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0. Introduction

The matching polynomial of a graph is defined in Farrell [ 1]. Often in pure mathematics and combinatorics it is interesting
to consider cyclic structures, e.g., cyclic groups, cyclic designs, and circulant graphs. Here we consider the (multivariate)
matching polynomial of a graph whose edges have been cyclically labelled.

We concentrate mainly on paths, cycles and trees. To cyclically label a path with the ordered set of t labels {x4, ..., x;},
label the first edge with any x;, the second with x;, 1, and so on until label x, has been used, then start with x{, thenx,, ..., x;,
then x; again . . ., repeating cyclically until all edges have been labelled, with the last edge receiving label x;. Suppose that
N full cycles of labels {x1, ..., x;} have been used. Call the matching polynomial of this labelled path @; y;;;. We show, for
a fixed i and j, that @; n.; satisfies the following recurrence, the (z, A)-recurrence:

Pineti = T Pin—1)t+j — A Pi,(n—2)t 4>

where 7t is the sum of all non-consecutive cyclic monomials in the variables {xi, ..., x;} (see Section 1), and A =
(=1 xq - - - x;. We give two different proofs of this fact. The first one is a combinatorial/algebraic proof in Section 2 that
uses the following theorem concerning decomposing the matching polynomial M (G, X) of a graph.

Theorem. Let G be a labelled graph, H a subgraph of G, and My a matching of H, then
MG, %) =) My(®) M(G—H — My, ),
My

where the summation is over every matching My of H. The second proof (Section 3) uses a matrix formulation of the recurrences
that we develop.
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Let Gy denote the first fundamental solution to the (t, A)-recurrence; three different expressions for Gy are given in Section 4.
The first expression is a sum of cyclic binomials and uses the symmetric representation of matrices from Section 3; the second
involves Chebyshev polynomials of the second kind in the variables T and A; and the third is a quotient of two matching
polynomials, see Theorem 4.5.

In Section 5 we extend our results from paths to cycles and rooted trees; we find explicit forms for the matching
polynomial of a cyclically labelled cycle, and indicate how to find the matching polynomial of a cyclically labelled rooted
tree, again using the decomposition theorem stated above.

Many examples are given throughout the paper.

1. The multivariate matching polynomial of a graph, its decomposition; non-consecutive and non-consecutive cyclic
functions

For a fixed t > 1 we use multi-index notations: k = (kq, ..., k;), where each ks > 0,0 = (0, ..., 0), and variables
X = (X1, ..., X). The total degree of k is denoted by |k| = ky + - - - + k.

Let G be a finite simple graph with vertex set V(G) where |V(G)| > 1, and edge set E(G). We label these edges from the
t commutative variables {xi, ..., X;}, exactly one label per edge. A matching of G is a collection of edges, no two of which
have a vertex in common. A k-matching of G is a matching with exactly k; edges with label x;, for each s with 1 < s < t.If
Mg is a k-matching of G we define its weight to be

Mg (X) = x’;‘ e x’t“.
The empty matching of G, which contains no edges, is denoted by My; it is the unique 0-matching and its weight is My (x) = 1.
Define the multivariate matching polynomial, or simply, the matching polynomial, of G, by

MG, %) =) Mc(x),
Mg

where the summation is over every matching Mg of G.
Denote the number of k-matchings of G by a(G, k). Then an alternative definition of the multivariate matching polynomial
of Gis

M(G, X) = Z a(G, k)x’flu-xff.
(k] ..... k[)

The multivariate matching polynomial is a natural extension of the matching polynomial of Farrell [1]. Indeed, here with
t = landin[1] with w; = 1 and w, = x4, the polynomials are identical.

Let P; be the graph with one vertex and no edges, i.e., an isolated vertex; we define M(P;,Xx) = 1. Now suppose
G = GUnPy, wheren > 1,i.e., G is the disjoint union of G and n isolated vertices, then we define M (G, X) = M (G, X).

For any edge e € E(G), let e denote the set of edges that are incident to e; and for any subgraph H of G, let H = U, €.
Define My = #. Also let G — H be the graph obtained from G when all the edges of H are removed, so G — H has the same
vertex set as G.

Now let H be a fixed subgraph of G and let My be a matching of H. In the following theorem we express M (G, X) as a sum
of terms, each term containing the weight of a fixed matching, My (x), of H; we call this decomposing M (G, X) at H.

Theorem 1.1. Let G be a graph labelled as above, H a fixed subgraph of G, and My a matching of H. Then
M(G.X) =Y My(X) M(G — H — My, x), (1)
My
where the summation is over every matching My of H.

Proof. Let M¢ be a matching of G which induces a (fixed) matching My on H, i.e., Mg contains exactly My and no other
edges from H. Then Mg(X) = My (x) M(x) where M is a matching of G with no edges in H, and also with no edges in My
or else Mg would not be a matching. Hence, M is a matching of G — H — My, i.e., M(X) is a term of M(G — H — My, X). So
My (X) M(G — H — My, X) is the sum of the weights of all the matchings in G which induce My on H.

