Large monochromatic components in colorings of complete 3-uniform hypergraphs

András Gyárfás ${ }^{\text {a,* }}$, Penny Haxell ${ }^{\text {b }}$
${ }^{\text {a }}$ Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, P.O. Box 63, Budapest, H-1518, Hungary
${ }^{\mathrm{b}}$ C. and O. Department, University of Waterloo, Waterloo ON, Canada, N2L 3G1

A R T I C L E I N F O

Article history:

Received 27 November 2007
Received in revised form 28 August 2008
Accepted 3 September 2008
Available online 27 September 2008

Keywords:

Hypergraph edge coloring
Monochromatic components

Abstract

Let $f(n, r)$ be the largest integer m with the following property: if the edges of the complete 3-uniform hypergraph K_{n}^{3} are colored with r colors then there is a monochromatic component with at least m vertices. Here we show that $f(n, 5) \geq \frac{5 n}{7}$ and $f(n, 6) \geq \frac{2 n}{3}$. Both results are sharp under suitable divisibility conditions (namely if n is divisible by 7 , or by 6 respectively).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A first exercise in graph theory - in fact an old remark of Erdős and Rado - states that for any graph G, either G or its complement is connected. The following generalization (and the solution for $r=3$) was suggested in [3]: suppose that the edges of K_{n} are colored with r colors in any fashion, what is the order of the largest monochromatic connected subgraph? The answer for general $r,\left\lceil\frac{n}{r-1}\right\rceil$, was given in [4] (it is sharp if $r-1$ is a prime power and n is divisible by $(r-1)^{2}$). This also follows from a result of Füredi [1] on fractional transversals of hypergraphs. The problem was generalized to hypergraphs in [2]. In the generalization, connectivity and components of hypergraphs are understood as follows. Let \mathscr{H} be a hypergraph. We say that \mathscr{H} is connected if the shadow graph of \mathscr{H}, with vertex set $V(\mathscr{H})$ and edge set $\{x y: x y \subset e$ for some $e \in E(\mathscr{H})\}$, is connected. A component of \mathscr{H} is a maximal connected subhypergraph. The main result of [2] says that any r-coloring of the edges of the complete t-uniform hypergraph on n vertices contains a connected monochromatic subhypergraph on at least $\frac{n}{q}$ vertices, where q is the smallest integer satisfying $r \leq \sum_{i=0}^{t-1} q^{i}$. The result is best possible if q is a prime power and n is divisible by q^{t}. The case $t=2$ (with $q=r-1$) gives the graph case discussed above. This paper focuses on $t=3$.

Let $f(n, r)$ be the largest integer m with the following property: if the edges of the complete 3-uniform hypergraph K_{n}^{3} are colored with r colors then there is a monochromatic component with at least m vertices. Applying the result mentioned above for $t=3$ we get that $f(n, r)=\frac{n}{q}$ if $r=q^{2}+q+1$ with a prime power q and n is divisible by q^{3}. The case $q=2$ solves $r=7$ and the cases $r \leq 4$ are also solved in [2] $\left(f(n, 3)=n\right.$ and $f(n, 4) \geq \frac{3 n}{4}$ with equality if n is divisible by 4). The cases $r=5$, 6 are left open and the purpose of this note is to fill this gap. We apply the proof method of Füredi used first in [1] (see also in [2]) which connects $f(n, r)$ to fractional transversals of certain hypergraphs.

A hypergraph is r-partite if its vertices are partitioned into r classes and each edge intersects each class in exactly one vertex. A hypergraph is 3-wise intersecting if any three edges have nonempty intersection. A fractional transversal is a nonnegative weighting of the vertices such that the sum of the weights over any edge is at least 1 . The value of a fractional

[^0]transversal is the sum of the weights over all vertices of the hypergraph. Finally, $\tau^{*}(\mathscr{H})$ is the minimum of the values over all fractional transversals of \mathscr{H}. We use the following lemma from [2].

Lemma 1. Let $\tau^{*}(r)$ be defined as the maximum of $\tau^{*}(\mathscr{H})$ over all r-partite 3 -wise intersecting hypergraphs \mathscr{H}. Then $f(n, r) \geq \frac{n}{\tau^{*}(r)}$.

