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a b s t r a c t

For a k-linked graph G and a vector ES of 2k distinct vertices of G, an ES-linkage is a set of k
vertex-disjoint paths joining particular vertices of ES. Let T denote theminimum order of an
ES-linkage in G. A graph G is said to be pan-k-linked if it is k-linked and for all vectors ES of 2k
distinct vertices of G, there exists an ES-linkage of order t for all t such that T ≤ t ≤ |V (G)|.
We first show that if k ≥ 1 and G is a graph on n vertices with n ≥ 5k− 1 and δ(G) ≥ n+k

2 ,
then any nonspanning path system consisting of k paths, one of which has order four or
greater, is extendable by one vertex.We then use this to show that for k ≥ 2 and n ≥ 5k−1,
a graph on n vertices satisfying δ(G) ≥ n+2k−1

2 is pan-k-linked. In both cases, the minimum
degree result is shown to be best possible.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many well-known concepts in graph theory deal with the existence of certain structures (i.e. cycles and paths) of all
possible orders in a particular graph. As an example, a graph G of order n is panconnected if for each pair of distinct vertices
u and v of G, there exists a [u, v]-path of order l for each l satisfying dist(u, v) ≤ l ≤ n − 1. Hence, a panconnected graph
contains paths of all possible orders between pairs of distinct vertices. Along the same lines, a graph G on n vertices is
pancyclic if it contains a cycle of length l for each 3 ≤ l ≤ n. That is, it contains cycles of all possible orders. In [1], Brandt
defines a generalization of pancyclic graphs, namely a weakly pancyclic graph, which contains cycles of every length from
the girth to the circumference.
In studying these and similar properties, much attention has been placed on finding minimum degree conditions which

imply that a graph has these properties. Williamson provided a minimum degree condition for panconnectedness:

Theorem 1.1 ([2]). If G is a graph on n ≥ 4 vertices with δ(G) ≥ n+2
2 , then G is panconnected.

For weakly pancyclic graphs, Brandt, Faudree, and Goddard showed the following:

Theorem 1.2 ([3]). Every nonbipartite graph with δ(G) ≥ n+2
3 is weakly pancyclic and has girth 3 or 4.

In this paper, we provide a minimum degree condition for a property similar to panconnected and pancyclic. However,
instead of looking for paths or cycles of all orders, we are looking for particular path systems of all possible orders. Our goal
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will be to show that when a graph has a particular minimum degree, we can control the number of vertices in these path
systems.
Before continuing further, though, we now list some necessary assumptions, definitions, and notation. Unless noted

otherwise, G will denote a simple, loopless graph with |V (G)| = n. The order of a graph is the number of vertices in the
graph. The order of a graph Gwill be denoted by |V (G)| or just |G|. The complete graph on n vertices will be denoted Kn, and
the complement of a graph G will be denoted G. A path is an alternating sequence of vertices and edges, beginning with a
vertex and ending with a vertex, such that each edge joins the vertices immediately before and after it in the sequence and
no edges or vertices are repeated in the sequence. Note in particular that a path contains only the edges in the alternating
sequence and no other edges. Consequently, as a subgraph, a path is not necessarily an induced subgraph. The length of a
path is the number of edges in the path. A path between x and y in G which includes x and y will be denoted [x, y]G. If we
exclude x and y, we will use (x, y)G. We will use σ2(G) to denote the minimum sum of the degrees of any two nonadjacent
vertices of G. Recall that an independent set is a set of pairwise nonadjacent vertices. The independence number of G, which
is the maximum size of an independent set, will be denoted α(G). Two edges are independent if they share no endpoints.
For two (not necessarily disjoint) subgraphs A, B of G, let d(A, B) = |{uv ∈ E(G) : u ∈ V (A), v ∈ V (B)}|. If A = {u},

we will use d(u, B). We will use δ(G) to indicate the minimum degree of a vertex in G and for two subgraphs A, B of G, let
δ(A, B) = minu∈A d(u, B). Let E(A, B) = {uv ∈ E(G)|u ∈ V (A), v ∈ V (B)}. The neighborhood of a vertex x in the set of
vertices S will be given by N(x, S). For two graphs G1 and G2, the union of G1 and G2, denoted by G1 ∪ G2, is the graph with
vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The join of G1 and G2, denoted by G1+G2, is the graph formed by taking
G1∪G2 and joining each vertex of G1 to each vertex of G2. For a connected subgraph H of G and distinct vertices x, y ∈ V (H),
the distance between x and y in H , which is the length of the shortest path between x and y using only the edges in H , will
be denoted distH(x, y). We will use dist(x, y) to indicate this distance when H = G. The expression G − H will be used to
denote the subgraph induced by the vertex set V (G)− V (H). Additionally, a set containing k elements will be referred to as
a k-set. The integers from one to kwill be denoted [k]. See [4] for other terms or notation not defined here.
Now, we will formally define what we mean by a path system.

