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a b s t r a c t

For any positive integer k and any (2 + k − n)-connected graph of order n, we define,
following Bondy and Chvatàl, the k-neighborhood closure NCk(G) as the graph obtained
from G by recursively joining pairs of nonadjacent vertices a, b satisfying the condition
|N(a) ∪ N(b)| + δab + εab ≥ k, where δab = min {d(x)|a, b 6∈ N(x) ∪ {x}} and εab is a well
defined binary variable. For many properties P of G, there exists a suitable k (depending on
P and n) such that NCk(G) has property P if and only if G does.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite simple graph of order n, connectivity κ(G), and let a, b be a pair of nonadjacent vertices
satisfying the condition d(a) + d(b) ≥ n. Bondy and Chvátal [7] observed that G is hamiltonian if and only if G + ab is
hamiltonian. This observation motivated the introduction of the concept of the k-closure Ck(G) of G, for a given positive
integer k. The graph Ck(G) is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree
sum is at least k. This graph is unique and polynomially obtained from G. For a number of various properties of a graph G on
n vertices, they showed that it is possible to find a suitable integer k, such that if G has property P(k), so does Ck(G).
In [3], we showed that the condition d(a)+ d(b) ≥ k can be replaced by a better one: d(a)+ d(b)+ |Q (G)| ≥ k,where

Q (G), depending on k, is a well defined subset of vertices nonadjacent to a, b. This closure condition is named ‘‘β-dcc’’ for
β-degree closure condition. The graph corresponding to Ck(G) is denoted as dCk(G). The β-dcc condition is derived from a
result obtained in [1] and improved in [2]
In this paper, we consider another condition, different from the β-degree closure condition, still obtained as a relaxation

of the result obtained in [1] and [2]. Our new condition, named ‘‘β-ncc’’ for β-neighborhood closure condition’’ consists in
replacing the condition d(a)+d(b)+|Q (G)| ≥ k by |N(a)∪N(b)|+δab+εab ≥ k,where δab = min {d(x)|a, b 6∈ N(x) ∪ {x}}
and εab is a well defined binary variable, with the additional condition that G is (2 + k − n)-connected. The condition on
connectedness is not a real constraint as it is in fact a necessary condition for each one of the properties considered. The
corresponding graph closure will be denoted by NCk(G). Clearly the ‘‘β-ncc’’ condition can be checked in polynomial time
and NCk(G) is unique. Faudree et al. [9] defined a neighborhood closure based on the condition |N(a) ∪ N(b)| ≥ k′. The
corresponding closure graph is denoted as Nk′(G).We would like to point out that the two graphs NCk(G) and Nk′(G) are
different. Given a property P of G, k has the same value in NCk(G) and Ck(G) but is different from k′, used to construct Nk′(G).
For the particular case of the hamiltonicity property, the ‘‘β-ncc ’’ was used to obtain a large number of extensions of

known sufficient conditions (see [5,6,10]).

E-mail address: a.ainouche@martinique.univ-ag.fr.

0012-365X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.06.016

http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:a.ainouche@martinique.univ-ag.fr
http://dx.doi.org/10.1016/j.disc.2008.06.016


2962 A. Ainouche / Discrete Mathematics 309 (2009) 2961–2967

Throughout, we shall be concerned with properties which are preserved by addition of edges. In particular the complete
graph has all these properties.
To state the different new conditions and to relate them to existing ones, we need some preliminary definitions and

notation.

2. Definitions and notation

We use Bondy and Murty [8] for terminology and notation not defined here and consider simple graphs only. Let
G = (V , E) be a graph of order n ≥ 3. The set of neighbors of a vertex v ∈ V is denoted NG(v) and dG(v) = |NG(v)| is
the degree of v. Paths and cycles in G = (V , E) are considered as subgraphs and for simplicity we use the same notation to
mean a subgraph, its vertex set or its edge set. If A is a subset of V , G[A]will denote the subgraph induced by A.
With any pair (a, b) of nonadjacent vertices and a positive integer kwe associate:

(i) σab(G) := dG(a)+ dG(b), γab(G) := |NG(a) ∪ NG(b)|.
(ii) λab(G) := |NG(a) ∩ NG(b)|, Tab(G) := {x| a, b 6∈ N(x) ∪ {x}}.
(iii) Qab(G) := {x ∈ Tab | dG(x)+ γab(G)+ εab(G) ≥ k} for Tab 6= ∅.
(iv) δab(G) := min {d(x) | x ∈ Tab} for Tab 6= ∅ and δ∗ab(G) := δab(G)+ εab(G),

where εab(G) is a binary variable such that εab(G) = 0 iff the following two conditions are both satisfied:

• dG(x)+ γab(G) = k− 1 holds for all x ∈ Tab.
• Tab is either an independent set or a clique.

