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1. Introduction

One of the earliest results of Ramsey Theory is Schur’s Theorem [17] which says that whenever the set N of positive
integers is partitioned into finitely many classes (or finitely colored) there exist x and y such that x, y, and x + y are contained
in one cell of the partition (or are monochromatic). This theorem can be viewed as saying that the matrix (1 1 —1)is
kernel partition regular over N.

Definition 1.1. Let S be a subsemigroup of (R, +). Let u, v € N, and let A be a u x v matrix with entries from Q. Then A is
kernel partition regular over S (abbreviated KPR/S) if and only if, whenever S is finitely colored there exists monochromatic
X € Y such that AXx = 0.

The terminology is due to Walter Deuber and refers to the fact that the vector X is in the kernel of the linear transformation
defined by y — Ay.
Schur’s Theorem may also be viewed as saying that the matrix

1 0
0 1
1 1

is image partition regular over N.

Definition 1.2. Let S be a subsemigroup of (R, +), letu, v € N, and let A be a u x v matrix with entries from Q. Then A is
image partition regular over S (abbreviated IPR/S) if and only if, whenever S \ {0} is finitely colored there exists X € SV such
that the entries of AX are monochromatic.
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Another of the earliest results of Ramsey Theory is van der Waerden’s Theorem [ 19] which says that whenever Nis finitely
colored there must exist arbitrarily long arithmetic progressions. The length five version of van der Waerden’s Theorem is
clearly equivalent to the statement that the matrix

1 0
1 1
1 2
1 3
1 4

is image partition regular. On the other hand while one can write matrices whose kernel partition regularity imply any of
the instances of van der Waerden'’s Theorem, it is impossible to write a kernel partition regular matrix such that any element
of the kernel has entries constituting a nontrivial length five arithmetic progression (or any other length greater than two).
See [7, Theorem 2.6].

In 1933 Rado [15] characterized those finite matrices that are kernel partition regular over N and later, in [ 16] those that
are kernel partition regular over other subsets of R. It was not until 1993 that characterizations of finite matrices that are
image partition regular over N were obtained in [8]. (See [7, Theorem 4.8] for a list of 17 known equivalences to IPR/N.)

While there are several partial results, nothing near a characterization of either kernel or image partition regularity of
infinite matrices has been obtained. (See [7, Section 6] for a summary of some of what is known about partition regularity
of infinite matrices.)

In [9], a paper primarily concerned with algebraic results in the Stone-Cech compactification of various semigroups of
(R, +) with the discrete topology, a few results about image partition regularity near zero were obtained. In this paper we
are investigating this subject in greater detail.

Definition 1.3. Let S be a subsemigroup of (R, +) with 0 € c£S,letu, v € N, and let A be a u x v matrix with entries from
Q. Then A is image partition regular over S near zero (abbreviated IPR/Sy) if and only if, whenever S \ {0} is finitely colored
and § > 0, there exists X € S such that the entries of AX are monochromatic and lie in the interval (—$, §).

In Section 2 we shall investigate those finite matrices which are IPR/S, for arbitrary dense subsemigroups of (R, +) and
of ((0, 00), +), and determine the precise relationships among these notions for the semigroups Q, Q*, D, D*, R, and R*,
where ST = {x € S : s > 0} and D is the set of dyadic rationals.

Definitions 1.2 and 1.3 have obvious generalizations to w x @ matrices with finitely many nonzero entries in each
row, where @ = N U {0} is the first infinite cardinal. There is also a new notion which makes sense only if the matrix
is infinite which we present in Definition 3.1. In Section 3 we investigate the relationships among these notions for the
same semigroups and almost succeed in determining the precise relationships that hold among them.

Central sets in an arbitrary semigroup are known to have substantial combinatorial structure, and there is a natural
extension of this notion to central near zero which was introduced in [9]. Both of these notions involve the algebraic structure
of the Stone-Cech compactification of a discrete semigroup. Since Sections 2 and 3 do not require any knowledge of this
structure, we postpone a description of it until Section 4, where we will derive a new version of the Central Sets Theorem
near zero and get some combinatorial consequences thereof.

In Section 5 we establish that Milliken-Taylor matrices (which we will define there) are image partition regular near zero
in the strong sense introduced in Section 3.

2. Finite matrices

We show in this section that there are precisely two distinct notions of image partition regularity of S near zero,
depending on whether S is dense in (0, co) or in R.

Lemma 2.1. Let u, v € Nlet A be au x v matrix with entries from Q such that A is IPR/N, and let S be a dense subsemigroup
of ((0, 00), +). Then A is IPR/So.

Proof. Letr € N,letS = U?:] G, and let § > 0. By a standard compactness argument (see [12, Section 5.5] or [6, Section
1.5]) pick k € N such that whenever {1, 2, ...,k} = Uf:] D;, there existx € {1,2,...,k}" andi € {1, 2, ..., r} such that
AX € (Dy)". Pickz € SN (0, %).Fori e {1,2,...,r}letD; = {t € {1,2,...,k} : tz € G}. Picki € {1,2,...,r}and
x€{1,2,...,k}" such that AX € (D;)" and lety = zx. Then Ay € (G;N (0,8))". O

Lemma 2.2. Let u, v € N, let A be a u x v matrix with entries from Q such that A is IPR/Z, and let S be a dense subsemigroup
of (R, +). Then Ais IPR/S,.

Proof. This is essentially identical to the previous proof. Givenr € N, pick k € N such that whenever {—k, —k+ 1, ...,k —
1,k} = U_, Di, there existX € {—k, —k+ 1,...,k— 1,k}"andi € {1,2, ..., r} such that AX € (D))*. O
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Theorem 2.3. Let u, v € Nand let A be a u x v matrix with entries from Q and let S be a dense subsemigroup of ((0, c0), +).
The following statements are equivalent.

(a) AisIPR/N.

(b) Ais IPR/So.

(c) AisIPR/S.

(d) AisIPR/RY,

Proof. That (a) implies (b) is Lemma 2.1. Trivially (b) implies (¢) and (c) implies (d). That (d) implies (a) follows from [13,
Theorem 2.4(I)]. O

Theorem 2.4. Let u, v € Nand let A be a u x v matrix with entries from Q and let S be a dense subsemigroup of (R, +). The
following statements are equivalent.

(a) AisIPR/Z.

(b) Ais IPR/S,.

(c) AisIPR/S.

(d) AisIPR/R.