Now every matching in G induces some matching on H, so we may sum over all matchings in H to give (1). ®

Theorem 1.1 extends known facts about matching polynomials, e.g., see Theorem 1 of Farrell [1] for the case where H is
a single edge. We have the corresponding:

Corollary 1.2. Let G be a graph labelled as above, and let H = e labelled with x be an edge of G. Then
MG, X) = M(G—e€,X) + XxM(GC—e—e, X). (2)
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Proof. The result comes from (1) since H = e has just two matchings: the empty matching My with weight My (x) = 1, and
the matching e with weight Mo (x) = x. ®

Notation. Throughout this paper we use P, to denote the path with m vertices and m — 1 edges.

Fixiandjwhere 1 <i <j < t. Consider the path P,_;;, with its j — i 4 1 edges labelled from the ordered set {x;, . . ., X;},
the first edge receiving label x;, and the last x;; see Fig. 1.

€T; Tip1 Tit2 x5
. . .

Fig. 1. The labelled path P;_i;, with matching polynomial ¢; ;.

The pair x;x, 1 for any fixed s withi < s < j — 1is called a consecutive pair. A monomial from the ordered set {x;, ..., X;}
that contains no consecutive pairs is a non-consecutive monomial, an nc-monomial. Note that the empty monomial is an
nc-monomial that we denote by 1.

Let ¢;; be the sum of all nc-monomials in the ordered variables {x;, ..., x;}. Then ¢;; = M (Pj_i;2, X) is the matching
polynomial of the labelled path P_i;,. We call the functions ¢;; elementary non-consecutive functions, and for any i > 1
define the initial values

iz =¢ii-1=1. (3)
These initial values ensure that the following recurrence is valid for any j withi <j <'t.
Theorem 1.3. For a fixed i and j with 1 < i < j < t and the initial values in (3), we have

ij = dij—1+ X Pij2. (4)

Proof. Let e be the rightmost edge of G = P,_;;, shown in Fig. 1,and apply (2). =

Example 1. For arbitrary i we have
¢ii =1+x;, Giit1 = 1+ X + Xy,
Giiv2 = 1+ X + Xip1 + Xip2 + XiXij2,
Giirs = 1+ X + Xip1 + X2 + Xip3 + XiXigp2 + XiXit3 + Xip1Xit3.

Example 2. For arbitrary i, puttingj = i — 1and j = i — 2 in Recurrence (4) and using (3) give
1

¢iic3=0 and ¢j; 4= .
Xi—2

In the second equation, ifi = 1 we replace x_1 by x;_1, and if i = 2 we replace x, by x;.

Consider Recurrence (4). It is convenient to work with a basis of solutions to this recurrence. Denote the first fundamental
solution by f; ; and the second by g; ;, with initial values

fiica=0,  fii1=1 and g;2=1 gi1=0. (5)
So
Gii2 =fii2+&i2 and ¢ii1=fii1+&ii-1-
Now, from Recurrence (4) and strong induction on j, we have (6) below for all j withi <j <t
bij = fij + &ij- (6)
Oij = Gir1j + Xi Piya - (7)

Eq. (7) comes from decomposing ¢;; at the leftmost edge of P;_i;,, whose label is x;, i.e., decomposing ¢;; at x;; see
Corollary 1.2. These two equations suggest that the fundamental solutions are given by

fij =¢iy1; and g =X dipn.
This is indeed the case:

Lemma 1.4. For any j withi <j <t we have

(i) fij = bir1j

(ii) gij = X Piy2 .
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Fig. 2. (a)The labelled path with matching polynomial f; ;. (b) The labelled path with matching polynomial g;—f

Proof. We need only prove (i) because of (6) and (7) above.

From (5) we have f;;_, = 0 and from Example 2 we have ¢iy1;_2 = 0; thus f;i_» = ¢iy1,i_2. Similarly, from (5) and (3),
we have f; i_1 = ¢it1,i—1. So both f; j and ¢;;1 ; have the same initial values at j = i — 2 and j = i — 1 and they both satisfy
Recurrence (4), so they are equal forany jwithi <j<t. ®

Thus we know combinatorially what the two fundamental solutions to Recurrence (4) are. The first, f; ;, is the matching
polynomial of the path shown in Fig. 2(a); the second, g; j, is x; x the matching polynomial of the path in Fig. 2(b).

Example 3. For arbitrary i we have

fiir=1, 8i.i = Xi,
fiip1 = 14+ x4, 8ii+1 = Xi,
fiivz = 1+ X1 + X2, &iit2 = Xi + XiXij2.

Now arrange the variables {x;, . . ., x;} clockwise around a circle. Thus x; and x; are consecutive. Call a pair x;xy' consecutive
cyclic if x; and Xy are consecutive on this circle. Call a monomial from {x;, . . ., X;} a non-consecutive cyclic monomial - ncc-
monomial - if it contains no consecutive cyclic pairs. The empty monomial is an ncc-monomial that we denote by 1.