Theorem 1. $f(n, 5) \geq \frac{5 n}{7}$ and this is sharp if n is divisible by 7 .
Proof. We start with a construction, showing that $f(n, 5)$ is not larger than the claimed value if n is divisible by 7 . Let $n=7 k$ and partition $[n]=\{1, \ldots, n\}$ into seven k-element sets, X_{i}. We define five subsets $I_{j} \subset[7]$ as

$$
\begin{array}{lll}
I_{1}=\{1,4,5,6,7\}, & I_{2}=\{2,4,5,6,7\}, & I_{3}=\{3,4,5,6,7\} \\
I_{4}=\{1,2,3,6,7\}, & I_{5}=\{1,2,3,4,5\} &
\end{array}
$$

Observe that every triple of [7] is covered by at least one I_{j}. Thus every triple $T \subset[n]$ is covered by at least one of the five sets $A_{j}=\left\{\cup_{i \in I_{j}} X_{i}\right\}$. Color T with color j where j is the smallest index such that $T \subset A_{j}$. Clearly each triple of [n] is colored with one of five colors and there is no monochromatic component of size larger than $5 k=\frac{5 n}{7}$.

On the other hand, $f(n, 5) \geq \frac{5 n}{7}$ follows from Lemma 1 if we show that $\tau^{*}(\mathscr{H}) \leq \frac{7}{5}$ holds for every 5-partite 3-wise intersecting hypergraph \mathscr{H}. We shall define only the nonzero weights $w(x)$ for $x \in V(\mathscr{H})$. Let A_{i} denote the vertex classes of \mathscr{H}, vertices in A_{i} will be indexed with i. Note that if there are two edges $e, f \in E(\mathscr{H})$ with $|e \cap f|=1$ then all edges of \mathscr{H} intersect and $\tau^{*}(\mathscr{H})=1$ follows. Thus we may assume that any two edges of \mathscr{H} intersect in at least two vertices.
Case (i): there exist $e, f \in E(\mathscr{H})$ with $|e \cap f|=2$. Assume $e=\left\{x_{1}, x_{2}, y_{3}, y_{4}, y_{5}\right\}, f=\left\{x_{1}, x_{2}, z_{3}, z_{4}, z_{5}\right\}$. Set $Y=$ $\left\{y_{3}, y_{4}, y_{5}\right\}, Z=\left\{z_{3}, z_{4}, z_{5}\right\}$. Using that \mathscr{H} is 3 -wise intersecting, it follows that the edge set of \mathscr{H} can be partitioned into E_{1}, E_{2}, E_{12} where

$$
\begin{aligned}
& E_{12}=\left\{h \in E(\mathscr{H}): x_{1}, x_{2} \in h\right\}, \\
& E_{1}=\left\{h \in E(\mathscr{H}): x_{1} \in h, x_{2} \notin h\right\}, \quad E_{2}=\left\{h \in E(\mathscr{H}): x_{2} \in h, x_{1} \notin h\right\} .
\end{aligned}
$$

We may assume that E_{1}, E_{2} are both non-empty otherwise - as before - all edges of \mathscr{H} intersect and $\tau^{*}(\mathscr{H})=1$.
Assume first that there is a pair of edges $e_{1} \in E_{1}, e_{2} \in E_{2}$ such that e_{1}, e_{2} intersect on $A_{3} \cup A_{4} \cup A_{5}$ in a 3-element set $T=\left\{t_{3}, t_{4}, t_{5}\right\}$. Since e, e_{1} and f, e_{1} both intersect in at least two vertices, $T \cap Y, T \cap Z$ are nonempty sets, at least one of them, say $T \cap Z$ has exactly one element. We may suppose w.l.o.g. $t_{3}=y_{3}, t_{4}=z_{4}$.

If $t_{5} \neq y_{5}\left(t_{5} \neq z_{5}\right.$ also holds by assumption on $\left.T \cap Z\right)$ then the existence of the triple intersections

$$
e \cap e_{1} \cap b, \quad e \cap e_{2} \cap a, \quad f \cap e_{2} \cap a, \quad f \cap e_{1} \cap b
$$

for $a \in E_{1}, b \in E_{2}$ imply that all edges of $E_{1} \cup E_{2}$ contain both t_{3} and t_{4}. If there exists an edge $e_{12} \in E_{12}$ such that neither t_{3} nor t_{4} is in e_{12} then the existence of the triple intersections $e_{12} \cap e_{1} \cap b, e_{12} \cap e_{2} \cap a$ for $a \in E_{1}, b \in E_{2}$ imply that all edges of $E_{1} \cup E_{2}$ contain t_{5} as well. Moreover, then all edges of E_{12} must also contain t_{5}. Now every edge in $E_{1} \cup E_{2}$ intersects $\left\{x_{1}, x_{2}\right\}$ in one and intersects T in three elements; every edge of E_{12} intersects $\left\{x_{1}, x_{2}\right\}$ in two and T in at least one element. Thus the weight assignment $w\left(x_{1}\right)=w\left(x_{2}\right)=\frac{2}{5}, w\left(t_{3}\right)=w\left(t_{4}\right)=w\left(t_{5}\right)=\frac{1}{5}$ is a fractional transversal of \mathscr{H} with value $\frac{7}{5}$. If every $e_{12} \in E_{12}$ intersects $\left\{t_{3}, t_{4}\right\}$ then every edge in $E_{1} \cup E_{2} \cup E_{12}$ intersects $S=\left\{x_{1}, x_{2}, t_{3}, t_{4}\right\}$ in at least three elements thus assigning $\frac{1}{3}$ to each element of S gives a fractional transversal of value $\frac{4}{3}<\frac{7}{5}$ finishing this part of the proof.

