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a b s t r a c t

Weprove that, if a graphwith e edges containsm vertex-disjoint edges, thenm2/e complete
bipartite subgraphs are necessary to cover all its edges. Similar lower bounds are also
proved for fractional covers. For sparse graphs, this improves the well-known fooling set
lower bound in communication complexity. We also formulate several open problems
about covering problems for graphs whose solution would have important consequences
in the complexity theory of boolean functions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The biclique covering number bc(G) of a graph G is the smallest number of bicliques (complete bipartite subgraphs) of
G such that every edge of G belongs to at least one of these bicliques. In the case when the bicliques are required to be
edge-disjoint, the corresponding measure is known as the biclique partition number and is denoted by bp(G). Note that
bc(G) ≤ bp(G) ≤ n− 1 holds for any graph G on n vertices, just because stars are bicliques.
These measures of graphs were considered by many authors. The classical result of Graham and Pollak [9] shows that

bp(Kn) = n − 1; here Kn is a complete graph on n vertices. On the other hand, we have bc(Kn) ≤ dlog2 ne: just encode the
vertices of Kn by binary vectors of lengthm = dlog2 ne and define, for each i = 1, . . . ,m, a biclique containing all edges, the
codes of whose endpoints differ in the ith coordinate. Hence, the gap between the partition and the covering numbers may
be exponential. Alon [2] generalized the Graham–Pollak theorem by showing that about kn1/k complete bipartite subgraphs
are necessary and sufficient in order to cover Kn so that each edge belongs to at most k of the subgraphs.
One of themost important results in this direction is the following degree bound proved by Alon in [1]: If the complement

graph of an n-vertex graph G has maximum degree D, then the edges of the graph G itself can be covered by O(D2 ln n)
complete subgraphs. For bipartite n× n graphs (i.e., graphs both parts of which contain n vertices) this can be improved to
bc(G) = O(D ln n) [12].
Concerning the maximum value bc(n) of bc(G) over all n-vertex graphs G, it is known that n − c log2 n ≤ bc(n) ≤

n− blog2 nc + 1 for a constant c > 0; the upper bound is due to Tuza [22] and the lower bound to Rödl and Ruciński [19].
Chang [6] earlier proved that bc(n)/n tends to 1 as n tends to infinity.
In addition to being an important graph parameter, the biclique covering number also arises naturally when dealing

with the communication complexity of boolean functions. The relation between bipartite n × n graphs with n = 2k and
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boolean functions is quite natural: each such graph G gives us a boolean function fG(z1, . . . , z2k) in 2k variables such that
fG(Exu, Exv) = 1 if and only if u and v are adjacent in G; here Exu ∈ {0, 1}k is the binary code of the vertex u. Under this
translation, log2 bc(G) is precisely the nondeterministic communication complexity of fG, and log2 bp(G) is a lower bound
on the deterministic communication complexity of fG (see, e.g., the book [15]). Some questions about a relaxed version of
the biclique covering number, related to some basic open problems in the computational complexity of boolean functions,
are discussed in Section 4.
In this note we prove that, if a graph with e edges contains a matching of size m, then at least m2/e complete bipartite

subgraphs are necessary to cover all its edges. For sparse graphs, this improves the well-known fooling set lower bound in
communication complexity. In Section 3 we obtain similar lower bounds for fractional covers.
A bipartite graph is a graph (A ∪ B, R) with A ∩ B = ∅ and R ⊆ A× B. Such a graph is complete if R = A× B; with some

abuse of notation, in this case we will identify the graph with the set R = A× B of its edges. A biclique of a graph G = (V , E)
is a complete bipartite graph A× B such that A, B ⊆ V , A ∩ B = ∅ and A× B ⊆ E.

2. Covering number

Given a graph G = (V , E) and a set S ⊆ E of its edges, let wG(S) denote the largest possible number of edges in S that
can be covered by some biclique R ⊆ E of G. (Note that R need not be contained in S.) Since no biclique of G can cover more
thanwG(S) edges of S, at least |S|/wG(S) bicliques are needed to cover G. Hence, the following greedy covering number,

µ(G) = max
S⊆E

|S|
wG(S)

,

is a lower bound on bc(G). Actually, this lower bound is already not very far from the truth.

Proposition 1 (Folklore). For every graph G = (V , E), we have bc(G) ≤ µ(G) · ln |E| + 1.

Proof. Consider a greedy covering R1, . . . , Rt of G by bicliques. That is, in the ith step we choose a biclique Ri ⊆ E covering
the largest number of all yet uncovered edges. Let Si = E \

⋃i
j=1 Rj be the set of all edges left uncovered after the ith step.

