Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Multivariate matching polynomials of cyclically labelled graphs

John P. McSorley*, Philip Feinsilver

Department of Mathematics, Mailcode 4408, Southern Illinois University, Carbondale. IL 62901-4408, United States

ARTICLE INFO

Article history: Received 28 September 2000 Received in revised form 7 September 2005 Accepted 9 September 2008 Available online 21 October 2008

Keywords: Matching Matching polynomial Labelled Graph Recurrence MacMahon's Master Theorem

ABSTRACT

We consider the matching polynomials of graphs whose edges have been cyclically labelled with the ordered set of t labels $\{x_1, \ldots, x_t\}$.

We first work with the cyclically labelled path, with first edge label x_i , followed by N full cycles of labels $\{x_1, \ldots, x_t\}$, and last edge label x_j . Let $\Phi_{i,Nt+j}$ denote the matching polynomial of this path. It satisfies the (τ, Δ) -recurrence: $\Phi_{i,Nt+j} = \tau \Phi_{i,(N-1)t+j} - \Delta \Phi_{i,(N-2)t+j}$, where τ is the sum of all non-consecutive cyclic monomials in the variables $\{x_1, \ldots, x_t\}$ and $\Delta = (-1)^t x_1 \cdots x_t$. A combinatorial/algebraic proof and a matrix proof of this fact are given. Let G_N denote the first fundamental solution to the (τ, Δ) -recurrence. We express G_N (i) as a cyclic binomial using the symmetric representation of a matrix, (ii) in terms of Chebyshev polynomials of the second kind in the variables τ and Δ , and (iii) as a quotient of two matching polynomials. We extend our results from paths to cycles and rooted trees.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

The matching polynomial of a graph is defined in Farrell [1]. Often in pure mathematics and combinatorics it is interesting to consider cyclic structures, *e.g.*, cyclic groups, cyclic designs, and circulant graphs. Here we consider the (multivariate) matching polynomial of a graph whose edges have been cyclically labelled.

We concentrate mainly on paths, cycles and trees. To cyclically label a path with the ordered set of t labels $\{x_1, \ldots, x_t\}$, label the first edge with any x_i , the second with x_{i+1} , and so on until label x_t has been used, then start with x_1 , then x_2, \ldots, x_t , then x_1 again ..., repeating cyclically until all edges have been labelled, with the last edge receiving label x_j . Suppose that N full cycles of labels $\{x_1, \ldots, x_t\}$ have been used. Call the matching polynomial of this labelled path $\Phi_{i,Nt+j}$. We show, for a fixed *i* and *j*, that $\Phi_{i,Nt+j}$ satisfies the following recurrence, the (τ, Δ) -recurrence:

 $\Phi_{i,Nt+j} = \tau \ \Phi_{i,(N-1)t+j} - \Delta \ \Phi_{i,(N-2)t+j},$

where τ is the sum of all non-consecutive cyclic monomials in the variables $\{x_1, \ldots, x_t\}$ (see Section 1), and $\Delta = (-1)^t x_1 \cdots x_t$. We give two different proofs of this fact. The first one is a combinatorial/algebraic proof in Section 2 that uses the following theorem concerning decomposing the matching polynomial $\mathcal{M}(G, \mathbf{x})$ of a graph.

Theorem. Let G be a labelled graph, H a subgraph of G, and M_H a matching of H, then

$$\mathcal{M}(G, \mathbf{x}) = \sum_{M_H} M_H(\mathbf{x}) \, \mathcal{M}(G - H - \overline{M}_H, \mathbf{x}),$$

where the summation is over every matching M_H of H. The second proof (Section 3) uses a matrix formulation of the recurrences that we develop.

* Corresponding author. E-mail addresses: mcsorley60@hotmail.com (J.P. McSorley), pfeinsil@math.siu.edu (P. Feinsilver).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.09.020

Let G_N denote the first fundamental solution to the (τ, Δ) -recurrence; three different expressions for G_N are given in Section 4. The first expression is a sum of cyclic binomials and uses the symmetric representation of matrices from Section 3; the second involves Chebyshev polynomials of the second kind in the variables τ and Δ ; and the third is a quotient of two matching polynomials, see Theorem 4.5.

In Section 5 we extend our results from paths to cycles and rooted trees; we find explicit forms for the matching polynomial of a cyclically labelled cycle, and indicate how to find the matching polynomial of a cyclically labelled rooted tree, again using the decomposition theorem stated above.

Many examples are given throughout the paper.

1. The multivariate matching polynomial of a graph, its decomposition; non-consecutive and non-consecutive cyclic functions

For a fixed $t \ge 1$ we use multi-index notations: $\mathbf{k} = (k_1, \dots, k_t)$, where each $k_s \ge 0$, $\mathbf{0} = (0, \dots, 0)$, and variables $\mathbf{x} = (x_1, \dots, x_t)$. The total degree of \mathbf{k} is denoted by $|\mathbf{k}| = k_1 + \dots + k_t$.

Let *G* be a finite simple graph with vertex set V(G) where $|V(G)| \ge 1$, and edge set E(G). We label these edges from the *t* commutative variables $\{x_1, \ldots, x_t\}$, exactly one label per edge. A *matching* of *G* is a collection of edges, no two of which have a vertex in common. A **k**-matching of *G* is a matching with exactly k_s edges with label x_s , for each *s* with $1 \le s \le t$. If M_G is a **k**-matching of *G* we define its *weight* to be

$$M_G(\mathbf{x}) = x_1^{k_1} \cdots x_t^{k_t}$$

The empty matching of *G*, which contains no edges, is denoted by M_{\emptyset} ; it is the unique **0**-matching and its weight is $M_{\emptyset}(\mathbf{x}) = 1$. Define the *multivariate matching polynomial*, or simply, the *matching polynomial*, of *G*, by

$$\mathcal{M}(G,\mathbf{x})=\sum_{M_G}M_G(\mathbf{x}),$$

where the summation is over every matching M_G of G.

Denote the number of **k**-matchings of *G* by $a(G, \mathbf{k})$. Then an alternative definition of the multivariate matching polynomial of *G* is

$$\mathcal{M}(G, \mathbf{x}) = \sum_{(k_1, \dots, k_t)} a(G, \mathbf{k}) \, x_1^{k_1} \cdots x_t^{k_t}.$$

The multivariate matching polynomial is a natural extension of the matching polynomial of Farrell [1]. Indeed, here with t = 1 and in [1] with $w_1 = 1$ and $w_2 = x_1$, the polynomials are identical.

Let P_1 be the graph with one vertex and no edges, *i.e.*, an isolated vertex; we define $\mathcal{M}(P_1, \mathbf{x}) = 1$. Now suppose $G' = G \cup nP_1$, where $n \ge 1$, *i.e.*, G' is the disjoint union of G and n isolated vertices, then we define $\mathcal{M}(G', \mathbf{x}) = \mathcal{M}(G, \mathbf{x})$.

For any edge $e \in E(\overline{G})$, let \overline{e} denote the set of edges that are incident to e; and for any subgraph H of G, let $\overline{H} = \bigcup_{e \in E(H)} \overline{e}$. Define $\overline{M}_{\emptyset} = \emptyset$. Also let G - H be the graph obtained from G when all the *edges* of H are removed, so G - H has the same vertex set as G.

Now let *H* be a fixed subgraph of *G* and let M_H be a matching of *H*. In the following theorem we express $\mathcal{M}(G, \mathbf{x})$ as a sum of terms, each term containing the weight of a fixed matching, $M_H(\mathbf{x})$, of *H*; we call this *decomposing* $\mathcal{M}(G, \mathbf{x})$ at *H*.

Theorem 1.1. Let G be a graph labelled as above, H a fixed subgraph of G, and M_H a matching of H. Then

$$\mathcal{M}(G, \mathbf{x}) = \sum_{M_H} M_H(\mathbf{x}) \,\mathcal{M}(G - H - \overline{M}_H, \mathbf{x}),\tag{1}$$

where the summation is over every matching M_H of H.

