−i,j}∑
t=1

(
c − i
t

)(
j− 1
t − 1

)
=

∑
i=0

( c
i

)( j− 1
i− 1

)(
c + j− i− 1

j

)
.

At most k − 2j voltages from L, j ∈ {1 . . . b k2c}, can be collected in u → u walks as well, in at most S2l,k−2j ways. We thus
multiply the sum above by S2l,k−2j and by summing for jwe get the final summation:

b
k
2 c∑
j=1

S2l,k−2j
∑
i=0

( c
i

)( j− 1
i− 1

)(
c + j− i− 1

j

)
.

Adding all these up we get Uul,c,k.

Claim 3. The number of distinct voltages on the u→ v walks in δl,c of length at most k is bounded above by Uvl,c,k.

When a δl,c walk starts at u and terminates at v then the number of voltages collected from C is always one greater than the
number of the voltages collected from C and therefore no walks are collected exclusively from L. Using a similar reasoning
to Claim 2 we get the summation in Uvl,c,k. �

The exact expression for Ud,k is a trivial consequence of Proposition 1:

Proposition 2. Let α be a voltage assignment on δl,c in an abelian group G such that the lift δαl,c has diameter k and 2l+ c = d.
Then the number of vertices of δαl,c over all possible values of c and l is at most Ud,k, where

Dd,k ≤ Ud,k = max{Ul,c,k|2l+ c = d}.

4. A special case

In [5], random voltages from a finite group Gwere assigned to a variety of quotients in order to find large regular graphs
of given degree d and diameter k. When given any two adjacent vertices u and v in a quotient Γ , and the set C of voltages on
the u→ v darts, assignments satisfying the condition ‘‘g ∈ C implies−g 6∈ C ’’ for all g ∈ G seem to do much better in the
generation of successful degree diameter record graphs. We are motivated by this observation to investigate the following
special case: Consider any set H of distinct elements of G such that−h 6∈ H whenever h ∈ H , with the corresponding set H
such that−h ∈ H for all h ∈ H . Let C ′ = {0} ∪ H ∪ H , and suppose that C ′ is the set of the voltages on the u→ v darts in
δl,2c+1, where |H| = c . Denote any voltage assignment that assigns a set C ′ to the u→ v darts in δl,2c+1 as α′. Define D′d,k to
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be the largest order of the vertex set of a regular graph of degree d and diameter k for any such α′. In particular we define
D′l,2c+1,k to be the largest such order when d = 2l+ 2c + 1. We define the following sums:

U ′ul,2c+1,k = Sl,k + S2l,k−2 − Sl,k−2 +
k∑

j=2,j is even

S2l,k−j
min{j,c}∑
i=0

2i
( c
i

)(( j− 1
i− 1

)
+

(
j− 2
i− 1

))

U ′vl,2c+1,k = (2c + 1)S2l,k−1 +
k∑

j=3,j is odd

S2l,k−j
min{j,c}∑
i=0

2i
( c
i

)(( j− 1
i− 1

)
+

(
j− 2
i− 1

))
.

Proposition 3. Let α′ be the voltage assignment presented above on δl,2c+1 in an abelian group G such that the lift δα
′

l,2c+1 has
diameter k. Then the number of vertices of δα

′

l,2c+1 is at most U
′

l,2c+1,k, where

D′l,2c+1,k ≤ U
′

l,2c+1,k = 2min{U
′u
l,2c+1,k,U

′v
l,2c+1,k}.

Proof. Using Lemma 1 and a similar argument to the proof of Proposition 1 it will suffice to show that the expressions
for U ′vl,2c+1,k and U

′v
l,2c+1,k are constructed correctly. When looking at the u → u walks in δl,2c+1, the number of voltages j

collected from C ′ is always even. It is easy to see that for each even value of jwe can have at most
∑
i=0 2

i
( c
i

) ( j−1
i−1

)
distinct

voltages of walks of length j collected from H ∪ H . As such walks can collect zero from C ′ we need to consider all walks
that collect zero exactly once, where any walks that collect zero more than once will have the same voltage as a shorter
walk, and collecting zero once will correspond to a voltage that can be collected for an odd value of j. There are at most∑
i=0 2

i
( c
i

) ( j−1
i−1

)
distinct voltages of walks of length j collected from C ′ where zero is collected exactly once. We therefore

get U ′ul,2c+1,k. Similarly, allowing j to be odd, as in the case for u→ v walks, we get U ′vl,2c+1,k. �

The following proposition regarding an exact expression for U ′d,k, the upper bound on D
′

d,k, is a direct consequence of
Proposition 3 and is given without a proof.