If Tab = ∅,we simply set δ∗ab(G) = κ(G) ≥ k+ 2− n and Qab = ∅.
For simplicity of notation we omit ab and/or G if no confusion can arise. In [1], we proved:

Theorem 1. Let G be a 2-connected graph of order n and let dT1 ≤ · · · ≤ d
T
|T | be the degree sequence (in G) of the vertices of the

set T . If

dTi ≥ 2+ |T | is true for all i with max(1, λab − 1) ≤ i ≤ t or T = ∅ (1)

then G is hamiltonian if and only if G+ ab is hamiltonian.

In [2], we improved Theorem 1 as follows:

Theorem 2. Let G be a 2-connected graph of order n and let dT1 ≤ · · · ≤ d
T
|T | be the degree sequence (in G) of the vertices of the

set T . If

dTi + εab ≥ 2+ |T | is true for all i with max(1, λab − 1) ≤ i ≤ t or T = ∅ (2)

then G is hamiltonian if and only if G+ ab is hamiltonian.

This new condition, referred to as the ‘‘β-cc ’’ for ‘‘β-closure condition’’ has two strong relaxations:

• A degree closure condition (β-dcc) involving the degree sum σab of (a, b), corresponding to the case max(1, λab − 1) =
λab − 1. This is the condition considered in [3].
• A neighborhood closure condition (β-ncc), involving the neighborhood union γab of (a, b) and corresponding to the case
max(1, λab − 1) = 1,which is the subject of this paper.

As in [7], we use:

Definition 1. Let n, k be positive integers and let P be a property defined for all (2 + k − n)-connected graphs of order n.
Let a, b be two nonadjacent vertices satisfying the condition

P(k) : γab(G)+ δ∗ab ≥ k. (∗)

Then P is k-neighborhood stable if whenever G+ab has property P and P(k) holds then G itself has property P . We denote
by NCk(G) the associated k-neighborhood closure.

The proposition below is an easy adaptation of Proposition 2.1 in [7].

Proposition 1. If P is k-neighborhood stable and NCk(G) has property P then G itself has property P.
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3. Main results

In this section, we investigate the stability of a number of properties of graphs which remain in any supergraph of G (a
graph obtained fromG by addition of edges). Most of these properties are studied in [7] and a few in [9].We also provide new
properties. Throughout, (a, b) is pair of nonadjacent vertices of a graph G satisfying the condition (∗) for a given positive
integer k. For each one of the properties P considered we fix k so that G has properties P whenever G + ab does. For all
properties considered in this paper and in [7], the parameter k for constructing NCk(G) and Ck(G) is the same. It is also the
same for constructing dCk(G), introduced in [3]. Throughout, S ⊂ V denotes a subset with s vertices.

Theorem 3. The property of being hamiltonian is n-neighborhood stable.

Proof. Assume, to the contrary, that there exists a 2-connected graph G with two nonadjacent vertices a, b such that
γab(G) + δ∗ab ≥ n,G + ab is hamiltonian but G is not. So T 6= ∅ by Theorem 2. As clearly 2 + |T | + γab = n we get
γab(G)+ δ∗ab ≥ n⇒ δ∗ab ≥ 2+ |T |. Thus (2) holds for any x ∈ T and G is hamiltonian by Theorem 2, With this contradiction,
Theorem 3 is proved. �

Remark 1. For this property, the Faudree et al. closure is Nn−2. This is a very restrictive case as we must have T = ∅ in
order to add ab to the graph Nn−2. Therefore Nn−2 ⊂ NCn(G). In [9], it is proved that Cn(G) 6= Kn ⇒ Nn−2(G) 6= Kn. This is
no longer the case if we compare Cn(G) and NCn(G). For instance if G = C6 then it is easy to check that C6(G) = C6 while
NC6(G) = K6. The same conclusion is reached if G = K7 + ewhere e is any extra edge. As a last example, consider the graph
G′ = G+ K1 where G is the Petersen graph. By Theorem 3, G′ is hamiltonian since for any pair (a, b) of nonadjacent vertices
it is easy to check that γab(G′) = 6, δab = 4 and εab(G′) = 1. Thus NC11(G′) = K11 while C11(G) = G′.