Definition 1.3. A family of vertex-disjoint pathsP = {P1, P2, . . . , Pk} is a path system ofG. Wewill denote the set of vertices
of P by V (P ).

It is important to note that the paths in a path system are paths as defined above where all internal path vertices have
exactly degree two and end-vertices of paths have exactly degree one.
Path systems and k-connectedness are related concepts, and Menger’s Theorem [5] provides a specific relationship

between the two:

Theorem 1.4. A graph G is k-connected if and only if for any pair (A, B) of disjoint k-sets of V (G), there exists a path system
P = {P1, P2, . . . Pk} such that for all i ∈ [k], Pi is a path joining some vertex of A to some vertex of B.

Note that the paths of the path system may join any vertex of A to any vertex of B, and note that the definition of path
system assures that paths are vertex disjoint. As a stronger connectivity property, we may require that each path of a path
system joins specific vertices of A and B. This idea gives us the following two definitions:

Definition 1.5. Let ES = 〈a1, a2, . . . , ak, b1, b2, . . . bk〉 be a vector of 2k distinct vertices of G. We say that a path system
P = {P1, P2, . . . , Pk} is an ES-linkage if for all i, Pi is an [ai, bi]-path.

Definition 1.6. A graph G is said to be k-linked if there is an ES-linkage for every vector ES of 2k distinct vertices of G.

There are numerous papers on k-linked graphs. Many of these deal with the minimum connectivity required to imply
that a graph is k-linked. See [6–8] for some of these results. Recently, Kawarabayashi et al. [9] and Gould and Whalen [10]
independently proved useful Ore-type degree conditions for a graph to be k-linked. The theorem below is by Gould and
Whalen:

Theorem 1.7 ([10]). If G is a graph on n ≥ 4k vertices with σ2(G) ≥ n+2k−3, then G is k-linked. Further, this bound on σ2(G)
is best possible.

Note that this result implies a minimum degree condition (δ(G) ≥ n+2k−3
2 ) for a graph to be k-linked. In this paper, we

will concentrate on the following property:

Definition 1.8. A graph G is said to be pan-k-linked if it is k-linked and for all vectors ES of 2k distinct vertices of G, there
exists an ES-linkage of order t for all t such that T ≤ t ≤ |V (G)|, where T denotes the minimum order of an ES-linkage in G.

We prove a sharp minimum degree bound for a graph to be pan-k-linked. Our approach is to prove that the minimum
degree condition allows us to extend any ES-linkage by one vertex at a time. This leads to the concept of 1-extendable.

Definition 1.9. A path system P is 1-extendable if there exists a path system P ′ which has the same endpoints as P and
|P ′| = |P | + 1.
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Fig. 1. Graph with a 1-extendable ES-linkage.

An example of a 1-extendable path system is given in Fig. 1. The actual edges of the path system are in bold. Note that
this path system is an ES-linkage for S = 〈u1, u2, v1, v2〉. The order of this ES-linkage is seven, and the path system contains
five edges. As will often be the case, the path system is not an induced subgraph of the larger graph. We can 1-extend this
ES-linkage by replacing the edge xz of the [u1, v1]-path with the edges xy and yz.
In [11], Hendry proves results which focus on a single path and a stronger variation of 1-extendable. One example is the

following minimum degree result:

Theorem 1.10 ([11]). If G is a graph of order n ≥ 4 with δ(G) ≥ n+2
2 , then any nonspanning path in G is 1-extendable in such

a way that all of the vertices of the original path are in the extended path.

In [10], Gould and Whalen examine degree conditions required to extend a path system so that it spans G. In [12], they
examine themore general problem of finding a spanning subgraph in Gwhich is isomorphic to a subdivision of amultigraph
H . In the case where H is k independent edges, this is the same as finding a spanning path system containing k paths. We
now present a useful proposition from [12]:

Proposition 1.11 ([12]). Let P be an ES-linkage. Let R ⊆ V (G−P ) and A = V (P )∪ R. If δ(R, A) > α(P )+ |R| − 1, then there
exists an ES-linkage P ′ where V (P ′) = V (P ) ∪ R.