Hence, S0 = E and St = ∅. Let si = |Si| and wi = wG(Si). Since, by the definition of µ = µ(G), none of the fractions si/wi
can exceed µ, we have that si+1 = si − wi ≤ si − si/µ. This yields si ≤ s0(1− 1/µ)i ≤ |E| · e−i/µ. For i = t − 1, we obtain
1 ≤ st−1 ≤ |E| · e−(t−1)/µ, and the desired upper bound bc(G) ≤ t ≤ µ ln |E| + 1 follows. �

A natural choice for a set S of ‘‘difficult to cover’’ edges is to take a matching. Let ν(G) be thematching number of G, that
is, the maximal number of vertex-disjoint edges of G, and let cl(G) be the largest number r such that G contains a complete
bipartite r× r graph Kr,r . Since no complete bipartite r×s graph Kr,s can containmore thanmin{r, s} edges of anymatching,
this yields

bc(G) ≥
ν(G)
cl(G)

. (1)

Although simple, the lower bound (1) – known as the fooling set bound – is one of themain tools for proving lower bounds on
the nondeterministic communication complexity of boolean functions (see, e.g., [15]). Our first result improves the fooling
set bound for sparse graphs.

Theorem 2. For every non-empty graph G = (V , E), we have

bc(G) ≥
ν(G)2

|E|
.

Proof. LetM ⊆ E be anm-matching, that is, a set ofm vertex-disjoint edges. Let E = R1 ∪ · · · ∪ Rt be a covering of the edges
of G by t = bc(G) (not necessarily disjoint) bicliques of G. Define a mapping f : M → {1, . . . , t} by f (e) = min{i | e ∈ Ri},
and let Mi = {e ∈ M | f (e) = i} be the set of edges of M assigned to the ith biclique. That is, Mi consists of those edges of
the matchingM that are covered by the ith biclique Ri for the first time.
Let Fi ⊆ Ri be a biclique spanned by the vertices of the matching Mi. That is, we leave in Fi only those edges of Ri such

that both endpoints are incident with edges of Mi. Then F = F1 ∪ · · · ∪ Ft is a union of vertex-disjoint bicliques satisfying
M ⊆ F ⊆ E.
Note that each Fi is a complete bipartite ri× ri graph, where ri = |Mi| is the number of edges in the ith matchingMi. Since

the bicliques F1, . . . , Ft are vertex-disjoint, we have that

r1 + · · · + rt = |M| = m

and

r21 + · · · + r
2
t = |F |.
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By the Cauchy–Schwarz inequality,

m2 = (r1 + · · · + rt)2 ≤ t · (r21 + · · · + r
2
t ) = t · |F |,

and the desired lower bound t ≥ m2/|F | ≥ m2/|E| follows. �

Remark 3. For all graphs G = (V , E)with |E| < ν(G) · cl(G), Theorem 2 yields better lower bounds than those given by the
fooling set bound (1). If, for example, G consists of one n-matching and some constant number c of complete r × r graphs
Kr,r with r =

√
n, then Theorem 2 yields bc(G) ≥ n2/(cr2 + n) = Ω(n), whereas the fooling set bound (1) only yields

bc(G) ≥ n/r =
√
n.

For bipartite graphs G = (V1 ∪ V2, E) with |V1| < |V2|, the bound of Theorem 2 can be slightly improved. Say that two
matchings M1,M2 ⊆ V1 × V2 are dependent if some two edges e1 ∈ M1 and e2 ∈ M2 have a common endpoint in V2;
otherwise the matchings are independent.

Corollary 4. If a bipartite graph G = (V1 ∪ V2, E) contains k pairwise independent m-matchings, then

bc(G) ≥
km2

|E|
.

Proof. If M1, . . . ,Mk ⊆ E are independent m-matchings contained in G, then we can consider k subgraphs G1, . . . ,Gk
of G induced by their vertex sets. The independence of the matchings implies that the subgraphs Gi are edge-disjoint.
For each of these subgraphs, Theorem 2 yields bc(Gi) · |Ei| ≥ m2, where Ei is the set of all edges of Gi. Since each
Gi is an induced subgraph, its covering number is at most that of the whole graph G. Summing over all i, this yields
bc(G) · |E| ≥ bc(G)(|E1| + · · · + |Ek|) ≥ km2. �

Remark 5. It may be interesting to compare the bound given in Theorem 2 with the following well-known lower bound on
the rank proved, among other places, in [5,3]: For every real symmetric matrix A,

rk(A) ≥ tr(A)2/tr(A2), (2)

where rk(A) is the rank of thematrix A over the reals, and tr(A) is its trace, that is, the sum of its diagonal elements. If A is the
adjacency matrix of a bipartite n× n graph G = (V1 ∪ V2, E), then tr(A2) = |E|. Moreover, if G contains a matching withm
edges, then tr(A) ≥ m. Hence, if additionally the adjacency matrix A of a graph G is symmetric, then (2) implies thatm2/|E|
is a lower bound for the rank rk(A) of A, and hence, for the biclique partition number bp(G) of G. Theorem 2 says thatm2/|E|
is even a lower bound for the clique covering number.