If $t_{5}=y_{5}$ then, as in the argument above, the existence of the triple intersections $f \cap e_{1} \cap b, f \cap e_{2} \cap a$ for $a \in E_{1}, b \in E_{2}$ imply that all edges of $E_{1} \cup E_{2}$ contain t_{4}. First suppose that there exist $b_{1}, b_{2} \in E_{2}$ (not necessarily distinct) with $t_{3} \notin b_{1}$ and $t_{5} \notin b_{2}$. Then the triple intersections $e \cap a \cap b_{1}$ and $e \cap a \cap b_{2}$ show that for each $a \in E_{1}$ we have $t_{3} \in a$ and $t_{5} \in a$. Therefore we can conclude that all edges of E_{1} or all edges of E_{2} - say all edges of E_{1} - contain both t_{3} and t_{5}. Moreover, then the triple intersections $e \cap a \cap b$ show that each $b \in E_{2}$ contains either t_{3} or t_{5}. Now if each $e_{12} \in E_{12}$ contains t_{4} or both t_{3}, t_{5} then we can assign $w\left(x_{2}\right)=w\left(t_{4}\right)=\frac{2}{5}, w\left(x_{1}\right)=w\left(t_{3}\right)=w\left(t_{5}\right)=\frac{1}{5}$ to get a fractional transversal of value $\frac{7}{5}$. Therefore we may assume (without loss of generality) that the set $E^{\prime}=\left\{e_{12} \in E_{12}:\left\{t_{4}, t_{5}\right\} \cap e_{12}=\emptyset\right\}$ is nonempty. For any $e_{12} \in E^{\prime}$, since $\left|e_{12} \cap e_{1}\right| \geq 2$ we know $t_{3} \in e_{12}$. We know each $b \in E_{2}$ contains t_{3} or t_{5}, and if $t_{5} \in b$ then $\left|e_{12} \cap b\right| \geq 2$ implies $t_{3} \in b$ also. Thus in this case t_{3} is in every element of $E_{1} \cup E_{2} \cup E_{12}$. Now if $E^{\prime \prime}=\left\{e_{12} \in E_{12}:\left\{t_{3}, t_{4}\right\} \cap e_{12}=\emptyset\right\}=\emptyset$ then the weight function $w\left(x_{1}\right)=w\left(x_{2}\right)=w\left(t_{3}\right)=w\left(t_{4}\right)=\frac{1}{3}$ is a fractional transversal of value $\frac{4}{3}$. If $E^{\prime \prime} \neq \emptyset$ then as above t_{5} is also in every element of $E_{1} \cup E_{2} \cup E_{12}$. Then $w\left(x_{1}\right)=w\left(x_{2}\right)=\frac{2}{5}, w\left(t_{3}\right)=w\left(t_{4}\right)=w\left(t_{5}\right)=\frac{1}{5}$ is a fractional transversal of value $\frac{7}{5}$.