Proof. That (a) implies (b) is Lemma 2.2. Trivially (b) implies (c) and (c) implies (d). That (d) implies (a) follows from [13,
Theorem 2.4(I1)]. O

Lemma 2.5. Let A = (f g) and fori € {0, 1, 2, 3} let

«=0l()"0)")

Then there do not exist i € {0, 1,2, 3} and X € (R")? such that AX € (G)?. Thus A is not IPR/R. On the other hand A is IPR/Z.
Proof. Suppose we have such i and X and pick t € w such that

24t+i+1 24t+i
- <X1+2% < |z .
() =oees(3)

Then

I\HH g3 oAt g 2\ 4+ 2\ 4+i=3
— =—\|= < —=x 3x: 3x 3x: 3x 6x: 3 =
(5) =2()  =pmrmemrmemions(f) ()

so 3x1 + 3x; ¢ G, a contradiction.
On the other hand

-1 3
+(2)-0)
soAisIPR/zZ. DO

Theorem 2.6. Let u, v € N and let A be a u x v matrix with entries from Q. The seven statements in (I) below are equivalent
and are strictly stronger than the seven equivalent statements in (II).
(I) (a) AisIPR/N.
(b) Ais IPR/D™.
(c) AisIPR/QT.
(d) Ais IPR/R™.
(e) Ais IPR/W.
(f) Ais ]PR/@R'

Ais IPR/Ry.
Ais IPR/Z

an 3
(b) Ais IPR/D.
(c) AisIPR/Q.
(d) AisIPR/R.
(e) AisIPR/Dy.
(f) AisIPR/Qo.
(g) AisIPR/R,.
Proof. The equivalences in (I) and (II) follow from Theorems 2.3 and 2.4. To see that the statements in (I) are strictly stronger
than those in (II), let

(1 2).

By Lemma 2.5, A is not IPR/R; and is IPR/Z. O
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PR/,

N

IPR/N IPR/Df  IPR/Dy,  IPR/QE

# L7 X X |

IPR/Z  IPR/D*  IPR/D,  IPR/Q] IPR/Qos  IPR/R,

ook X b X

IPR/D IPR/Q*  IPR/Q IPR/Rf  IPR/Rq,

N IEX XL/

IPR/Q IPR/R* IPR/R,

Fig. 1. Diagram of implications.
3. Infinite matrices

We shall see in this section that the situation with respect to infinite matrices is substantially different from that with
respect to finite matrices. Recall that w = {0, 1,2, ...} = N U {0} is the first infinite ordinal (and also the first infinite
cardinal).

The notions defined in Definitions 1.2 and 1.3 both have obvious interpretations where u and v are both replaced by w.
In addition there is the following notion which only makes sense for infinite matrices.

Definition 3.1. Let S be a subsemigroup of (R, 4+) with 0 € c/£S, and let A be an w x w matrix with entries from Q and
finitely many nonzero entries in each row. Then A is image partition regular over S near zero in the strong sense (abbreviated
IPR/Sys) if and only if, whenever S \ {0} is finitely colored and § > 0, there exists X € S® such that lim,_, », X, = 0 and the
entries of AX are monochromatic and lie in the interval (=6, §).

Consider now the diagram of implications in Fig. 1.

All of the implications in the diagram hold trivially. We shall show in the remainder of the section that most of the missing
implications do not hold in general. If we had an example of a matrix which is IPR/N but not IPR/Ry, we would know that
the only implications that hold in general are those diagrammed and those that follow from them by transitivity.

Lemma 3.2. Let A be an w x w matrix having all possible rows with a single 1 and a single 2, and all other entries equal to 0.
Then A is IPR/D; and is IPR/N, but is not IPR/Rgs.

Proof. Since constant vectors produce constant solutions, we have immediately that A is IPR/Dy and is IPR/N. We show
that A is not IPR/Ry;.

Forx € (0, 1) choose I(x) € Nsuch thatx = }_, ) 27" and if there is a finite F C N such thatx = }_, ; 27t then
I(x) = F.(That is, choose the terminating binary expansion of x if it has one.) For x € (0, 1), define ¢ (x) = minI(x). Let

Co={xe(—1,1)\ {0} : ¢(]x])iseven} and C;={xe (—1,1)\ {0} : p(x])isodd}U (R\ (—1, 1)).

Suppose that we have i € {0, 1} and a sequence {x,)5 in R such that lim,_, ., x, = 0 and all entries of Ax are in G;. If all
but finitely many terms of (x,)2°, are negative, replace X by —X. We can thus assume that infinitely many terms of (x,)3,
are positive. Pick j such that 0 < x; < 1. Pick k > ¢(x;) such that k & I(x;). (Such a k exists by the second requirement in
the definition of I(x).) Pick I such that x; > 0 and ¢(x;) > k 4 1. When the sum x; + 2x, is computed there is no carrying
past position k. When the sum 2x; + x; is computed there is no carrying past position k — 1. Thus ¢(x; + 2x;) = ¢(x;) and
@ (2x; + x) = @(x;) — 1. This contradiction completes the proof. O

Lemma 3.3. Let
3

OO OO =

oo oo NMNW
OO = WwWwoOo
OO NWOO
- WO oo Oo
NWOOoOOoOOo

Then A is IPR/Dgs but is not IPR/R™*.
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Proof. By Lemma 2.5, A is not IPR/R*. To see that A is IPR/Dgs let r € N, let D \ {0} = Uir:1 G, let 5 > 0, and pick

ie{1,2,...,r}suchthat0 € cf ;N 3D, and pick a sequence (y,) 2, in GG N 3D N (-5, §) which converges to 0. Forn < w
let Xy, = —%yn and let xyp 1 = %yn. Since y, € 3D, Xy, and Xa,1 are in D. Then
Yo
Yo
A= |Y]. o

Y1

We need some preliminary results in order to prove Lemma 3.6. We are grateful to Fred Galvin for supplying us with the
proof of the following theorem which was stated without proof as [5, Theorem 9(3)]. According to Galvin this proof is “a
straightforward generalization of the Erdés-Rado proof of the partition relation w; — (w 4+ 1)}, which is stated in [3, page
472, line 6].”

For a set X and a cardinal k we let [X]* = {A C X : |A] = «}.

Theorem 3.4 (Galvin). Let (P, <) be a partially ordered set with the property that whenever P is colored with countably many
colors, there is a monochromatic subset of order type w. Let r € N. If the set of length r chains in P is finitely colored, there exists
a chain in P of order type w + 1 all of whose length r subchains are monochromatic.

Proof. Notice that the r = 1 case follows immediately from the r = 2 case. (Ifk € Nand y : P — {1, 2, ..., k}, define ¢
taking the 2-element chains in P to {1, 2, ..., k} so thatifx, y € P and x < y, then ¥ ({x, y}) = y(¥).If X is a subset of P of
order type w + 1 such that ¢ is constant on the set of 2-element chains, and z = min X, then X \ {z} is a subset of P of order
type w + 1 on which y is constant.) Thus we shall assume thatr > 2.

Let C be the set of r-element chainsin P, letk € N,and let ¢ : ¢ — {1, 2, ..., k}.

Call a subset X of P end-homogeneous if and only if X is a chain in P and whenever yq, ¥, ...¥r+1 € Xandy; < y; <

- < Yr4+1, 0ne has

1//({3/173/27 e 5}’r717}’r}) = 1/’({3’17)’2» e 7.Vr71a}’r+1})~

We claim that it suffices to show that there is an end-homogeneous subset X of P such that the order type of X is w + 1.
So assume we have such X, let u = maxX, and let Y = X \ {u}. Pick by Ramsey’s Theorem an infinite subset Y’ of Y and
i€ {1,2,...,k}suchthatforall B € [Y']", ¥(B) = i.Then Y’ U {u} has order type w + 1 and whenever B € [Y' U {u}]’,
Y (B) =i.(Ifu € B, pickz € Y withz > maxB \ {u}. Then yr(B) = v ((B\ {u}) U {z}) =i.)

