More on almost self-complementary graphs

Nevena Francetića ${ }^{\text {, Mateja Šajna }}{ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Toronto, Canada
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON K1N 6N5, Canada

ARTICLE INFO

Article history:

Received 26 May 2008
Received in revised form 13 August 2008
Accepted 14 August 2008
Available online 18 September 2008

Keywords:

Almost self-complementary graph
Perfect matching
Connected graph
Regular graph
Fairly almost self-complementary graph Unfairly almost self-complementary graph

Abstract

A graph X is called almost self-complementary if it is isomorphic to one of its almost complements $X^{\mathrm{c}}-\ell$, where X^{c} denotes the complement of X and ℓ a perfect matching (1 -factor) in X^{c}. If ℓ is a perfect matching in X^{c} and $\varphi: X \rightarrow X^{\mathrm{c}}-\ell$ is an isomorphism, then the graph X is said to be fairly almost self-complementary if φ preserves ℓ setwise, and unfairly almost self-complementary if it does not.

In this paper we construct connected graphs of all possible orders that are fairly and unfairly almost self-complementary, fairly but not unfairly almost self-complementary, and unfairly but not fairly almost self-complementary, respectively, as well as regular graphs of all possible orders that are fairly and unfairly almost self-complementary.

Two perfect matchings ℓ and g in X^{c} are said to be X-non-isomorphic if no isomorphism from $X+\ell$ to $X+g$ induces an automorphism of X. We give a constructive proof to show that there exists a graph X that is almost self-complementary with respect to two X-nonisomorphic perfect matchings for every even order greater than or equal to four.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A graph X is said to be self-complementary if it is isomorphic to its complement X^{c}. Similarly, a graph X on an even number of vertices is said to be almost self-complementary if it is isomorphic to a graph (called an almost complement of X) obtained from X^{c} by removing the edges of a 1-factor of X^{c}. This definition was introduced by Alspach, who also proposed the determination of all possible orders of almost self-complementary circulant graphs. In [2], this problem was solved for a particularly "nice" subclass of almost self-complementary circulants (called cyclically almost self-complementary), while general almost self-complementary graphs, vertex-transitive almost self-complementary graphs, and almost selfcomplementary double covers were first studied in [3], [4], and [5], respectively. Almost self-complementary graphs on one hand represent a generalization of self-complementary graphs to graphs of even order (a generalization that is particularly suitable for regular graphs) and on the other hand one of the simplest examples of index- 2 isomorphic factorizations of graphs that are not complete.

In this paper, we answer some of the open questions from [3]. In particular, in Section 3 we construct connected graphs of all possible orders that are fairly and unfairly almost self-complementary, fairly but not unfairly almost self-complementary, and unfairly but not fairly almost self-complementary, respectively, while in Section 4 we construct regular graphs of all possible orders that are fairly and unfairly almost self-complementary. In Section 2 we introduce the notation and terminology, and in Section 5 we construct, for every even order greater than or equal to four, a graph X that is almost self-complementary with respect to two X-non-isomorphic perfect matchings.

[^0]
2. Preliminaries

We begin by reviewing some basic terms from graph theory and setting up the notation before introducing terminology specific to almost self-complementary graphs. For terminology and concepts from the theory of permutation groups, the reader is referred to [1]. We note, however, that superscript notation will be used here for group action. That is, if G is a subgroup of the symmetric group $\operatorname{Sym}_{\Omega}$ acting on a set Ω, then the image of a point $a \in \Omega$ by an element $\alpha \in G$ will be denoted a^{α}.

For a set V, let $V^{(2)}$ denote the set $\{\{u, v\}: u, v \in V, u \neq v\}$. All graphs in this paper are simple; that is, a graph is an ordered pair (V, E), where V is any finite non-empty set and E any subset of $V^{(2)}$. The vertex set V and edge set E of a graph $X=(V, E)$ will be denoted by $V(X)$ and $E(X)$, respectively. The complement of a graph $X=(V, E)$ is the graph $\left(V, V^{(2)}-E\right)$ denoted by X^{c}. If v is a vertex of a graph X, then the neighbourhood of v in X (that is, the set of all vertices adjacent to v in $X)$ is denoted by $\mathrm{N}_{X}(v)$, and its size is the degree of v in X, denoted by $\operatorname{deg}_{X}(v)$. In these symbols, the subscript X may be omitted if it is clear from the context what the graph X is. A partition of a set V into subsets of size two is called a perfect matching on V. If $X=(V, E)$ is a graph and ℓ a perfect matching on V with $\ell \subseteq E$, then we say that ℓ is a perfect matching in X.