Now we may assume that any pair of edges $e_{1} \in E_{1}, e_{2} \in E_{2}$ intersect on $A_{3} \cup A_{4} \cup A_{5}$ in a set of at most two elements. Fix $e_{1} \in E_{1}, e_{2} \in E_{2}$. In fact - since the triple intersections $e_{1} \cap e_{2} \cap e, e_{1} \cap e_{2} \cap f$ exist - e_{1} and e_{2} intersect on $A_{3} \cup A_{4} \cup A_{5}$ in a two-element set $T=\left\{t_{3}, t_{4}\right\}$, say $t_{3}=y_{3}, t_{4}=z_{4}$. Since e_{1}, e_{2} do not intersect on A_{5}, w.l.o.g. $y_{5} \notin e_{1}, z_{5} \notin e_{2}$. The triple intersections $e_{1} \cap e \cap b, e_{2} \cap f \cap a$ imply $t_{3} \in b, t_{4} \in a$ for $a \in E_{1}, b \in E_{2}$. Since each intersection $a \cap b$ for $a \in E_{1}, b \in E_{2}$ has at least two elements, one of t_{3}, t_{4}, say t_{3} is in all edges of $E_{1} \cup E_{2}$. Moreover each $e_{12} \in E_{12}$ must intersect $\left\{t_{3}, t_{4}\right\}$ because of the triple intersection $e_{12} \cap e_{1} \cap e_{2}$. If t_{4} is also in all edges of $E_{1} \cup E_{2}$ then $\left\{x_{1}, x_{2}, t_{3}, t_{4}\right\}$ intersects every edge of $E_{1} \cup E_{2} \cup E_{12}$ in at least three elements, implying a fractional transversal of value $\frac{4}{3}$. Otherwise $E^{\prime}=\left\{b \in E_{2}: t_{4} \notin b\right\} \neq \emptyset$. In this case, since $|b \cap f| \geq 2$ we see that each $b \in E^{\prime}$ contains z_{5}. Looking at $b \cap a$ for $a \in E_{1}, b \in E^{\prime}$ tells us that $z_{5} \in a$ as well. Finally $b \cap e_{1} \cap e_{12}$
shows us that if $t_{3} \notin e_{12}$ for some $e_{12} \in E_{12}$ then $z_{5} \in e_{12}$ (and we know that $t_{3} \notin e_{12}$ implies $t_{4} \in e_{12}$). Summing up, we find that for each $a \in E_{1}, x_{1}, t_{3}, t_{4}, z_{5} \in a$, and for each $b \in E_{2}, x_{2}, t_{3} \in b$ and $\left(t_{4} \cup z_{5}\right) \cap b$ is nonempty. For each $e_{12} \in E_{12}$, $x_{1}, x_{2} \in e_{12}$ and either $t_{3} \in e_{12}$ or $\left\{t_{4}, z_{5}\right\} \subset e_{12}$. Now the weighting $w\left(t_{3}\right)=w\left(x_{2}\right)=\frac{2}{5}, w\left(x_{1}\right)=w\left(t_{4}\right)=w\left(z_{5}\right)=\frac{1}{5}$ gives the required fractional transversal.
Case (ii): Any two distinct $e, f \in \mathscr{H}$ intersect in at least three vertices. Assume first that there is a pair $e, f \in \mathscr{H}$ intersecting in three elements, $e=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, f=\left\{x_{1}, x_{2}, x_{3}, y_{4}, y_{5}\right\}$. Observe then that every edge must intersect $\left\{x_{1}, x_{2}, x_{3}\right\}$ in at least two elements. Again, if the set of edges $E_{i j}$ that intersect $\left\{x_{1}, x_{2}, x_{3}\right\}$ in $\left\{x_{i}, x_{j}\right\}$ is empty for some pair $i, j \in$ [3] then, for $k=[3] \backslash\{i, j\}$, all edges of \mathscr{H} contain x_{k} and $\tau^{*}(\mathscr{H})=1$. Thus these sets $E_{i j}$ are non-empty. Selecting $e_{12} \in E_{12}, e_{13} \in E_{13}, e_{23} \in E_{23}$, the assumptions on the intersection sizes imply that for each of the three pairs of indices $e_{i j} \cap\left(A_{4} \cup A_{5}\right)$ is the same pair, say $\left\{x_{4}, y_{5}\right\}$. Any edge e_{123} that contains all of $\left\{x_{1}, x_{2}, x_{3}\right\}$ must also intersect $\left\{x_{4}, y_{5}\right\}$, otherwise $\left|e_{123} \cap e_{12}\right| \leq 2$. Now assigning $w\left(x_{1}\right)=w\left(x_{2}\right)=w\left(x_{3}\right)=\frac{1}{5}, w\left(x_{4}\right)=w\left(y_{5}\right)=\frac{2}{5}$ we have a fractional transversal of \mathscr{H} with value $\frac{7}{5}$.

Finally, if each pair of edges of \mathscr{H} intersect in at least four elements, we can assign weight $\frac{1}{4}$ to vertices of any fixed edge. This gives a fractional transversal of \mathscr{H} with value $\frac{5}{4}<\frac{7}{5}$.