Proposition 4. Let α′ be the voltage assignment presented above on δl,2c+1 in an abelian group G such that the lift δα
′

l,2c+1 has
diameter k and 2l+ 2c + 1 = d. Then the number of vertices of δα

′

l,2c+1 over all possible values of c and l is at most U
′

d,k, where

D′d,k ≤ U
′

d,k = max{U
′

l,2c+1,k|2l+ 2c + 1 = d}.

5. Asymptotic upper bound and approximate values

When k is fixed, akdk is the dominant term in bothUd,k andMd,k. Using numerical computationswewere able to construct
Table 1 for ak when k ∈ {2, . . . , 20} and d is not too large (a range of values for d > 1000 were tested). We note here that
the values for a2 in Ud,2 and a3 in Ud,3 agree with those found in [8,9].
However, when bigger values of d and k are considered, numerical computations are insufficient. Therefore, we are

interested in the asymptotic size of ak in Ud,k for large values of d and k in order to find an asymptotic upper bound for
Dd,k in terms of dk. In Table 1, we can see that 2

k−1

k! seems to be a good upper bound on the asymptotic size of ak in Ud,k. This
observation is good computational evidence pointing to the following theorem and our main result. For simplicity, we will
assume that 2l > c and both l and c grow larger with d.

Theorem 1. Suppose that 2l > c. For every r1, 0 < r1 < 1, there exists a positive integer r2 such that for every d > r2 and any
c, l > dr1 we have

2Uvl,c,k <
2k−1

k!
dk.

Proof. The following five auxiliary computations and notation will be used in the proof (the details include standard
techniques in asymptotic calculations with binomial coefficients and are left to the reader):

1. Suppose that c < 2l. Using binomial expansion we get

(2c + 4l)k − (−2c + 4l)k = 2
∑
j=1

(
k

2j− 1

)
(2c)2j−1(4l)k−2j+1 ≤ (2c + 4l)k = (2d)k.

2. Using induction on j > 1 yields
(
2j−1
j−1

)
< 4j−1.
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3. Define Ec,j to be the following sum:

Ec,j =
∑
i=0

( c
i

)( j− 1
i− 1

)(
c + j− i− 2
j− 1

)
.

Thus, we can write Uvl,c,k =
∑d k2 e
j=1 S2l,k−2j+1Ec,j.

4. Using limit calculations we can show

lim
l→∞

S2l,k−2j+1(k− 2j+ 1)!
(4l)k−2j+1

= 1.

5. Using limit calculations we can show

lim
c→∞

Ec,j(j− 1)!j!
c2j−1

= 1.

Now, let us calculate an upper bound on the following limit involving Uvl,c,k and (2d)
k:

lim
d→∞

Uvl,c,k
(2d)k

= lim
d→∞

1
(2d)k

d
k
2 e∑
j=1

S2l,k−2j+1Ec,j

= lim
d→∞

1
(2d)k

d
k
2 e∑
j=1

S2l,k−2j+1(k− 2j+ 1)!
(4l)k−2j+1

Ec,j(j− 1)!j!
c2j−1

(4l)k−2j+1

(k− 2j+ 1)!
c2j−1

(j− 1)!j!

= lim
d→∞

1
(2d)k

d
k
2 e∑
j=1

(4l)k−2j+1

(k− 2j+ 1)!
c2j−1

(j− 1)!j!
(2j− 1)!
(2j− 1)!

= lim
d→∞

1
(2d)k

1
k!

d
k
2 e∑
j=1

(
k

2j− 1

)
(4l)k−2j+1

(
2j− 1
j− 1

)
c2j−1

< lim
d→∞

1
(2d)k

1
k!

d
k
2 e∑
j=1

(
k

2j− 1

)
(4l)k−2j+14j−1c2j−1

= lim
d→∞

1
(2d)k

1
2k!

d
k
2 e∑
j=1

(
k

2j− 1

)
(4l)k−2j+1(2c)2j−1

≤ lim
d→∞

1
(2d)k

1
2k!

(2d)k

2
=
1
4k!
.

Note that for k = 2 we get
(
2j−1
j−1

)
= 4j−1 as j = 1; however, in this case (2c + 4l)2 − (−2c + 4l)2 < (2d)2. We therefore

get that limd→∞
Uvl,c,k
(2d)k

< 1
4k! which implies that for all values of d > r2 for some r2, the following inequality holds:

2Uvl,c,k <
(2d)k

2k!
=
2k−1

k!
dk. �

Our main result, regarding a general upper bound on Dd,k, with the given conditions that 2l > c and that both c and l
grow large as d→∞, is a direct consequence of Theorem 1 and Proposition 2. We therefore present Theorem 2 without a
proof.

