Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/disc

Note On the $\{k\}$ -domination number of Cartesian products of graphs*

Xinmin Hou*. You Lu

Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China

ARTICLE INFO

Article history: Received 14 June 2007 Received in revised form 24 July 2008 Accepted 25 July 2008 Available online 19 August 2008

Keywords: Packing number Domination number {k}-domination number Cartesian product

1. Introduction

ABSTRACT

Let $G \square H$ denote the Cartesian product of graphs G and H. In this paper, we study the $\{k\}$ -domination number of Cartesian product of graphs and give a new lower bound of $\gamma^{\{k\}}(G \Box H)$ in terms of packing and $\{k\}$ -domination numbers of G and H. As applications of this lower bound, we prove that: (i) For k = 1, the new lower bound improves the bound given by Chen, et al. [G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing's conjecture, J. Graph Theory 21 (1996) 103–111]. (ii) The product of the $\{k\}$ -domination numbers of two any graphs G and H, at least one of which is a (ρ, γ) -graph, is no more than $k\gamma^{\{k\}}(G \Box H)$. (iii) The product of the {2}-domination numbers of any graphs G and H, at least one of which is a $(\rho, \gamma - 1)$ -graph, is no more than $2\gamma^{\{2\}}(G \Box H)$.

© 2008 Elsevier B.V. All rights reserved.

Let G = (V, E) be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex $v \in V$, denoted by $N_G(v)$, is the set of adjacent vertices of v, and the closed neighborhood $N_G(v) = N_G(v) \cup \{v\}$. For $S \subseteq V(G)$, $N_G(S) = \bigcup_{v \in S} N_G(v)$ and $N_G[S] = N_G(S) \cup S$. The subgraph induced by S is denoted by G[S]. A set $S \subseteq V(G)$ is an independent set if no two vertices in S are adjacent.

For $S \subseteq V(G)$, S is a dominating set if for any vertex $v \in V(G)$, $|N_G[v] \cap S| \ge 1$, and a packing of G if for any two distinct vertices *u* and *v* in *S*, $N_G[u] \cap N_G[v] = \emptyset$. The minimum cardinality of a dominating set of *G* is the domination number $\gamma(G)$. The packing number $\rho(G)$ is the maximum cardinality of a packing of *G*. For any graph *G*, $\rho(G) \leq \gamma(G)$. For $0 \leq k < \gamma(G)$, we define graph *G* to be a $(\rho, \gamma - k)$ -graph if $\rho(G) = \gamma(G) - k$. It is known that a tree *T* is a (ρ, γ) -graph.

For a subset Y of the reals \mathbb{R} , $Y \subseteq \mathbb{R}$, the weight of a function $f : V(G) \to Y$ is $\omega(f) = \sum_{v \in V(G)} f(v)$, and for $S \subseteq V(G)$ we define $f(S) = \sum_{v \in S} f(v)$, so $\omega(f) = f(V(G))$. For any fixed positive integer k, the function $f : V(G) \to \mathbb{N}$ is called a $\{k\}$ -dominating function of G if for every $v \in V(G)$, $f(N_G[v]) \ge k$, where $\mathbb{N} = \{0, 1, 2...\}$ is the set of nonnegative integers. The $\{k\}$ -domination number $\gamma^{\{k\}}(G)$ of G is the minimum weight of a $\{k\}$ -dominating function. One can clearly restrict to functions with range $\{0, 1, 2, \ldots, k\}$.

For the parameters $\rho(G)$, $\gamma(G)$ and $\gamma^{\{k\}}(G)$, Domke, et al. [4] showed that

Proposition 1 ([4,7]). For any graph *G* and positive integer k, $k\rho(G) \leq \gamma^{\{k\}}(G) < k\gamma(G)$.

As an immediate consequence of Proposition 1, we have the following result.

Corollary 2. If G is a (ρ, γ) -graph, then $\gamma^{\{k\}}(G) = k\rho(G) = k\gamma(G)$.

Corresponding author. E-mail address: xmhou@ustc.edu.cn (X. Hou).

^{ightarrow} The work was supported by NNSF of China (No. 10701068 and No. 10671191).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.07.030

For graphs *G* and *H*, the Cartesian product $G \Box H$ is the graph with vertex set $V(G) \times V(H)$, where two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $v_1 = v_2$ and $u_1u_2 \in E(G)$. The most famous open problem involving domination in graphs is Vizing's conjecture [8] which states that: For any graphs *G* and $H, \gamma(G)\gamma(H) \leq \gamma(G \Box H)$. The best general upper bound to date on $\gamma(G)\gamma(H)$ in terms of $\gamma(G \Box H)$ is due to Clark and Suen [3]. They proved that: For any graphs *G* and *H*, $\gamma(G)\gamma(H) \leq 2\gamma(G \Box H)$. In [2], Chen, et al. gave a lower bound of $\gamma(G \Box H)$ in terms of the packing and the domination numbers of *G* and *H*. They proved that

$$\gamma(G \Box H) \ge \rho(G)\gamma(H) + \rho(H)(\gamma(G) - \rho(G)). \tag{1}$$

In [7,6], Hartnell and Rall proved that Vizing's conjecture is true for (ρ, γ) -graphs and $(\rho, \gamma - 1)$ -graphs.