So suppose that there is no end-homogeneous subset of P with order type w + 1. Fix a well ordering W of P and for
nonempty A C P write miny (A) for the smallest element of A with respect to this well ordering. Givenu € P and X C P
write X < uifand only if for all x € X, x < u.Givenu € P and X C P such that X U {u} is end-homogeneous and X < u, let

SX,u)={yeP:X <y <uandX U {y, u} is end-homogeneous}.

Observe that foranyu € P,S(@,u) ={y € P:y < u}.
We claim that for each u € P for which S(9, u) # 9, there exist n(u) < w and x; (u), X2(1), . . ., Xa)(u) € P such that:

(1) x1(u) = miny (S(@, v)),
(2) fori e {2,3,...,nw}, x;(u) = miny (SH{x1(u), x,(w), ..., x;_1(w)}, u)), and
(3) SUx1 (W), x2(w), . . ., Xaquy (W)}, w) = @

To see this, note that otherwise one may inductively define a sequence (x,),>, by x; = miny (S(4, u)) and forn € N,
X1 = miny (S({x1, X2, ..., Xp}, w)). Then {x, : n € N} U {u} is an end-homogeneous subset of P of order type w + 1.

Given u € P such that S(@, u) # 0, let X(u) = {x1(u), x2(u), ..., Xa@)(u)}. Define an equivalence relation ~ on P by
u ~ v if and only if either S(¥, u) = S(@, v) = @ or:
(a) n(u) = n(v) and
(b) whenever 1 <iy <iy <--- <ir—1 < n), Y({x;, W), x;, W), ..., x;,_, W), u}) =¥ {xy @), x;, (), ..., x;_, V), v}).

There are only countably many equivalence classes mod ~, so by the hypothesis on P we may choose an increasing
sequence (u;)°, in P such that u; ~ u; for all i, j € N. There do not exist two comparable elements of the equivalence class
determined by S(4, u) = @, so we may pick n such that n = n(y;) foralli € N.

We show now by induction onj € {1, 2,...,n} that there are some [(j) € Nand z; € P such that foralli € N, if
i > 1(j), then x;(u;) = z;. Assume first that j = 1. Then for eachi € N, x; (1;) = miny (5(4, u;)) and S(¥, u;) < S(9, uj1) so
X1 (ui1) <w X1 (u;). Since W is a well ordering, the sequence (x;(u;)){2; is eventually constant as required.

Now assume thatj € {2,3,...,n},m e N,and z1,2,, ...,z_1 € Psuchthatforalli > mandallt € {1,2,...,j — 1},
x:(u;) = z;. Then giveni € Nwithi > m,

S({Xl (Ui), Xz(ui)» ) Xj—l(ui)}! Uj) = S({Zla 225 0nns Zj—]}a ui)
C S({z1, 22, ..., zi—1} uip1) = SUx (Ui, X2 (Wi 1), -+, X1 (Uir )} Uig1)
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so that x;(ui+1) <w x;j(u;). (The inclusion uses the fact that u; ~ u;y1.) Thus the sequence (x;(u;))°, is eventually constant.
We therefore have some i such that X (u;) = X(u;1). But then

Ui € S({x1(Wiv1), X2 (Wig1), - -+ s Xnquyp Uir 1)}, Uir1)s
a contradiction. 0O

Galvin also provided the proof of the following corollary.

Corollary 3.5. Let S be an uncountable subset of R, let k € N, and let ¢ : [S]? — {1,2, ..., k}. There exists an increasing
sequence (Yn)n<w+1 Such that ¢ is constant on {{yy, 1} : k <l < w + 1} and y,, = limp_, o0 Y1

Proof. We first show that S satisfies the hypothesis of Theorem 3.4. That is whenever S is colored with countably many
colors, there is a monochromatic subset of order type w. Since whenever S is colored with countably many colors there
must exist an uncountable monochromatic subset, it suffices to show that S contains a subset of order type w. Trivially any
nonempty subset which does not have a largest element contains a subset of order type w. So if S contains no subset of order
type w, then every nonempty subset has a largest element. But this means that —S is well ordered, while R trivially does
not contain any uncountable well ordered subset. (One could pick a rational between any element of such a subset and its
successor.)

We may presume that S is bounded since it must contain an uncountable bounded subset. Define v : [S]®> — {1, 2} as
follows.Givenx < y < zinS,lety({x,y, z}) = 1ifp({x, y}) = ¢({x, z}) andy—x > z—yandlet ¢ ({x, y, z}) = 2 otherwise.
Pick by Theorem 3.4 a set B C S of order type w + 1 such that v is constant on [B]3. We claim that the constant value is 1.
So suppose instead it is 2. By Ramsey’s Theorem pick C € [B]“ such that ¢ is constant on [C]?. We can choose an increasing
sequence (x,);2; in C. Given any n we have that ¢ ({x,, Xp1+1}) = @({Xn, X542}) so it must be that X,11 — xpn < Xp42 — Xpt1.
Since S is bounded, this is impossible.

Consequently the constant value of ¥ is 1. Let z = max B. By the pigeon hole principle, we may presume that ¢ is
constant on {{x, z} : x € B\ {z}}. Therefore, ¢ is constant on [B]?. Again choose an increasing sequence (Xn)pe, in B. Since
{x, : n € N} is bounded, there must exist arbitrarily small values of x,; — x;, and thus z — x,,, ; must be arbitrarily small
since z — Xp41 < Xpy1 — Xp. O

Lemma 3.6. Let

1.0 0 0
1 -1 0 0
01 0 o0

A0 1 -1 0
00 1 0
00 1 -1

Then A is IPR/R{; but A is not IPR/Q.

Proof. It is shown in the proof of [ 13, Theorem 2.6] that A is not IPR/Q. To see that A is IPR/R(;, letk € N,let§ > 0and let
7:RY — {1,2,..., k}. Note that for X € R?, the entries of Ax are

X ' n<w}U Xy —Xpq1 10 < 0}
Define
w:[R]2—> {1,2,...,k}

by ¢({x,¥}) = t(]x — y|). Pick by Corollary 3.5 an increasing sequence (y;)n<w+1 in (0, §) such that ¢ is constant on
v, m} 1k <l <w+ 1}and y, = limp_.oo Yn.
For eachn < w, let X, = y,, — ¥n. Then lim,_, o X, = 0 and 7 is constant on the entries of AX. [

Lemma 3.7. Let

1 -1 0 0 0
/3 0 -1 0 0
a—|1/5 0 0o -1 o0
0 0 0 -1

1/7

Then A is IPR/Qy; but is not IPR/D.
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Proof. To see that A is not IPR/ID we show that there is no x € D® such thaty = Ax € D®. Indeed, suppose one has such X
and pick n € Nsuch thatxg/(2n+ 1) € D. Theny, = xo/(2n+ 1) — X411 € D.

To see that A is IPR/QgS letr e N,letd > 0,let (0,00) NQ = ULl G, picki € {1, 2, ..., r}such that 0 € c£G;, and pick
a sequence (y,)o, in G; which converges to 0. We may also assume that for eachn,y, < 1/(2n+ 1) andy, < 8. Letxy =1
and forn € N, letx, = 1/2n— 1) —y,_1;.ThenAx =y € (()®. O

Lemma 3.8. Let

1 0 0 0
12 =1 0 0
a— |14 0o -1 o
/8 0 0 -1

Then A is IPR/D{; but is not IPR/Z.