Proposition 1.11 is an important result as it will be used to place vertices into an existing path system without having
to explicitly find the edges needed to incorporate them into the path system. When we use Proposition 1.11 to find a new
path system which incorporates a set of vertices R, we will say that we have inserted R into the path system.
An important and useful fact about the independence number of a path system is the following, the proof of which is

straightforward:

Fact 1.12. If P = {P1, P2, . . . Pk} is a path system with |V (P )| = p, then

α(P ) =
k∑
i=1

⌈
|Pi|
2

⌉
≤

k∑
i=1

|Pi| + 1
2
=
p+ k
2

.

Further, there is equality if, and only if, every Pi has odd order. In this case, there is a unique maximum independent set which
contains the end-vertices of the paths.

Note that the independence number in Fact 1.12 is calculated only with respect to the edges and vertices which make up
the paths in the path system. This is consistent with the definition of path system presented earlier. Due to this, Fact 1.12
follows by a simple parity argument. In addition to Fact 1.12, we will also use the following lemma:

Lemma 1.13. Let F be a graph and let A and B be sets of vertices such that V (F) = A∪ B, A is a set of independent vertices of F ,
and |B| ≥ |A|. If

δ(B, F) ≥ |B| + 1, (1.1)

then there exist three mutually adjacent vertices u, u′, v such that u, u′ ∈ B and v ∈ A.

Proof. We will proceed by induction on the size of A. Assume that |B| ≥ |A|. Note that any vertex b in B can be adjacent to
at most |B|−1 other vertices in B, and so Inequality (1.1) implies that bmust have at least two neighbors in A. Thus, |A| ≥ 2.
Further, it is straightforward to verify that the lemma is true if |A| = 2. Hence, suppose that the lemma is true for all sets A
of size bigger than or equal to two and smaller than k. Now, we will examine what happens when |A| = k.
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Let u ∈ V (B), Au = N(u, A), and Bu = N(u, B). Also, let A′ = A − Au, B′ = Bu, and F ′ be the subgraph of F on A′ ∪ B′.
Observe that Inequality (1.1) ensures Au ≥ 2, so |A′| < k. If E(Au, Bu) 6= ∅, then we are done. So, suppose this set is empty.
Then for any u′ ∈ B′,

d(u′, F ′) = d(u′, F)− d(u′, B− B′)
≥ |B| + 1− (|B| − |B′|)
= |B′| + 1.

Thus, if we can show that |B′| ≥ |A′|, then we can apply the induction hypothesis to F ′ = A′ ∪ B′. Note that

d(u, F) = |Au| + |Bu| ≥ |B| + 1 > |A|.

Using this, we have

|B′| = |Bu| > |A| − |Au| = |A′|.

Therefore, the result follows by induction. �

Lemma 1.13 will be used to find a way to 1-extend path systems which contain relatively few vertices.

2. Results

Wewill first show that for any positive integer k and any graph containing n ≥ 5k− 1 vertices, every nonspanning path
system P = {P1, P2, . . . , Pk} in G which contains a path of order four or more is 1-extendable if δ(G) ≥ n+k

2 . To show that
the minimum degree condition is best possible, we use an example shown in [12]. Consider the split graph G = Kb + Ka
where a = n−k+1

2 and b = n+k−1
2 . So, G has n vertices with δ(G) = n+k−1

2 . Suppose that the endpoints of each path of P are
in Kb. Then for every P ∈ P , |P ∩ Ka| ≤ |P ∩ Kb| − 1. Thus, |P ∩ Ka| ≤ |P ∩ Kb| − k. However, ifP covered all of the vertices
of Kb, then

|P ∩ Ka| ≤
n+ k− 1
2

− k =
n− k− 1
2

< |Ka|.

So, P cannot cover all of the vertices of G. Thus, at some point, the path system is not 1-extendable.

Theorem 2.1. Let k ≥ 1 and n ≥ 5k − 1. Suppose P = {P1, P2, . . . , Pk} is a nonspanning path system in G which contains at
least one path of order four or greater. If δ(G) ≥ n+k

2 , thenP is 1-extendable. Furthermore, the minimum degree condition is best
possible.

Proof. LetP = {P1, P2, . . . , Pk} be a nonspanning path system in Gwhich contains at least one path of order four or greater.
Let Q = G− P , p = |P |, and q = |Q |. We prove the result by contradiction. Thus, assume that P is not 1-extendable.

Claim 2.2. For allw ∈ V (Q ), N(w,P ) is an independent set of P .