3. Fractional partition number

Our next result concerns the fractional version of the biclique partition number bp(G). IfR is the set of all bicliques of a
given n-vertex graph G, then each biclique covering of G can be described by a function φ : R→ {0, 1} such that φ(R) = 1
if and only if R belongs to the covering. Hence, bc(G) is the minimum of

∑
R∈R φ(R) over all functions φ : R→ {0, 1} such

that ∑
R∈R:e∈R

φ(R) ≥ 1 for each edge e of G. (3)

The fractional biclique covering number bc∗(G) is theminimumof
∑
R∈R φ(R) over all functionsφ : R→ [0, 1] satisfying (3).

It is clear from the definition that bc∗(G) does not exceed bc(G). Scheinerman and Trenk [21] showed that bc∗(G) = bc(G)
if G contains no induced cycle on 4 or more vertices. On the other hand, Lovász [17] proved that, for any graph G, the gap
can be at most logarithmic in the maximum degree D of G:

bc∗(G) ≥
bc(G)
1+ lnD

. (4)

Hence, Theorem 2 yields corresponding lower bounds for the fractional biclique covering number, as well.

Remark 6. As mentioned in Section 2, the greedy covering number µ(G) approximates bc(G) up to a logarithmic factor. In
the case of fractional covering numbers the relation is even tighter: Karchmer, Kushilevitz and Nisan [13] showed that the
following fractional version µ∗(G) of the greedy covering number just coincides with bc∗(G). To define µ∗(G) for a graph
G = (V , E), consider probability distributions p : E → [0, 1] on edges of G, and set µ∗(G) = maxp 1/wG(p), where
the maximum is over all probability distributions, and wG(p) is the maximum probability

∑
e∈R p(e) of a biclique R of G.

Together with (4), this implies that the fractional greedy covering number µ∗(G) approximates the non-fractional biclique
covering number bc(G), as well: µ∗(G) ≤ bc(G) ≤ (1 + lnD)µ∗(G) (cf. Proposition 1). Moreover, we always have that
µ∗(G) ≥ µ(G). Indeed, given a subset S ⊆ E of edges, we can define p(e) = 1/|S| for all e ∈ S and p(e) = 0 for all e ∈ E \ S.
Then 1/wG(p) = |S|/wG(S). Thus, using more sophisticated probability distributions, one may (apparently) obtain slightly
larger lower bounds on bc(G) than those given by µ(G).
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Our second result is an analog of Theorem 2 for the fractional biclique partition number bp∗(G) of G, that is, for the
minimum of

∑
R∈R φ(R) over all functions φ : R→ [0, 1] satisfying∑

R∈R:e∈R

φ(R) = 1 for each edge e of G. (5)

Theorem 7. For every graph G = (V , E),

bp∗(G) ≥
ν(G)2

4|E|
.

Proof. Let G = (V , E) be a graph, andR be the set of all bicliques of G. By the duality theorem in linear programming (see,
e.g., [7], Chapter 5), we have that bp∗(G) = maxw

∑
e∈E w(e), where w ranges over all real-valued functions w : E → R

such that
∑
e∈Rw(e) ≤ 1 for all bicliques R ∈ R.

LetM ⊆ E be a matching withm = ν(G) edges contained in G. Define w(e) = 1/p for all e ∈ M , and w(e) = −1/p2 for
all e ∈ E \M , where p > 0 is a parameter to be specified soon. Since only edges ofM have positive weights, the heaviest are
bicliques of the form R = A× Bwith |A| = |B| = |M ∩ R| = k for some k. The weight of each such biclique is∑

e∈R

w(e) =
k
p
−
k(k− 1)
p2

≤
k
p

(
1−

k− 1
p

)
≤ 1.

Indeed, if k ≥ p + 1 then the expression in the parenthesis is at most 0, and if k ≤ p then both the terms are at most 1.
Hence,w is a legal weight function, and we obtain

bp∗(G) ≥
∑
e∈E

w(e) =
m
p
−
|E| −m
p2

=
m
p

(
1−
|E| −m
pm

)
.

For p = 2|E|/m, the expression in the parenthesis is at least 1/2, and the desired lower bound bp∗(G) ≥ m2/4|E| follows.
�

4. Conclusion and open problems

We have shown that the biclique covering and partition numbers, as well as their fractional versions, are essentially
bounded below by the fraction ν(G)2/|E(G)|. This yields lower bounds bc(G) = Ω(nε) for all n-vertex graphs G = (V , E)
containing a perfect matching and having at most n2−ε edges. Moreover, for such graphs, the bound is easy to apply. It
essentially says that bc(G) is always at least the matching number divided by the average degree d of G. Our lower bound is
then ν(G)2/|E| = (n/2)2/(dn/2) = n/2d. Much less, however, is known about the following relaxed version of bc(G).
Define the resistance ρ(G) of a graph G as the smallest number r such that G can be written as an intersection of r graphs

that each have biclique covering number at most r . That is, now we allow replacing up to the fraction (r − 1)/r of the non-
edges by (new) edges in order to reduce the biclique covering number to r . For some graphs, this can drastically reduce the
number of required bicliques in a cover: If, for example, M is a bipartite n × n graph consisting of n vertex-disjoint edges,
then bc(M) = n but ρ(M) = O(ln n) [11].