Proof. To see that A is IPR/ID)S'S, let § > 0 be given and let (0, 00) ND = U;:1 G;. Pick i such that 0 € c£C; and choose a
sequence (y,)2°, € C; such that for eachn € N,y, < yo/2". Letxg = yo and for n € N, let x, = yo/2" — y,. Then AX = y.

To see that A is not IPR/Z, suppose one has X € Z? such that all entries of AX are in Z\ {0}. Pick n € Nsuch thatxy/2" ¢ Z.
Thenxo/2" —x, € Z. O

Lemma 3.9. Let

00 NN =
oo ~o
o~ oo
— o oo

Then A is IPR/N but is not IPR/R{ .

Proof. To see that Ais IPR/N, let N be finitely colored and pick a monochromatic sequence (y,)5- , such that for eachn € N,
Vn > 2"yo.Let o = yo and for each n € N, let x, = y,, — 2"yo. Then AX = y.

Now suppose one has X € (RT)® such that y = A% € ((0, 1))®. Then xg = yo > 0.Pick k € N such that 2¥x, > 1. Then
yi = 2%xo + x¢ > 1, a contradiction. O

Now consider the table in Fig. 2. In this table, the entry in row S and column T is labeled as follows. If the fact that any
matrix which is IPR/S is also IPR/T follows from the implications in Fig. 1, then a “+” is entered. An entry of “n.k” means
that an example of a matrix which is IPR/S but is not IPR/T is given in Lemma n.k. (Only one lemma is cited when multiple
lemmas provide examples.) If we cannot determine whether every matrix which is IPR/S is also IPR/T, a “?” is entered.

If we knew that there is a matrix which is IPR/N but is not IPR/R, we would know that none of the missing implications
in Fig. 1 are valid.

Question 3.10. Is there an w X w matrix with rational entries which is IPR/N but is not IPR/Ry.

Lemma 3.11. Let

OOV O N DMONO=
[eNeNeNeNeNeNe NN o)
(=N e NoNoNoNep g o NoNo)
OO0 O0O0O—~ROROOO
OO —_L OO0 OOO0o
OO —_L O, OO0OOOOOo
(=N e Nl NoNeNoNoNoNo
OO0 O~ OO0 OOO0o

Then A is not IPR/Ry.
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DS | N |Df Do, |QF| Z | DY Dy| QF|Qos|Ry.| D |QF| Q| RS Ry, |Q | RT R
D+ |3.8|+ [+ [+ 38|+ |+ |+ |+ |+ |+ ]|+]|+ |+ |+ |+]|+ |+
N |3.2(4+ (3.913.2[3.2|+ |+ | 7 (39(3.2[3.2|+ |+ |7 3932+ +| 7
Dy (3.2(3.8|+ 3.213.2(38| + |+ |+ (3.232|+ |+ |+ |+ |32+ + |+
Dy, 3.3|3.3(3.3 |+ [3.3|3.83.3| + |3.3| + 3.3+ [3.3| + 3.3|+ |+ 3.3 |+
SI3TBIPBTRI|+ 373737 + |+ |+ BT+ |+ |+ |+ ||+ |+
Z |2.5|2.5(2.53.212.5| + (2.5 7 |2.5|3.2]12.5|4+ |2.5] 7 |2.5|3.2| +| 2.5 7
D+(3.2|3.813.93.23.2(13.8| + | 7 |3.9(3.213.2|4+ [+ | 7 |3.9(3.2|+| +| 7
D, 3.2|3.3(3.33.2|3.2|3.8|3.3| + |3.3|3.2(3.2| + |3.3| + |3.3|3.2| +| 3.3| +
+13.213.7(3.73.213.2|3.7|3.7(3.7| + |3.213.23.7|+ |+ |+ 3.2 |+ | + |+
Qs 3.3(3.3|3.3|3.7/3.3(3.7|3.3|3.7|3.3| + [3.3|3.7|3.3| + |3.3| + [+[3.3 |+
R,,3.6/3.6(3.6 3.6 3.6/3.6/3.6/3.6/3.6/3.6 + 3.6/13.6 3.6| + |+ B.6] + |+
D |2.53.3|2.53.2|12.53.8/3.3| 7 |2.5(3.2|12.5|+ |3.3| ? |2.5/3.2 + 3.3 ?
Q*3.213.713.713.213.2(3.7/3.7|13.7|13.913.23.2 3.7 + | 7 [3.9(3.2|+| + |7
Q, |3.2(3.3|3.3|3.2(3.2(3.7|3.3|3.7|3.3(3.2(3.2|3.7|3.3| + |3.3|3.2| +| 3.3 | +
RS(3.2|13.6(3.6 3.2(3.2|3.6/3.6|3.6/3.6|3.2|13.2|3.6|3.63.6| + [3.2|13.6 + |+
Ry, 3.3(3.3(3.313.6 3.3|3.6/3.3/13.6/3.3(3.6|3.3|3.6(3.3(3.6|3.3 | + [3.6/3.3 |+
Q [2.5(3.3(12.5(3.2|12.5(3.73.3|13.7|12.5|3.212.53.7(3.3| 7 (25(3.2|+|3.3 |7
R*(3.2|13.6(3.6 3.2|3.2|3.6/3.6|3.6/3.6|3.2/13.2|3.6|3.63.6|3.93.2 3.6| + |7
R, (3.2(3.3(3.313.2 3.2|3.6/3.3/13.6|3.3(3.2|13.2|3.6(3.3(3.6|3.3 3.2 3.6/ 3.3 |+

Fig. 2. Table of implications.

Proof. Let C; = (0, oo) and let C, = (—00, 0). Suppose one hasi € {1,2} and X € R” such that Ax € (C; N (-1, 1))®. We
k

may assume without loss of generality that i = 1. Then xo > 0. Pick k € N such that 2¥x, > 1. Then Zf:;kl,l x; > 0 so pick

somet € {271, 2k=1 41, ..., 2K — 1} such that x; > 0. Then 2¥x + x; is an entry of AX which is bigger than 1. O

Question 3.12. Is the matrix A of Lemma 3.11 IPR/N?

Of course an affirmative answer to Question 3.12 would provide an affirmative answer to Question 3.10.

4. Central sets near zero

Central subsets of a semigroup are intimately related with structures that are partition regular over that semigroup. In this
section we will deal with sets that are central near zero and show that similar relationships hold with respect to partition
regularity near zero. In order to do this, we need to discuss the algebra of the Stone-Cech compactification of a discrete
semigroup.

If S is a discrete space, we take the points of the Stone-Cech compactification 8S of S to be the ultrafilters on S, identifying
the principal ultrafilters with the points of S (and thus pretending that S € BS). GivenasetA C S, A= {pc B8S: A € p.
The sets {A : A C S} form a basis for the open sets of S as well as a basis for the closed sets of S.