Proof. Suppose that w ∈ Q is adjacent to two adjacent vertices x and y on some Pi. Then, we can extend our path system
by using the path xwywhich contradicts our choice of P . �

By Fact 1.12 and Claim 2.2,

∆(Q , P) ≤ α(P ) ≤
p+ k
2

, (2.1)

so for allw ∈ V (Q ),

d(w,Q ) ≥
n+ k
2
− α(P ) ≥

n+ k
2
−

(
p+ k
2

)
≥
q
2
. (2.2)

Claim 2.3. If w ∈ Q is adjacent to x, y ∈ V (Pi) where (x, y)Pi has no neighbors in Q , then distPi(x, y) = 2.

Proof. Let R be the vertices of (x, y)Pi , and let r = |R|. Note that r 6= 0 because otherwise P is 1-extendable. Assume that
r 6= 1. Suppose first that 2 ≤ r ≤ q. Remove R from Pi and use the edges xw and wy to complete the path Pi. This gives a
new path system P ′ with |P ′| = |P | − r + 1 = p− r + 1. Now, we need to show that we can insert the vertices of R into
P ′. In order to use Proposition 1.11 to do this, we must show that

δ(R, R ∪ V (P ′)) > α(P ′)+ |R| − 1.
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Recall that by assumption R has no edges to the original set Q = G − P and in particular R has no edges to the vertex w.
Hence,

δ(R, R ∪ V (P ′)) = δ(R, R ∪ V (P)) ≥
n+ k
2
=
p+ q+ k
2

.

Using this inequality and the fact that r ≤ q, we have

δ(R, R ∪ V (P ′)) ≥
p+ q+ k
2

≥
p+ r + k
2

=
p− r + k+ 1

2
+ r −

1
2

>
(p− r + 1)+ k

2
+ r − 1

≥ α(P ′)+ |R| − 1.

By Proposition 1.11, we may insert R into the path system P ′ to get a path system P ′′ where |P ′′| = |P | + 1. Thus, P is
1-extendable if 2 ≤ r ≤ q. Therefore, we must have r ≥ q+ 1. Then, forw ∈ Q ,

d(w,P ) ≥
n+ k
2
− d(w,Q )

≥
n+ k
2
− (q− 1)

=
p− q+ k+ 2

2

>
p− r + k+ 2

2
> α(P − R).

Sincew has no neighbors in R,wmust be adjacent to two consecutive vertices inP − R. However, this cannot occur or else
we could 1-extend P . Therefore, r = 1 and distPi(x, y) = 2. �

Claim 2.4. Let w ∈ V (Q ) and {x, y, z} ⊆ N(w, Pi) for some path Pi of P , appearing in that order in Pi. Then distPi(x, z) ≥ 5.

Proof. Claim 2.2 forces distPi(x, z) ≥ 4, so assume we have equality. That is, assume that P has a path Pi containing a
sub-path xuyvz wherewx, wy, wz ∈ E(G). Claim 2.2 shows that uw 6∈ E(G). If d(u,Q ) = 0, then

d(u,P − u) ≥
n+ k
2

>
p− 1+ k+ 1

2
≥ α(P − u).

Thus, u could be inserted somewhere else in P − u, and we could use the edges xw and wy to get a path system of order
|P | + 1.
Therefore, d(u,Q ) ≥ 1 and so let u′ be a vertex in N(u,Q ). If N(w,Q ) ∩ N(u′,Q ) = ∅, then Inequality (2.2) implies that

wu′ ∈ E(G) and d(w,Q ) = d(u′,Q ) = q
2 . This is because there are only q− 2 vertices in Q − {u

′, w}, so if u′ andw have no
neighbors in common, then in order to exceed the lower bound in Inequality (2.2), u′ andwmust be adjacent and bothmust
be adjacent to exactly q−22 other vertices in Q . Yet, if this is the case, then d(w,P ) = d(u

′,P ) ≥ p+k
2 ≥ α(P ). However,

Claim 2.2 implies that d(u′,P ) = d(w,P ) = α(P ) and N(w,P ) = N(u′,P ). However, this cannot occur since uu′ ∈ E(G)
butwu 6∈ E(G).
Hence, N(w,Q ) ∩ N(u′,Q ) 6= ∅, so there must be a path ww′u′ in Q , and then replacing the sub-path xuyvz of Pi with

xuu′w′wz yields a path system of order |P | + 1. �

Claim 2.5. Let w ∈ V (Q ) and {x, y} ⊆ N(w, Pi) for some path Pi of P . Then distPi(x, y) 6= 3.