As usual, the symbols K_{n}, P_{n}, and C_{n} will denote the complete graph with n vertices, the path with n edges, and the cycle with n vertices, respectively. We shall write $G+H$ to denote the union of the graphs G and H where it is assumed that the vertex sets of the two graphs are disjoint. For example, $P_{2}+K_{1}$ denotes the graph with four vertices and two adjacent edges.

Let X be a graph with vertex set V of even size and let ℓ be a perfect matching in the complement X^{c}. An almost complement of X with respect to ℓ, denoted by $\mathrm{AC}_{\ell}(X)$, is the graph with vertex set V and edge set $V^{(2)}-(E(X) \cup \ell)$. A graph is called an almost complement of X, if it is the almost complement of X with respect to some perfect matching in X^{c}. A graph X is said to be almost self-complementary with respect to a perfect matching ℓ in X^{c} if it is isomorphic to $\mathrm{AC}_{\ell}(X)$. A graph X is called almost self-complementary if there exists a perfect matching ℓ in X^{c} such that X is isomorphic to $\mathrm{AC}_{\ell}(X)$.

An ℓ-antimorphism of a graph $X=(V, E)$ is any permutation $\varphi \in \operatorname{Sym}_{V}$ such that $V^{(2)}$ is a disjoint union of E, E^{φ}, and ℓ. By an antimorphism of an almost self-complementary graph X we mean an ℓ-antimorphism of X for some perfect matching ℓ in X^{c}. An ℓ-antimorphism φ of a graph $X=(V, E)$ is called fair if $\ell^{\varphi}=\ell$, and unfair otherwise. Similarly, an automorphism α of X is called ℓ-fair if $\ell^{\alpha}=\ell$.

Let X be an almost self-complementary graph and ℓ a perfect matching in $X^{\text {c }}$. Then X is called ℓ-fairly (ℓ-unfairly) almost self-complementary if it admits a fair (respectively, unfair) ℓ-antimorphism. A graph is called fairly (unfairly) almost selfcomplementary if it is ℓ-fairly (respectively, ℓ-unfairly) almost self-complementary for some perfect matching ℓ in X^{C}.

We shall now describe two constructions, introduced in [3], that produce new almost self-complementary graphs from old. They will be used in Sections 3-5 to prove our results. In this paper, by the term ordered bipartition of a set V we mean an ordered pair $\left(V_{1}, V_{2}\right)$ of subsets of V such that $V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\emptyset$.

Let X and Y be graphs with disjoint vertex sets, and let $\left(U_{1}, U_{2}\right)$ be an ordered bipartition of $V(X)$. The skew join of X and Y with respect to the ordered bipartition $\left(U_{1}, U_{2}\right)$ of $V(X)$, denoted by $\left(X,\left(U_{1}, U_{2}\right)\right) \triangleleft Y$, is the graph with vertex set $V(X) \cup V(Y)$ and edge set $E(X) \cup E(Y) \cup\left\{x y: x \in U_{1}, y \in V(Y)\right\}$. We write shortly $X \boldsymbol{\Psi} Y$ for $\left(X,\left(U_{1}, U_{2}\right)\right) \leq Y$ if it is understood what the ordered bipartition is.

Let X and Y be graphs with disjoint vertex sets, and let $\left(U_{1}, U_{2}\right)$ and $\left(W_{1}, W_{2}\right)$ be ordered bipartitions of $V(X)$ and $V(Y)$, respectively. The partial join of X and Y with respect to ordered bipartitions $\left(U_{1}, U_{2}\right)$ and $\left(W_{1}, W_{2}\right)$, denoted by $\left(X,\left(U_{1}, U_{2}\right)\right)\left(Y,\left(W_{1}, W_{2}\right)\right)$, is the graph with vertex set $V(X) \cup V(Y)$ and edge set $E(X) \cup E(Y) \cup\left\{u w \mid u \in U_{i}, w \in\right.$ $\left.W_{i}, i \in\{1,2\}\right\}$. We write shortly $X>Y$ for $\left(X,\left(U_{1}, U_{2}\right)\right)\left(Y,\left(W_{1}, W_{2}\right)\right)$ if it is understood what the two ordered bipartitions are.

The following two lemmas from [3] explain the importance of skew joins and partial joins for constructing almost selfcomplementary graphs. The first can be easily obtained from [3, Lemma 3.2] and its proof, while the second was first published as [3, Lemma 3.5].