Let µ(G) denote the minimum number of disjoint paths covering all vertices of G.

Corollary 1. The property ‘‘µ(G) ≤ p’’ is (n− p)-stable.

Proof. Consider the graph G+ pK1 and use Theorem 3. �

Corollary 2. The property of containing a hamiltonian path is (n− 1)-neighborhood stable.

Remark 2. Let G be the Petersen graph. Clearly NC9(G) = K10 and hence it is traceable by Corollary 2.

The graph G is S-hamiltonian if it remains hamiltonian whenever a setW ⊆ S of vertices of S are removed. We simply
say that it is s-hamiltonian if we are only interested by the number s instead of the set of vertices. It is known that Gmust
be (2+ s)-connected.

Theorem 4. Let n, s be positive integers with 0 ≤ s ≤ δ−2. The property of being S-hamiltonian is (n+ s)-neighborhood stable.

Proof. Consider a [(2+ (n+ s)− n) = (2+ s) ≤ δ]-connected graph G and let H := G−W for some setW ⊆ S. Clearly H
is 2-connected. Suppose that a, b are two nonadjacent vertices such that γab(G)+ δ∗ab ≥ n+ s,H + ab is hamiltonian but H
is not. Put γab(H) = γab(G) − |W | + θ1 and δab(H) = δab(G) − |W | + θ2. Obviously θ1 and θ2 are nonnegative integers. By
Theorem 2, γab(H)+ δab(H)+ εab(H) < |H| = n− |W | since H is assumed nonhamiltonian. Therefore

γab(G)+ δab(G)− 2 |W | + θ1 + θ2 + εab(H) < n− |W | . (3)

It follows that

s− εab(G)+ θ1 + θ2 + εab(H) < |W | . (4)

AsW ⊆ S, this inequality implies

W = S, θ1 = θ2 = 0, εab(H) = 0 and εab(G) = 1. (5)

Since θ1 = 0, then γab(H) = γab(G) − |W |, that isW ⊂ N(a) ∪ N(b). Thus T (H) = T (G), in which case εab(H) = εab(G).
This contradicts (5). The proof is now complete. �

Corollary 3. Let n, s be positive integers with 0 ≤ s ≤ δ − 2. Then the property of being s-hamiltonian is (n+ s)-neighborhood
stable.

We say that G is S-cyclable (resp., S-traceable) if it contains a cycle C (resp., a path) with all vertices of S.

Theorem 5. The property ‘‘G is S-cyclable’’ is n-neighborhood stable.
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Proof. Suppose that G is 2-connected, (G+ab) contains a cycle C such that S ⊂ V (C) but G does not. Then a, b are connected
by a path π := a1 . . . ap with a = a1, b = ap, n ≥ p ≥ s. Without loss of generality, assume that π has a maximum length. If
|C | = n, thenG is hamiltonian by Theorem3 and hence S ⊂ V (C). For the sequelwemay assume that R := V \V (π) 6= ∅. For
simplicity we also denote G [R] by R. Note that there is no (a, b)-path with all internal vertices in R for otherwise we have a
contradiction. ThereforeG[V (C)] is 2-connectedwheneverG is 2-connected.Without loss of generality, wemay assume that
d(a2) = 2. If, for instance d(a2) > 2, then we add a new vertex a′ and join it to a and a2. For this new graph G′ we obviously
have δ∗ab(G) = δ∗ab(G