Proof. Suppose P has a path Pi containing a sub-path xuvy such that, for some w ∈ V (Q ), wx, wy ∈ E(G). Note that
N ({u, v}, w ∪ N(w,Q )) = ∅, or a path system of order |P | + 1 would exist. Now, by Inequality (2.2), d(w,Q ) ≥ q

2 . So,
since u and v are not adjacent tow and have no neighbors in N(w,Q ), d(u,Q ), d(v,Q ) ≤ q

2 − 1 which, with the minimum
degree condition, implies that d(u,P ), d(v,P ) ≥ p+k+2

2 . Now, remove u and v from Pi and use the edges wx and wy to
complete the path. This gives a new path system P ′ with |P ′| = |P | − 2 + 1 = p − 1. We need to insert u and v into P ′.
In order to use Proposition 1.11 to do this, we need to show that

δ({u, v}, {u, v} ∪ V (P ′)) ≥ α(P ′)+ 2− 1 = α(P ′)+ 1.
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Since u and v are adjacent tow, we get the following chain of inequalities:

δ({u, v}, {u, v} ∪ V (P ′)) = δ({u, v}, {u, v} ∪ V (P))

≥
p+ k+ 2
2

=
(p− 1)+ k+ 3

2

>
(p− 1)+ k

2
+ 1

≥ α(P ′)+ 1.

Consequently, Proposition 1.11 shows that u and v can be inserted inP ′ to get a path systemP ′′ where |P ′′| = |P | + 1.
This contradicts our assumption that P is not 1-extendable. �

Claim 2.6.

∆(Q ,P ) ≤
p+ k− 2
2

.

Proof. Assume to the contrary that∆(Q ,P ) > p+k−2
2 . By Inequality (2.1),

p+ k− 1
2

≤ ∆(Q ,P ) ≤
p+ k
2

. (2.3)

Letw be a vertex of Q with d(w,P ) = ∆(Q ,P ). By Fact 1.12 and Inequality (2.3),w is adjacent to amaximum independent
set of P and P has at most one path of even order.
Assume without loss of generality that P1 is a path of largest order in P . Note that |P1| ≥ 4. If |P1| ≥ 5, Claims 2.4 and

2.5 imply that w cannot be adjacent to a maximum independent set of P1. Thus, |P1| = 4, the k − 1 other paths of P must
have order three, and |V (P )| = 3k+ 1.
Let P1 = a1xyb1. Since d(w,P ) = α(P ), w is adjacent to one of the vertices a1 and b1. Without loss of generality,

assume a1w ∈ E(G). By Claim 2.5, b1w 6∈ E(G), so wy ∈ E(G) in order to ensure that w is adjacent to a maximum
independent set of P . Note that b1x 6∈ E(G) since otherwise the path b1xywa1 would 1-extend the path system. Thus,
d(b1,P ) ≤ |P | − 2 = 3k− 1. Since n ≥ 5k− 1,

d(b1,Q ) ≥
n+ k
2
− (3k− 1) ≥

1
2
.

Thus, b1 has a neighbor in Q . However, b1w 6∈ E(G) implies that there exists a vertex w′ in Q , with w′ 6= w such that
b1w′ ∈ E(G).
Since d(w,P ) = α(P ) = 2k, then

d(w,Q ) ≥
n+ k
2
− 2k =

p+ q+ k
2

− 2k =
q+ 1
2

.

Note that d(w′,Q ) ≥ q+1
2 as well since d(w

′,P ) ≤ d(w,P ). Thus, w and w′ have a common neighbor w′′ in Q , and
the path b1w′w′′wa1 can be used to 1-extend the path system. However, this contradicts the assumption that P is not
1-extendable. Hence,∆(Q ,P ) ≤ p+k−2

2 . �

With these previous claims, we can now gain greater freedom in 1-extending path systems by showing that Q is
panconnected.

Claim 2.7. The subgraph Q has at least four vertices, δ(Q ,Q ) ≥ q+2
2 , and Q is panconnected.

Proof. Since δ(G) ≥ n+k
2 , Claim 2.6 implies that

δ(Q ,Q ) ≥
n+ k
2
−∆(Q ,P ) ≥

q+ 2
2

. (2.4)

Now, q 6= 0 since P is nonspanning. Also, since δ(Q ,Q ) ≤ q− 1, from Inequality (2.4) we have

q− 1 ≥
q+ 2
2

.

This inequality implies that q ≥ 4. Thus, by Theorem 1.1, Q is panconnected. �
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This claim implies the following:

Claim 2.8. If there exist two independent edges uu′ and vv′ such that u′, v′ ∈ V (Q ) and for some path Pi of P , u, v ∈ V (Pi),
then distPi(u, v) ≤ 2.

