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this lower bound, we prove that: (i) For k = 1, the new lower bound improves the bound
given by Chen, et al. [G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing’s
conjecture, J. Graph Theory 21 (1996) 103-111]. (ii) The product of the {k}-domination
Packing number numbers of two any graphs G and H, at least one of which is a (p, y)-graph, is no more
Domination number than ky (GO H). (iii) The product of the {2}-domination numbers of any graphs G and H,
{k}-domination number at least one of which is a (p, y — 1)-graph, is no more than 2y % (GO H).

Cartesian product © 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex v € V,
denoted by Ng(v), is the set of adjacent vertices of v, and the closed neighborhood Ng[v] = Ng(v) U {v}. For S C V(G),
Ng(S) = Uyes Ng(v) and Ng[S] = N¢(S) US. The subgraph induced by S is denoted by G[S]. AsetS C V(G) is an independent
set if no two vertices in S are adjacent.

For S C V(G), S is a dominating set if for any vertex v € V(G), INg[v] N S| > 1, and a packing of G if for any two distinct
vertices u and v in S, Ng[u] N Ng[v] = @. The minimum cardinality of a dominating set of G is the domination number y (G).
The packing number p(G) is the maximum cardinality of a packing of G. For any graph G, p(G) < y(G).For0 < k < y(G),
we define graph G to be a (p, y — k)-graph if p(G) = y(G) — k. It is known that a tree T is a (p, y)-graph.

For a subset Y of thereals R, Y C R, the weight of a function f : V(G) — Y is w(f) = Zvev(c)f(v), and for S € V(G)
we define f(S) = Y, s f(v), so o(f) = f(V(G)). For any fixed positive integer k, the function f : V(G) — Nis called a
{k}-dominating function of G if for every v € V(G), f(Ng[v]) > k, where N = {0, 1, 2. ..} is the set of nonnegative integers.
The {k}-domination number y " (G) of G is the minimum weight of a {k}-dominating function. One can clearly restrict to
functions with range {0, 1, 2, ..., k}.

For the parameters p(G), v (G) and y ™ (G), Domke, et al. [4] showed that

Proposition 1 ([4,7]). For any graph G and positive integer k, kp(G) < y ¥ (G) < ky (G).

As an immediate consequence of Proposition 1, we have the following result.

Corollary 2. If Gis a (p, y)-graph, then y ¥ (G) = kp(G) = ky (G).
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For graphs G and H, the Cartesian product GO H is the graph with vertex set V(G) x V(H), where two vertices (u1, v1)
and (us, v,) are adjacent if and only if either u; = u, and viv, € E(H) or v; = v, and uju; € E(G). The most
famous open problem involving domination in graphs is Vizing’s conjecture [8] which states that: For any graphs G and
H, y(G)y(H) < y(GOH). The best general upper bound to date on y(G)y (H) in terms of y(GOH) is due to Clark and
Suen [3]. They proved that: For any graphs G and H, y(G)y(H) < 2y(GOH). In [2], Chen, et al. gave a lower bound of
y (GOH) in terms of the packing and the domination numbers of G and H. They proved that

y(GOH) = p(G)y (H) 4 p(H)(y (G) — p(G)). (1)

In [7,6], Hartnell and Rall proved that Vizing’s conjecture is true for (p, y)-graphs and (p, y — 1)-graphs.
The inability of proving or disproving Vizing’s conjecture lead authors to pose different variations of the original problem.
The {k}-domination version of Vizing’s conjecture has been studied by Bresar, Henning and Klarzar [1]. They proved that

y ¥ Gy ™ H) < kik+1)y®(GOH) )
and
y M ©)y™#H) < 2ky™M(GOH) + kY (G, H), (3)

where (G, H) = min{|V(H)|(ky (G) — y™(G)), [V(G)|(ky (H) — y ™ (H))}.
In this paper, we give a lower bound of y*'(GOH) in terms of packing and {k}-domination numbers of G and H. The
main result is

Theorem 3. For any graphs G and H and positive integer k > 1, the following statements are true.
() y"M(GOH) = max{p(G)y ™ H), p(H)y™ (G)).
(ii) Let m = y™(G) — kp(G). If m > 0, then y (GO H) > p(G)y™H) + y'™H).

Some applications of the theorem are given in Section 3.

2. The proof of Theorem 3

In this section, we give a proof of Theorem 3.

Let A = {vy, ..., vy} be a maximum packing of G. Then the sets N¢[v;] are pairwise disjoint fori = 1, ..., p(G). Let
IT; = Nglvi] and ITy = V(G) — Uff];) IT;. Then {Iy, IT4, . . ., I1,)} is a partition of V(G) (note that [Ty is possibly empty).
Fori=1,...,0(G)and w € V(H),letH,, = {v;} x V(H), G, = V(G) x {w}, and G; ,, = IT; x {w}. Clearly, the subgraphs
induced by H,, (resp. G,,) is isomorphic to H (resp. G). In the following, instead of (GOH)[H,,] and (GO H)[G,,], we simply
use H,, and G,,,.