Proof. Let M_G be a matching of G which induces a (fixed) matching M_H on H, *i.e.*, M_G contains exactly M_H and no other edges from H. Then $M_G(\mathbf{x}) = M_H(\mathbf{x}) M(\mathbf{x})$ where M is a matching of G with no edges in H, and also with no edges in \overline{M}_H or else M_G would not be a matching. Hence, M is a matching of $G - H - \overline{M}_H$, *i.e.*, $M(\mathbf{x})$ is a term of $\mathcal{M}(G - H - \overline{M}_H, \mathbf{x})$. So $M_H(\mathbf{x}) \mathcal{M}(G - H - \overline{M}_H, \mathbf{x})$ is the sum of the weights of all the matchings in G which induce M_H on H.

Now every matching in *G* induces some matching on *H*, so we may sum over all matchings in *H* to give (1). ■

Theorem 1.1 extends known facts about matching polynomials, *e.g.*, see Theorem 1 of Farrell [1] for the case where *H* is a single edge. We have the corresponding:

Corollary 1.2. Let G be a graph labelled as above, and let H = e labelled with x be an edge of G. Then

$$\mathcal{M}(G, \mathbf{x}) = \mathcal{M}(G - e, \mathbf{x}) + x \,\mathcal{M}(G - e - \overline{e}, \mathbf{x}).$$
⁽²⁾

Proof. The result comes from (1) since H = e has just two matchings: the empty matching M_{\emptyset} with weight $M_{\emptyset}(\mathbf{x}) = 1$, and the matching e with weight $M_e(\mathbf{x}) = \mathbf{x}$.

Notation. Throughout this paper we use P_m to denote the path with *m* vertices and m - 1 edges.

Fix *i* and *j* where $1 \le i \le j \le t$. Consider the path P_{j-i+2} with its j - i + 1 edges labelled from the ordered set $\{x_i, \ldots, x_j\}$, the first edge receiving label x_i , and the last x_j ; see Fig. 1.

Fig. 1. The labelled path P_{j-i+2} with matching polynomial $\phi_{i,j}$.

The pair $x_s x_{s+1}$ for any fixed *s* with $i \le s \le j-1$ is called a *consecutive* pair. A monomial from the ordered set $\{x_i, \ldots, x_j\}$ that contains no consecutive pairs is a *non-consecutive monomial*, an *nc*-monomial. Note that the empty monomial is an *nc*-monomial that we denote by 1.

Let $\phi_{i,j}$ be the sum of all *nc*-monomials in the ordered variables $\{x_i, \ldots, x_j\}$. Then $\phi_{i,j} = \mathcal{M}(P_{j-i+2}, \mathbf{x})$ is the matching polynomial of the labelled path P_{j-i+2} . We call the functions $\phi_{i,j}$ elementary non-consecutive functions, and for any $i \ge 1$ define the initial values

$$\phi_{i,i-2} = \phi_{i,i-1} = 1. \tag{3}$$

These initial values ensure that the following recurrence is valid for any *j* with $i \le j \le t$.

Theorem 1.3. For a fixed *i* and *j* with $1 \le i \le j \le t$ and the initial values in (3), we have

$$\phi_{i,j} = \phi_{i,j-1} + x_j \,\phi_{i,j-2}. \tag{4}$$

Proof. Let *e* be the rightmost edge of $G = P_{j-i+2}$ shown in Fig. 1, and apply (2).

Example 1. For arbitrary *i* we have

$$\begin{split} \phi_{i,i} &= 1 + x_i, \qquad \phi_{i,i+1} = 1 + x_i + x_{i+1}, \\ \phi_{i,i+2} &= 1 + x_i + x_{i+1} + x_{i+2} + x_i x_{i+2}, \\ \phi_{i,i+3} &= 1 + x_i + x_{i+1} + x_{i+2} + x_{i+3} + x_i x_{i+2} + x_i x_{i+3} + x_{i+1} x_{i+3}. \end{split}$$

Example 2. For arbitrary *i*, putting j = i - 1 and j = i - 2 in Recurrence (4) and using (3) give

$$\phi_{i,i-3} = 0$$
 and $\phi_{i,i-4} = \frac{1}{x_{i-2}}$.

In the second equation, if i = 1 we replace x_{-1} by x_{t-1} , and if i = 2 we replace x_0 by x_t .

Consider Recurrence (4). It is convenient to work with a basis of solutions to this recurrence. Denote the first fundamental solution by $f_{i,j}$ and the second by $g_{i,j}$, with initial values

$$f_{i,i-2} = 0, \quad f_{i,i-1} = 1 \text{ and } g_{i,i-2} = 1, \quad g_{i,i-1} = 0.$$
 (5)

So

 $\phi_{i,i-2} = f_{i,i-2} + g_{i,i-2}$ and $\phi_{i,i-1} = f_{i,i-1} + g_{i,i-1}$.

Now, from Recurrence (4) and strong induction on *j*, we have (6) below for all *j* with $i \le j \le t$

$$\phi_{i,j} = f_{i,j} + g_{i,j}.$$
(6)

$$\phi_{i,j} = \phi_{i+1,j} + x_i \phi_{i+2,j}.$$
(7)

Eq. (7) comes from decomposing $\phi_{i,j}$ at the leftmost edge of P_{j-i+2} , whose label is x_i , *i.e.*, decomposing $\phi_{i,j}$ at x_i ; see Corollary 1.2. These two equations suggest that the fundamental solutions are given by

 $f_{i,j} = \phi_{i+1,j}$ and $g_{i,j} = x_i \phi_{i+2,j}$.

This is indeed the case:

Lemma 1.4. For any *j* with $i \le j \le t$ we have

(i) $f_{i,j} = \phi_{i+1,j}$, (ii) $g_{i,j} = x_i \phi_{i+2,j}$.

Fig. 2. (a) The labelled path with matching polynomial $f_{i,j}$. (b) The labelled path with matching polynomial $\frac{g_{i,j}}{y_i}$.

Proof. We need only prove (i) because of (6) and (7) above.

From (5) we have $f_{i,i-2} = 0$ and from Example 2 we have $\phi_{i+1,i-2} = 0$; thus $f_{i,i-2} = \phi_{i+1,i-2}$. Similarly, from (5) and (3), we have $f_{i,i-1} = \phi_{i+1,i-1}$. So both $f_{i,j}$ and $\phi_{i+1,j}$ have the same initial values at j = i - 2 and j = i - 1 and they both satisfy Recurrence (4), so they are equal for any j with $i \le j \le t$.

Thus we know combinatorially what the two fundamental solutions to Recurrence (4) are. The first, $f_{i,j}$, is the matching polynomial of the path shown in Fig. 2(a); the second, $g_{i,j}$, is $x_i \times$ the matching polynomial of the path in Fig. 2(b).

Example 3. For arbitrary *i* we have

 $\begin{array}{ll} f_{i,i} = 1, & g_{i,i} = x_i, \\ f_{i,i+1} = 1 + x_{i+1}, & g_{i,i+1} = x_i, \\ f_{i,i+2} = 1 + x_{i+1} + x_{i+2}, & g_{i,i+2} = x_i + x_i x_{i+2}. \end{array}$

Now arrange the variables $\{x_i, \ldots, x_j\}$ clockwise around a circle. Thus x_i and x_j are consecutive. Call a pair $x_s x_{s'}$ consecutive cyclic if x_s and $x_{s'}$ are consecutive on this circle. Call a monomial from $\{x_i, \ldots, x_j\}$ a non-consecutive cyclic monomial – ncc-monomial – if it contains no consecutive cyclic pairs. The empty monomial is an ncc-monomial that we denote by 1.

Let $\tau_{i,j}$ be the sum of all *ncc*-monomials in the variables $\{x_i, \ldots, x_j\}$. Then, for $j \ge i+2$, $\tau_{i,j} = \mathcal{M}(C_{j-i+1}, \mathbf{x})$ is the matching polynomial of the labelled cycle C_{j-i+1} with j - i + 1 edges and j - i + 1 vertices, shown in Fig. 3; the cycle starts at the large vertex, and proceeds clockwise.