′) and γab(G) + δ∗ab(G) ≥ n implies γab(G
′) + δ∗ab(G

′) ≥ |G′|. Moreover the segment aa′a2 belongs to
any hamiltonian cycle of G′. It suffices then to remove a′ in order to get a hamiltonian cycle in G. Similarly we may assume
d(ap−1) = 2. For simplicity, we shall use the notation G, π even if we modify G. Moreover we denote by F the set of edges
of type aai (resp., bai) with ai ∈ T and NR(ai)∩NR(a) 6= ∅ (resp., NR(ai)∩NR(b) 6= ∅) and we consider the graph G′ = G+ F .
Again, we show that no edge of F belongs to any hamiltonian cycle of G′. Indeed suppose that a hamiltonian cycle C ′ such
that E(C ′) ∩ F 6= ∅ exists. Without loss of generality suppose aaj, j > 2, is an edge of E(C ′) ∩ F . Since dG′(a2) = dG(a2) = 2
then a is incident to at most one edge of F . Replacing aaj with auaj, u ∈ NR(a) ∩ NR(aj), we get a cycle of greater length,
a contradiction. Here again and for simplicity we still denote by G the original graph or the modified one. In this modified
graph, we note that N(x) ∩ (N(a) ∪ N(b)) ⊂ V (π) holds for any vertex x ∈ T ∩ V (π). Now γab(R) + |T ∩ R| = (n − |H|).
Moreover γab(H) = γab(G)− γab(R) and δab(H) ≥ δab(G)− |T ∩ R|. Thus

γab(H)+ δab(H) ≥ γab(G)+ δab(G)− (γab(R)+ |T ∩ R|) (6)

≥ n− (n− |H|)− εab(G) = |H| − εab(G). (7)

As H is assumed nonhamiltonian, we have γab(H)+ δab(H)+ εab(H) < |H| by Theorem 3. Comparing the two inequalities,
we get εab(H) = 0 while εab(G) = 1 and δab(H) = δab(G) − |T ∩ R|. Clearly |T ∩ R| > 0 for otherwise T (G) = T (H)
in which case εab(G) = 1 ⇒ εab(H) = 1. If εab(H) = 0 then dG(x) − |T ∩ R| = dH(x) = δab(H) holds for all x ∈ T (H).
Moreover either T (H) is an independent set or a clique. One can easily check that T (H) cannot be a clique for otherwise T (G)
would be a clique and εab(G) = 0. Thus T (H)must be an independent set with at least two vertices. Consider now the graph
G′ := H ∪{x1x2} ,where x1, x2 are vertices of T (H). Now, εab(G′) = 1 and hence G′ has a hamiltonian cycle C ′ by Theorem 3.
Since H is assumed nonhamiltonian then x1x2 ∈ E(C ′). But then replacing x1x2 by x1yx2 where y is any vertex of T ∩ R, we
see that H ⊂ V (C ′) and S ⊂ V (C ′). So, in either case G is S-cyclable, a contradiction which proves the theorem. �

The S-circumference, denoted by cS(G), is the length of a cycle of G containing a maximum number of vertices of S. If
S = V then c(G) denotes the circumference of G. The following corollaries are straightforward.

Corollary 4. Let n, s be positive integers with 3 ≤ s ≤ n. Then the property cS(G) ≥ s is n-neighborhood stable.

Corollary 5. Let n, s be positive integers with 3 ≤ s ≤ n. The property c(G) ≥ s is n-neighborhood stable.

Corollary 6. Let us have S ⊂ V (G) with s vertices, 3 ≤ s ≤ n. The property ‘‘G is S-traceable’’ is (n− 1)-neighborhood stable.

Proof. Consider the graph H = G + K1. Then γab(H) + δab(H) + εab(H) ≥ n + 1 = |H|. As clearly εab(H) ≥ εab(G) by
construction, and γab(G)+ δab(G)+ εab(G) ≥ n− 1 by hypothesis, we get

γab(H)+ δab(H)+ εab(H) ≥ n− 1+ 2 = n+ 1 = |H| . (8)

The conclusion follows from Theorem 5. �

Theorem 6. Let n, s be positive integers such that s+ δ ≥ n+ 2. The property ‘‘G[S] is hamiltonian’’ is (2n− s)-neighborhood
stable.

Proof. Set H = G[S] and suppose H nonhamiltonian. Thus G cannot be (V \ S)-hamiltonian. By Theorem 4, the property is
not n+ (n− s) = (2n− s)-neighborhood stable, a contradiction to our hypothesis. �

Corollary 7. Let n, s be positive integers with s+ δ ≥ n+ 2. Then the property of containing Cs is (2n− s)-neighborhood stable.