Given a discrete semigroup (S, +) the operation extends to 8S making (8S, +) a right topological semigroup (meaning
that for each p € S, the function p, : BS — BS defined by p,(q) = q + p is continuous) with S contained in its topological
center (meaning that for each x € S, the function A, : 8S — BS defined by A,(q) = x + q is continuous). Given p, q € 8S
and A C S,we have thatA € p+qifandonlyif{x e S: —x+A € q} € p, where —x+A={y S :x+y €A}

Note that, even if S is commutative, 8S is not likely to be commutative. In particular, in the cases with which we are
concerned, namely dense subsemigroups of (R, +) or ((0, 00), +), (8S, +) is not commutative.
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A subset I of a semigroup (T, +) is a right ideal provided I # ¢ andI + T C I, a left ideal provided I # #and T +1 C I,
and a two sided ideal provided it is both a left and right ideal. Any compact right topological semigroup (T, +) has a smallest
two sided ideal K (T) which is the union of all minimal right ideals and is the union of all minimal left ideals. If L is a minimal
left ideal and R is a minimal right ideal, then L N R is a group. In particular K(T) has idempotents. An idempotent in T is
minimal if and only if it is a member of K(T). See [12] for an introduction to the algebraic structure of S, as well as any
unfamiliar algebraic statements encountered here.

Central sets were introduced by Furstenberg in [4] and were defined in terms of topological dynamics. The following
algebraic definition is simpler.

Definition 4.1. Let (S, +) be a discrete semigroup. A set C C S is central if and only if there is an idempotent p € C NK(BS).

Central sets have substantial combinatorial properties which are consequences of the Central Sets Theorem. The original
Central Sets Theorem [4, Proposition 8.21] applied to (N, +). See [12, Part III] for a more general version and a presentation
of many of these combinatorial properties.

We have been considering semigroups which are dense in (R, +) or ((0, c0), +). Here, of course, “dense” means with
respect to the usual topology on R. When passing to the Stone-Cech compactification of such a semigroup S, we deal with
S4, which is the set S with the discrete topology.

Definition 4.2. Let S be a dense subsemigroup of (R, +) or of ((0, 00), +).Then0%(S) = {p € BSs : (Ve > 0) ((0,€) NS €
p)}. If S is a dense subsemigroup of (R, +), then 07 (S) = {p € BSq : (Ve > 0) ((—e,0) NS € p)}.

It was shown in [9, Lemma 2.5] that 07 (S) is a subsemigroup of (8S4, +). Also, it was noted that 07 (S) N K(BS;) = @,
so one does not obtain any information about K (0+ (S)) based on knowledge of K(8S4). But as a compact right topological

semigroup, K (07(S)) does exist, and has idempotents.

Definition 4.3. Let S be a dense subsemigroup of (R, +) or of ((0, 00), +). Aset C C S is central near zero if and only if there
is an idempotent p € C NK (07(S)).

In [1] a new stronger version of the Central Sets Theorem for arbitrary semigroups was proved. In Theorem 4.6 we shall
show that analogues of this theorem hold for dense subsemigroups of ((0, o), +) and for dense subsemigroups of (R, +).

Definition 4.4. Let S be a dense subsemigroup of (R, +) or of ((0, 00), +). Aset C C S is piecewise syndetic near zero if and
only C N K (07(5)) # 4.

Notice that any set which is central near zero is also piecewise syndetic near zero. In [9] a mildly complicated elementary
characterization of sets central near zero was given.
Given a set X, we let 5 (X) be the set of finite nonempty subsets of X.

Lemma 4.5. Let S be a dense subsemigroup of ((0, 0o0), +), let | € N, and let C C S be piecewise syndetic near zero. If there
is a dense subsemigroup T of (R, +) such that S = T N (0, 00), then for each i € {1,2,...,1}, let (y; )2, be a sequence
in T U {0} such that lim,_, o yin = 0. Otherwise, for eachi € {1,2,...,1}, let (yin)oe be a sequence m S U {0} such
that limy_. ¥in = 0. For each m € N there exist a € SN (0, 1/m) and H € P(N) such that minH > m and for each
ie{1,2,.... 05, a+ ),y ¥ir €CN(O, 1/m).

Proof. Let Y = ><§:1 07(S) and let Z = X£:1 BSq. By [12, Theorem 2.22], Y and Z are right topological semigroups, and if
X e x_, S, then Az : Z — Z is continuous.

Fork € Nletly = {(a+ Y ey Vi O+ Y ey Youts oo on @+ Y ey Vit) @ € S,H € $(N), minH > k,and (Vi €
{1,2,....) (a+ Y,y yie €SN(0,1/k))} and let By = I, U {(a,a,...,a) : a € SN (0, 1/k)}. Let E = (2, clzE and
let] = (o, clzlk.

Since 0+(5) = 22, (ﬂsd N, 1 /k)) and each E, € SN(0, 1/k) we have that E C Y. Trivially I C E. We claim that E is a

subsemigroup of Y and I is an ideal of E. To see that I # ¢, it suffices to let k € N and show that I, # @. So let k € N be given.
Pickn > ksuchthatforeachi e {1,2,...,1}, |yinl < ﬁ and picka € 50(3,( 3k) Then (a+y1n, a+Yan, .-, a+Yin) € .

Now let p, ¢ € E. We show that p + q € E and ifeitherp e Torq € I, thenp 4+ q € I. Let U be an open neighborhood
ofp + g and let k € N. Since 05 is continuous, pick a neighborhood V of psuch that V 4 g € U. Pickx € Ey NV with
X € Lyifp e ILIfX € I, picka e SandH € P¢(N) such that minH > 2k and a + Z[GH Yit € SN (0, 1/(2k)) for each
iefl,2,. l} In this case, let j = max H. If X & I, picka € SN (0, 1/(2k)) suchthatx = (a, a, ..., a) and let j = 2k.

Since X —I— g € U and ); is continuous, pick a neighborhood W of g such thatx + W C U. Plcky e E;NW withy € [ if
gel.Thenx+y € UNE;and ifeitherﬁ elorgel thenx+yeUNI,. _

By [12, Theorem 2.23] K(Y) = X{_, K (0*(S)). Since C is piecewise syndetic near zero, pick p € K (07(S)) N C. Then
p=®,p,...,D) € K(Y) We claim thatp € E.Toseethis,letk € N,let U be aneighborhoodofpinZ,andfori € {1,2,...,1}
pick A; € p such that Xl 1A, C U.Picka € (0,1/k) N ﬂ, 1Ai. Then (a,a,...,a) e UNE.Thusp € ENK(Y) so by[12,
Theorem 1.65], K(E) = E N K(Y). Since I is an 1deal of E,K(E) C Iand consequentlyp el

Now let m € N be given. Then p € clzI,, so ><l 1 CNIp#9. O
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The original Central Sets Theorem [4, Proposition 8.21] dealt with finitely many sequences at a time. The versions in [12]
dealt with countably many sequences at a time. The version in [ 1] dealt with all sequences in the semigroup S. The following
theorem deals with the set of all sequences whose terms go to zero.