Lemma 2.1 ([3]). Let X and Y be almost self-complementary graphs of orders $2 m$ and $2 n$, respectively. Let $\left(U_{1}, U_{2}\right)$ be an ordered bipartition of $V(X)$ such that $\left|U_{1}\right|=\left|U_{2}\right|$, and suppose X admits an antimorphism φ with $U_{1}^{\varphi}=U_{2}$. Then:
(i) The skew join $X \triangleleft Y$ with respect to the ordered bipartition $\left(U_{1}, U_{2}\right)$ of $V(X)$ is an almost self-complementary graph. For any antimorphism ψ of Y, the permutation (φ, ψ) that acts as φ on $V(X)$ and as ψ on $V(Y)$ is an antimorphism of $X \triangleleft Y$.
(ii) If $\max \left\{\operatorname{deg}_{X}(x): x \in U_{2}\right\}+\max \left\{\operatorname{deg}_{Y}(y): y \in V(Y)\right\}<m+2 n-2$, then every automorphism of $X \triangleleft Y$ induces an automorphism of Y.

Lemma 2.2 ([3]). Let X and Y be almost self-complementary graphs with disjoint vertex sets admitting ordered bipartitions $\left(U_{1}, U_{2}\right)$ of $V(X)$ and $\left(W_{1}, W_{2}\right)$ of $V(Y)$, and antimorphisms φ of X and ψ of Y such that $U_{1}^{\varphi}=U_{2}$ and $W_{1}^{\psi}=W_{1}$. Let (φ, ψ) denote the permutation on $V(X) \cup V(Y)$ that acts as φ on $V(X)$ and as ψ on $V(Y)$. Then:
(i) The partial join $X \forall Y$ with respect to the given ordered bipartitions is an almost self-complementary graph.
(ii) If both X and Y are regular graphs and $\left|W_{1}\right|=\left|W_{2}\right|$, then $X \forall Y$ is also regular.
(iii) If φ and ψ are fair antimorphisms of X and Y, respectively, then (φ, ψ) is a fair antimorphism of $X \forall$.
(iv) If at least one of φ and ψ is unfair, then (φ, ψ) is an unfair antimorphism of $X \forall Y$.

Fig. 1. Graphs D_{6} (the "dipper"), W_{6} (the "windmill"), and Q_{8} (the "quasicube").

3. Constructing connected almost self-complementary graphs

In [3, Corollary 3.3], it is shown that fairly and unfairly, fairly but not unfairly, and unfairly but not fairly almost selfcomplementary graphs of order $2 k$ exist if and only if $k \geq 1, k \geq 2$, and $k \geq 4$, respectively. However, most of the graphs constructed there to show existence have an isolated vertex. In this section, we constructively determine the necessary and sufficient conditions on k for there to exist fairly and unfairly, fairly but not unfairly, and unfairly but not fairly almost self-complementary connected graphs of order $2 k$. The lemma below will be our main tool.

Lemma 3.1. Let X be an almost self-complementary graph of order $2 m,\left(U_{1}, U_{2}\right)$ an ordered bipartition of $V(X)$, and φ an antimorphism of X with $U_{1}^{\varphi}=U_{2}$. Assume that $\operatorname{deg}_{X}(x)<m$ for all $x \in U_{2}$. Let Y be a graph isomorphic to $K_{2}{ }^{c}$ with $V(Y)=\left\{y_{1}, y_{2}\right\}$ and $V(X) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Furthermore, let $V_{i}=U_{i} \cup\left\{y_{i}\right\}$ for $i=1$, 2. Then the following hold:
(a) $X \triangleleft Y$ admits an antimorphism ψ with $V_{1}^{\psi}=V_{2}$.
(b) $\operatorname{deg}_{X \triangleleft Y}(y)<m+1$ for all $y \in V_{2}$.
(c) $X \triangleleft Y$ is a fairly (unfairly) almost self-complementary graph if and only if X is.
(d) If X is connected, then $X \triangleleft Y$ is connected.