Let f be a minimum {k}-dominating function of GOH, then w(f) = y®¥(GOH). For any (u, v) in GOH, we simply use
f(u, v) instead of f ((u, v)).
Lemma 4. y"(GOH) > max{p(G)y ™ (H), p(H)y ™ (G)}.
Proof. Fori =1, ..., p(G), define hj(w) = f(Gj,,) for w € V(H). Then, for any w € V(H),

h(Nylw) = Y k= Y fGu)=fGu)+ Y fGi)

ueNy[w] ueNy[w] ueNy (w)

> fG)+ Y, [, u) =f(Neoul(vi, w)]) > k.

ueNy (w)

Hence, h; is a {k}-dominating function of H, so w(h) = Y,y f(Giu) = ¥ ™ (H).

Thus,
p(G) p(G)
yUGoH) =Y > G = Y yMH) = pG M H).
i=1 weV(H) i=1

By the symmetry of G and H, the result follows. O

Lemma 5. Let m = y™(G) — kp(G). If m > 0, then
y¥(GOH) = pG)y ™ (H) + y™ (H).



X. Hou, Y. Lu / Discrete Mathematics 309 (2009) 3413-3419 3415

Proof. If m = ¥ (G) — kp(G) > 0, then 1y # @. (If not, define ¢ (v) = kif v € A; 0 otherwise. Then ¢ is a {k}-dominating
function of G with weight k|A| = kp(G), a contradiction.) Let Gy ,, = ITp x {w}, w € V(H).
Fori=1,..., p(G) and w € V(H), define

r(cf,w)=min{ Y FGiw) =k f(Giw) — f (v, w)

ueNg [w]

Claim 1. Let ZuENH[w]f(GOv“) =l,.If I, < m, then

p(G)

Z r(Gi,w) >m— lw~

i=1
Proof of Claim 1. Let t = max{r(G;,) | 1 <i < p(G)}.For0 <j < t,letA; = {v; | r(Giw) = j}, let B = {v; | 1(Giw) =
Y uenyrf Giu) — k = jyand G = Aj — B, thatis G = {vi | 1(Giw) = f(Giw) = F@i W) = < Yoy Giw) — K}
Clearly, Ag, A1, . . ., A is a partition of A, and B;, ; is a partition of A;. Let B = Uj_y B;and C = Uj_, C;. Then BU C = A and
|B| + |C| = |A| = p(G). Further,

0(G)

Y rGiw) =Y _ilAl =Y i(B] + IGI). 4)
j=0 j=0

i=1

For v € V(G), define
fw,wy+ Y fGuw:v=vieB

ueNy (w)
k v=v €C
V) =
fuw) Zf(v,u) (v e I
ueNy[w]
fv, w) :v e V(G) — Iy — A.

We claim that f,, is a {k}-dominating function of G, that is for any v € V(G), f,,(Ng[v]) > k. Clearly, f,,(v) > f(v, w) for any
v € V(G).
If v € Iy, then

foNelvl) = fu@) + D ful)

v/ eNg(v)

> Y feow+ Y f.w)

ueNy[w] v'eNg(v)
= f(Neoul(v, w)]) > k.
If v € V(G) — Iy, then there exists some v; € A(1 < i < p(G)) such that v € Ng[v;], and so v; € Ng[v]. If v; € B, then
FoNelol) = D7 @) + fu(vi)

v/eNG[v]
v/ £

Yo fLwy Hfnw)+ Y f(Gia)

v’ eNg[v] ueNy (w)
v/ #v;

Yorew+ Y fwuw

v'eNg[v] ueNy (w)
= f(Neonl(v, w)]) = k.
If v; € C, then f,,(Ng[v]) = Zv/eNG[u]fw (v") > fu(v)) = k. The claim follows.
Since G,, is isomorphic to G, w(f,,) = ¥ (G). So,
ko(G) +m = y'(6) < (f)

=Y f@)+Y k+ > Y fow+ Y fo,w)

v;€B vjeC velly ueNgy[w] v (ITgUA)
p(G)

=Y ) fG+ Y (k—f@i,w)+hy+ Y f(Giw)

vi€eB ueNy (w) vieC i=1

v

v
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=Y Y fGw)+ Y (F(Giw) +k—f o, w)) + 1y

vieB ueNy[w] vjeC
= Z D ok+i+ Y (k) |+ L
vi€B; vi€G

= Z(|B|+|C|)+Z](|B|+|C|)+t

j=0
p(G)
=kp(G)+ Y _r(Giw) + L.

i=1

The third equality follows from

YooY few= Y Y few= Y fGu)=h

velly ueNy[w] ueNy[w] velly ueNy[w]
and
p(G) pG)
> fw) = Z(f(cuo f(v,,w»—Zf(clw) Y Fnw) =Y fi, w),
v (ITgUA) v;eB vieC

The fifth equality follows from the definition of B; and C;. The last equality follows from Z;:O(|Bj| +1G) = Z;:o |Ajl =
|A] = p(G) and Eq. (4).