Let 7;; be the sum of all ncc-monomials in the variables {x;, . .., x;}. Then, forj > i4-2, 7;; = M(Cj_;+1, X) is the matching
polynomial of the labelled cycle C;_;;; withj — i+ 1 edges and j — i + 1 vertices, shown in Fig. 3; the cycle starts at the large
vertex, and proceeds clockwise.

Fig. 3. The labelled cycle G_;;; with matching polynomial 7; ;.

For initial values let

Tiio1 = 2, Ti=1, and T =1+%+X1. (8)

Lemma 1.5. For anyjwithi <j <t we have

(1) @iy =fij + &ij-1,

(il) ¢ij — Tij = XiXj Pir2j—2-

Proof. (i) We check this equality atj = iand j = i + 1 using (5), Example 3 and (8). For j > i + 2 we decompose 7;; at x;
yielding 7;j = ¢iy1 + X; ¢piy2,j—1, which gives (i) via Lemma 1.4.

(ii) We check atj = iandj = i 4 1 using Examples 1 and 2, and (8). For j > i + 2 the difference ¢; ; — 7; j consists of all nc-
monomials that contain the consecutive cyclic pair x;x;; clearly this is x;x; x the sum of all nc-monomials on {xi2, ..., Xj_2},
ie., XiXj ¢1‘+2,]‘_2. |

Example 4. For arbitrary i we have

Tiiv2 = 1+ X + X1 + Xigo,
Tiir3 = 1+ X + X1 + Xip2 + X3 + XX + Xip1Xigs3.
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2. Cyclically labelled paths; @; n;,; and the (7, A)-recurrence

Consider a path P and the ordered set of t labels {x1, ..., x;}. For a fixed i, where 1 < i < t, and moving from left to right,
label the first edge of P with x;, the second with x; 1, and so on until label x, has been used; so the (t — i+ 1)th edge receives
label x;. Then label edge t — i 4+ 2 with x;, and edge t — i + 3 with x,, and so on .. ., labelling cyclically with {xq, ..., x;}
until all edges have been labelled. Let the last edge receive label x;, where 1 < j < t. Suppose that N > 0 full cycles of labels
{x1, ..., x:} have been used beginning at edge t — i + 2. Then if j = t we call this path P(i, Nt), orif 1 < j < t we call it
P(i, Nt +j). This labelling is a cyclic labelling. The cyclically labelled path P(i, Nt 4-j) is shown in Fig. 4. Let @; n¢1j(X) = @; ne+
denote the matching polynomial of the path P(i, Nt + j).

Nt edges

Fig. 4. The cyclically labelled path P(i, Nt + j) with matching polynomial ®; y;.

We define the initial conditions for @; n¢; as
N=-1: @iY,tJrj = ¢i.j7 forallj with0 <j <'t, (9)
alsoN =0: (pi,0t+j = (p,"j.

In order to find ¢; ; if j < i we use the initial values for ¢; ; from (3) and push back Recurrence (4), as shown in Example 2.
Now @; n:4; satisfies the same recurrence as that of ¢;;, Recurrence (4); the proof is similar, noting that x, must be
replaced by x;, and considering Nt — 1as (N — 1)t +t — 1, etc.

Lemma 2.1. Forany N > —1and jwith0 < j < t we have

Dinetj = Pinetj—1 + X Pineyj—z. W (10)

Notation. For i = 1 we write ¢;; = ¢1; = ¢jand ¢, = ¢,alsor;; = r7and 1, = 71, and f;; = f, etc. Also let
A= (=1"x--%,.

Lemma 2.2. Forany N > 0 and any j with 0 < j < t we have
Dinetj = Pine fj + Pine—18. (11)

Proof. With N = 0andj = 0 Eq.(11) is true using the initial values fy = 1and go = 0 of (5) with i = 1. Otherwise, consider
the path P(i, Nt + j) of Fig. 4 and decompose its matching polynomial, ®; n.j, at the edge labelled x; marked with a *. This
gives
Pinetj = Pine P2 + X1 Pine—1 03,
= Pinefi + Pine-18
usingLemma 1.4. W
Now we define the second order (t, A)-recurrence
@N = 'L'@N,] —A@Nfz. (12)
Let Gy (X) = Gy denote the first fundamental solution to this recurrence. We will evaluate Gy in Section 4.
In Theorem 2.4 we show that, for a fixed i and j, ®; ;- satisfies the (t, A)-recurrence. First:

Lemma 2.3. For any N > 1 we have
() Pine—1ft — Pincfi-1 = A Py (v—1)t—1, (13)
(ii) Pine—18 — PiNe Ge—1 = —A D (N—1)c-

Proof. (i) Using Recurrence (4) on f; and on &; y¢ (see Lemma 2.1), the left-hand side of (13) becomes

Dine—1 fi—1 + X fr—2} — {Pine—1 + X Pine—2} fi—1 = =X APine—2 fi—1 — Pine—1fi—2}

The second factor in the right-hand side of this equation is the left-hand side of (13) with subscripts shifted down by 1. After
t such iterations the left-hand side of (13) becomes

(=x0) (=Xc—1) ... (=X DPi, n—1y=1Jo — Pi.(n—1)e f-1} = A i, (n—1)e—1,

using the initial values fy = 1 and f_; = 0. The proof of (ii) is similar. ™
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Now a main result: @; y.; satisfies the (t, A)-recurrence.