Proof. Statement (a) follows easily from Lemma 2.1 (i).
To see (b), note that $\operatorname{deg}_{X \leftrightarrow Y}(x)=\operatorname{deg}_{X}(x)<m$ for all $x \in U_{2}$, and $\operatorname{deg}_{X \leftrightarrow Y}\left(y_{2}\right)=m$.
Since $Y=K_{2}{ }^{c}$ is fairly almost self-complementary, it is easy to see that a fair (unfair) antimorphism of X gives rise to a fair (unfair) antimorphism of $X \triangleleft Y$. Conversely, let Φ be an antimorphism of $X \triangleleft Y$. Then $\operatorname{deg}_{X \in Y}\left(y_{i}^{\Phi}\right)=(2 m+2)-2-$ $\operatorname{deg}_{X \triangleleft Y}\left(y_{i}\right)=m$ for $i=1$, 2. Since $\operatorname{deg}_{X \triangleleft Y}(x)<m$ for all $x \in U_{2}$ and $\operatorname{deg}_{X \triangleleft Y}(x)=\operatorname{deg}_{X}(x)+2=\left(2 m-2-\operatorname{deg}_{X}\left(x^{\varphi}\right)\right)+2>m$ for all $x \in U_{1}$, we have that $\left\{y_{1}, y_{2}\right\}^{\Phi}=\left\{y_{1}, y_{2}\right\}$. Hence Φ induces an antimorphism of X, which is fair (unfair) if and only if Φ is. Thus (c) follows.

Statement (d) is easy to see.
Construction 3.2. Let D_{6} (Fig. 1, left) be the graph with vertex set $V\left(D_{6}\right)=\mathbb{Z}_{6}$ and edge set $E\left(D_{6}\right)=\{01,03,05,12,23,45\}$. For $k \geq 3$, define the graph $D_{2 k+2}$ by

$$
D_{2 k+2}=D_{2 k} \triangleleft K_{2}{ }^{\mathrm{c}}
$$

The skew join is taken with respect to the bipartition $\left(U_{2 k}^{1}, U_{2 k}^{2}\right)$ defined recursively by

$$
U_{6}^{1}=\{0,1,2\} \quad \text { and } \quad U_{6}^{2}=\{3,4,5\}
$$

and

$$
U_{2 k+2}^{i}=U_{2 k}^{i} \cup\left\{y_{i}\right\} \quad \text { for } i=1,2, \text { and } k \geq 3
$$

where y_{1} and y_{2} are the vertices of the new copy of $K_{2}{ }^{c}$ used to form $D_{2 k+2}=D_{2 k} \triangleleft K_{2}{ }^{\mathrm{c}}$.
Lemma 3.3. The graphs $D_{2 k}$, for $k \geq 3$, defined in Construction 3.2 are fairly but not unfairly almost self-complementary and connected.

Proof. It is easy to check that D_{6} admits a fair ℓ-antimorphism $\varphi=(0,4)(1,3)(2,5)$ for $\ell=\{04,13,25\}$, which interchanges the sets U_{6}^{1} and U_{6}^{2}, and that it has no unfair antimorphisms. Moreover, $\operatorname{deg}_{D_{6}}(x)<3$ for all $x \in U_{6}^{2}$, and so D_{6} satisfies the conditions of Lemma 3.1. By induction, using Lemma 3.1, it now follows easily that each of the graphs $D_{2 k}$ satisfies the conditions of Lemma 3.1 and is fairly but not unfairly almost self-complementary, as well as connected.

Construction 3.4. Let W_{6} (Fig. 1, centre) be the graph with vertex set $V\left(W_{6}\right)=\mathbb{Z}_{6}$ and edge set $E\left(W_{6}\right)=$ $\{01,02,04,23,24,45\}$. For $k \geq 3$, define the graph $W_{2 k+2}$ by

$$
W_{2 k+2}=W_{2 k} \triangleleft K_{2}{ }^{\mathrm{c}} .
$$

The skew join is taken with respect to the bipartition $\left(V_{2 k}^{1}, V_{2 k}^{2}\right)$ defined recursively by

$$
V_{6}^{1}=\{0,2,4\} \quad \text { and } \quad V_{6}^{2}=\{1,3,5\}
$$

and

$$
V_{2 k+2}^{i}=V_{2 k}^{i} \cup\left\{y_{i}\right\} \quad \text { for } i=1,2, \text { and } k \geq 3
$$

where y_{1} and y_{2} are the vertices of the new copy of $K_{2}{ }^{c}$ used to form $W_{2 k+2}=W_{2 k} \triangleleft K_{2}{ }^{c}$.
Lemma 3.5. The graphs $W_{2 k}$, for $k \geq 3$, defined in Construction 3.4 are fairly and unfairly almost self-complementary and connected.

Proof. It is easy to check that W_{6} admits a fair ℓ-antimorphism $\varphi=(0,1,2,3,4,5)$ and an unfair ℓ-antimorphism $\psi=(0,3,2,1,4,5)$ for $\ell=\{03,14,25\}$, each of which interchanges the sets V_{6}^{1} and V_{6}^{2}. Moreover, $\operatorname{deg}_{W_{6}}(x)<3$ for all $x \in V_{6}^{2}$, and so W_{6} satisfies the conditions of Lemma 3.1. By induction, using Lemma 3.1, each of the graphs $W_{2 k}$ satisfies the conditions of Lemma 3.1 and is fairly and unfairly almost self-complementary, as well as connected.