Proof. Let R = (u, v)Pi and r = |R|. Assume that r ≥ 2 and that r is minimal under these conditions. That is, assume that
there does not exist any other edge independent of uu′ and vv′ with one end-vertex in Q and one end-vertex in R since
otherwise r would not be minimal.
If r ≤ q− 1, then by Claim 2.7, there is a [u′, v′]-path P ′ in Q of order r + 1. Hence, replacing Pi by

(Pi − R) ∪ uu′ ∪ P ′ ∪ v′v,

we get a path system of order |P | + 1.
Hence, assume r ≥ q. Since q ≥ 4 by Claim 2.7, we may find a vertexw ∈ V (Q )− u′ − v′. By the minimality of r , we see

that d(w, R) = 0. Thus, since r ≥ q,

d(w,P − R) = d(w,P )
= d(w)− d(w,Q )

≥
n+ k
2
− q+ 1

=
p− q+ k+ 2

2

≥
p− r + k+ 2

2
> α(P − R),

which cannot occur by Claim 2.2. �

Claim 2.9. For all 1 ≤ i ≤ k, |N(Q , Pi)| ≤ 3.

Proof. Suppose |N(Q , Pi)| ≥ 4 for some 1 ≤ i ≤ k. Let v1, v2, v3, v4 ∈ N(Q , Pi). Assume that the vi’s are chosen tominimize
distPi(v1, v4). Let

Pi = S1v1S2v2S3v3S4v4S5

where each Si is a possibly empty sub-path of Pi. By the minimality of distPi(v1, v4), Q has no neighbors on S2, S3, or S4. In
addition, note that N(v1,Q ) = N(v4,Q ) = {w} for somew ∈ V (Q ) by Claim 2.8.
Suppose v2w ∈ E(G), then |S2| = 1 by Claim 2.3. If v3w ∈ E(G), then Claim 2.3 implies that |S3| = 1. However, then

w and v1, v2, v3 violate Claim 2.4. Thus, v3w′ ∈ E(G) for some w′ ∈ Q − {w}. However, this gives two independent edges
wv1, w

′v3 with distPi(v1, v3) ≥ 3. This cannot occur by Claim 2.8.
Therefore, v2w 6∈ E(G). So, for somew1 ∈ Q − {w}, v2w1 ∈ E(G). By Claim 2.8, |S2| ∈ {0, 1}. Suppose first that |S2| = 0.

Then, by Claim 2.8, |S3| = |S4| = 0. Note that if there exists a vertex w ∈ N(v2,Q ) ∩ N(w,Q ), then we can 1-extend by
using v1v2wwv4. So, N(v2,Q ) ∩ N(w,Q ) = ∅. However, since v2w 6∈ E(G) and, by Claim 2.7, d(w,Q ) ≥

q+2
2 , we have

d(v2,Q ) ≤ q−
(
q+ 2
2
+ 1

)
=
q− 4
2

.

Similarly, we have that N(v3,Q ) ∩ N(w,Q ) = ∅, v3w 6∈ E(G), and d(v3,Q ) ≤
q−4
2 . So,

δ({v2, v3},P ) ≥
n+ k
2
−
q− 4
2
=
p+ k
2
+ 2 > α(P )+ |{v2, v3}| − 1.

However, by Proposition 1.11, we can insert v2 and v3 into our path system and use v1w,wv4 to 1-extend.
Thus, we must have |S2| = 1. As before, |S3| = |S4| = 0 by Claim 2.8. Consequently, v3w 6∈ E(G) since otherwise w

would be adjacent to two consecutive vertices on Pi. Similarly, v3w1 6∈ E(G). So, v3w2 ∈ E(G) for some w2 ∈ Q − {w,w1}.
However, we then have two independent edges v1w, v3w2 with distPi(v1, v3) = 3, which cannot occur by Claim 2.8.
Therefore, we must have |N(Q , Pi)| ≤ 3 for all 1 ≤ i ≤ k. �

Claim 2.10. Every vertex in P has a neighbor in Q .

Proof. Since P has a path of order at least four, Claim 2.9 implies that there exists at least one vertex v ∈ V (P ) such that
d(v,Q ) = 0. Now, n+k2 ≤ d(v,P ) ≤ p− 1, and so p ≥

n+k+2
2 . Since n = p+ q, we have

n ≥ 2q+ k+ 2. (2.5)
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By Claim 2.9, d(w, Pi) ≤ 3 for any w ∈ Q and any Pi in P . Suppose that d(w, Pi) = 3 for some w ∈ Q and Pi. Then,
Claim 2.9 also implies that no other vertex on Pi outside of N(w, Pi) has a neighbor in Q . Now, Claim 2.3 implies that the
distance between consecutive neighbors ofw on Pimust be exactly two. So, if x and y are the two neighbors ofw on Pi which
are furthest apart on Pi, then distPi(x, y) = 4. However, this violates Claim 2.9 which states that the distance between these
two furthest neighbors must be greater than or equal to five. Thus, d(w, Pi) ≤ 2 for allw ∈ Q and all paths Pi.
So, we have

δ(Q ,Q ) ≥
n+ k
2
− 2k =

n− 3k
2
=
p+ q− 3k

2
.