Theorem 2. $f(n, 6) \geq \frac{2 n}{3}$ and this is sharp if n is divisible by 6 .
Proof. To show that $f(n, 6)$ is not larger than claimed value if n is divisible by 6 , let $n=6 k$ and partition [n] into six k-element sets, X_{i}. We define six subsets $I_{j} \subset[6]$ as

$$
\begin{array}{lll}
I_{1}=\{3,4,5,6\}, & I_{2}=\{1,4,5,6\}, & I_{3}=\{2,4,5,6\}, \\
I_{4}=\{1,2,3,6\}, & I_{5}=\{1,2,3,4\}, & I_{6}=\{1,2,3,5\}
\end{array}
$$

Observe that every triple of [6] is covered by at least one I_{j}. Thus every triple $T \subset[n]$ is covered by at least one of the six sets $A_{j}=\left\{\cup_{i \in I_{j}} X_{i}\right\}$. Color T with color j where j is the smallest index such that $T \subset A_{j}$. Clearly each triple of [n] is colored with one of six colors and there is no monochromatic component of size larger than $4 k=\frac{2 n}{3}$.

As in the proof of Theorem 1,f(n,6) $\geq \frac{2 n}{3}$ follows from Lemma 1 if we show that $\tau^{*}(\mathscr{H}) \leq \frac{3}{2}$ holds for every 6 -partite 3 -wise intersecting hypergraph \mathscr{H}. To see that, let A_{i} denote the vertex classes of \mathscr{H}. Note that if there are two edges $e, f \in E(\mathscr{H})$ with $|e \cap f|=1$ then all edges of \mathscr{H} intersect and $\tau^{*}(\mathscr{H})=1$ follows. Thus we may assume that any two edges of \mathscr{H} intersect in at least two vertices. We basically follow the argument of the proof of Theorem 1.
Case (i): There exist $e, f \in E(\mathscr{H})$ with $|e \cap f|=2$. Set $e \cap f=\left\{x_{1}, x_{2}\right\}$ and define

$$
\begin{aligned}
& E_{12}=\left\{h \in E(\mathscr{H}): x_{1}, x_{2} \in h\right\}, \\
& E_{1}=\left\{h \in E(\mathscr{H}): x_{1} \in h, x_{2} \notin h\right\}, \quad E_{2}=\left\{h \in E(\mathscr{H}): x_{2} \in h, x_{1} \notin h\right\} .
\end{aligned}
$$

Then as before $\mathscr{H}=E_{1} \cup E_{2} \cup E_{12}$.
Let $E_{1}=\left\{a_{1}, a_{2}, \ldots a_{s}\right\}, E_{2}=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. We may assume that E_{1}, E_{2} are both nonempty, otherwise - as before all edges of \mathscr{H} intersect and $\tau^{*}(\mathscr{H})=1$. Notice that $a_{i} \cap b_{j} \subset \cup_{k=3}^{6} A_{k}$ for any $a_{i} \in E_{1}, b_{j} \in E_{2}$.

If all edges of $E_{1} \cup E_{2}$ have a common vertex v then assigning weight $\frac{1}{2}$ to the vertices in $\left\{x_{1}, x_{2}, v\right\}$ we have a fractional transversal of value $\frac{3}{2}$ and the proof is finished. Thus we may suppose that

$$
\begin{equation*}
\bigcap_{i \in[s]} a_{i} \cap \bigcap_{j \in[t]} b_{j}=\emptyset \tag{1}
\end{equation*}
$$

Lemma 2. Suppose there exist distinct edges $a_{1}, a_{2} \in E_{1}, b_{1}, b_{2} \in E_{2}$ such that $a_{1} \cap a_{2} \cap b_{1} \cap b_{2}=\emptyset$. Then $\tau^{*}(\mathscr{H}) \leq \frac{3}{2}$.
Proof. Observe that the four triple intersections among these edges are all disjoint (and nonempty). Let U denote the union over all four triple intersections, so $|U| \geq 4$. Note that if $x, x^{\prime} \in U$ then one of (in fact, at least two of) $a_{1}, a_{2}, b_{1}, b_{2}$ contain both x and x^{\prime}. Thus we cannot have distinct x, x^{\prime} in the same partite class A_{i}. Therefore $U=\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$ for some $x_{i} \in A_{i}$ for $i=3,4,5,6$, and we may assume without loss of generality that

$$
\begin{align*}
& x_{3} \in\left(a_{1} \cap b_{1} \cap b_{2}\right) \backslash a_{2}, x_{4} \in\left(a_{2} \cap b_{1} \cap b_{2}\right) \backslash a_{1} \\
& x_{5} \in\left(a_{1} \cap a_{2} \cap b_{1}\right) \backslash b_{2}, x_{6} \in\left(a_{1} \cap a_{2} \cap b_{2}\right) \backslash b_{1} \tag{2}
\end{align*}
$$