Proof. IfG contains Cs then itmust have the property ‘‘G[S] is hamiltonian’’ where S is any set with s vertices. The conclusion
follows. �

Theorem 7. Let n, s be positive integers with s ≤ n
2 . Then the property of containing sK2 is (2s− 1)-stable.

Proof. Suppose that G is 2 + (2s − 1) − n = (2s + 1 − n)-connected, G + ab contains an sK2 but G does not. Then there
exists an (s− 1)-matching {a1b1, . . . , as−1bs−1} in G and an s-matching in G+ ab. For i ∈ [1, s− 1] we set{

A := {ai} , B := {bi} , D := V \ (A ∪ B ∪ {a, b})
M := {aibi|i ∈ [1, s− 1]} , Mi = {ai, bi} .

(9)
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An M-augmenting path is a path of even length with endpoints in D ∪ {a, b} and whose edges are alternately in E − M
andM . To avoid a contradiction, we obviously assume that G contains noM-augmenting path. Moreover D∪ {a, b}must be
an independent set for otherwise an s-matching would exist in G. We need two cases:

Case 1. n > 2s (that is D 6= ∅).
As a first step we prove that

εab(G) = 1 and for all x ∈ T and for all i ∈ [1, s− 1]
we have |Mi ∩ (N(a) ∪ N(b))| + dMi(x) = 2.

(10)

Choose any vertex x ∈ D. Clearly |Mi∩(N(a)∪N(b))| ≤ 2 and dMi(x) ≤ 2. If, for instance, a1x ∈ E then b1 6∈ N(a)∪N(b) for
otherwise we have an evenM-augmenting path with extremities a, x (or b, x). Therefore |Mi ∩ (N(a)∪N(b))| + dMi(x) ≤ 2.
By summing over all i we get γab + d(x) ≤ 2(s − 1). On the other hand dG(x) + γab + εab(G) ≥ 2s − 1 by hypothesis.
Comparing these inequalities we see that (10) holds for any vertex of D. Next suppose that we have y ∈ T \ D, y = b1 say. If
a1 6∈ N(a) ∪ N(b) then by (10), N(x) ⊃ {a1, b1}. It is then clear that we can exchange x and y. If b1 ∈ N(a) for instance then
by (10), |N(x)∩ {a1, b1} | = 1. If xb1 ∈ E then we have an evenM-augmenting path with extremities a, x. If xa1 ∈ E then we
exchange a1b1 with a1x, in which case y ∈ D. Thus (10) holds for x ∈ T .
We complete the proof by induction on s. If s = 1 then G = Kn since G has no edge while G + ab has one. Clearly

σab = γab = 0. Pick any vertex x of T . Then d(x) + γab + εab = εab ≥ 1. Therefore εab = 1. This is a contradiction since
G = Kn ⇒ εab = 0 by definition of εab. Suppose now that G has an sK2 with s > 1. Assume first that, for some i and for some
x ∈ D,we have eitherMi ⊂ N(a)∪ N(b) orMi ⊂ N(x). The graph G′ = G−Mi satisfies the hypothesis of the theorem since
by (10), γab(G′) + dG′(y) = γab(G) + dG(y) − 2 must be true for all y ∈ T . By induction hypothesis G′ has an (s − 1)K2 and
hence G has an sK2. Suppose now that for all i,we have dMi(x) = 1 and |Mi∩ (N(a) ∪ N(b)) | = 1.Without loss of generality,
suppose that A = N(a) ∪ N(b). Then necessarily N(x) = A for all x ∈ D since if for instance xb1 ∈ E then either xb1a1a or
xb1a1b is an evenM-augmenting path. Therefore N(x)∩B = ∅. As clearly we can exchange any bi with x, then N(y)∩B = ∅
for any y ∈ T . Since γab = s− 1 we get d(y) = s− 1. In conclusion N(y) = Amust be true for any y ∈ T . This means that T
is an independent set and hence εab = 0. This completes the proof of this Case.