Construction 3.6. Let Q_{8} (Fig. 1, right) be the graph with vertex set $V\left(Q_{8}\right)=\mathbb{Z}_{8}$ and edge set $E\left(Q_{8}\right)=\{01,05,06,07$, $12,23,26,27,34,36,37,45\}$. For $k \geq 4$, define the graph $Q_{2 k+2}$ by

$$
Q_{2 k+2}=Q_{2 k} \triangleleft K_{2}^{c}
$$

The skew join is taken with respect to the bipartition $\left(S_{2 k}^{1}, S_{2 k}^{2}\right)$ defined recursively by

$$
S_{6}^{1}=\{0,2,3,6\} \quad \text { and } \quad S_{6}^{2}=\{1,4,5,7\}
$$

and

$$
S_{2 k+2}^{i}=S_{2 k}^{i} \cup\left\{y_{i}\right\} \quad \text { for } i=1,2, \text { and } k \geq 4,
$$

where y_{1} and y_{2} are the vertices of the new copy of $K_{2}{ }^{c}$ used to form $Q_{2 k+2}=Q_{2 k} \triangleleft K_{2}{ }^{c}$.
Lemma 3.7. The graphs $Q_{2 k}$, for $k \geq 4$, defined in Construction 3.6 are unfairly but not fairly almost self-complementary and connected.

Proof. It is easy to check that Q_{8} admits an unfair ℓ-antimorphism $\varphi=(0,4,3,1,2,5)(6,7)$ for $\ell=\{02,14,35,67\}$, which interchanges the sets S_{8}^{1} and S_{8}^{2}, and it is proved in [3, Lemma 2.13] that it admits no fair antimorphisms. Moreover, $\operatorname{deg}_{Q_{8}}(x)<4$ for all $x \in S_{8}^{2}$, and so Q_{8} satisfies the conditions of Lemma 3.1. Using induction combined with Lemma 3.1, we can see that each of the graphs $Q_{2 k}$ satisfies the conditions of Lemma 3.1 and is unfairly but not fairly almost selfcomplementary, as well as connected.

Theorem 3.8. There exists a connected fairly and unfairly (fairly but not unfairly) almost self-complementary graph of order $2 k$ if and only if $k \geq 3$. There exists a connected unfairly but not fairly almost self-complementary graph of order $2 k$ if and only if $k \geq 4$.

Proof. The list of all almost self-complementary graphs of order at most six in [3, Figures 1,2, and 3] shows that there is no connected almost self-complementary graph of order less than six, and no unfairly but not fairly almost self-complementary graph of order less than eight. Hence the conditions on k stated in the theorem are necessary. Lemmas 3.3, 3.5, and 3.7 then prove sufficiency.

4. Constructing regular almost self-complementary graphs

In [3, Corollary 4.4] it is shown that there exist regular fairly almost self-complementary graphs of all even orders, and regular fairly and unfairly almost self-complementary graphs of all orders divisible by eight. In this section we show that there exist regular fairly and unfairly almost self-complementary graphs of all even orders.

We begin with yet another general construction for almost self-complementary graphs, which, in a special case, yields regular graphs with the desired property.

Construction 4.1. Let X be any graph. Denote by X_{1} and X_{4} two isomorphic copies of X, and by X_{2} and X_{3} two isomorphic copies of X^{c}, all pairwise vertex-disjoint. Let $\iota_{i}: X \rightarrow X_{i}$ for $i=1,4$, and $\iota_{i}: X \rightarrow X_{i}^{\mathrm{c}}$ for $i=2$, 3, be isomorphisms. Then for each $x \in V(X)$ and $i \in\{1,2,3,4\}$, let $x_{i}=\iota_{i}(x)$. Now define the graph $U(X)=(V, E)$ by

$$
\begin{aligned}
& V=\bigcup_{i=1}^{4} V\left(X_{i}\right), \\
& E=\bigcup_{i=1}^{4} E\left(X_{i}\right) \cup\left\{x_{i} y_{i+1}: x, y \in V(X), i=1,3\right\} \cup\left\{x_{2} y_{3}: x, y \in V(X), x \neq y\right\} .
\end{aligned}
$$

Lemma 4.2. For any graph X, the graph $U(X)$ defined in Construction 4.1 admits a fair antimorphism $\varphi=\prod_{x \in V(X)}\left(x_{1}, x_{3}, x_{4}, x_{2}\right)$. If X has a non-trivial automorphism α, then $\mathrm{U}(X)$ also admits an unfair antimorphism $\psi=\prod_{x \in V(X)}\left(x_{1}, x_{3}, x_{4},\left(x^{\alpha}\right)_{2}\right)$.