Fig. 3. The labelled cycle C_{i-i+1} with matching polynomial $\tau_{i,j}$.

For initial values let

$$\tau_{i,i-1} = 2,$$
 $\tau_{i,i} = 1,$ and $\tau_{i,i+1} = 1 + x_i + x_{i+1}.$

Lemma 1.5. For any *j* with $i \le j \le t$ we have

(i) $\tau_{i,j} = f_{i,j} + g_{i,j-1}$, (ii) $\phi_{i,j} - \tau_{i,j} = x_i x_j \phi_{i+2,j-2}$.

Proof. (i) We check this equality at j = i and j = i + 1 using (5), Example 3 and (8). For $j \ge i + 2$ we decompose $\tau_{i,j}$ at x_i yielding $\tau_{i,j} = \phi_{i+1,j} + x_i \phi_{i+2,j-1}$, which gives (i) via Lemma 1.4.

(ii) We check at j = i and j = i + 1 using Examples 1 and 2, and (8). For $j \ge i + 2$ the difference $\phi_{i,j} - \tau_{i,j}$ consists of all *nc*-monomials that contain the consecutive cyclic pair $x_i x_j$; clearly this is $x_i x_j \times$ the sum of all *nc*-monomials on $\{x_{i+2}, \ldots, x_{j-2}\}$, *i.e.*, $x_i x_j \phi_{i+2,j-2}$.

Example 4. For arbitrary *i* we have

 $\tau_{i,i+2} = 1 + x_i + x_{i+1} + x_{i+2},$ $\tau_{i,i+3} = 1 + x_i + x_{i+1} + x_{i+2} + x_{i+3} + x_i x_{i+2} + x_{i+1} x_{i+3}.$ (8)

2. Cyclically labelled paths; $\Phi_{i,Nt+j}$ and the (τ, Δ) -recurrence

Consider a path *P* and the ordered set of *t* labels $\{x_1, \ldots, x_t\}$. For a fixed *i*, where $1 \le i \le t$, and moving from left to right, label the first edge of *P* with x_i , the second with x_{i+1} , and so on until label x_t has been used; so the (t - i + 1)th edge receives label x_t . Then label edge t - i + 2 with x_1 , and edge t - i + 3 with x_2 , and so on ..., labelling cyclically with $\{x_1, \ldots, x_t\}$ until all edges have been labelled. Let the last edge receive label x_j , where $1 \le j \le t$. Suppose that $N \ge 0$ full cycles of labels $\{x_1, \ldots, x_t\}$ have been used beginning at edge t - i + 2. Then if j = t we call this path P(i, Nt), or if $1 \le j < t$ we call it P(i, Nt+j). This labelling is a cyclic labelling. The cyclically labelled path P(i, Nt+j) is shown in Fig. 4. Let $\Phi_{i,Nt+j}(x) = \Phi_{i,Nt+j}$ denote the matching polynomial of the path P(i, Nt + j).

Fig. 4. The cyclically labelled path P(i, Nt + j) with matching polynomial $\Phi_{i,Nt+j}$.

We define the initial conditions for $\Phi_{i,Nt+i}$ as

$$N = -1: \Phi_{i,-t+j} = \phi_{i,j}, \quad \text{for all } j \text{ with } 0 \le j \le t,$$
(9)

also N = 0 : $\Phi_{i,0t+j} = \Phi_{i,j}$.

In order to find $\phi_{i,j}$ if j < i we use the initial values for $\phi_{i,j}$ from (3) and push back Recurrence (4), as shown in Example 2.

Now $\Phi_{i,Nt+j}$ satisfies the same recurrence as that of $\phi_{i,j}$, Recurrence (4); the proof is similar, noting that x_0 must be replaced by x_t , and considering Nt - 1 as (N - 1)t + t - 1, etc.

Lemma 2.1. For any $N \ge -1$ and j with $0 \le j \le t$ we have

$$\Phi_{i,Nt+j} = \Phi_{i,Nt+j-1} + x_j \,\Phi_{i,Nt+j-2}. \quad \blacksquare \tag{10}$$

Notation. For i = 1 we write $\phi_{i,j} = \phi_{1,j} = \phi_j$ and $\phi_t = \phi$, also $\tau_{1,j} = \tau_j$ and $\tau_t = \tau$, and $f_{1,j} = f_j$, etc. Also let $\Delta = (-1)^t x_1 \cdots x_t$.

Lemma 2.2. For any $N \ge 0$ and any j with $0 \le j \le t$ we have

$$\Phi_{i,Nt+j} = \Phi_{i,Nt} f_j + \Phi_{i,Nt-1} g_j.$$
(11)

Proof. With N = 0 and j = 0 Eq. (11) is true using the initial values $f_0 = 1$ and $g_0 = 0$ of (5) with i = 1. Otherwise, consider the path P(i, Nt + j) of Fig. 4 and decompose its matching polynomial, $\Phi_{i,Nt+j}$, at the edge labelled x_1 marked with a *. This gives

$$\begin{split} \Phi_{i,Nt+j} &= \Phi_{i,Nt} \, \phi_{2,j} + x_1 \, \Phi_{i,Nt-1} \, \phi_{3,j} \\ &= \Phi_{i,Nt} \, f_j + \Phi_{i,Nt-1} \, g_j, \end{split}$$

using Lemma 1.4.

Now we define the second order (τ, Δ) -recurrence

$$\Theta_N = \tau \; \Theta_{N-1} - \Delta \; \Theta_{N-2}.$$

Let $G_N(\mathbf{x}) = G_N$ denote the first fundamental solution to this recurrence. We will evaluate G_N in Section 4. In Theorem 2.4 we show that, for a fixed *i* and *j*, $\Phi_{i,Nt+j}$ satisfies the (τ, Δ) -recurrence. First:

Lemma 2.3. For any $N \ge 1$ we have

(i)
$$\Phi_{i,Nt-1}f_t - \Phi_{i,Nt}f_{t-1} = \Delta \Phi_{i,(N-1)t-1},$$

(ii) $\Phi_{i,Nt-1}g_t - \Phi_{i,Nt}g_{t-1} = -\Delta \Phi_{i,(N-1)t}.$
(13)

Proof. (i) Using Recurrence (4) on f_t and on $\Phi_{i,Nt}$ (see Lemma 2.1), the left-hand side of (13) becomes

$$\Phi_{i,Nt-1} \{ f_{t-1} + x_t f_{t-2} \} - \{ \Phi_{i,Nt-1} + x_t \Phi_{i,Nt-2} \} f_{t-1} = -x_t \{ \Phi_{i,Nt-2} f_{t-1} - \Phi_{i,Nt-1} f_{t-2} \}.$$

The second factor in the right-hand side of this equation is the left-hand side of (13) with subscripts shifted down by 1. After *t* such iterations the left-hand side of (13) becomes

$$(-x_t)(-x_{t-1})\dots(-x_1)\{\Phi_{i,(N-1)t-1}f_0-\Phi_{i,(N-1)t}f_{-1}\}=\Delta\,\Phi_{i,(N-1)t-1},$$

using the initial values $f_0 = 1$ and $f_{-1} = 0$. The proof of (ii) is similar.

(12)

Now a main result: $\Phi_{i,Nt+j}$ satisfies the (τ, Δ) -recurrence.

Theorem 2.4. For any $N \ge 1$, and any fixed *i* with $1 \le i \le t$, and any fixed *j* with $0 \le j \le t$, we have

$$\Phi_{i,Nt+j} = \tau \, \Phi_{i,(N-1)t+j} - \Delta \, \Phi_{i,(N-2)t+j}. \tag{14}$$

Proof. Due to Recurrences (4) and (10) we need only show that (14) is true when j = t and t - 1. It will then be true for all j with $0 \le j \le t$ by pushing back Recurrence (10).