Case 2. n = 2s (that is D = ∅).
Now Gmust be (k+ 2− n = 2s+ 1− n = 1)-connected. For this case, we use part of the argument of Faudree et al. [9]

in the proof of their Theorem 2. Assuming that G + ab has a perfect matching but G does not, then G + ab satisfies Tutte’s
Theorem [11] but G does not. Then there exists a subset R ⊂ V with r ≥ 1 vertices such that G−R has r+2 odd components
C1, . . . , Cr+2 with a ∈ V (Cr+1) and b ∈ V (Cr+2). Clearly T ⊇ V (C1) ∪ · · · ∪ V (Cr). Set |V (Cj)| = 1 + θj for j = 1, . . . , r . As
n = 2s and clearly θj ≥ 0,we have

2s = 2+ γab + |T ∩ (V (Cr+1))| + |T ∩ (V (Cr+2))| + |T ∩ R| + r +
r∑
i=1

θi. (11)

Combining (11) with the hypothesis γab + εab + δab ≥ 2s− 1,we get

εab + δab ≥ 1+ |T ∩ (V (Cr+1))| + |T ∩ (V (Cr+2))| + |T ∩ R| + r +
r∑
i=1

θi. (12)

Suppose first that δab ≤ r . Then from (12) we obtain εab = 1, T ∩ (V (Cr+1) ∪ V (Cr+2) ∪ R) = ∅ and
∑r
i=1 θi = 0. This

means that N [a] ∪ N [b] = V (Cr+1) ∪ V (Cr+2) ∪ R, in other words T = ∪ri=1 V (Ci) and |V (Ci)| = 1 for i = 1, . . . , r . This
implies that T is an independent set, in which case εab = 0. With this contradiction, we shall assume δab > r .
If xi ∈ V (Ci), then d(xi) ≥ δab, N(xi) ⊆ V (Ci) ∪ R and hence |V (Ci)| = 1 + θi ≥ 1 + δab − r . Thus δab − r ≤ θi. Putting

this inequality into (12), we get

εab + (1− r)(δab − r) ≥ 1+ |T ∩ (V (Cr+1))| + |T ∩ (V (Cr+2))| + |T ∩ R| . (13)

As δab > r ≥ 1, εab ≤ 1 we obtain εab = 1, r = 1, T ∩ (V (C2) ∪ V (C3) ∪ R) = ∅. Now T = V (C1). By (12) we derive
δab ≥ 1 + θ1 = |V (C1)|. On the other hand δab ≤ |V (C1)| − 1 + |R| = |V (C1)|. It follows that δab = |V (C1)| and hence T
must be a clique, in which case εab = 0. With this last contradiction, the proof is completed. �

Theorem 7 is a slight improvement of both Theorems 2 and 3 in [9].

Remark 3. Consider again the Petersen graph G. Obviously, it has a perfect matching. By the Bondy–Chvátal result, we have
Ck(G) = K10 only for s ≤ 3. By Theorem 7, NCk(G) = K10 for s = 5 since γab + δ∗ab ≥ 9 = 2s− 1 since γab = 5 and εab = 1.
The same conclusion cannot be drawn from Theorem 3 in [9] since N2s−1−δ = G.

Theorem 8. Let n, s be positive integers with s+ δ ≥ n. Then the property ‘‘α(G) ≤ s’’ is (2n− 2s− 1)-neighborhood stable.
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Proof. Suppose that α(G + ab) ≤ s while α(G) > s. Then there must exist an independent setW ⊂ V with (s+ 1) ≥ 3
vertices including both a and b. Choose any vertex x ∈ W \{a, b}. First we note that γab(G) ≤ |V \W | = n− (s+1). Thus we
need the condition s+δ ≥ n since by definitionwemust have dG(x)+γab(G)+εab(G) ≥ (2n−2s−1). Setγab(G) = |V\W |−θ1
and dG(x) = |V \W | − θ2. Obviously θ1, θ2 are nonnegative integers. Then 2|V \W | − (θ1 + θ2)+ εab(G) ≥ (2n− 2s− 1).
As |V \W | = n− (s+ 1),we get 2 (n− (s+ 1))+ εab(G) ≥ (θ1 + θ2)+ (2n− 2s− 1), that is εab(G) > θ1 + θ2. It follows
that θ1 + θ2 = 0 and εab(G) = 1. Since θ1 = 0, we have N(a) ∪ N(b) = V \W and hence T (G) = W \ {a, b}. Moreover all
vertices ofW have the same degree. It is now clear that εab(G) = 0 since T (G) is an independent set. With this contradiction,
Theorem 8 is proved. �

Remark 4. Consider again the Petersen graph G. We know that α(G) = 4. By the Bondy–Chvátal result, we have Ck(G) =
K10, k = 2n− 2s− 1, only for s ≥ 7. By our theorem, NCk(G) = K10 for s = 5.
If G = C6, then obviously α(C6) = 3 and NCk(C6) = K6 for s = 3 while Ck(G) = K6 is obtained only for s ≥ 4.