Proof. Define a perfect matching ℓ in $U(X)^{c}$ by $\ell=\left\{x_{1} x_{4}: x \in V(X)\right\} \cup\left\{x_{2} x_{3}: x \in V(X)\right\}$. It is then not difficult to verify that φ is a fair ℓ-antimorphism of $\mathrm{U}(X)$. Similarly, it can be verified that ψ is an ℓ-antimorphism of $\mathrm{U}(X)$. If $x \in V(X)$ is such that $x^{\alpha}=y \neq x$, then $\left(x_{1} x_{4}\right)^{\psi}=x_{3} y_{2} \neq x_{3} x_{2}$ so $\left(x_{1} x_{4}\right)^{\psi} \notin \ell$. Thus ψ is unfair.

Theorem 4.3. There exists a regular fairly and unfairly almost self-complementary graph of order $2 k$ if and only if $k \geq 2$.
Proof. The list of all almost self-complementary graphs of order at most six in [3, Figures 1 and 2] shows that there is no fairly and unfairly almost self-complementary graph of order two, and that there exist regular fairly and unfairly almost self-complementary graphs of orders four and six (namely, $K_{2}+K_{2}$ and C_{6}, respectively). It thus suffices to show existence of regular fairly and unfairly almost self-complementary graphs of all even orders greater than or equal to eight.

For any $n \geq 2$, the complete graph K_{n} admits a non-trivial automorphism, and so it follows directly from Lemma 4.2 that the graph $U\left(K_{n}\right)$, as defined in Construction 4.1, is fairly and unfairly almost self-complementary. Moreover, it is not difficult to see that $\mathrm{U}\left(K_{n}\right)$ is regular of degree $2 n-1$. We thus have regular fairly and unfairly almost self-complementary graphs of all orders divisible by four.

Fix an integer $n \geq 2$ and let $X=K_{n}$. With the notation of Construction 4.1, let φ and ψ be the fair and unfair antimorphism of $\mathrm{U}(X)$ defined in Lemma 4.2. Let $U_{1}=V\left(X_{1}\right) \cup V\left(X_{4}\right)$ and $U_{2}=V\left(X_{2}\right) \cup V\left(X_{3}\right)$, and observe that both φ and ψ interchange the sets U_{1} and U_{2}. Now let $\left(W_{1}, W_{2}\right)$ be an ordered bipartition of $K_{2}{ }^{c}$ into two singletons, and construct a graph $Y=\mathrm{U}(X)\rangle K_{2}{ }^{c}$ as the partial join of $\mathrm{U}(X)$ and $K_{2}{ }^{\mathrm{c}}$ with respect to the ordered bipartitions $\left(U_{1}, U_{2}\right)$ and $\left(W_{1}, W_{2}\right)$. Since the identity permutation on $V\left(K_{2}{ }^{c}\right)$ is a fair antimorphism of $K_{2}{ }^{c}$, it follows from Lemma 2.2 that Y is a regular fairly and unfairly almost self-complementary graph of order $4 n+2$. This completes the proof.

Closely related to the result of Theorem 4.3 is the following open problem.
Problem 4.4. Determine the necessary and sufficient conditions on the order of a graph that is fairly but not unfairly (unfairly but not fairly, respectively) almost self-complementary.

Observe that Problem 4.4 is much more difficult than the result of Theorem 4.3 since showing that a graph X is fairly but not unfairly almost self-complementary, for example, requires finding a perfect matching ℓ in X^{c} and a fair ℓ-antimorphism of X, as well as showing that no perfect matching \mathcal{g} in X^{c} admits an unfair \mathcal{g}-antimorphism.

5. Graphs that are almost self-complementary with respect to two non-isomorphic perfect matchings

The list of all almost self-complementary graphs of order at most 6 in [3] shows that each of these graphs is almost self-complementary with respect to an "up-to-isomorphism unique" perfect matching. In this section we explain precisely what we mean by "up-to-isomorphism unique", and show that for each order greater than 6 there exists an almost selfcomplementary graph that admits two "non-isomorphic" perfect matchings.