We observe that - apart from the exceptional case when $a_{i} \cap U=\left\{x_{3}, x_{4}\right\}$ - each edge $a_{i} \in E_{1}$ intersects U in at least three vertices. Indeed, if $a_{i} \cap U \subseteq\left\{x_{3}, x_{5}\right\}$ then the triple intersection $a_{i} \cap a_{2} \cap b_{2}$ is missing. If $a_{i} \cap U \subseteq\left\{x_{4}, x_{6}\right\}$ then $a_{i} \cap a_{1} \cap b_{1}$ is missing. Similarly, $a_{i} \cap U \subseteq\left\{x_{3}, x_{6}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{5}, x_{6}\right\}$ in turn imply the missing intersections $a_{i} \cap a_{2} \cap b_{1}, a_{i} \cap a_{1} \cap b_{2}, a_{i} \cap b_{1} \cap b_{2}$. (The argument in the exceptional case would require missing $a_{i} \cap a_{1} \cap a_{2}$ but that intersection is present at x_{1}.)

Similarly, apart from the exceptional case when $b_{j} \cap U=\left\{x_{5}, x_{6}\right\}$, each edge of $b_{j} \in E_{2}$ intersects U in at least three vertices. Finally, observe that any $e_{12} \in E_{12}$ intersects U in at least two vertices. Indeed, $e_{12} \cap U \subset\left\{x_{l}\right\}$ for some $l \in\{3,4,5,6\}$
would contradict the existence of the triple intersection $e_{12} \cap a_{i} \cap b_{j}$ where $i, j \in[2]$ such that one of a_{i}, b_{j} does not contain x_{l}. Consider $e_{12} \in E_{12}$ exceptional if $e_{12} \cap U=\left\{x_{3}, x_{4}\right\}$ or $e_{12} \cap U=\left\{x_{5}, x_{6}\right\}$.

Based on the above observations we can define the required fractional transversal as follows. If no edge in $E_{1} \cup E_{2}$ is exceptional, $w\left(x_{i}\right)=\frac{1}{4}$ for $i=1,2, \ldots 6$ is suitable. If there exists an exceptional edge in $E_{1} \cup E_{2}$, say a_{i}, then no $b_{j} \in E_{2}$ can be exceptional (otherwise $a_{i} \cap b_{j}$ cannot exist) - in fact the following stronger statement is true for any b_{j} : if $\left\{x_{5}, x_{6}\right\} \subset b_{j}$ then $U \subset b_{j}$. Indeed, $U \cap b_{j}=\left\{x_{4}, x_{5}, x_{6}\right\}\left(U \cap b_{j}=\left\{x_{3}, x_{5}, x_{6}\right\}\right)$ contradicts the existence of $a_{i} \cap b_{j} \cap a_{1}\left(a_{i} \cap b_{j} \cap a_{2}\right)$. Moreover no $e_{12} \in E_{12}$ is exceptional with $e_{12} \cap U=\left\{x_{5}, x_{6}\right\}$ otherwise $e_{12} \cap a_{i} \cap b_{1}$ cannot exist. These properties ensure that $w\left(x_{1}\right)=w\left(x_{3}\right)=w\left(x_{4}\right)=\frac{1}{3}, w\left(x_{2}\right)=w\left(x_{5}\right)=w\left(x_{6}\right)=\frac{1}{6}$ is a suitable fractional transversal.

By Lemma 2, from now on we may suppose that

$$
a_{i} \cap a_{j} \cap b_{k} \cap b_{l} \neq \emptyset
$$

for every choice of the indices (if $i=j$ or $k=l$ the 3-wise intersecting property ensures it).
Because of (1) we can select a minimal nonintersecting subfamily of $E_{1} \cup E_{2}$, that is $S \subseteq[s], T \subseteq$ [t] such that $\bigcap_{i \in S} a_{i} \cap \bigcap_{j \in T} b_{j}=\emptyset$ but for any proper subset $S_{1} \cup T_{1} \subset S \cup T$

$$
\begin{equation*}
\bigcap_{i \in S_{1}} a_{i} \cap \bigcap_{j \in T_{1}} b_{j} \neq \emptyset \tag{3}
\end{equation*}
$$

Since $A=\cap_{i \in[s]} a_{i}, B=\cap_{j \in[t]} b_{j}$ are both nonempty ($x_{1} \in A, x_{2} \in B$), it follows that S, T are nonempty. Moreover $|S \cup T| \geq 4$ because \mathscr{H} is 3-wise intersecting. Set $u=|S \cup T|$. Then by choice of $S \cup T$, all ($u-1$)-wise intersections of elements of $S \cup T$ are disjoint and nonempty, so their union U has size at least u, and as in the proof of Lemma 2 no two vertices in U are in the same partite class A_{i}. Thus if $|S|,|T| \geq 2$ then $U \subset \cup_{k=3}^{6} A_{k}$, implying that $u=4$. But then the assumptions of Lemma 2 hold, so the proof is done in this case.