With $N \ge 1$ and j = t, Eq. (11) gives

$$\begin{split} \Phi_{i,Nt+t} &= \Phi_{i,Nt} f_t + \Phi_{i,Nt-1} g_t \\ &= \Phi_{i,Nt} f_t + \Phi_{i,Nt-1} g_t + \Phi_{i,Nt} g_{t-1} - \Phi_{i,Nt} g_{t-1} \\ &= \Phi_{i,Nt} f_t + \Phi_{i,Nt} g_{t-1} + \Phi_{i,Nt-1} g_t - \Phi_{i,Nt} g_{t-1} \\ &= \tau \ \Phi_{i,Nt} - \Delta \ \Phi_{i,(N-1)t}, \\ &= \tau \ \Phi_{i,(N-1)t+t} - \Delta \ \Phi_{i,(N-2)t+t}, \end{split}$$

using $\tau = \tau_t = f_t + g_{t-1}$ from Lemma 1.5(i), and Lemma 2.3(ii) at the fourth line. For j = t - 1 the proof is similar using Lemma 2.3(i).

3. Matrix formulation of recurrences

Here we use matrices to give another proof that $\Phi_{i,Nt+j}$ satisfies the (τ, Δ) -recurrence, and prepare for the evaluation of G_N in Section 4.

Recall from Section 1 that $f_{i,j}$ and $g_{i,j}$ are the 2 fundamental solutions to Recurrence (4). Now define the matrix

$$X_{i,j} = \begin{pmatrix} g_{i,j-1} & f_{i,j-1} \\ g_{i,j} & f_{i,j} \end{pmatrix}.$$

Then the recurrences for $f_{i,j}$ and $g_{i,j}$ can be written as:

$$X_{i,j} = \begin{pmatrix} 0 & 1 \\ x_j & 1 \end{pmatrix} \begin{pmatrix} g_{i,j-2} & f_{i,j-2} \\ g_{i,j-1} & f_{i,j-1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ x_j & 1 \end{pmatrix} X_{i,j-1}.$$
(15)

Consistent with (5) we have $X_{i,i-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$, the 2 × 2 identity matrix. Thus, for $j \ge i$, we have

$$X_{i,j} = \begin{pmatrix} 0 & 1 \\ x_j & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ x_{j-1} & 1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ x_i & 1 \end{pmatrix}.$$
 (16)

Let $\mathbf{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{e} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and let $\langle \cdot, \cdot \rangle$ denote the usual inner product, then for $j \ge i$, and using (6),

$$\phi_{i,j} = \langle X_{i,j} \mathbf{1}, \mathbf{e} \rangle. \tag{17}$$

As before if i = 1 we let $X_{1,j} = X_j$ and if j = t we let $X = X_t$, in particular,

$$X = \begin{pmatrix} g_{t-1} & f_{t-1} \\ g_t & f_t \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ x_t & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ x_{t-1} & 1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ x_1 & 1 \end{pmatrix}.$$
 (18)

For $N \ge 0$, from (10) we may also write

$$\begin{pmatrix} \boldsymbol{\Phi}_{i,Nt+j-1} \\ \boldsymbol{\Phi}_{i,Nt+j} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ x_j & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{\Phi}_{i,Nt+j-2} \\ \boldsymbol{\Phi}_{i,Nt+j-1} \end{pmatrix}$$

and then repeated use of (15) gives

$$\Phi_{i,Nt+j} = \langle X_j X^N X_{i,t} \mathbf{1}, \mathbf{e} \rangle.$$
⁽¹⁹⁾

Now using (16) and (18) we see that $X_j X^{-1} X_{i,t} = X_{i,j}$. So, using (17) and (9), we have

 $\langle X_j X^{-1} X_{i,t} \mathbf{1}, \mathbf{e} \rangle = \langle X_{i,j} \mathbf{1}, \mathbf{e} \rangle = \phi_{i,j} = \Phi_{i,-t+j},$

thus (19) is true for N = -1 also.

Theorem 3.1. For $N \ge -1$ we have

$$\Phi_{i,Nt+j} = \langle X_j X^N X_{i,t} \mathbf{1}, \mathbf{e} \rangle. \quad \blacksquare$$

From Lemma 1.5(i) and (16) we have the following forms for the trace and determinant of matrix $X_{i,j}$

$$\operatorname{tr}(X_{i,j}) = \tau_{i,j} \quad \text{and} \quad \operatorname{det}(X_{i,j}) = (-1)^{j-i+1} x_i \cdots x_j.$$

In particular, for matrix X from (18), we have

$$\operatorname{tr}(X) = \tau$$
 and $\operatorname{det}(X) = \Delta$.

Now let *Z* be any invertible 2 × 2 matrix with trace tr(*Z*) and determinant det(*Z*), and let *T* denote the transpose. Then the Cayley–Hamilton theorem says that $Z^2 = \text{tr}(Z) Z - \text{det}(Z) I$, so $Z^N = \text{tr}(Z) Z^{N-1} - \text{det}(Z) Z^{N-2}$, for $N \ge 1$. Let **u** and $\mathbf{v} \in \mathbf{R}^2$ and, for $N \ge -1$, define $\Psi_N = \langle Z^N \mathbf{u}, \mathbf{v} \rangle$. Then:

Lemma 3.2. For $N \ge 1$, Ψ_N satisfies the recurrence

 $\Psi_N = \operatorname{tr}(Z) \, \Psi_{N-1} - \det(Z) \, \Psi_{N-2},$

with initial conditions $\Psi_{-1} = \langle Z^{-1}\mathbf{u}, \mathbf{v} \rangle$ and $\Psi_0 = \langle Z^0\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$.

Now for $N \ge -1$,

$$\Phi_{i,Nt+j} = \langle X_j X^N X_{i,t} \mathbf{1}, \mathbf{e} \rangle = \langle X^N X_{i,t} \mathbf{1}, X_j^{\mathrm{T}} \mathbf{e} \rangle.$$

So, for $N \ge 1$, Lemma 3.2 with Z = X, $\mathbf{u} = X_{i,t}\mathbf{1}$, and $\mathbf{v} = X_i^T \mathbf{e}$, and (20), gives,

$$\Phi_{i,Nt+j} = \tau \ \Phi_{i,(N-1)t+j} - \Delta \ \Phi_{i,(N-2)t+j}.$$

This is a second proof that $\Phi_{i,Nt+i}$ satisfies the (τ, Δ) -recurrence.

4. The Symmetric Representation, MacMahon's Master Theorem and three expressions for G_N

Consider polynomials in the variables u_1, \ldots, u_d . We will work with the vector space whose basis elements are the homogeneous polynomials of degree N in these variables, *i.e.*, with

$$\{u_1^{n_1}\cdots u_d^{n_d} \mid n_1 + \cdots + n_d = N, \text{ each } n_\ell \ge 0\},\$$

this vector space has dimension $\binom{N+d-1}{N}$.

The symmetric representation of a $d \times d$ matrix $A = (a_{\ell \ell'})$ is the action on polynomials induced by:

$$u_1^{n_1}\cdots u_d^{n_d} \to v_1^{n_1}\cdots v_d^{n_d},$$

where

$$v_\ell = \sum_{\ell'} a_{\ell\ell'} u_\ell$$

or, more compactly, v = Au. That is, define the matrix element $\binom{m_1, \dots, m_d}{n_1, \dots, n_d}_A$ to be the coefficient of $u_1^{n_1} \cdots u_d^{n_d}$ in $v_1^{m_1} \cdots v_d^{m_d}$. Then, for a fixed (m_1, \dots, m_d) , we have

$$v_1^{m_1} \cdots v_d^{m_d} = \sum_{(n_1, \dots, n_d)} \binom{m_1, \dots, m_d}{n_1, \dots, n_d}_A u_1^{n_1} \cdots u_d^{n_d}.$$
(21)

Observe that the total degree $N = |n| = \sum n_{\ell} = |m| = \sum m_{\ell}$, *i.e.*, homogeneity of degree N is preserved. We use multi-indices: $m = (m_1, \ldots, m_d)$ and $n = (n_1, \ldots, n_d)$. Then, for a fixed m, (21) becomes

$$v^m = \sum_n \left\langle {m \atop n} \right\rangle_A u^n.$$

Successive application of *B* then *A* shows that this is a homomorphism of the multiplicative semi-group of square $d \times d$ matrices into the multiplicative semi-group of square $\binom{N+d-1}{N} \times \binom{N+d-1}{N}$ matrices.