Theorem 4.6. Let S be a dense subsemigroup of ((0, 0o0), +). If there is a dense subsemigroup T of (R, +) such that S =

T N (0, 00), let T be the set of sequences (yn)ne, in T U {0} such that lim,_, y, = 0. Otherwise let T be the set of sequences

Vn)peq in S U {0} such that lim,_. o yn = 0. Let C be a subset of S which is central near zero. Then there exist o : Pf(T) — S
andH : (7) — £ (N) such that:

(1) foreach F € $;(7), a(F) € (0, ffy);

(2) if F,Ge P (T)and F C G, then maxH(F) < minH(G); and

(3)if m € N, G,Gy,...,Gy € P(T), G € G € -+ C Gy, and foreachi € {1,2,...,m}, (yir);o; € Gi then

P (O‘(Gi) + 2 ten) yl\t) eC

Proof. Pickp = p + p € K (07(S)) such that C € p. Let
C*={xeC:—x+Cep}.

By [12, Lemma 4.14] C* € p and whenever x € C*, —x + C* € p. We define «(F) and H(F) for F € #;(7") by induction on
|F| satisfying the following induction hypotheses:

(1) a(F) < ﬁ.

(2) If @ £ G C F, then maxH(G) < minH(F).

(3) fmeNA#£G C G C- - C G =Fand (), € X, Gy then Y1, (@(G) + Lren) D) € €

Assume first that F = {f}. (It is more convenient here to write a sequence as a function.) Pick by Lemma 4.5,a € SN (0, 1)
andL € #r(N) suchthata+) ., f(t) € C*.Leta(F) = aand H(F) = L. The hypotheses are satisfied, the second vacuously.
Now assume that F € £ (7), |F| > 1, and «(G) and H(G) have been defined for all nonempty G ¢ F.LetK = [ J{H(G) :

# # G C F}andletm = maxK.Let M = {Zf:] (a(G,») + ZteH(Gi)ff(t)> W#£G CGC---CG CFand (i), €

Xi_1 G,-}. Then M is a finite subset of C*. Let

B=C'N[)(=x+C".
xeM
Then B € p so in particular B is piecewise syndetic near zero. Pick by Lemma 4.5,a € S N (0, ﬁ) and L € £ (N) such that

minL > mand foreachf € F,a+ ), f(t) € B.Leta(F) = aand let H(F) = L.
Hypotheses (1) and (2) are satisfied directly. To verify hypothesis (3), let m € N and assume that # £ G; C G, € --- C

=

Gn = Fand (fi)i; € XL, Gi. If m = 1, then fi, € Fand a(F) + 3~ ) fm(t) € B € C*.So assume that m > 1 and let
x=yr (Ol(Gi) + D tenie ﬁ(t)). Thenx € M so

a(F)+ Y fult) €BC (—x+C)

teH(F)

and thus )", (oz(G,-) + 2 tenicy ﬁ(t)) € C*asrequired. O

The following corollary resembles the original Central Sets Theorem.

Corollary 4.7. Let S be a dense subsemigroup of ((0, 00), +). If there is a dense subsemigroup T of (R, +) such that S =
T N (0, 00), let T be the set of sequences (yn)ne, in T U {0} such that lim,_,.cy, = 0. Otherwise let T be the set of
sequences (y,)p2; in S U {0} such that lim,_, y, = 0. Let C be a subset of S which is central near zero and let F € %7 (7).
There exist a sequence (a,);o; in S such that Z;’il a, converges and a sequence (H,)22 , in P (N) such that for eachn € N,

max H, < minH,;, and foreachL € $s(N) andeachf € F, Y, (an + ZteHH f(t)) e C.

Proof. Choose a sequence (g,),- ; of distinct members of 7 \ F and foreachn € N, letG, = FU {g1, &, ..., 8.).Forn e N,
let a, = «(Gy) and let H, = H(G,). By thinning the sequences, we may presume that Z;";l a, converges. 0O

We will show in Theorem 4.10 that for certain semigroups S, central sets characterize image partition regularity of finite
matrices. We shall follow the custom of denoting the entries of a matrix by the lower case letter corresponding to the upper
case name of the matrix.
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Definition 4.8. Let u, v € Nand let A be a u x v matrix with entries from Q. Then A is a first entries matrix if and only if no

row of A is 6, and for eachj € {1, 2, ..., v} there exists ¢ > 0 such that for eachi € {1, 2, ..., u}, if the first nonzero entry
of row i of A is in column j, then a; j = c. If ¢ is the first nonzero entry of a row of A, then c is a first entry of A.

In the following lemma, note that we are demanding of T that it be a subgroup of (R, +), not just a dense subsemigroup.
Lemma 4.9. Let u, v € Nand let Abe au x v first entries matrix. Let S be a dense subsemigroup of ((0, 00), +). If there is a
subgroup T of (R, +) such that S = T N (0, 0o), assume that the entries of A come from Z. Otherwise, assume that the entries

of A come from w. Let C C S be central near zero. Assume that for each first entry c of A, C N cS is central near zero. Then there
exist foreachj € {1,2, ..., v} asequence (x;;);2, in S such that Zf; X, converges and for each F € $(N), Ax; € CY where

E X1,t

teF

E X2t

= teF

2 Hue

teF

2
|

Proof. We proceed by induction on v. Assume first that v = 1. We may presume that A has no repeated rows, so there is
some ¢ € Nsuch that A = (c). Pick a sequence (wy);2, in S such that Z;’i] wy, converges. Pick by Corollary 4.7 sequences
(@), in S such that Y2 | a, converges and (H,)2 , in #7(N) such that for each n € N, max H, < minH, and for each
Le Pr(N), > . (an + ZteH” wt) € CNcS.Forn e N, lety, =a, + ZteHn we. Let Xy ; = yn/c foreachn € N.

Now let v € N and assume the result holds for v. Let Abe au x (v + 1) matrix with entries from Z or w as appropriate.

We may assume that we havec € Nand k € {1,2,...,u — 1} such thata;; = 0ifi € {1,2,...,k}and a;; = cif
iefk+1,k+2,...,u}.

Let B be the k x v matrix defined by b;; = a;;41 fori € {1,2,...,k}andj € {1, 2, ..., v}. Pick a sequence (x;)¢2, for
eachj € {1, 2, ..., v} as guaranteed by the induction hypothesis for the matrix Band C. Fori € {k+ 1,k + 2, ..., u} and
teNlety;; = Z,”:; a; jXj—1,¢. If there is a subgroup T of (R, 4) such thatS = TN (0, co), then each y;; € T and otherwise
(since the entries of A are in w) each y;; € S U {0}. In any event foreachi e {k+ 1,k+2,...,u}, Zf; yi.c converges. For

eacht e N, lety, 41 =0.
Pick by Corollary 4.7 a sequence (d,);- ; in S such that Z;’il d, converges and a sequence (H,)52 ; in £ (N) such that for
eachn € N,maxH, < minH,; and foreachL € #s(N)andeachie {k+1,k+2,...,u+ 1},

> (dn+ > yi't) eCNcs.

nel teHy

Foreachn € N, letz; , = d,/candforj e {2,3,...,v+ 1} letz, = ZteHn Xji_1¢. Since d, = d, + ZteH“ Yus1e € €S, we
have thatd, € S.
One has immediately that for eachj € {1,2,..., v+ 1}, Zﬁil zj, converges. Now let L € #(N)andi € {1,2,...,u}

be given. If i < k, let K = (J,; Hn. Then Y2 a5 3" zin = Y01 bij Y ik Xie € C.So assume thati > k. Then

v+1
Zj:+1 ai ZneL Zjn = ZneL(d” + ZteHn yi)eC. O

We now see that for certain semigroups, sets central near zero contain solutions to all image partition regular matrices.
A subset D of S is central* near zero if and only if for every subset C of S which is central near zero, C N D is central near zero.
(Equivalently, D is a member of every idempotent in K (0+ S )).)