Thus we may assume that one of S, T has one element only, say $T=\{1\}$. In this case $x_{1} \in U$ and $x_{2} \notin U$, so $U \subset\left\{x_{1}\right\} \cup \cup_{k=3}^{6} A_{k}$, implying that $u=4$ or $u=5$. In both cases, without loss of generality we may select three vertices $X=\left\{x_{3}, x_{4}, x_{5}\right\}$ from U with $x_{i} \in A_{i}$ for $i=3,4,5$ as follows:

$$
\begin{equation*}
x_{3} \in\left(a_{1} \cap a_{2} \cap b_{1}\right) \backslash a_{3}, x_{4} \in\left(a_{1} \cap a_{3} \cap b_{1}\right) \backslash a_{2}, x_{5} \in\left(a_{2} \cap a_{3} \cap b_{1}\right) \backslash a_{1} . \tag{4}
\end{equation*}
$$

Lemma 3. Suppose there exists $a_{i} \in E_{1}$ such that $\left|a_{i} \cap X\right| \leq 1$. Then $\tau^{*}(\mathscr{H}) \leq \frac{3}{2}$.
Proof. Suppose without loss of generality that $a_{i} \cap\left\{x_{4}, x_{5}\right\}=\emptyset$. Then, for each $b_{j} \in E_{2}$, the (nonempty) quadruple intersection $a_{3} \cap a_{i} \cap b_{1} \cap b_{j}$ must be in A_{6}. This is possible only if all b_{j}-s intersect on A_{6}, say in a vertex $x_{6} \in a_{3} \cap a_{i} \cap B$. Because of (1) the set $K=\left\{k \in[s] \mid x_{6} \notin a_{k}\right\}$ is nonempty. For every $k \in K, j \in[t]$ the quadruple intersection $a_{k} \cap a_{i} \cap b_{1} \cap b_{j}$ contains x_{3}. This implies $x_{3} \in B \cap\left(\cap_{k \in K} a_{k}\right)$. Reversing the argument, $L=\left\{l \in[s] \mid x_{3} \notin a_{l}\right\}$ is nonempty implying that for every $l \in L, j \in[t]$ the quadruple intersection $a_{l} \cap a_{i} \cap b_{1} \cap b_{j}$ contains x_{6}, implying $x_{6} \in B \cap\left(\cap_{l \in L} a_{l}\right)$. Thus each edge in E_{1} contains x_{1} and at least one vertex of $\left\{x_{3}, x_{6}\right\}$. Every edge in E_{2} contains both x_{3}, x_{6} and every $e_{12} \in E_{12}$ contains x_{1} and also at least one vertex of $\left\{x_{3}, x_{6}\right\}$ because the triple intersection $e_{12} \cap a_{i} \cap b_{1}$ is nonempty. Therefore $w\left(x_{1}\right)=w\left(x_{3}\right)=w\left(x_{6}\right)=\frac{1}{2}$ is a required fractional transversal.

By Lemma 3 we may suppose from now on that every edge $a_{i} \in E_{1}$ meets X in at least two elements.
Claim: Either $X \subset B$ or $B \cap A_{6} \neq \emptyset$. Indeed, if an element of X, say $x_{3} \notin b_{i}$ for some $i \in[t]$ then the quadruple intersection $a_{1} \cap a_{2} \cap b_{i} \cap b_{m}$ is in A_{6} for all $m \in[t]$. This implies that $B \cap A_{6} \neq \emptyset$. The argument works similarly if x_{4} or x_{5} plays the role of x_{3} (considering $a_{1} \cap a_{3} \cap b_{i} \cap b_{m}$ or $a_{2} \cap a_{3} \cap b_{i} \cap b_{m}$), proving the claim.

We look at the two cases of the claim. If $X \subset B$ holds then $w\left(x_{1}\right)=\frac{1}{2}, w\left(x_{2}\right)=w\left(x_{3}\right)=w\left(x_{4}\right)=w\left(x_{5}\right)=\frac{1}{4}$ is a required fractional transversal. Indeed, each $a_{i} \in E_{1}$ contains x_{1} and at least two elements of X, each $b_{i} \in E_{2}$ contains x_{2} and all elements of X. Each $e_{12} \in E_{12}$ contains x_{1}, x_{2} and at least one element of X otherwise - considering the triple intersections $e_{12} \cap a_{i} \cap b_{j}-$ all a_{i}, b_{j} should intersect in A_{6}, contradicting (1). Thus we may assume that $X \subset B$ does not hold.