Theorem 2.4. For any N > 1, and any fixed i with 1 < i < t, and any fixed j with 0 < j < t, we have
Pinetj = T Pi,(n—1)t4j — A Pi,(v—2)t4j- (14)
Proof. Due to Recurrences (4) and (10) we need only show that (14) is true when j = t and t — 1. It will then be true for all

jwith 0 <j <t by pushing back Recurrence (10).
With N > 1andj = t, Eq.(11) gives

Dineyt = D; ne fr + D Ne—1 8t
= Din St + Dine—18t + Pine 8e—1 — Pine &1
= Din fr + Dine 8t—1+ Pine—18 — Pine &1
=TPin — ADi(n_1)t»
= TP (N-1)e+t — A Pi (N-2)t+t»
using T = 7, = f; + g1 from Lemma 1.5(i), and Lemma 2.3(ii) at the fourth line. For j = t — 1 the proof is similar using
Lemma 2.3(i)). W

3. Matrix formulation of recurrences

Here we use matrices to give another proof that @; y.; satisfies the (z, A)-recurrence, and prepare for the evaluation of
Gy in Section 4.
Recall from Section 1 that f; j and g; ; are the 2 fundamental solutions to Recurrence (4). Now define the matrix

_ (&ii-1 fij
Xij= .
M ( g i )

Then the recurrences for f; ; and g; ; can be written as:

0 1)\ (g2 fij2 0 1
Xij = ’ ’ = Xij—1. 15
Y (Xj ]) (gi,j—l fij—1 X 1)t (15)

Consistent with (5) we have X; ;1 = ((1] (1)) = I, the 2 x 2 identity matrix. Thus, for j > i, we have

0 1\(0 1 01
wo= ()G )0 )

Let1 = (}) ande = (?) and let (-, -) denote the usual inner product, then forj > i, and using (6),

¢ = (Xij1, e). (17)
As before ifi = 1 welet Xq; = X;j and if j = t we let X = X;, in particular,

&-1 fia 0 1 0 1 0 1
X = = . 18
(gr ﬁ) (xf 1) \x_1 1 x; 1 (18)
For N > 0, from (10) we may also write
Pinej-1) _ (0 1Y (Pinetj-2
Di Nt+j X 1)\ Pinetj-1)"

and then repeated use of (15) gives

Pinesj = (XX X1, €). (19)
Now using (16) and (18) we see that )(jX”XiJ = X;j. So, using (17) and (9), we have

XXX 1, €) = (Xij1, ) = ¢y = Dy,
thus (19) is true for N = —1 also.
Theorem 3.1. For N > —1 we have

Dinesj = (XiX"Xic1,€). W
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From Lemma 1.5(i) and (16) we have the following forms for the trace and determinant of matrix X; ;
tr(Xij) = t;; and det(X;j)) = (—1)"Flx...x.
In particular, for matrix X from (18), we have
tr(X) =17 and det(X) = A. (20)
Now let Z be any invertible 2 x 2 matrix with trace tr(Z) and determinant det(Z), and let T denote the transpose. Then
the Cayley-Hamilton theorem says that Z?> = tr(Z) Z — det(Z) I, so ZV = tr(Z) ZN~1 — det(Z) ZN2, for N > 1. Letu and
v e R and, for N > —1, define ¥y = (ZNu, v). Then:
Lemma 3.2. For N > 1, Wy satisfies the recurrence
Uy = tr(Z) ¥n_1 — det(Z) Yn_a,
with initial conditions ¥_; = (Z"'u, v) and ¥, = (Z°u,v) = (u,v). N
Now for N > —1,
Pineyj = (XXX 1, €) = (XX (1, X]e).
So,forN > 1,Llemma 3.2withZ = X,u = X;;1,andv = XjTe, and (20), gives,
Pinetj = T Pin—1t+j — A Pi,(n—2)t+j-

This is a second proof that @; y..; satisfies the (t, A)-recurrence.

4. The Symmetric Representation, MacMahon’s Master Theorem and three expressions for Gy

Consider polynomials in the variables uq, ..., ug. We will work with the vector space whose basis elements are the
homogeneous polynomials of degree N in these variables, i.e., with

- u} | ny4---+ng=N, eachn, > 0},

this vector space has dimension <N+1371 .