Theorem 4.10. Let u, v € N and let A be a u x v first entries matrix. Let S be a dense subsemigroup of ((0, 00), +). If there is
a subgroup T of (R, +) such that S = T N (0, oo), assume that the entries of A come from Z. Otherwise, assume that the entries
of A come from w. Assume that for every first entry c of A, cS is central” near zero. Then A is IPR/Sy if and only if for every set C
which is central near zero there exists X € S such that AX € CY.

Proof. Sufficiency. Letr € Nand letS = U?:1 G;. Pick an idempotent p € K (0+ (S)) and picki € {1, 2, ..., r} such that
C; € p. Then for each § > 0, C; N (0, §) is central near zero.

Necessity. We have by Theorem 2.3 that A is IPR/R so by Theorem 2.6, A is IPR/N. By [10, Theorem 2.10], choose some
m € Nand au x m first entries matrix B such that for eachy € N™ there exists X € N? such that AX = By. Let C be a subset
of S which is central near zero. Pick by Lemma 4.9 some y € N™ such that By € C* Pickx € N? such thatAx =By. O

Notice that if for some ¢ € N, ¢S is not central* near zero, then C = S \ ¢S is central near zero and (c) is a first entries
matrix all of whose images miss C so that requirement is needed in Theorem 4.10. We do not have an example of a dense
subgroup S of (R, +) for which some ¢S is not central* near zero. But we do have the following.
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Theorem 4.11. Let k be an infinite cardinal with k < c. There is a dense subsemigroup S of ((0, 00), +) such that |S| = k and
forevery c € N\ {1}, ¢S is not central near zero.

Proof. Choose a subset I of (0, co) such that |I| = «, I is linearly independent over Q, and 0 € c/I. Let

S= iz m;-t:F e $r()andforeacht € F, m; e Nt .

teF

Letc € N\ {1}andletB = {ZteF m;-t: F e Ps(I)andforeacht € F,m; € Nandsome m; = 1 (modc)}. ThenBNcS = ¥.
We show that B is central* near zero (and thus ¢S is not central near zero) by showing that B N 0*(S) is an ideal of 07 (S)
and so K (0%(S)) € B. To this end, let p € 07(S) N B and let g € 07(S). We show that B € p 4+ g and B € q + p. To see that
B e p+q,weshowthatBC {y € S: —y+B € q}.Solety € Band pickF € #;(I) and (m,)xer inNsuchthaty =", . m,-x
and some my = 1 (mod c). Let § = minF. Then (0,§) NS € gand (0,5) NS € —y + B.

To see that B € g+ pweshowthatS C {y € S: —y + B € p}.Solety € S and pick F € #5(I) and (my)«er in N such that
Y= yer Mx-X.Let§ = minF.Then (0,8) NBepand (0,§) N\BS —y+B. O

5. Milliken-Taylor matrices

Milliken [14, Theorem 2.2] and Taylor [18, Lemma 2.2] independently proved a theorem which implies that certain
matrices, which we now introduce, are image partition regular over N.

Definition 5.1. Letm € w,letd = (a;)" , be asequence in Z\ {0}, and letX = (x,)°°  be a sequence in R. The Milliken-Taylor
system determined by @ and X is defined by MT (@, X) = {> [, a; - > ter Xt : eachF; € Py (») and ifi < m, then maxF; <
minFiyq}

Notice that if a has adjacent repeated entries and ¢ is obtained from @ by deleting such repetitions, then for any infinite
sequence X, one has MT (@, X) € MT(C, X), so it suffices to consider sequences ¢ without adjacent repeated entries.

Definition 5.2. Let a be a finite or infinite sequence in Z with only finitely many nonzero entries. Then c(a) is the sequence
obtained from a by deleting all zeroes and then deleting all adjacent repeated entries. The sequence c(d) is the compressed
form of a. If @ = c(a), then @ is a compressed sequence.

For example, ifa = (0,1,0,0,1,2,0,0,2,2,0,0, ...), thenc(@) = (1, 2).

Definition 5.3. Let d be a compressed sequence in Z \ {0}. A Milliken-Taylor matrix determined by @ is an @ x  matrix A
such that the rows of A are all possible rows with finitely many nonzero entries and compressed form equal to d.

Notice that if A is a Milliken-Taylor matrix whose rows all have compressed form @ and X is an infinite sequence in R,
then the set of entries of AX is precisely MT (@, X).

When the partition regularity of Milliken-Taylor systems was first considered in [2] the sequence d was required to have
entries from N. Later it was shown that as long as the last entry was positive, the sequence could have negative entries as
well.

Theorem 5.4. Let m € w, let @ = (a;)!", be a compressed sequence in Z \ {0}, and let A be a Milliken-Taylor matrix determined
by d.If a,, > 0O, then A is IPR/N.

Proof. [11, Corollary 3.6]. O

We show in this section that if T is any dense subgroup of (R, +),d = (a;)[", is a compressed sequence in Z \ {0} with
ap > 0, and A is a Milliken-Taylor matrix determined by g, then A is IPR/TJS', where TT = T N (0, c0). Notice that, unlike
the result in Theorem 5.4, it is the first rather than the last entry of @ which is required to be positive. The reason for the
difference is that BN \ N is a left ideal of 8Z while 07 (T) is a right ideal of 07 (T) U0~ (T) asis 0~ (T) [8, Lemma 2.5].

Givenc € R\ {0} and p € SR, \ {0}, the product c - p is defined in (8Ry, -). One has that A C R is a member of ¢ - p if
andonlyifc™'A = {x € R : c - x € A} is a member of p.

Lemma 5.5. Let T be a dense subgroup of (R, +), let p € 07 (T), and let c € N.Thenc -p € 01 (T) and (—c) - p € 0~ (T).

Proof. The two proofs are similar. We do the second, which is the one that uses the fact that T is a subgroup rather than
just a subsemigroup. Let € > 0. We need to show that (—e,0) N T € (—c) - p.Now (0, €/c) N T € p, so it suffices to show
that (0,e/c) NT C (—c)~' ((—€,0)NT).Soletx € (0,¢/c) NT.Then (—c) - x € (—e¢, 0) and, since (T, +) is a group,
(—0)-xeT O

Definition 5.6. Let (w;):2, be a sequence in R. A sum subsystem of (wn)5c  is a sequence (x,),-, such that there exists a
sequence (Hy);2, in £ (N) such that for eachn € w, maxH, < minH,;; and x, = ZteH" Wy.
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Notice that if (w,)22, is a sequence in R such that ) - - w, converges and (x,)3°, is a sum subsystem of (w,)%2,, then
32 o Xn also converges.

The proof of the following theorem is similar to that of [11, Theorem 3.3]. Given a sequence (x,);>, and k € o we let
FS((xn)22,) = {2 4cr Xn : F € Pf(w) and minF > k}.