If $X=(V, E)$ is a graph and ℓ a perfect matching in the complement X^{c}, then we let $X+\ell$ denote the graph $(V, E \cup \ell)$.
Definition 5.1. Let X be a graph that is almost self-complementary with respect to perfect matchings ℓ and \mathcal{g} in X^{c}. Then ℓ and \mathcal{g} are called X-isomorphic if there exists an isomorphism from $X+\ell$ to $X+\mathscr{g}$ that induces an automorphism of the graph X. Otherwise, ℓ and \mathcal{g} are called X-non-isomorphic.

Below, we construct graphs X that are almost self-complementary with respect to two X-non-isomorphic perfect matchings (to be proved in Theorem 5.3).

Construction 5.2. Let Z (Fig. 2, left) be the graph with vertex set $V(Z)=\{x, y, z, w\}$, edge set $E(Z)=\{y z, z w\}$, and ordered bipartition $\left(U_{1}, U_{2}\right)$ with $U_{1}=\{x, y\}$ and $U_{2}=\{z, w\}$. For every $k \geq 4$ we define a graph $X_{2 k}$ of order $2 k$ as follows (see Fig. 2, centre and right). Let

$$
\begin{aligned}
& V\left(X_{8}\right)=\mathbb{Z}_{8} \\
& E\left(X_{8}\right)=\{03,05,07,12,13,14,25,26,34,46,57,67\}
\end{aligned}
$$

Fig. 2. Graphs Z, X_{8}, and X_{10}. The graph $X_{8}\left(X_{10}\right)$ admits two X_{8}-non-isomorphic (X_{10}-non-isomorphic, respectively) perfect matchings (solid gray and dashed edges).
and

$$
\begin{aligned}
& V\left(X_{10}\right)=\mathbb{Z}_{10} \\
& E\left(X_{10}\right)=\{01,02,03,08,15,17,18,23,24,25,37,39,45,46,47,59,67,68,69,89\}
\end{aligned}
$$

Now, for $k \geq 4$ define

$$
X_{2 k+4}=Z \triangleleft X_{2 k},
$$

where the skew join is taken with respect to the ordered bipartition $\left(U_{1}, U_{2}\right)$ of Z.
Theorem 5.3. For every integer $k \geq 4$ there exists a graph X of order $2 k$ that is almost self-complementary with respect to two X-non-isomorphic perfect matchings.

Proof. We show that the graphs $X_{2 k}$ (for $k \geq 4$) defined in Construction 5.2 are almost self-complementary with respect to two $X_{2 k}$-non-isomorphic perfect matchings.

First consider the graph X_{8}. Then $\ell_{8}=\{01,27,36,45\}$ and $\mathscr{g}_{8}=\{02,15,36,47\}$ are two perfect matchings in X^{c}, and it is not difficult to check that $\varphi_{8}=(2,7)(3,6)(4,5)$ and $\psi_{8}=(0,1,2,4,3,7,6,5)$ are an ℓ_{8}-antimorphism and g_{8} antimorphism of X_{8}, respectively. So X_{8} is almost self-complementary with respect to both ℓ_{8} and \mathscr{g}_{8}. Although $X_{8}+\ell_{8}$ and $X_{8}+\mathscr{g}_{8}$ are isomorphic (since $\mathrm{AC}_{\ell_{8}}\left(X_{8}\right) \cong X_{8} \cong \mathrm{AC}_{g_{8}}\left(X_{8}\right)$), we can show that ℓ_{8} and \mathscr{g}_{8} are X_{8}-non-isomorphic. Suppose $\Phi: X_{8}+\ell_{8} \rightarrow X_{8}+\mathscr{g}_{8}$ is an isomorphism that induces an automorphism of X_{8}. Then $\ell_{8}^{\Phi}=\mathscr{I}_{8}$, and the subgraph of X_{8} induced by the endpoints of the two edges 01 and 36 of ℓ_{8} must be mapped to a subgraph of X_{8} induced by the endpoints of two edges of \mathscr{g}_{8}. However, the subgraph of X_{8} induced by the set $\{0,1,3,6\}$ is isomorphic to $P_{2}+K_{1}$, while it can be easily checked that no two edges of g_{8} have this property. Hence no isomorphism from $X_{8}+\ell_{8}$ to $X_{8}+g_{8}$ induces an automorphism of X_{8}, and ℓ_{8} and \mathscr{g}_{8} are X_{8}-non-isomorphic.