Problem 8. Exhibit an explicit sequence of bipartite n× n graphs of resistance at least nε for a constant ε > 0.

This would yield the first super-linear lower bound on the size of log-depth circuits, and hence, resolve a problem in
boolean circuit complexity that has been open for more than 30 years (see, e.g., [11] on how this happens).
Using counting arguments it can be shown that bipartite n × n graphs of resistance Ω(

√
n) exist [11]. However, no

comparable lower bound is known for explicit graphs: the highest remains the lower bound Ω(ln3/2 n) proved by Lokam
in [16].
The following problem is about mere existence of graphs, and hence, may seem easier: Do there exist graphs whose

resistance is much smaller than that of their complements? To be more specific, by the bipartite complement of a bipartite
graph G = (V1 ∪ V2, E)we will mean the bipartite graph G = (V1 ∪ V2, F)with F = (V1 × V2) \ E.

Problem 9. Does there exist a sequence Gn of bipartite n × n graphs such that ln ρ(Gn) ≤ (ln ln n)c for a constant c , but
ln ρ(Gn) ≥ (ln ln n)α for some α tending to infinity as n→∞?

If it does, this would resolve a problem in communication complexity that has been open formore than 20 years. Namely,
this would separate the second level of the hierarchy of communication complexity classes introduced in [4] (Problem 3.1).
When trying to estimate the resistance of graphs, it would be interesting to understand what can be said about the

covering number bc(G) of a graph, if we know that its complement is H-free, for some given graph H; as customary, a graph
is H-free if it does not contain a copy of H as a (not necessarily induced) subgraph. Note that the degree upper bound from
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[12], mentioned in the introduction, is of this form with H = K1,D: If the bipartite complement G of a bipartite graph G is
K1,D-free, then bc(G) = O(D ln n). What about other forbidden patterns H? In particular, what can be said about bc(G) if the
complement of G is a dense enough Kr,r -free graph?

Problem 10. Do there exist constants ε > 0 and 0 < δ < 1/2 such that, if H is a bipartite K2,2-free graph of average degree
at least nδ , then bc(H) ≥ nε?

If true, this would resolve Problem 8. Indeed, we could take a bipartite n× n Erdős–Rényi graph G [8]. This graph is K2,2-
free and hasminimumdegree d ≥

√
n/2. Let r = ρ(G) be the resistance of the bipartite complementG ofG. By the definition

of ρ(G), the graph G itself can be written as a union of r bipartite graphs H1, . . . ,Hr such that bc(Hi) ≤ r for all i = 1, . . . , r .
In particular, each of the graphs Hi must be K2,2-free. Hence, there exists a K2,2-free graph H ∈ {H1, . . . ,Hr} such that H has
average degree at least d/r ≥

√
n/2r and bc(H) ≤ r . If

√
n/2r < nδ , then ρ(G) = r > n1/2−δ/2. If

√
n/2r ≥ nδ , then a

positive answer to Problem 10would imply r ≥ bc(H) ≥ nε . In both the caseswewould have that the bipartite complement
of the Erdős–Rényi graph has resistance at least nγ for a constant γ > 0.
The following question about biclique partitions is related to the formula size of boolean functions. Consider bicliques

R = A× B over the vertex set V = {0, 1}n. Such a biclique ismonochromatic if there is an i(1 ≤ i ≤ n) such that all vectors
of A differ from all vectors of B in the ith coordinate. For a subset U ⊆ {0, 1}n, let κ(U) be the smallest number t such that
the biclique U × ({0, 1}n \ U) can be decomposed into t edge-disjoint monochromatic bicliques.
It is well known (see, e.g., [20] or [18]) that κ(U) is a lower bound on the size of any boolean formula with And, Or and

Not gates computing the boolean function f : {0, 1}n → {0, 1} given by f (Ex) = 1 if and only if Ex ∈ U . A classical result of
Khrapchenko [14] shows that κ(U) ≥ n2 for the set U consisting of all vectors with an odd number of 1’s.

Problem 11. Exhibit a subset U ⊆ {0, 1}n such that κ(U) = Ω(nk) for a constant k > 2.

If done for k ≥ 3, this would improve the best known lower bound on the formula size of boolean functions [10].
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