Therefore, we have Zp( ) 1(Gj,w) = m — l,,. The proof of the claim is completed.

In the rest of the proof, we will construct a {k}-dominating function, say f;, of H = H,, foreach 1 < i < p(G) and an
{m}-dominating function, fy say, of H such that w(f) = Zﬂ? w(f) + w(f).

We proceed as follows. Recall that I,, is defined as ZueNH[w]f(Go,u)- ForO <t <m—1,defineS; ={w |, =t,we
V(H)}. Let So be a maximum independent set of H[S{]. Let S; be a maximum independent set of H [S[/ — NH[U;;(} Sj]] for
1 <t <m-—1andm > 2.By the definition of S;, the vertices in S; are not adjacent with the verticesin S;for0 <j <t —1.
Hence U{L O] S¢ is an independent set of H. Let S = U[L St andS = V(H) —S.

For given 1 < i < p(G), define

f(Giw) = 1Giw):weS
fitw) = {f(ci,w) ‘weS

for w € V(H). We show that f; is a {k}-dominating function of H. Let w be any vertex of V(H). Recall that r(G;,) =
min{ Yy ey, S (Gia) = k. f (Giw) — f (vi, w)).

Ifw €, then
fNglw)) = Y7 fiw =fGu)+ Y fiw
ueNy[w] ueNy (w)
> fGuw) + Y FGiw) = rGiu)
ueNy (w)
> G+ Y. fnw
ueNy (w)

= f(Ngoul(vi, w)]) = k.

If w € S, then, note that S is an independent set,

FNglw)) = > fiw =fiw)+ Y fiw

ueNy[w] ueNy (w)
=fGiw) =TGiw) + Y fGiu)
ueNy (w)
= Z f(Giﬁu) - r(Gi,w)
ueNy[w]

v

k.
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Hence, f; is a {k}-dominating function of H. So,

o) = Y fiw)
weV(H)
=Y (Giw) = 1Giw) + Y _f(Gin)
wes weS
= > fGuw) =Y rGiw)
weV(H) weS
>y,
fori=1,..., p(G).
Now define
p(G)
fw) = 1 Gow) + ;r(c.-,w) ‘wes
f(Gow) ‘weSs

for w € V(H). We prove that f; is an {m}-dominating function of H.
Recall that [, = ZueN,.,[wa(GO,u) forany w € V(H).
Case 1. w € S. Note that S is an independent set in H.

foNulw]) = fow) + Y fow)

ueNy (w)
p(G)
= fGow) + Y _rGiw)+ Y f(Gow)
i=1 ueNy (w)
p(G)

= lw + Z r(Gi,w)~
i=1

Ifl,, > m, then fo(Ny[w]) > [, > m.
If I, < m, then, by Claim 1,

pG)
foNulw]) = by + Y 1(Gin) = by +m—1, =m.

i=1

Case2.w € S.
Ifl, > m, then

foNulwl) = >~ fow) = Y f(Gou) =1Ly = m.

ueNy[w] ueNy[w]

If1<Il, <m,thenw € S,’w andw ¢ §,,.Since S;, is a maximum independent set of H [Sl’w — N,_,[U]’.ia1 Sj]], w € Ny[Sy, ]

orw € NH[U}igl Sj1. Hence, there exists 0 < p < I,, and a vertex w’ such that w’ € S, and w’ € Ny[w]. So, by Claim 1,

foNulwl) = > fow) +fow)

ueNy [w]—{w’}

(G)
> Y [Gow) +F(Gow) + Y r(Giw)
ueNy[w]—{w’} i=1
> Y f(Gow) + (m—p)
ueNy[w]

Ifl,, = 0, then w € Sjand w ¢ S. Since Sy is a maximum independent set of H[Sy], there exists a vertex w’ € Sy such
that w’ € Ny[w]. So, by Claim 1,

p(G)
foNulwl) = Y fow) +fo(w) = fow') = f(Gow) + Y r(Giw) = m.