Proposition 4.1. Matrix elements satisfy the homomorphism property

$$\binom{m}{n}_{AB} = \sum_{k} \binom{m}{k}_{A} \binom{k}{n}_{B}$$

(20)

Proof. Let v = (AB)u and w = Bu. Then,

. .

$$w^{m} = \sum_{n} {\binom{m}{n}}_{AB} u^{n}$$
$$= \sum_{k} {\binom{m}{k}}_{A} w^{k}$$
$$= \sum_{n} \sum_{k} {\binom{m}{k}}_{A} {\binom{k}{n}}_{B} u^{n}. \quad \blacksquare$$

Definition. Fix the degree $N = \sum n_{\ell} = \sum m_{\ell}$. Define $\operatorname{tr}_{\operatorname{Sym}}^{N}(A)$, the symmetric trace of A in degree N, as the sum of the diagonal elements $\binom{m}{n}_{A}$, *i.e.*,

$$\operatorname{tr}_{\operatorname{Sym}}^{N}(A) = \sum_{m} \left\langle \begin{matrix} m \\ m \end{matrix} \right\rangle_{A}.$$

Equality such as $tr_{Sym}(A) = tr_{Sym}(B)$ means that the symmetric traces are equal in every degree $N \ge 0$.

Remark. The action defined here on polynomials is equivalent to the action on symmetric tensor powers, see Fulton and Harris [2], pp. 472–5.

Now it is straightforward to see directly (cf. the diagonal case shown in Corollary 4.3) that if *A* is upper-triangular, with eigenvalues $\lambda_1, \ldots, \lambda_d$, then $\operatorname{tr}^N_{\operatorname{Sym}}(A) = h_N(\lambda_1, \ldots, \lambda_d)$, the Nth homogeneous symmetric function. The homomorphism property, Proposition 4.1, shows that $\operatorname{tr}^N_{\operatorname{Sym}}(AB) = \operatorname{tr}^N_{\operatorname{Sym}}(BA)$, and that similar matrices have the same trace. Again by the homomorphism property, if two $d \times d$ matrices are similar, $A = MBM^{-1}$, then that relation extends to their respective symmetric representations in every degree. Recall that any matrix is similar to an upper-triangular one with the same eigenvalues. Thus,

Theorem 4.2 (Symmetric Trace Theorem (See pp. 51–2 of Springer [5])). We have

$$\frac{1}{\det(I-cA)} = \sum_{N=0}^{\infty} c^N \operatorname{tr}_{\operatorname{Sym}}^N(A).$$

Proof. With λ_{ℓ} denoting the eigenvalues of *A*,

$$\frac{1}{\det(I - cA)} = \prod_{\ell} \frac{1}{1 - c\lambda_{\ell}}$$
$$= \sum_{N=0}^{\infty} c^{N} h_{N}(\lambda_{1}, \dots, \lambda_{d})$$
$$= \sum_{N=0}^{\infty} c^{N} \operatorname{tr}_{\operatorname{Sym}}^{N}(A). \quad \blacksquare$$

As a Corollary we have MacMahon's Master Theorem, which we express in the above terminology.

Corollary 4.3 (*MacMahon's Master Theorem*). The diagonal matrix element ${m \choose m}_A$ is the coefficient of $u^m = u_1^{m_1} \cdots u_d^{m_d}$ in the expansion of det $(I - UA)^{-1}$ where $U = \text{diag}(u_1, \ldots, u_d)$ is the diagonal matrix with entries u_1, \ldots, u_d on the diagonal. **Proof.** From Theorem 4.2, with c = 1, we want to calculate the symmetric trace of UA. By the homomorphism property,

$$\operatorname{tr}_{\operatorname{Sym}}^{N}(UA) = \sum_{m} \left\langle {m \atop m} \right\rangle_{UA}$$
$$= \sum_{m} \sum_{k} \left\langle {m \atop k} \right\rangle_{U} \left\langle {k \atop m} \right\rangle_{A}.$$

Now, with v = Uw and $v_{\ell} = u_{\ell}w_{\ell}$, then

$$v^m = (u_1 w_1)^{m_1} \cdots (u_d w_d)^{m_d} = u^m w^m = \sum_k \left\langle {m \atop k} \right\rangle_U w^k,$$

i.e.,

$$\binom{m}{k}_U = u_1^{m_1} \cdots u_d^{m_d} \delta_{k_1 m_1} \cdots \delta_{k_d m_d}$$

so that

$$\operatorname{tr}^{N}_{\operatorname{Sym}}(UA) = \sum_{m} \left\langle {m \atop m} \right\rangle_{A} u^{m}. \quad \blacksquare$$

Now we restrict ourselves to d = 2, and return to the (τ, Δ) -recurrence. Recall, from (18), the 2×2 matrix

$$X = \begin{pmatrix} 0 & 1 \\ x_t & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ x_{t-1} & 1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ x_1 & 1 \end{pmatrix}$$
$$= \xi_t \xi_{t-1} \cdots \xi_1,$$

where $\xi_s = \begin{pmatrix} 0 & 1 \\ x_s & 1 \end{pmatrix}$ for $1 \le s \le t$. Let us modify ξ_s slightly by defining $\alpha_s = \begin{pmatrix} 0 & 1 \\ x_s & a_s \end{pmatrix}$ for $1 \le s \le t$, and calling

$$\overline{X} = \begin{pmatrix} 0 & 1 \\ x_t & a_t \end{pmatrix} \begin{pmatrix} 0 & 1 \\ x_{t-1} & a_{t-1} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ x_1 & a_1 \end{pmatrix}$$
$$= \alpha_t \alpha_{t-1} \cdots \alpha_1.$$

Let

 $\operatorname{tr}(\overline{X}) = \overline{\tau}$ and $\operatorname{det}(\overline{X}) = \overline{\Delta}$,

and let \overline{G}_N be the first fundamental solution to the $(\overline{\tau}, \overline{\Delta})$ -recurrence:

$$\Theta_{N} = \overline{\tau} \,\Theta_{N-1} - \Delta \,\Theta_{N-2}. \tag{22}$$

Then

$$\sum_{N=0}^{\infty} c^N \overline{G}_N = \frac{1}{1 - \overline{\tau}c + \overline{\Delta}c^2}$$
$$= \frac{1}{\det(I - c\overline{X})}$$
$$= \sum_{N=0}^{\infty} c^N \operatorname{tr}^N_{\operatorname{Sym}}(\overline{X}).$$

So

$$\overline{G}_{N} = \operatorname{tr}_{\operatorname{Sym}}^{N}(\overline{X}) = \sum_{m} \left\langle {m \atop m} \right\rangle_{\overline{X}} = \sum_{m} \left\langle {m \atop m} \right\rangle_{\alpha_{t}\alpha_{t-1}\cdots\alpha_{1}}.$$

We need to calculate the symmetric trace of \overline{X} and so identify \overline{G}_N . By the homomorphism property, we need only find the matrix elements for each matrix α_s , multiply together and take the trace.