This inequality and δ(Q ,Q ) ≤ q− 1 give us

p− q ≤ 3k− 2. (2.6)

Now, let F be an auxiliary graph with vertex set B ∪ A, where each vertex in B corresponds to a specific vertex of Q and
A = {v1, . . . , vk} is a set of vertices distinct from B, each corresponding to a path of P . Let the subgraph of F induced by
V (B) be an isomorphic copy of Q and place an edge between a vertex u ∈ B and vi ∈ A if, and only if, the vertex w ∈ Q
corresponding to u satisfies d(w, Pi) = 2.
Let w be any vertex of Q and u the corresponding vertex of B. We have d(u, A) ≥ d(w,P ) − k and d(u, B) = d(w,Q ).

Hence, δ(B, F) ≥ δ(Q ,G) − k ≥ n−k
2 , so using Inequality (2.5), we get δ(B, F) ≥ q + 1 = |B| + 1. Also, n ≥ 5k − 1 and

Inequality (2.6) imply that

q =
n− (p− q)

2
≥
n− (3k− 2)

2
≥
5k− 1− 3k+ 2

2
> k.

Thus, we get

|B| = |Q | = q > k = |A|,

and the conditions needed to apply Lemma 1.13 are met.
So, by Lemma 1.13, there are three mutually adjacent vertices u, u′ ∈ B and vi ∈ A in F . Let w,w′ ∈ Q be the vertices

corresponding to u and u′. By the definition of F , ww′ ∈ E(G) and d(w, Pi) = d(w′, Pi) = 2. Now, Claim 2.9 implies that w
and w′ must have at least one neighbor in common on Pi. Let x be the common neighbor of w and w′ on Pi, and let z be the
other neighbor of w on Pi. Note that the edges w′x and wz are independent edges. By Claim 2.8, distPi(x, z) ≤ 2. Note that
distPi(x, z) 6= 1 since otherwisewwould be adjacent to two consecutive vertices on Pi, which would violate Claim 2.2. Thus,
distPi(x, z) = 2 and there is exactly one vertex, say y, between x and z on Pi. However, this means that we can find a path
system of order |P | + 1 by replacing Pi with (Pi − y) ∪ xw′wz. �

Claims 2.9 and 2.10 imply that for all i, |Pi| ≤ 3. However, this contradicts the fact that we have a path of order four and
concludes the proof of Theorem 2.1. �

We now proceed to show that for all k ≥ 2, n ≥ 5k − 1, and any vector ES of 2k distinct vertices, an ES-linkage
exists and is 1-extendable if δ(G) ≥ n+2k−1

2 . To see that the minimum degree condition is best possible, we consider the
join of several graphs. Let A be a complete graph on the vertices {a1, a2, . . . , ak}, B be a complete graph on the vertices
{b1, b2, . . . , bk}, C be a complete graph on n−2k2 vertices, and D be a complete graph on n−2k2 vertices. Consider the graph
G = (A + B) ∪ (B + C) ∪ (C + D) ∪ (A + D), and notice that δ(G) = n+2k−2

2 . Let ES = 〈a1, a2, . . . , ak, b1, b2, . . . , bk〉. Note
that the edges a1b1, a2b2, . . . , akbk are an ES-linkageP of order 2k. In order to extend thisP by one more vertex, we need to
replace an edge aibi with the path aixbi for some x ∈ V (C)∪V (D). However, the adjacencies of G ensure that any [ai, bi]-path
that contains a vertex of C or Dmust have at least one vertex from both C and D. Thus, no [ai, bi]-path of order three exists
and consequently, P is not 1-extendable.

Theorem 2.11. If k ≥ 2 and G is a graph on n ≥ 5k− 1 vertices with δ(G) ≥ n+2k−1
2 , then G is k-linked and for every vector ES

of 2k distinct vertices, every nonspanning ES-linkage is 1-extendable. Further, this minimum degree result is best possible.