ueNy [w]—{w’} i=1
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Therefore, fy is an {m}-dominating function of H. So,

ofo) = Y fow)

weV(H)
p(G)
=Y (F(Gow) + Y _rGiw) + Y _f(Gow)
wes i=1 wes
p(G)
= Z f(GO.w) + Z Z r(Gi,w)
weV (H) weS i=1
> y™(H).
Thus,
p(G)
y W GoH) =w() =) Y fGuw+ Y f(Gow)
i=1 weV(H) weV(H)
p(G) p(G)
=Y | D FGuw) =D rGiw) [+ D FGow)+ Y > (Giw)
i=1 [wevH) weS weV(H) i=1 weS
p(G) p(G)

= Z w(fy) +w(fo) = Zy[k](H) + ™ H)
i=1

i=1
= p(Q)y™MH) + ™ #H).
The proof of the lemma is completed. O

Theorem 3 follows directly from Lemmas 4 and 5.

3. Some applications of Theorem 3
Define y(%'(H) = 0. When k = 1, Theorem 3 implies that
y(GOH) = p(G)y(H) + y™ (H), (5)
where m = y (G) — p(G). By Proposition 1,
y(GOH) = p(Q)y (H) + y™(H) = p(G)y (H) + mp(H).
This improves the lower bound (1) given by Chen, Piotrowski and Shreve [2].
Note that if p(G) = y(G) or p(G) = y(G) — 1, then (5) implies that y (GOH) > y(G)y (H). That is
Corollary 6. Vizing’s conjecture is true for (p, y)-graphs and (p, y — 1)-graphs.

This is a result originally given by Hartnell and Rall [6,7].
In [5], the authors proved that

Lemma 7 ([5]). If both G and H are connected graphs of order at least four and have domination number one-half their order,
then y (G)y (H) = y(GOH).

The following result gives a tight upper bound for y*(G)y ™ (H) in term of y (GO H) for (p, y)-graphs.

Corollary 8. For integer k > 1 and any graphs G and H, at least one of which is a (p, y)-graph,
y Gy H) < ky™(GOH)
and this bound is sharp.

Proof. We may assume the graph G is a (p, ¥)-graph, and so p(G) = y(G). Hence, by Corollary 2, y ¥ (G) = kp(G). By (i)
of Theorem 3,

y I ©@rYH) = ko@y" H) < ky"(GOH).

That the bound is sharp may be seen as follows. Let G’ and H’ are any connected graph of order at least two. Let G (resp.
H) be obtained from G’ (resp. H') by adding exactly one vertex of degree one adjacent to each vertex V(G') (resp. V(H")).
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Then p(G) = y(G) = |V(G)| = %|V(G)| and p(H) = y(H) = |[V(H")| = %|V(H)|.Thus, by Proposition 1, Corollary 2 and
Lemma 7,
Ky @y H) = yM©yMH) < ky™(GOH) < Ky (GoH) = Ky @)y (H).
So,
yUey H) =kyMGon). o

The next result shows that the bound of Corollary 8 for k = 2 is valid not only for (p, y)-graphs but also for (p, y — 1)-
graphs.

Corollary 9. For any graphs G and H, at least one of which is a (p, y — 1)-graph,
y?@©y?H) <2yP(GOH).
Proof. We may assume the graph Gis a (p, y — 1)-graph, and so p(G) = y(G) — 1. By Proposition 1, 2p(G) < y(G) <

2p(G) + 2.
If y2/(G) = 2p(G), then, by (i) of Theorem 3,

y?©y?H) =2pG)y*H) < 2¢yP(GOH).
If Y2/ (G) = 2p(G) + 1, then m = 1. By Proposition 1 and (ii) of Theorem 3,

Yy Gy #H) = 200G yPH) + v (H)
< 20(G)yPH) + 2y (H)
= 2p(Q)y I (H) + 2y (H)
2y P(GOH).
If y21(G) = 2p(G) + 2, then m = 2. By (ii) of Theorem 3,

yE Gy HH) = 200Gy P H) + 2y H) <2y (GOH). O

IA

Note that a tree T is a (p, y)-graph. By Corollary 8, for any tree T and any graph H,
y @y M H) < k"1 OH).

Let C, be a cycle on n vertices. It is easy to check that G, is a (p, y)-graph if n = 0(mod 3); a (p, y — 1)-graph otherwise.
Hence, by Corollaries 8 and 9,

y# )y P H) <2y, 0H)

for any graph H.

Clearly, the bounds given in Corollaries 8 and 9 are smaller than the bounds (2) and (3) given by BreSar, Henning, and
Klavzar [1], hence improve the bounds (2) and (3) for (p, y)-graphs and (p, y — 1)-graphs. We conclude with an open
problem.

Question 1. For any graphs G and H and any positive integer k, is it true that
yM @y H) < ky™(GOH)?
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