For $\alpha_s = \begin{pmatrix} 0 & 1 \\ x_s & a_s \end{pmatrix}$ the mapping induced on polynomials is

$$v_1 = u_2, \quad v_2 = x_s u_1 + a_s u_2.$$
 (23)

For any integer $N \ge 0$, the expansion of $v_1^m v_2^{N-m}$ in powers of u_1 and u_2 is of the form

$$v_1^m v_2^{N-m} = \sum_n {\binom{m}{n}}_{\alpha_s} u_1^n u_2^{N-n}, \tag{24}$$

with the notation for the matrix elements abbreviated accordingly. From (23) and (24), the binomial theorem yields

$$\binom{m}{n}_{\alpha_{s}} = \binom{N-m}{n} x_{s}^{n} a_{s}^{N-m-n}.$$

)

For example, when t = 3, the product $\overline{X} = \alpha_3 \alpha_2 \alpha_1$ gives the matrix elements, for homogeneity of degree N,

$$\begin{pmatrix} m \\ n \end{pmatrix}_{\overline{X}} = \sum_{(k_2, k_3)} \begin{pmatrix} m \\ k_3 \end{pmatrix}_{\alpha_3} \begin{pmatrix} k_3 \\ k_2 \end{pmatrix}_{\alpha_2} \begin{pmatrix} k_2 \\ n \end{pmatrix}_{\alpha_1}$$

$$= \sum_{(k_2, k_3)} \begin{pmatrix} N - m \\ k_3 \end{pmatrix} \binom{N - k_3}{k_2} \binom{N - k_2}{n} x_1^n x_2^{k_2} x_3^{k_3} a_1^{N - k_2 - n} a_2^{N - k_3 - k_2} a_3^{N - k_3 - m}$$

Thus, the symmetric trace $\operatorname{tr}_{\operatorname{Sym}}^{N}(\overline{X}) = \sum_{m} {m \choose m}_{\overline{X}}$ is

$$\sum_{(k_1,k_2,k_3)} \binom{N-k_2}{k_1} \binom{N-k_3}{k_2} \binom{N-k_1}{k_3} x_1^{k_1} x_2^{k_2} x_3^{k_3} a_1^{N-k_1-k_2} a_2^{N-k_2-k_3} a_3^{N-k_3-k_1},$$

a cyclic binomial. In general, for a product of arbitrary length, the symmetric trace is given by the corresponding cyclic binomial.

Recall the recurrence

$$S_N(x) = 2x S_{N-1}(x) - S_{N-2}(x),$$
(25)

for $N \ge 1$. The Chebyshev polynomials of the first kind, $T_N = T_N(x)$, are solutions of this recurrence with initial conditions $T_{-1} = x$ and $T_0 = 1$, and the Chebyshev polynomials of the second kind, $U_N = U_N(x)$, are solutions with $U_{-1} = 0$ and $U_0 = 1$.

Combining these observations yields the main identities:

Theorem 4.4. Let $\overline{X} = \alpha_t \alpha_{t-1} \cdots \alpha_1$, with $\alpha_s = \begin{pmatrix} 0 & 1 \\ x_s & a_s \end{pmatrix}$ for $1 \le s \le t$, and let $\overline{\tau} = \operatorname{tr}(\overline{X})$ and $\overline{\Delta} = \operatorname{det}(\overline{X})$. Let \overline{G}_N denote the first fundamental solution to the $(\overline{\tau}, \overline{\Delta})$ -recurrence (22).

Then we have the **cyclic binomial identity**

$$\begin{split} \overline{G}_{N} &= \sum_{(k_{1},\ldots,k_{t})} \binom{N-k_{2}}{k_{1}} \binom{N-k_{3}}{k_{2}} \cdots \binom{N-k_{1}}{k_{t}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{t}^{k_{t}} a_{1}^{N-k_{1}-k_{2}} a_{2}^{N-k_{2}-k_{3}} \cdots a_{t}^{N-k_{t}-k_{1}} \\ &= \overline{\Delta}^{N/2} U_{N} \left(\frac{\overline{\tau}}{2\sqrt{\overline{\Delta}}}\right) \\ &= \sum_{k=0}^{\lfloor N/2 \rfloor} \binom{N-k}{k} \overline{\tau}^{N-2k} (-\overline{\Delta})^{k}, \end{split}$$

where U_N denotes the Chebyshev polynomial of the second kind.

Proof. The first equality follows by computing the symmetric trace for arbitrary *t* as indicated above. The second follows by induction on *N* using initial conditions $\overline{G}_{-1} = 0$ and $\overline{G}_0 = 1$, the $(\overline{\tau}, \overline{\Delta})$ -recurrence (22) and the Chebyshev recurrence (25). The third follows from the second by the symmetric trace theorem applied to $\overline{X} = \begin{pmatrix} 0 & 1 \\ -\overline{\Delta} & \overline{\tau} \end{pmatrix}$, the shift matrix for the

 $(\overline{\tau}, \overline{\Delta})$ -recurrence.

Note that $G_{-1} = 0$ and $G_0 = 1$, so $G_1 = \tau$ using the (τ, Δ) -recurrence. This also follows directly from the condition $k_{s-1} + k_s \leq 1$ for non-zero terms in the cyclic binomial summation above. Note also that setting all $a_s = 1$ above gives explicit expressions for G_N .

Example 5. Here N = 2 and t = 3. Let $A^{\text{Sym}(N)}$ denote the symmetric representation in degree N of the matrix A. From the above we have

$$G_{2} = \sum_{(k_{1},k_{2},k_{3})} {\binom{2-k_{2}}{k_{1}}} {\binom{2-k_{3}}{k_{2}}} {\binom{2-k_{1}}{k_{3}}} x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}}$$

= 1 + 2x_{1} + 2x_{2} + 2x_{3} + x_{1}^{2} + 2x_{1}x_{2} + 2x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3} + x_{3}^{2} + x_{1}x_{2}x_{3}}.

Also d = 2, so $\binom{N+d-1}{N} = 3$, and $\xi_s = \begin{pmatrix} 0 & 1 \\ x_s & 1 \end{pmatrix}$ for $1 \le i \le 3$, thus

$$X = \xi_3 \xi_2 \xi_1 = \begin{pmatrix} x_1 & x_2 + 1 \\ x_1 x_3 + x_1 & x_2 + x_3 + 1 \end{pmatrix}.$$

Now
$$\xi_s^{\text{Sym}(2)} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & x_s & 1 \\ x_s^2 & 2x_s & 1 \end{pmatrix}$$
 for $1 \le s \le 3$, and so

$$X^{\text{Sym}(2)} = \xi_3^{\text{Sym}(2)} \xi_2^{\text{Sym}(2)} \xi_1^{\text{Sym}(2)}$$

$$= \begin{pmatrix} x_1^2 & 2x_1x_2 + 2x_1 & x_2^2 + 2x_2 + 1 \\ x_1^2x_3 + x_1^2 & x_1x_2x_3 + 2x_1x_2 + 2x_1x_3 + 2x_1 & x_2^2 + x_2x_3 + 2x_2 + x_3 + 1 \\ x_1^2x_3^2 + 2x_1^2x_3 + x_1^2 & 2x_1x_2x_3 + 2x_1x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_1 & x_3^2 + 2x_2x_3 + x_2^2 + 2x_2 + 2x_3 + 1 \end{pmatrix}.$$

We check that $G_2 = tr(X^{Sym(2)})$, as indicated above.

We now give an expression for G_N as a quotient of two matching polynomials. This requires (29) from the next section.

Theorem 4.5. For $N \ge 0$ we have

$$G_N=\frac{\Phi_{1,Nt-2}}{\phi_{t-2}}.$$

Proof. Eq. (29) is

$$\Phi_{i,Nt+j} = \Phi_{i,j} \, \mathcal{G}_N - \Delta \, \phi_{i,j} \, \mathcal{G}_{N-1},\tag{26}$$

and from Example 2 we have $\phi_{i,i-3} = 0$. So (26) with j = i - 3 gives

$$G_{\rm N} = \frac{\Phi_{i,Nt+i-3}}{\Phi_{i,i-3}} = \frac{\Phi_{1,Nt-2}}{\phi_{t-2}},\tag{27}$$

the second equality comes from putting i = 1 in the first and then using (9) in the denominator.

Finally, consider the Fibonacci sequence $\{F_m \mid m \ge 1\} = \{1, 1, 2, 3, 5, 8, 13, 21, ...\}$. It is straightforward to show that the number of matchings in the path P_m with m - 1 edges is F_{m+1} . Now $\Phi_{1,Nt-2}$ is the matching polynomial of the path P(1, Nt - 2) which has (N + 1)t - 2 edges and so has $F_{(N+1)t}$ matchings. Similarly, the path whose matching polynomial is ϕ_{t-2} has F_t matchings. Now, evaluating (27) above with N = N - 1 and $x_s = 1$ for all $1 \le s \le t$, gives $F_t |F_{Nt}$, a well-known result on Fibonacci numbers, see pp. 148–9, Hardy and Wright [4]. Furthermore, we have

$$\frac{F_{(N+1)t}}{F_t} = \sum_{(k_1,\dots,k_t)} \binom{N-k_2}{k_1} \binom{N-k_3}{k_2} \cdots \binom{N-k_1}{k_t}$$

5. Examples: Paths, cycles and trees

In this section we express the matching polynomial of some well-known graphs in terms of the fundamental solutions to the (τ, Δ) -recurrence (12).