Theorem 2. Suppose that 2l > c. For every r1, 0 < r1 < 1, there exists a positive integer r2 such that for every d > r2 and any
c, l > dr1 we have

Dd,k <
2k−1

k!
dk.
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Table 1
Approximate values for ak in Ud,k and U ′d,k

k 2k−1
k! ak in Ud,k akin U ′d,k

2 1 0.932 0.669
3 0.6667 0.599 0.311
4 0.3334 0.289 0.136
5 0.1334 0.113 0.05
6 0.04445 0.0371 0.0159
7 0.01269 0.0105 0.00441
8 3.17× 10−3 2.6× 10−3 1.07× 10−3

9 7× 10−4 5.7× 10−4 2.35× 10−4

10 1.41× 10−4 1.14× 10−4 4.66× 10−5

11 2.56× 10−5 2.07× 10−5 8.4× 10−6

12 4.27× 10−6 3.44× 10−6 1.39× 10−6

13 6.57× 10−7 5.28× 10−7 2.12× 10−7

14 9.39× 10−8 7.53× 10−8 3.025× 10−8

15 1.25× 10−8 1.002× 10−8 4.019× 10−9

16 1.56× 10−9 1.25× 10−9 5.009× 10−10

17 1.84× 10−10 1.47× 10−10 5.87× 10−11

18 2.04× 10−11 1.63× 10−11 6.52× 10−12

19 2.15× 10−12 1.71× 10−12 6.85× 10−13

20 2.15× 10−13 1.71× 10−13 6.84× 10−14

6. Remarks

Theorem 1 can be regarded as an illustration of the technique required to determine the asymptotic order of Ud,k. We
would like to note that the proof of Theorem 1 can be modified in order to allow any values of c and l to be considered. This
claim is based on the fact that using induction on j ≥ 5 it is easy to see that

(
2j−1
j−1

)
< 4j−1

2 and also (2c+4l)
k
−(−2c+4l)k ≤

2(2d)k. Therefore, we need only to carefully consider the first few terms in
∑d k2 e
j=1 S2l,k−2j+1Ec,j to show that Ud,k <

2k−1
k! d

k

always holds (other than for k = 2 and d = 3 or 7). However, a full presentation of all the details will be too long and thus
is not included here.
Improving the Moore bound in the degree diameter problem seems to be very hard in general. However, restricting

the problem to special families of graphs seems more promising. We have shown that Ud,k is an upper bound on Dd,k, and
furthermore that for any fixed value of d > 2 the limit limk→∞

Md,k
Ud,k
diverges quickly. This is obviously a notable improvement

to the general upper boundMd,k.
Proposition 4 and the entries in Table 1 suggests that any additional restrictions on the construction of α : G→ δc,l will

decrease the upper bound on the order of δαc,l.
Additional work is necessary in order to find a lower bound for the order of the vertex set of a regular covering of a dipole

over an abelian voltage group for k ≥ 3. The case where k = 2 was already investigated in depth in [4,6].

Acknowledgments

The author would like to thank Jozef Širáň for valuable discussions. The author is supported by the Top Achiever Doctoral
Scholarship from the New Zealand Tertiary Education Commission.

References

[1] M. Miller, J. Širáň, Moore graphs and beyond: A survey of the degree-diameter problem, Electron. J. Combin., Dynamic Survey DS14 (December 5)
(2005).

[2] A.J. Hoffman, R.R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. Res. Develop. 4 (1960) 497–504.
[3] E. Bannai, T. Ito, On finite Moore graphs, J. Fac. Sci. Univ. Tokyo 20 (1973) 191–208.
[4] B.D. McKay, M. Miller, J. Širáň, A note on large graphs of diameter two and given maximum degree, J. Combin. Theory Ser. B 74 (1) (1998) 110–118.
[5] E. Loz, J. Širáň, New record graphs in the degree–diameter problem, Australas. J. Combin. 41 (2008) 63–80.
[6] J. Siagiova, A note on the McKay–Miller–Siráň graphs, J. Combin. Theory Ser. B 81 (2001) 205–208.
[7] Randall Dougherty, Vance Faber, The degree–diameter problem for several varieties of Cayley graphs I: The abelian case, SIAM J. Discrete Math. 17 (3)
478–519.

[8] J. Siagiova, A Moore-like bound for Graphs of diameter 2 and given degree, obtained as Abelian lift of Dipoles, Acta Math. Univ. Comenian. LXXI (2)
(2002) 157–161.

[9] Tomas Vetrik, An upper bound for graphs of diameter 3 and given degree, obtained as Abelian lift of Dipoles, Discuss. Math. Graph Theory 28 (2008)
91–96.


	Graphs of given degree and diameter obtained as abelian lifts of dipoles
	Introduction
	Voltage assignments, lifts, dipoles and bouquets
	Explicit upper bounds
	A special case
	Asymptotic upper bound and approximate values
	Remarks
	Acknowledgments
	References