The symmetric representation of a d x d matrix A = (a,y ) is the action on polynomials induced by:

m nd n ngq
u1 ...ud _)U] '”vd’

where

Vg = E QggrUygr
[/

or, more compactly, v = Au. That is, define the matrix element <mn: """ :1:> to be the coefficient of u}! - - - uy? in v} - - - vy,
’ A

Then, for a fixed (my, ..., my), we have
mq mg __ mq, ..., My nq ng
vy e, 0 = E u; ---uf. 21
1 d <n1,...,nd B 1 d (21)

Observe that the total degree N = |n| = > _n, = |m| = )_my,, i.e., homogeneity of degree N is preserved. We use
multi-indices: m = (my, ..., mg) and n = (nq, ..., ng). Then, for a fixed m, (21) becomes

=2 (7w
n A
Successive application of B then A shows that this is a homomorphism of the multiplicative semi-group of square d x d

N+d—1
N

matrices into the multiplicative semi-group of square (N +1$71) X ( ) matrices.

Proposition 4.1. Matrix elements satisfy the homomorphism property

(o). =2 b,
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Proof. Let v = (AB)u and w = Bu. Then,

v = Z <7:>AB u"

-gf)»
xf e -

n k

Definition. Fix the degree N = > 'n, = ) m,. Define tr’s"ym (A), the symmetric trace of A in degree N, as the sum of the
. m .
diagonal elements <”>A' ie.,

i) = S (7)
A

m

Equality such as trsym(A) = trsym(B) means that the symmetric traces are equal in every degree N > 0.

Remark. The action defined here on polynomials is equivalent to the action on symmetric tensor powers, see Fulton and
Harris [2], pp. 472-5.

Now it is straightforward to see directly (cf. the diagonal case shown in Corollary 4.3) that if A is upper-triangular, with
eigenvalues A1, ..., Ag, then tryyrn (A) = hy(Aq, ..., Ag), the Nth homogeneous symmetric function. The homomorphism
property, Proposition 4.1, shows that tr’s"ym (AB) = trSNym(BA), and that similar matrices have the same trace. Again by the

homomorphism property, if two d x d matrices are similar, A = MBM !, then that relation extends to their respective
symmetric representations in every degree. Recall that any matrix is similar to an upper-triangular one with the same
eigenvalues. Thus,

Theorem 4.2 (Symmetric Trace Theorem (See pp. 51-2 of Springer [5])). We have

1 S NN
—_— = c trgy, (A).
det(I — cA) NXZQ sm (%)

Proof. With A, denoting the eigenvalues of A,
1 _ 1—[ 1
det(l —cA) 11 1—ch

CNhN(M, cos A

M

i
o

9

My, (A). m
N

I
<)

As a Corollary we have MacMahon’s Master Theorem, which we express in the above terminology.

Corollary 4.3 (MacMahon’s Master Theorem). The diagonal matrix element <Z>A is the coefficient of u™ = u'{” ‘.- uZ” in the
expansion of det(I — UA)~" where U = diag(uy, . . ., ug) is the diagonal matrix with entries uy, . . ., ug on the diagonal.

Proof. From Theorem 4.2, with ¢ = 1, we want to calculate the symmetric trace of UA. By the homomorphism property,

trlym (UA) = Z<$>
UA

m
-22{i,
a m Kk k o\,

Now, with v = Uw and v, = u,w,, then

m
" = (ww)™ - - (Ygwg)™ = u"w" = Z<k> W
X u
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ie.,
m
<k> = uTl o u;nd(skﬂm <+ Ogmy
U
so that
trgym (UA) = Z<$> TR |
m A

Now we restrict ourselves to d = 2, and return to the (t, A)-recurrence.
Recall, from (18), the 2 x 2 matrix

o 1\(0 1 0 1
= D))
= &&—1- - &1,

where & = (2 }) for 1 < s < t. Let us modify &; slightly by defining s = (fs a13> for 1 <s <t, and calling

¥ (0 1 0 1) (0 1
T\xe a )\ a4 X1

= 001" O,
Let
tr(X) =7 and det(X) = A,

and let Gy be the first fundamental solution to the (T, A)-recurrence:

Oy =T Oy_1 — AOy_,. (22)
Then
o0
— 1
ZCNGN == 7772
frard 1—-7c+ Ac
_ 1
 det(I — cX)
0 —
=Yy Mud,(X).
N=0
So

EN - tr’svym(Y) - Z<$>X - Z <$>a[at1“‘“l '

m m

We need to calculate the symmetric trace of X and so identify Gy. By the homomorphism property, we need only find
the matrix elements for each matrix o, multiply together and take the trace.

For o = (2 als) the mapping induced on polynomials is
v = Uy, Uy = Xs Uy + as Up. (23)
For any integer N > 0, the expansion of vﬁ"vlz\’_m in powers of u; and u, is of the form

o) = Z<1:> T T (24)

n

with the notation for the matrix elements abbreviated accordingly. From (23) and (24), the binomial theorem yields

N—m
=7
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For example, when t = 3, the product X = a3, gives the matrix elements, for homogeneity of degree N,

m\ m\ [ks\ [k
HEPH NN
X (ky,k3) a3 ay aq

N—m\ (N—k3\ (N—k; ky ks N—ky—n N—k3—ky N—k3—
= > ( Xixixgay 2 ey 0 Pdy oM
n

(oo K3 ka

Thus, the symmetric trace tr’s"ym(f )= <$>¥ is

N—kz N—k3 N—k1 —ky— —ky— —Kka—
Z < ] L ] x’;1X’2<2x1;3 a’]" kq kzale ky ’<3a13V k3 l<17
(krkgks) N <1 2 '3

a cyclic binomial. In general, for a product of arbitrary length, the symmetric trace is given by the corresponding cyclic
binomial.