 G_N is the first fundamental solution to the (τ, Δ) -recurrence, so the initial values for G_N are

$$G_{-2} = \frac{-1}{\Delta}, \qquad G_{-1} = 0, \qquad G_0 = 1, \quad (\text{and} \quad G_1 = \tau).$$
 (28)

The second fundamental solution is $-\Delta G_{N-1}$.

5.1. Paths

 $\Phi_{i,Nt+j}$ satisfies the (τ, Δ) -recurrence whose fundamental solutions are G_N and $-\Delta G_{N-1}$, thus $\Phi_{i,Nt+j} = a G_N + b (-\Delta G_{N-1})$ for some *a* and *b*. The initial conditions for $\Phi_{i,Nt+j}$ from (9) and for G_N from (28) give $a = \Phi_{i,j}$ and $b = \Phi_{i,-t+j} = \phi_{i,j}$. Hence for $N \ge -1$,

$$\Phi_{i,Nt+j} = \Phi_{i,j} G_N - \Delta \phi_{i,j} G_{N-1}.$$
⁽²⁹⁾

Example 6. Here i = 2 and t = 3,

 $\begin{array}{ll} N = -1 & \phi_{2,2} = 1 + x_2, \\ N = 0 & \phi_{2,3} = 1 + x_2 + x_3, \\ N = 0 & \phi_{2,1} = 1 + x_1 + x_2 + x_3 + x_1 x_2, \\ N = 0 & \phi_{2,2} = 1 + x_1 + 2 x_2 + x_3 + x_1 x_2 + x_2^2 + x_2 x_3, \\ N = 1 & \phi_{2,3} = 1 + x_1 + 2 x_2 + 2 x_3 + x_1 x_2 + x_1 x_3 + x_2^2 + 2 x_2 x_3 + x_3^2 + x_1 x_2 x_3. \end{array}$

For $N \ge 1$ let $P_{Nt+j+1} = P(1, (N-1)t+j)$ be the path with Nt + j + 1 vertices and Nt + j edges, cyclically labelled starting with label x_1 . Let $\mathcal{P}_{Nt+j+1}(\mathbf{x}) = \mathcal{P}_{Nt+j+1} = \Phi_{1,(N-1)t+j}$ be its matching polynomial. With this notation any subscript on a P, \mathcal{P} , C, or C refers to the number of vertices in the appropriate graph.

Theorem 5.1. For any $N \ge 1$ we have

(i) $\mathcal{P}_{Nt+j+1} = \Phi_{1,j} G_{N-1} - \Delta \phi_j G_{N-2},$ (ii) $\mathcal{P}_{Nt+1} = G_N + (\phi - \tau) G_{N-1}.$

Proof. The proof of (i) is clear using (29) with i = 1 and N = N - 1. So (i) with j = 0 gives $\mathcal{P}_{Nt+1} = \Phi_{1,0} G_{N-1} - \Delta \phi_0 G_{N-2}$, but $\Phi_{1,0} = \Phi_{1,-t+t} = \phi_{1,t} = \phi_{1,0} = \phi_{1,0} = 1$, then using the (τ, Δ) -recurrence for G_N gives (ii).

Example 7. Here *t* = 3,

 $P_{1\cdot3+2+1} \bullet \underbrace{x_1}_{x_2} \underbrace{x_3}_{x_3} \underbrace{x_1}_{x_1} \underbrace{x_2}_{x_2} \bullet \underbrace{x_3}_{x_1} \underbrace{x_2}_{x_2} \bullet \underbrace{x_3}_{x_1} \underbrace{x_2}_{x_2} + \underbrace{x_1x_2}_{x_2} + \underbrace{x_1x_3}_{x_2} + \underbrace{x_2x_3}_{x_2} + \underbrace{x_1x_2x_3}_{x_2} \cdot \underbrace{x_3}_{x_2} \cdot \underbrace{x_3}_{x_2} \cdot \underbrace{x_3}_{x_3} \bullet \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \bullet \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \bullet \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \bullet \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_3}_{x_1} \cdot \underbrace{x_2}_{x_2} \cdot \underbrace{x_3}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_1}_{x_2} \cdot \underbrace{x_2}_{x_3} \cdot \underbrace{x_2}_{x_3} \cdot$

5.2. Cycles

Now we identify the first and the last vertices of the path P(i, Nt + j) to form the cyclically labelled cycle C(i, Nt + j) with matching polynomial $\Gamma_{i,Nt+j}(\mathbf{x}) = \Gamma_{i,Nt+j}$.

By decomposing $\Gamma_{i,Nt+i}$ at the 'first' edge labelled x_i we see that, *cf*. (29),

$$\begin{split} I_{i,Nt+j} &= \Phi_{i+1,Nt+j} + x_i \, \Phi_{i+2,Nt+j-1}, \\ &= \Phi_{i+1,j} \, G_N - \Delta \, \phi_{i+1,j} \, G_{N-1} + x_i \{ \Phi_{i+2,j-1} \, G_N - \Delta \, \phi_{i+2,j-1} \, G_{N-1} \}, \\ &= \{ \Phi_{i+1,j} + x_i \, \Phi_{i+2,j-1} \} \, G_N - \Delta \, \{ \phi_{i+1,j} + x_i \, \phi_{i+2,j-1} \} \, G_{N-1}, \\ &= \Gamma_{i,j} \, G_N - \Delta \, \tau_{i,j} \, G_{N-1}, \end{split}$$
(30)

using (29) at the second line, and decomposing $\Gamma_{i,j}$ and $\tau_{i,j}$ at the first edge x_i at the fourth line. Also, defining $\Gamma_{i,-t+j} = \tau_{i,j}$ ensures that (30) is true for all $N \ge -1$.

Example 8. Here i = 2 and t = 3 again,

$$\begin{split} N &= -1 & \tau_{2,2} = 1, \\ N &= 0 & \tau_{2,3} = 1 + x_2 + x_3, \\ N &= 0 & \Gamma_{2,1} = 1 + x_1 + x_2 + x_3, \\ N &= 0 & \Gamma_{2,2} = 1 + x_1 + 2x_2 + x_3 + x_1x_2 + x_2x_3, \\ N &= 1 & \Gamma_{2,3} = 1 + x_1 + 2x_2 + 2x_3 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2. \end{split}$$

Let $C_{Nt+j} = C(1, (N-1)t+j)$ be the cycle with Nt + j vertices and Nt + j edges in which labelling has started with x_1 , and let $C_{Nt+j}(\mathbf{x}) = C_{Nt+j} = \Gamma_{1,(N-1)t+j}$ be its matching polynomial. Compare with Theorem 5.1,

Theorem 5.2. For any N > 1 we have

(i) $C_{Nt+j} = \Gamma_{1,j} G_{N-1} - \Delta \tau_j G_{N-2},$ (ii) $C_{Nt} = G_N - \Delta G_{N-2}.$

Proof. The proof of (i) is clear from (30). Part (i) with j = 0 gives (ii), using $\Gamma_{1,0} = \tau$, and $\tau_0 = 2$ from (8).