Proof. Note that since δ(G) ≥ n+2k−1
2 > n+2k−3

2 and n ≥ 5k − 1, G is k-linked by Theorem 1.7. If for every vector ES of 2k
distinct vertices of G, we have that every nonspanning ES-linkage is 1-extendable, then we are done. So, assume there exists
a vector ES which has a nonspanning ES-linkage that is not 1-extendable. Among all ES-linkages with this property, choose the
ES-linkage P = {P1, P2, . . . , Pk} such that |V (P )| is minimized.
Let Q = G − P . Also, let p = |V (P )| and q = |V (Q )|. We now wish to show by contradiction that we can extend

P by one vertex. If P consists only of edges (that is, p = 2k), then every x ∈ P satisfies d(x,P ) ≤ 2k − 1. So,
d(x,Q ) ≥ n+2k−1

2 − 2k + 1 = n−2k+1
2 . However, this means that any two vertices of P must have a common neighbor

in Q , and consequently, P is 1-extendable.
Thus, assume that p ≥ 2k + 1. If P contains a path of order four or more, then since δ(G) ≥ n+2k−1

2 > n+k
2 , then P is

1-extendable by Theorem 2.1. Therefore, all paths of P must have order three or less, and so p ≤ 3k.
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Since we have previously taken care of the case where the path system consists only of edges, we assume there is a path
xyz of order three. Let λxz equal 1 if N(x,Q ) 6= N(z,Q ) and 0 otherwise. We will also consider d(x, z) which equals one if
xz ∈ E(G) and zero if xz 6∈ E(G). We choose the path xyz so that d(x, z) is minimized.
We have

d(x,Q ), d(z,Q ) ≥
n+ 2k− 1

2
− (p− 2)− d(x, z) (2.7)

since x and z can be adjacent to at most p− 2 vertices inP − {x, z} and d(x, z) subtracts an additional edge from the above
inequality if xz ∈ E(G). Assuming, without loss of generality, that |N(x,Q )| ≥ |N(z,Q )|, we let w ∈ N(x,Q ) such that
w 6∈ N(z,Q ) if N(x,Q ) 6= N(z,Q ). If there is an edge uv ∈ E(N(x,Q ),N(z,Q )) then replacing xyz with xuvz will extend
our path system by one vertex. Hence, E(N(x,Q ),N(z,Q )) = ∅, so d(w,Q ) ≤ q− d(z,Q )− λxz . Note that λxz is used here
to account for the possibility that N(x,Q ) = N(z,Q ). Using Fact 1.12, Inequality (2.7), and the minimum degree condition,
we get

n+ 2k− 1
2

≤ d(w)

= d(w,P )+ d(w,Q )

≤
p+ k
2
+ q−

(
n+ 2k− 1

2
− p+ 2− d(x, z)

)
− λxz,

which is equivalent to

n+ 2k− 1 ≤ n− 2+ d(x, z)− λxz +
p+ k
2

.

Thus, we have that

3k+ 2(λxz − d(x, z))+ 2 ≤ p.

Since we know that p ≤ 3k, we must have λxz − d(x, z) ≤ −1. However, by the definitions of d(x, z) and λxz , we have
λxz−d(x, z) ≥ −1. Thus, p = 3k, d(x, z) = 1, and λxz = 0. That is,P must be composed of k paths of order three, xz ∈ E(G),
and N(x,Q ) = N(z,Q ). Since d(x, z) was chosen to be minimal and d(x, z) = 1, each path v1v2v3 ∈ P has v1 adjacent to
v3. Note that Fact 1.12 implies that

d(w,Q ) ≥
n+ 2k− 1

2
− d(w,P ) ≥

n+ 2k− 1
2

−
p+ k
2
≥
q+ k− 1
2

for allw ∈ Q . Thus, in particular, any two verticesw1, w2 ∈ N(x,Q ) = N(z,Q ) have k common neighbors in Q . Therefore,
we may find a path P ′ of length two in Q between w1, w2. We then replace xyz with xP ′z. This gives us a net gain of two
vertices. Take another path v1v2v3 ∈ P . Since v1v3 ∈ E(G), replace v1v2v3 with v1v3. Since this removes another vertex
from P , this gives us a path system with exactly one more vertex, a contradiction. �

Corollary 2.12. If k ≥ 2 and G is a graph on n ≥ 5k − 1 vertices with δ(G) ≥ n+2k−1
2 , then G is pan-k-linked. Further, this

minimum degree result is best possible.

In closing, note that the condition k ≥ 2 is needed in the last two results. In [13], Faudree and Schelp showed that there
exist graphs with minimum degree δ(G) = n+1

2 which are not panconnected. Hence, the minimum degree condition
δ(G) ≥ n+2k−1

2 cannot work for k = 1.
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