Recall the recurrence
SN(X) = 2XSn_1(X) — Sn—2 (%), (25)

for N > 1. The Chebyshev polynomials of the first kind, Ty = Ty (x), are solutions of this recurrence with initial conditions
T_1 = xand Tp = 1, and the Chebyshev polynomials of the second kind, Uy = Uy(x), are solutions with U_; = 0 and
U =1

Combining these observations yields the main identities:

0

Theorem 4.4. Let X = a0y - - - o7, With g = (xs

als> for 1 <s <t andlet T = tr(X) and A = det(X). Let Gy denote the

first fundamental solution to the (T, A)-recurrence (22).
Then we have the cyclic binomial identity

— N —k N —k N —k ke ko ke
Gy Z ( . 2>< , 3)( . 1) xlilxgz--w’t“a’lv ke kzalz\l ky k3._.alt\l ke—ki1
(k1oke) 1 & t

yeees

Il Il
= ol
N ~

)
S
=
I
[\S]
= |
- o
= SN———"

&

=~

—~

>

=

where Uy denotes the Chebyshev polynomial of the second kind.

Proof. The first equality follows by computing the symmetric trace for arbitrary t as indicated above. The second follows

by induction on N using initial conditions G_; = 0 and Gy = 1, the (T, A)-recurrence (22) and the Chebyshev recurrence

(25). The third follows from the second by the symmetric trace theorem applied to X = (_OZ ;) the shift matrix for the

(T, A)-recurrence. M

Note that G_; = 0 and Gy = 1, s0 G; = t using the (7, A)-recurrence. This also follows directly from the condition
ks_1 + ks < 1 for non-zero terms in the cyclic binomial summation above. Note also that setting all a;, = 1 above gives
explicit expressions for Gy.

Example 5. Here N = 2 and t = 3. Let AY™®™) denote the symmetric representation in degree N of the matrix A. From the
above we have

2 — k2 2 — k3 2— kl ki ko k3
Z I K K X1 X'X3
(kq,k2,k3) “ 2 }

14+ 2x1 4+ 2x; + 2x3 + x% + 2x1xy + 2Xx1X3 + x% + 2x7x3 + x§ + X1X2X3.

G,

Alsod = 2, so (’”ﬁ”) =3,and & = (fs }) for 1 <i < 3, thus

_ _ X1 X2 +1
X =§366 = (x1x3 X Xo 4 X34 ]) .
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0o o0 1
Now &%Ym@ — (0 Xs 1) for 1 <s < 3,and so

x? 2xs 1

XSym@) — g)_—35ym(2) £ Sym(2) £ Sym(2)

xf 2X1X3 + 2Xq x% + 2x; + 1

= X%X3 + X% X1X2X3 + 2X1Xp + 2X1X3 + 2X; X% + XoX3 + 2% +x3 + 1

X335+ 2X5x3 + X5 2X1X0X3 + 2X105 + 2x1X%y + 4X1X3 + 2X1 X5 + 2x0X3 + %6 + 2xp + 2x3 + 1
We check that G, = tr(X%¥™®), as indicated above.

We now give an expression for Gy as a quotient of two matching polynomials. This requires (29) from the next section.

Theorem 4.5. For N > 0 we have

D1 Ni—
Gy = LN=2
$i—2

Proof. Eq.(29)is
DiNeyj = PijGy — AyjGn_1, (26)

and from Example 2 we have ¢; ;_3 = 0. So (26) withj = i — 3 gives

D; i D1 Ne—
GN _ i,Nt+i—3 — 1,Nt—2 i (27)
D3 br—2

the second equality comes from putting i = 1 in the first and then using (9) in the denominator. ®

Finally, consider the Fibonacci sequence {F, | m > 1} = {1, 1, 2, 3,5, 8, 13, 21, .. .}. It is straightforward to show that
the number of matchings in the path P, with m — 1 edges is Fy+1. Now @4 n:—» is the matching polynomial of the path
P(1, Nt — 2) which has (N 4 1)t — 2 edges and so has Fy1); matchings. Similarly, the path whose matching polynomial is
¢¢—> has F; matchings. Now, evaluating (27) above withN = N — 1and x; = 1forall 1 < s < t, gives F;|Fyt, a well-known
result on Fibonacci numbers, see pp. 148-9, Hardy and Wright [4]. Furthermore, we have

Fovene _ 3 (N—’<2> (N—l@)m(N—k])
Fi ) ki ka ke

5. Examples: Paths, cycles and trees

In this section we express the matching polynomial of some well-known graphs in terms of the fundamental solutions
to the (t, A)-recurrence (12).
Gy is the first fundamental solution to the (t, A)-recurrence, so the initial values for Gy are

G, = - G_; =0, Go=1 (and G; =1). (28)

The second fundamental solution is —AGy_1.