It may happen that, for some specific properties, one can find better closure conditions which allow the definition of a
corresponding graph closure. This is the case for the independence and the connectivity properties considered in [4].
It is also possible to improve Corollary 7 if we adopt the following specific closure condition of Faudree et al. [9] for which

we give a slightly different statement and proof.

Theorem 9. Let G be a 2-connected graph and (a, b) be a pair on nonadjacent vertices satisfying the condition

γab = n− 2(or equivalently T = ∅). (14)

Then G is [6− n]-pancyclic (or equivalently s-hamiltonian, 0 ≤ s ≤ n− 6) if and only if G+ ab is.

Proof. If G is [6 − n]-pancyclic, 6 ≤ s ≤ n, then obviously G + ab has the same property. Conversely, suppose, by
contradiction, that G+ ab is [6− n]-pancyclic but G is not. Then, for some s, 6 ≤ s ≤ n, there exists a path π := a1a2 . . . as,
where a = a1 and as = b. If G [V (π)] is 2-connected then it is hamiltonian by Theorem 1 since T = ∅. So, we assume that
G [V (π)] is not 2-connected and there exists at least one a−b pathwith all internal vertices in V \V (π). AsN [a]∪N [b] = V ,
we may choose a shortest path whose length is at most 2. Suppose first that the length is 2 and let auvb be this path. As
V (π) ⊂ N [a]∪N [b] ,we cannot have ai ∈ N(a) and ai−1 ∈ N(b) for some i = 3, . . . , s−1 for otherwise G [V (π)] would be
2-connected. If a4 ∈ N(a) then a2, a3 ∈ N(a) and G [V (π)]− {a2, a3} + {u, v} contains a hamiltonian cycle with length s. So
N(a)∩V (π) ⊂ {a2, a3} . SimilarlyN(b)∩V (π) ⊂ {as−1, as−2}. IfN(a)∩V (π) ⊃ {a2, a3} andN(b)∩V (π) ⊃ {as−1, as−2} then
G [V (π)]−{a2, as−1}+ {u, v} contains a hamiltonian cycle with length s. Therefore wemay assume N(a)∩V (π) ⊂ {a2, a3}
and N(b) ∩ V (π) ⊂ {as−1}. But then V (π) ⊆ {a, a2, a3, a4, a5 = b} , a contradiction since s ≥ 6 by hypothesis. The same
arguments lead to a contradiction if a, b are connected by a path aub instead of auvb. Note that if G is [6 − n]-pancyclic, it
is also s-hamiltonian, 0 ≤ s ≤ n− 6. �

Corollary 8. Let G be a 2-connected graph. Then G is [6 − n]-pancyclic (or equivalently s-hamiltonian, 0 ≤ s ≤ n − 6) if it
contains an (a, b)-hamiltonian path such that T = ∅.

4. Open problems

A caterpillar is a particular tree which results in a path when its leaves are removed. The spine of the caterpillar is the
longest path of it. The graph G is called S-caterpillar spannable if it has a spanning tree that is a caterpillar, whose leaves are
the vertices of S.

Problem 1. Let S ⊂ V (G) with s vertices, 2 ≤ s < n. Then the property ‘‘G is S-caterpillar spannable’’ is (n + s − 1)-
neighborhood stable.

Let F ⊂ E be a set of edges such that the components of the graph (V , F) are vertex disjoint paths. A graph G is Hamilton-
connected if, given any two vertices x and y of G, there is a hamiltonian path in G with ends x and y. The graph G is defined
to be |F |-Hamilton-connected if for each pair (x, y) of vertices there is a hamiltonian path with endpoints x, y that contains
F .

Problem 2. The property ‘‘G is F-Hamilton-connected with |F | ≤ n− 4’’ is (n+ |F | + 1)-neighborhood stable.

An s-factor of a graph G is a spanning s-regular subgraph.

Problem 3. Let n, s be positive integerswith 2 ≤ s < n. Then the property of having an s-factor is (n+2s−4)-neighborhood
stable.
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