Theorem 5.7. Let T be a dense subgroup of (R, +), let @ = (a;)["y be a compressed sequence in Z\ {0} with ag > 0, and let A be
a Milliken-Taylor matrix determined by a. Then A is IPR/TOJE. In fact, given any sequence (wy)2, in TT such that limp_, o wy = 0,

wheneverr € N, TT = U?:1 G, and 8 > O, thereexist i € {1,2,...,r} and a sum subsystem (xn)2, of (wn)oe, such that
MT(a, %) < G N (0, §).

Proof. By passing to a subsequence, we may presume that Z;’io wy converges. Pick by [12, Lemma 5.11] an idempotent
p € ﬂ,ﬁ'io clgr, FS((wy)32 ;). Note that since Z;“;o wy, converges,p € 07 (T).Letq=ag-p+a,-p+---+ ay - p. Then by
Lemma 5.5 and the previously mentioned fact that 07 (T) and 0~ (T) are both right ideals of 0" (T) U 0~ (T), we have that
q € 07 (T). So it suffices to show that whenever Q € g, there is a sum subsystem (Xn) o2 of (wy) o2, such that MT @@ x) Q.
Let Q € g be given. Assume first that m = 0. Then (ag)~'Q € p, so by [12, Theorem 5.14] there is a sum subsystem
(xn) 225 Of (wn) 32, such that FS((x,)32,) € (a0)~'Q. Then MT(d, X) Q.
Now assume that m > 0. Define

PW)={xeT:—(a-x)+Qe€a-p+ay-p+...+an-p}.
We claim that P(#) € p. To see this let
D={yeT:—-y+Qe€a-p+a-p+...4+an-p}

Then D € ag - p, so (ag)~'D € pand (ay)~'D < P(f). Given xo define P(xg) = {y € T : —(ap - X0 + a1 -y) +Q €
ay-p+az-p+...+an-pl.Ifxg € P(¥),then —(ag-x) +Q €a;-p+ay-p+...+ay-pandso

{yeT:—(a;-y)+(—(ap-X)+Q)€a-p+az-p+...+ay-pl€Pp

and thus P(xp) € p.

Givenn € {1,2,...,m—1}andxg, X1, ..., Xy_1,1etP(xo, X1, ..., Xp_1) = {y € T : —(ag-xo+. . .+an_1-Xn_1+0a,-y)+Q €
Gne1 P+ ...+ ay-p}.Ifxo € P(P) and foreachi € {1,2,...,n— 1}, x; € P(xo, X1, - . ., Xi_1), then P(xo, X1, . .., Xp—1) € D.
Given xg, X1, ..., Xm_1, let P(Xo, X1, ..., Xm—1) ={y €T :ap- X + a1 - X1+ ...+ An_1 - Xm—1 + an -y € Q}. If xg € P(¥)
and foreachie {1,2,...,m— 1},x; € P(Xo, X1, ..., Xi_1), then P(xg, X1, ..., Xm_1) € P.

Givenany B € p,let B* = {x € B: —x + B € p}. Then B* € p and by [12, Lemma 4.14], for each x € B*, —x + B* € p.

Choose xo € P(%)* N FS({wy);2,) and choose Hy € 5 (N) such thatxg = ZteHO w;. Let n € w and assume that we have
chosen xg, X1, ..., X, and Hy, Hy, ..., H, such that:

(1) ifk € {0,1,...,n}, then Hy € P (w) and x, = Zter Wy,

(2) ifke{0,1,...,n— 1}, then max H, < min Hy1,
(3)if##£F<{0,1,...,n}, then) , ; x € P(¥)*, and
(4) ifk € {1,2,...,min{m, n}}, Fo, F1, ..., Fc € $({0,1,...,n}),and foreachj € {0, 1,..., k — 1}, maxF; < minFj;,

then ZteFk Xt € P(Zteﬂ) X, ZteFl Xeooos Zteﬁ(,1 X"

All hypotheses hold at n = 0, (2) and (4) vacuously.
Letv = maxH,.Forr € {0,1,...,n},let

Er:[th:Q);éFg{r,r—kL...,n}}.

teF

Fork € {0,1,...,m—1}andr € {0, 1,...,n},let

W, = [(Zx[,...,Zx[> Fo.Fi,....Fee P({0,1,....1})

teFy teFy
and foreachie {0,1,...,k— 1}, maxF; < minF,-H} .

Note that Wy, # @ ifand only ifk <.

Ify € Eo,theny € P(¥)*,s0 —y + P(J)* € pand P(y) € p.Ifk € {1,2,...,m — 1} and (Yo, Y1, .--,Yx) € Wim,
then y, € P(Yo,¥1,--->Yk-1), SO0 P(Vo, ¥1,...,Yx) € p and thus P(yo,¥1,...,¥x)* € p.Ifr € {0,1,...,n— 1}, k €
{0,1,..., min{m — 1, r}}, o, Y1, .-, Yx) € Wkr,andz € E.1q,thenz € P(¥o, Y1, .-, ¥k)*, 0 =2 +P o, Y1, .- -, Yk)* € D.

Ifn = 0,letx; € FSwe);2, 1) NPW@)* N (=X + P(¥)*) N P(xo)* and pick H; € #(N) such that minH; > v and
X = ZteHl we. The hypotheses are satisfied.
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Now assume that n > 1 and pick

min{m—1,n}

Xnt1 € FS((we)i2, ) NP@ N[ (~y +P@) 0 () N POoYI-. 30

A5 k=0 (Yo.¥1,--YK)EWik,m

n—1min{m—1,r}

n N N ) C2+POoy .

r=0 k=0 Y01, Vi) EWi r Z€Er 11

Pick Hy11 € £ (N) such that min Hyq > vand X, = ZteHnH wy.

Hypotheses (1) and (2) hold directly. For hypothesis (3) assume that ¥ # F < {0,1,...,n+ 1}andn+ 1 € F.If
F = {n+ 1} we have directly that x,, € P(#)*, so assume that {n+ 1} C FandletG=F \ {n+ 1}.Lety = ), . x;. Then
y € Ep,80X541 € =y +P(@)*andso ), x; € P(¥)".

To verify hypothesis (4), let k € {1, 2, ..., min{m, n + 1}} and assume that Fo, F, ..., Fy € $({0,1,...,n+ 1}) and
foreachj € {0, 1, ..., k— 1}, maxF; < minF;;. We canassume thatn+1 € F.Forl € {0, 1,..., k—1}lety, = Zteﬁ X;.
Thenk — 1 < min{m — 1, n} and (Yo, ¥1, - - -, Yk—1) € Wk_1.;m. If F = {n+ 1}, then Ztepk Xt = Xn+1 € PYo, Y1, - - -5 Y1) ™
Soassume that {n+1} C FyandletF, = F,\ {n+1}. Letr = max F,_;.Thenr < minF},sor <n—1,k—1 < min{m—1,r},
and Vo, Y1, - - Yk—1) € Wi_1,. Letz = ZteF,; X.. Then z € E,4q, 50 X441 € —2 + P(Yo, Y1, ..., Yk—1)" and hence

ZteFk X € P(ZteFo Xt ZteFl Xe ooy ZteFk,1 x)*. O
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