5.1. Paths

D; ne4j satisfies the (z, A)-recurrence whose fundamental solutions are Gy and —AGy_1, thus @; n.4; = aGy +
b (—AGy_1) for some a and b. The initial conditions for @; y; from (9) and for Gy from (28) givea = @;jand b = &; _1; =
¢;j. Hence for N > —1,

Dinetj = PijGy — Ay Gny. (29)

Example 6. Herei = 2and ¢t = 3,

N=-1 ¢2=1+x,

N=0 P23 =14+x2 +x3,

N=0 Dy 1 =14 %1+ X2 + X3 + X1X2,

N=0 @y =14 x1 + 2x3 + X3 + X1% + X5 + XpX3,

N=1  ®y3=1+4x +2x +2x3 +X:1X2 + X1X3 + X3 + 2XX3 + X3 + x1%,%3.
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For N > 1let Pyeyjt1 = P(1, (N — 1)t + j) be the path with Nt + j + 1 vertices and Nt + j edges, cyclically labelled
starting with label x1. Let Pn¢4j11(X) = Prnetjr1 = P1,(v—1)e+ be its matching polynomial. With this notation any subscript
onaP, £, C,or C refers to the number of vertices in the appropriate graph.

Theorem 5.1. For any N > 1 we have

(1) Prnetjr1 = P1jGno1 — AP Gy_2,
(ii) P41 =Gy + (@ — 7) Gy_1.

Proof. The proof of (i) is clear using (29) withi = 1and N = N — 1. So (i) withj = 0 gives £nry+1 = @10 Gn_1 — A ¢o Gn—_2,
but @10 = @14+ = ¢1+ = ¢ = ¢ and ¢y = ¢1,0 = 1, then using the (r, A)-recurrence for Gy gives (ii). H

Example 7. Heret = 3,

T iy T3 I Ty
Pi3iop1 e . . N N a
2 2
Pr34241 = 14 2% + 2X%; + X3 + X] + 2X1X2 + X1X3 + X; + XoX3 + X1X2X3.
T To T3 T T2 T3
Pysy1 N . . N N .

Pr341 = 14 2% + 2%y + 2x3 + x? + 2x1x3 + 3x1X3 + x% + 2x5x3 + x§ + x§x3 + 2x1XxyX3 + xlxg.

5.2. Cycles

Now we identify the first and the last vertices of the path P(i, Nt + j) to form the cyclically labelled cycle C(i, Nt +j) with
matching polynomial I'; nt4j(X) = 175 nej-
By decomposing I n¢+; at the ‘first’ edge labelled x; we see that, cf. (29),
Lineyi = Pivinerj + Xi Pivanetj—1s
= Diy1;GN — APiy1Gv1 + Xi{Piy2,j—1 Gy — A Pit2j—1 Gn-1},
= {DPit1j + X Piz2j-1) Gn — A{Pip1j + Xi Pig2j—1) GN-1,
=TijGy — A7jGn_1, (30)

using (29) at the second line, and decomposing I;; and ;; at the first edge x; at the fourth line. Also, defining I _r4; = 7
ensures that (30) is true forall N > —1.

Example 8. Herei = 2 and t = 3 again,

N=-1 T2,2=1,

N=0 ‘172,3:‘1+X2+X3,

N=0 Fz’]:1+X1+Xz+X3,

N=0 FZVZI1+X]+2X2+X3+X]X2+X2X3,

N=1 F2‘3=1+X1+2X2+2X3+X1X2+X1X3+X§+X2X3+X§.

Let Cyeyj = C(1, (N — 1)t + j) be the cycle with Nt + j vertices and Nt + j edges in which labelling has started with x4,
and let Cni4j(X) = Cne4j = I't,(n—1)t+j b€ its matching polynomial. Compare with Theorem 5.1,

Theorem 5.2. For any N > 1 we have
(i) Cnewj = T1jGn1 — AT G2,
(ii) Cny =Gy — AGy_3.

Proof. The proof of (i) is clear from (30). Part (i) with j = 0 gives (ii), using I'1 o = t,and 7o = 2 from (8). W

Example 9. Here t = 3 again, the cycle starts at the large vertex and proceeds clockwise,

Ci342

@1.3+2 =1+ 2X1 + 2X2 + X3 +X% + X1X2 + X1X3 + X% =+ XoX3
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Cyr3 =1+ 2x1 + 2x5 + 2x3 + xf + 2x1xy + 2x1X3 + xﬁ + 2x5x3 + x% + 2x1Xx7X3.