Select $x_{6} \in A_{6} \cap B$. By definition of S, at least one a_{j} with $j \in S$ does not contain x_{6}, say $x_{6} \notin a_{3}$. We show that $\left\{x_{4}, x_{5}\right\} \subset B$. Indeed, if $x_{4} \notin b_{j}\left(x_{5} \notin b_{j}\right)$ then the quadruple intersection $a_{1} \cap a_{3} \cap b_{1} \cap b_{j}\left(a_{2} \cap a_{3} \cap b_{1} \cap b_{j}\right)$ does not exist.

Therefore since $X \subset B$ does not hold, we know $x_{3} \notin b_{j}$ for some $j \in[t]$. Define $K=\left\{k \in[s] \mid x_{6} \notin a_{k}\right\}$ as before. We show that for each $k \in K,\left\{x_{4}, x_{5}\right\} \subset a_{k}$. Indeed, if $x_{4} \notin a_{k}\left(x_{5} \notin a_{k}\right)$ for some $k \in K$ then $a_{1} \cap a_{k} \cap b_{1} \cap b_{j}\left(a_{2} \cap a_{k} \cap b_{1} \cap b_{j}\right)$ does not exist.

Now we finish the proof by showing that $w\left(x_{1}\right)=\frac{1}{2}, w\left(x_{2}\right)=w\left(x_{4}\right)=w\left(x_{5}\right)=w\left(x_{6}\right)=\frac{1}{4}$ is a required fractional transversal. Notice that for every $a_{i} \in E_{1}$ either $x_{6} \in a_{i}$ or $i \in K$ and $\left\{x_{4}, x_{5}\right\} \subset a_{i}$. This property and that every a_{i} contains at least one of x_{4}, x_{5} ensures that the weight of a_{i} is at least one. The weighting is also good for every $b_{j} \in E_{2}$ since $\left\{x_{2}, x_{4}, x_{5}, x_{6}\right\} \subset B$. Finally, each $e_{12} \in E_{12}$ contains x_{1}, x_{2} and at least one vertex of $\left\{x_{4}, x_{5}, x_{6}\right\}$ because $e_{12} \cap a_{3} \cap b_{1} \neq \emptyset$. Thus the weighting is a required fractional transversal.
Case (ii): $|e \cap f| \geq 3$ for each $e, f \in E(\mathscr{H})$. In this case let us first suppose that there exist e and f such that $e \cap f=M$ where $|M|=3$. Then we define a fractional transversal by giving weight $\frac{1}{2}$ to each vertex in M. This is valid because every other edge g must intersect M in at least two vertices - otherwise either $|g \cap e| \leq 2$ or $|g \cap f| \leq 2$, contradicting the assumption
for Case (ii). Thus we have a fractional transversal of value $\frac{3}{2}$. Thus we may suppose that every pair of edges intersects in at least four vertices. Let e and f be an arbitrary pair and let $M \subseteq e \cap f$ be a set of size four. Define a fractional transversal by weighting each vertex of M with $\frac{1}{3}$. Now every other edge g intersects M in at least three vertices - otherwise either $|g \cap e| \leq 3$ or $|g \cap f| \leq 3$, contradicting our assumption. Now we get a fractional transversal of value $\frac{4}{3}<\frac{3}{2}$.

Acknowledgments

The first author's research was supported in part by OTKA Grant No. K68322. The second author's research was supported in part by NSERC.

References

[1] Z. Füredi, Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981) 155-162.
[2] Z. Füredi, A. Gyárfás, Covering t-element sets by partitions, European Journal of Combinatorics 12 (1991) 483-489.
[3] L. Gerencsér, A. Gyárfás, On Ramsey type problems, Annales Universitatis Scientiarum Eötvös, Budapest 10 (1967) 167-170.
[4] A. Gyárfás, Partition coverings and blocking sets in hypergraphs, Communications of the Computer and Automation Institute of the Hungarian Academy of Sciences 71 (1977) 62 pp. MR 58, 5392 (in Hungarian).

[^0]: * Corresponding author.

 E-mail addresses: gyarfas@sztaki.hu (A. Gyárfás), pehaxell@math.uwaterloo.ca (P. Haxell).