Example 9. Here t = 3 again, the cycle starts at the large vertex and proceeds clockwise,

For a fixed $t \ge 1$ write $\widehat{\mathcal{P}}_N = \mathcal{P}_{Nt+1}$ and $\widehat{\mathcal{C}}_N = \mathcal{C}_{Nt}$. We now express G_N , $\widehat{\mathcal{P}}_N$, and $\widehat{\mathcal{C}}_N$ in terms of Chebyshev polynomials. It is well-known that, in one variable x, the matching polynomial of the path P_{2m} is related to U_{2m} as follows

$$\mathcal{M}(P_{2m}, x) = (-1)^m x^m U_{2m} \left(\frac{\mathrm{i}}{2\sqrt{x}}\right),$$

and, for P_{2m-1} we have

$$\mathcal{M}(P_{2m-1}, x) = (-1)^m x^m \left[U_{2m} \left(\frac{\mathrm{i}}{2\sqrt{x}} \right) + U_{2m-2} \left(\frac{\mathrm{i}}{2\sqrt{x}} \right) \right],$$

where i = $\sqrt{-1}$. Also, for the matching polynomials $\mathcal{M}(C_{2m})$ and $\mathcal{M}(C_{2m-1})$ of the cycles C_{2m} and C_{2m-1} there are similar formulas but with a factor of 2 on the right-hand side where *U* is replaced by *T*. See Theorem 3 of Godsil and Gutman [3], and Theorems 9 and 11 of Farrell [1].

Now Theorem 4.4 modified for G_N gives

$$G_N = \Delta^{N/2} U_N \left(\frac{\tau}{2\sqrt{\Delta}} \right). \tag{31}$$

Formulas for $\widehat{\mathcal{P}}_N$ and $\widehat{\mathcal{C}}_N$ in terms of U_N and T_N are given below, where the variable t is suppressed.

Theorem 5.3. For any $N \ge 1$ we have

(i)
$$\widehat{\mathcal{P}}_{N} = \Delta^{N/2} \left\{ U_{N} \left(\frac{\tau}{2\sqrt{\Delta}} \right) + \left(\frac{\phi - \tau}{\sqrt{\Delta}} \right) U_{N-1} \left(\frac{\tau}{2\sqrt{\Delta}} \right) \right\},\$$

(ii) $\widehat{\mathcal{C}}_{N} = 2\Delta^{N/2} T_{N} \left(\frac{\tau}{2\sqrt{\Delta}} \right).$

Proof. (i) This follows from Theorem 5.1(ii) and (31).

(ii) From Theorem 5.2(ii) we have $\hat{C}_N = G_N - \Delta G_{N-2}$, and now the well-known relation $2T_N = U_N - U_{N-2}$ between the two types of Chebyshev polynomials and (31) gives the result.

Expressions for G_N , $\widehat{\mathcal{P}}_N$, and $\widehat{\mathcal{C}}_N$ for N = 0, 1, 2, 3, and 4 are given below

$$\begin{array}{ll} G_0 = 1 & \widehat{\mathcal{P}}_0 = 1 & \widehat{\mathcal{C}}_0 = 2 \\ G_1 = \tau & \widehat{\mathcal{P}}_1 = \phi & \widehat{\mathcal{C}}_1 = \tau \\ G_2 = \tau^2 - \Delta & \widehat{\mathcal{P}}_2 = \phi\tau - \Delta & \widehat{\mathcal{C}}_2 = \tau^2 - 2\Delta \\ G_3 = \tau^3 - 2\tau\Delta & \widehat{\mathcal{P}}_3 = \phi\tau^2 - \phi\Delta - \tau\Delta & \widehat{\mathcal{C}}_3 = \tau^3 - 3\tau\Delta \\ G_4 = \tau^4 - 3\tau^2\Delta + \Delta^2 & \widehat{\mathcal{P}}_4 = \phi\tau^3 - 2\phi\tau\Delta - \tau^2\Delta + \Delta^2 & \widehat{\mathcal{C}}_4 = \tau^4 - 4\tau^2\Delta + 2\Delta^2. \end{array}$$

5.3. Trees

Here we consider cyclically labelled trees.

First let us extend the definition of a cyclically labelled path to include the path of Fig. 1, and the graph P_1 with one vertex and no edges.

A tree is a connected simple graph with no cycles, and a rooted tree is a tree in which some vertex of degree 1 has been specified to be the root, r. Given any rooted tree, let us label its edges by first labelling the edge incident to r with x_i . Then label all edges incident to this edge with x_{i+1} , then label all edges incident to these edges with x_{i+2} , and so on until label x_t has been used. Then label with the ordered set $\{x_1, \ldots, x_t\}$ in a similar manner to before, repeating cyclically until all edges have been labelled, ..., and so on. Let T denote such a cyclically labelled tree, see Fig. 5 for an example with i = 2 and t = 3.

We may draw any such *T* with *r* as the leftmost vertex. Then we place the other vertices of *T* from 'left to right' according to their distance from *r*, *i.e.*, if a vertex v_1 is at distance d_1 from *r* and vertex v_2 is at distance d_2 from *r* where $d_2 > d_1$, then v_2 is placed to the right of v_1 .

Fig. 5. A cyclically labelled tree with i = 2 and t = 3.

Paths in *T* are of two types: (I) A path that always moves from left to right (a path that always moves from right to left can be thought of one that always moves from left to right); such a path is clearly cyclically labelled; or (II) a path that moves first from right to left and then from left to right; such a path must pass through at least one vertex of degree ≥ 3 , *i.e.*, a vertex where *T* 'branches'.

Let *V* denote the set of vertices of degree ≥ 3 in *T*, and let $v \in V$ be arbitrary of degree deg(v). Vertex *v* has 1 edge to its left and deg $(v) - 1 \geq 2$ edges to its right. Let H_v be the subgraph of *T* that consists of the 'last' deg $(v) - 2 \geq 1$ edges as we rotate clockwise around *v*. Thus H_v is the star $K_{1, \deg(v)-2}$ centered at *v*. Set $H = \bigcup_{v \in V} H_v$.

Lemma 5.4. The forest T - H is a union of cyclically labelled paths.

Proof. We show that T - H does not contain a path of type (II). Suppose it does contain a path of type (II), then this path must pass through some vertex $v \in V$. So 2 edges incident to v and to the right of v lie in this path and so lie in T - H, a contradiction because T - H contains only 1 edge incident to v and to the right of v. Thus T - H is a union of paths of type (I), each of which is a cyclically labelled path.

Thus T - H is a union of cyclically labelled paths, and so $T - H - \overline{M}_H$ is also, for every matching M_H of H. We know the matching polynomial of any cyclically labelled path, so we can decompose the matching polynomial of T, $\mathcal{M}(T, \mathbf{x})$, at H, according to Theorem 1.1,

$$\mathcal{M}(T, \mathbf{x}) = \sum_{M_H} M_H(\mathbf{x}) \, \mathcal{M}(T - H - \overline{M}_H, \mathbf{x}),$$

where the summation is over every matching M_H of H.

Example 10. See Fig. 5.

Here $H = \bullet \xrightarrow{x_1 \ x_1} \bullet \xrightarrow{x_3} \bullet$

H has 6 matchings with weights: 1, x_1 , x_1 , x_3 , x_1x_3 , and x_1x_3 . Thus there are 6 terms in the decomposition, and $\mathcal{M}(T, \mathbf{x})$ is the sum of the following 6 terms:

$$1.\phi_{1}\phi_{2,3}\phi_{2,1} + x_{1}.\phi_{1}\phi_{2,2}\phi_{2,3} + x_{1}.\phi_{1}\phi_{2,2}\phi_{3,3} + x_{3}.\phi_{1}\phi_{2,3} + x_{1}x_{3}.\phi_{2,3} + x_{1}x_{3}.\phi_{3,3}$$

= 1 + 4x₁ + 2x₂ + 3x₃ + 3x₁² + 7x₁x₂ + 8x₁x₃ + x₂² + 3x₂x₃ + 2x₃²
+ 5x₁²x₂ + 3x₁²x₃ + 3x₁x₂² + 7x₁x₂x₃ + 4x₁x₃² + 2x₁²x₂² + 3x₁²x₂x₃.

Acknowledgements

We thank the referees for some helpful comments.

References

- [1] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory, Ser. B 27 (1979) 75-86.
- [2] W. Fulton, J. Harris, Representation Theory, A First Course, in: Graduate Texts in Mathematics, vol. 129, Springer-Verlag, 1991.
- [3] C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144.
- [4] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, 1979.
- [5] T.A. Springer, Invariant Theory, in: Lecture Notes in Mathematics, vol. 585, Springer-Verlag, 1977.