For a fixed t > 1 write J = Pnes1 and GN = Cpnt. We now express Gy, & N, and GN in terms of Chebyshev polynomials.
It is well-known that, in one variable x, the matching polynomial of the path P,,, is related to U,,, as follows

)

M(Pva X) = (_1)mxm Uzm (

and, for P,,,_; we have

M(Pam—1,%) = (=1)"x" |:U2m (2«1/)2> + U2 (2\[>1|

where i = 4/—1. Also, for the matching polynomials M (Cyp) and M(Copm_1) of the cycles Cyp and Copm_q there are similar
formulas but with a factor of 2 on the right-hand side where U is replaced by T. See Theorem 3 of Godsil and Gutman [3],
and Theorems 9 and 11 of Farrell [1].

Now Theorem 4.4 modified for Gy gives

_ ANJ2 T
Gy = AV Uy (2\/Z> (31)

Formulas for £y and €y in terms of Uy and Ty are given below, where the variable t is suppressed.

Theorem 5.3. For any N > 1 we have

e (55 (45 (55

(ii) Gy = 24N Ty <

T
2/A ) ’
Proof. (i) This follows from Theorem 5.1(ii) and (31).

(ii) From Theorem 5.2(ii) we have Gy = Gy — AGy_», and now the well-known relation 2Ty = Uy — Uy_; between the two
types of Chebyshev polynomials and (31) gives the result. ®

Expressions for Gy, &, N, and GN for N =0, 1, 2, 3, and 4 are given below

Go=1 Po=1 Co=2

G]—T j)\1=¢ @121'

GZZTZ—A ﬁ:q&r—A @zzrz—ZA
G3=1"—21A {/%:qbrz—(pA—rA 53:t3—3rA
Ga=1"—30%A4 A% Py=¢1> —201A— 1A+ A* Cy=1*—41°A+24A%

5.3. Trees

Here we consider cyclically labelled trees.

First let us extend the definition of a cyclically labelled path to include the path of Fig. 1, and the graph P; with one vertex
and no edges.

A tree is a connected simple graph with no cycles, and a rooted tree is a tree in which some vertex of degree 1 has been
specified to be the root, r. Given any rooted tree, let us label its edges by first labelling the edge incident to r with x;. Then
label all edges incident to this edge with x;, 1, then label all edges incident to these edges with x;,,, and so on until label x,
has been used. Then label with the ordered set {x1, ..., X;} in a similar manner to before, repeating cyclically until all edges
have been labelled, . . ., and so on. Let T denote such a cyclically labelled tree, see Fig. 5 for an example withi = 2and t = 3.

We may draw any such T with r as the leftmost vertex. Then we place the other vertices of T from ‘left to right’ according
to their distance fromr, i.e., if a vertex v, is at distance d; from r and vertex v; is at distance d, from r where d, > d;, then
v, is placed to the right of v;.
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Ty

e

Fig. 5. A cyclically labelled tree withi = 2 and t = 3.

Paths in T are of two types: (I) A path that always moves from left to right (a path that always moves from right to left can
be thought of one that always moves from left to right); such a path is clearly cyclically labelled; or (II) a path that moves
first from right to left and then from left to right; such a path must pass through at least one vertex of degree > 3, i.e, a
vertex where T ‘branches’.

Let V denote the set of vertices of degree > 3in T, and let v € V be arbitrary of degree deg(v). Vertex v has 1 edge to its
left and deg(v) — 1 > 2 edges to its right. Let H, be the subgraph of T that consists of the ‘last’ deg(v) — 2 > 1 edges as we
rotate clockwise around v. Thus H, is the star K; geg(v)—2 centered at v. Set H = U,ey H,.

Lemma 5.4. The forest T — H is a union of cyclically labelled paths.

Proof. We show that T — H does not contain a path of type (II). Suppose it does contain a path of type (II), then this path
must pass through some vertex v € V. So 2 edges incident to v and to the right of v lie in this path and so liein T — H, a
contradiction because T — H contains only 1 edge incident to v and to the right of v. Thus T — H is a union of paths of type
(I), each of which is a cyclically labelled path. =

Thus T — H is a union of cyclically labelled paths, and so T — H — My, is also, for every matching My of H. We know
the matching polynomial of any cyclically labelled path, so we can decompose the matching polynomial of T, M(T, X), at H,
according to Theorem 1.1,

M(T,X) =Y My(X) M(T — H — My, X),

My

where the summation is over every matching My of H.

Example 10. See Fig. 5.

Ty Ty I3
HereH —=eo o * e

H has 6 matchings with weights: 1, X1, X1, X3, X1x3, and x,x3. Thus there are 6 terms in the decomposition, and M(T, X)
is the sum of the following 6 terms:

1.01023P21 + X1.0102,.202,3 + X1.01022$33 + X3.0102,3 + X1X3.¢2,3 + X1X3.003 3
=1+4+4x1 4+ 2x, + 3x3 + 3xf + 7x1xy + 8x1x3 + xﬁ + 3xyx3 + 2x§

+5x2% + 3%%x3 + 3x125 + TX1X0X3 + 4x1X3 + 2X°X2 + 3x%x0X3.
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