Next, consider X_{10} and the perfect matchings $\ell_{10}=\{05,16,27,38,49\}$ and $\mathcal{g}_{10}=\{07,14,29,36,58\}$ in $X_{10}{ }^{c}$. It is not difficult to check that $\varphi_{10}=(0,1,2,3,4,5,6,7,8,9)$ and $\psi_{10}=(1,5,3,9)(2,4,8,6)$ are an ℓ_{10}-antimorphism and $\mathscr{g}_{10^{-}}$ antimorphism of X_{10}, respectively. Suppose that there is an isomorphism $\Phi: X_{10}+\ell_{10} \rightarrow X_{10}+\mathcal{g}_{10}$ with $\ell_{10}^{\Phi}=\mathcal{g}_{10}$. As above, the subgraph of X_{10} induced by the endpoints of any two edges of ℓ_{10} must be mapped to a subgraph of X_{10} induced by the endpoints of two edges of \mathcal{g}_{10}. However, it can be easily checked that the endpoints of any two edges of ℓ_{10} induce a graph isomorphic to $K_{2}+K_{2}{ }^{\text {c }}$, while the endpoints of the edges 07 and 14 of \mathcal{g}_{10}, for example, induce P_{3}. Hence ℓ_{10} and \mathscr{g}_{10} are X_{10}-non-isomorphic.

Now, the graph Z defined in Construction 5.2 is almost self-complementary with an antimorphism $\varphi=(x, z)(y, w)$ that maps U_{1} to U_{2}. Hence, if X is any almost self-complementary graph without isolated vertices (to satisfy the degree requirement), then by Lemma $2.1, Z \measuredangle X$ is almost self-complementary and any automorphism of $Z \measuredangle X$ induces an automorphism of X. Moreover, $Z \measuredangle X$ is connected. It follows that the graphs $X_{2 k}$ for $k \geq 4$ are all almost self-complementary and connected. We have seen above that $X_{2 k}$ for $k \in\{4,5\}$ is almost self-complementary with respect to two $X_{2 k}$-nonisomorphic perfect matchings $\ell_{2 k}$ and $g_{2 k}$. Suppose that this is the case for some $k \geq 4$. Since by Lemma 2.1 every antimorphism of $X_{2 k}$ gives rise to an antimorphism of $Z \measuredangle X_{2 k}$, the graph $X_{2 k+4}$ is also almost self-complementary with respect to two perfect matchings $\ell_{2 k+4}$ and $\mathcal{g}_{2 k+4}$, where $\ell_{2 k} \subset \ell_{2 k+4}$ and $\mathscr{g}_{2 k} \subset \mathcal{g}_{2 k+4}$. Moreover, since every automorphism of $X_{2 k+4}=Z \triangleleft X_{2 k}$ induces an automorphism of $X_{2 k}$, no automorphism of $X_{2 k+4}$ can map $\ell_{2 k+4}$ to $\mathscr{g}_{2 k+4}$. Hence the perfect matchings $\ell_{2 k+4}$ and $\mathscr{g}_{2 k+4}$ are $X_{2 k+4}$-non-isomorphic. By induction, we conclude that each of the graphs $X_{2 k}$ for $k \geq 4$ is almost self-complementary with respect to two $X_{2 k}$-non-isomorphic perfect matchings.

Note that the graphs $X_{2 k}$ (for $k \geq 4$) from Construction 5.2 are all connected. Another (and simpler) way to construct graphs $Y_{2 k}$ (for $k \geq 4$) that are almost self-complementary with respect to two $Y_{2 k}$-non-isomorphic perfect matchings is to take $Y_{8}=X_{8}$ and $Y_{2 k+2}=K_{2}{ }^{\mathrm{c}} \triangleleft Y_{2 k}$. Observe, however, that the graphs $Y_{2 k}$ for $k \geq 5$ all have an isolated vertex.

Acknowledgements

The authors gratefully acknowledge support by the Natural Sciences and Engineering Research Council of Canada (NSERC). Most of this work was carried out while the first author was a recipient of the NSERC Undergraduate Summer Research Award in the Department of Mathematics and Statistics, University of Ottawa.

References

[1] J.D. Dixon, B. Mortimer, Permutation Groups, in: Graduate Texts in Mathematics, vol. 163, Springer, New York, 1996.
[2] E. Dobson, M. Šajna, Almost self-complementary circulant graphs, Discrete Math. 278 (2004) 23-44.
[3] P. Potočnik, M. Šajna, On almost self-complementary graphs, Discrete Math. 306 (2006) 107-123.
[4] P. Potočnik, M. Šajna, Homogeneously almost self-complementary graphs, J. Combin. Theory Ser. B (in press).
[5] P. Potočnik, M. Šajna, Self-complementary two-graphs and almost self-complementary double covers, European J. Combin. 28 (2007) 1561-1574.

[^0]: * Corresponding author. Tel.: +1 6135625800×3522.

 E-mail address: msajna@uottawa.ca (M. Šajna).