The inability of proving or disproving Vizing's conjecture lead authors to pose different variations of the original problem. The $\{k\}$ -domination version of Vizing's conjecture has been studied by Brešar, Henning and Klarzar [1]. They proved that

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) \le k(k+1)\gamma^{\{k\}}(G \square H)$$
⁽²⁾

and

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) \le 2k\gamma^{\{k\}}(G\,\Box\,H) + k\psi(G,H),\tag{3}$$

where $\psi(G, H) = \min\{|V(H)|(k\gamma(G) - \gamma^{\{k\}}(G)), |V(G)|(k\gamma(H) - \gamma^{\{k\}}(H))\}.$

In this paper, we give a lower bound of $\gamma^{\{k\}}(G \Box H)$ in terms of packing and $\{k\}$ -domination numbers of *G* and *H*. The main result is

Theorem 3. For any graphs G and H and positive integer $k \ge 1$, the following statements are true.

(i) $\gamma^{\{k\}}(G \Box H) \ge \max\{\rho(G)\gamma^{\{k\}}(H), \rho(H)\gamma^{\{k\}}(G)\}.$ (ii) Let $m = \gamma^{\{k\}}(G) - k\rho(G)$. If m > 0, then $\gamma^{\{k\}}(G \Box H) \ge \rho(G)\gamma^{\{k\}}(H) + \gamma^{\{m\}}(H)$.

Some applications of the theorem are given in Section 3.

2. The proof of Theorem 3

In this section, we give a proof of Theorem 3.

Let $A = \{v_1, \ldots, v_{\rho(G)}\}$ be a maximum packing of G. Then the sets $N_G[v_i]$ are pairwise disjoint for $i = 1, \ldots, \rho(G)$. Let $\Pi_i = N_G[v_i]$ and $\Pi_0 = V(G) - \bigcup_{i=1}^{\rho(G)} \Pi_i$. Then $\{\Pi_0, \Pi_1, \ldots, \Pi_{\rho(G)}\}$ is a partition of V(G) (note that Π_0 is possibly empty). For $i = 1, \ldots, \rho(G)$ and $w \in V(H)$, let $H_{v_i} = \{v_i\} \times V(H)$, $G_w = V(G) \times \{w\}$, and $G_{i,w} = \Pi_i \times \{w\}$. Clearly, the subgraphs induced by H_{v_i} (resp. G_w) is isomorphic to H (resp. G). In the following, instead of $(G \Box H)[H_{v_i}]$ and $(G \Box H)[G_w]$, we simply use H_{v_i} and G_w .

Let *f* be a minimum {*k*}-dominating function of $G \Box H$, then $\omega(f) = \gamma^{\{k\}}(G \Box H)$. For any (u, v) in $G \Box H$, we simply use f(u, v) instead of f((u, v)).

Lemma 4. $\gamma^{\{k\}}(G \Box H) \ge \max\{\rho(G)\gamma^{\{k\}}(H), \rho(H)\gamma^{\{k\}}(G)\}.$

Proof. For $i = 1, ..., \rho(G)$, define $h_i(w) = f(G_{i,w})$ for $w \in V(H)$. Then, for any $w \in V(H)$,

$$h_{i}(N_{H}[w]) = \sum_{u \in N_{H}[w]} h_{i}(u) = \sum_{u \in N_{H}[w]} f(G_{i,u}) = f(G_{i,w}) + \sum_{u \in N_{H}(w)} f(G_{i,u})$$

$$\geq f(G_{i,w}) + \sum_{u \in N_{H}(w)} f(v_{i}, u) = f(N_{G \Box H}[(v_{i}, w)]) \geq k.$$

Hence, h_i is a {k}-dominating function of H, so $w(h_i) = \sum_{u \in V(H)} f(G_{i,u}) \ge \gamma^{\{k\}}(H)$. Thus,

$$\gamma^{\{k\}}(G \Box H) \ge \sum_{i=1}^{\rho(G)} \sum_{w \in V(H)} f(G_{i,w}) \ge \sum_{i=1}^{\rho(G)} \gamma^{\{k\}}(H) = \rho(G)\gamma^{\{k\}}(H).$$

By the symmetry of *G* and *H*, the result follows. \Box

Lemma 5. Let $m = \gamma^{\{k\}}(G) - k\rho(G)$. If m > 0, then

$$\gamma^{\{k\}}(G \Box H) \ge \rho(G)\gamma^{\{k\}}(H) + \gamma^{\{m\}}(H).$$

Proof. If $m = \gamma^{\{k\}}(G) - k\rho(G) > 0$, then $\Pi_0 \neq \emptyset$. (If not, define $\phi(v) = k$ if $v \in A$; 0 otherwise. Then ϕ is a $\{k\}$ -dominating function of G with weight $k|A| = k\rho(G)$, a contradiction.) Let $G_{0,w} = \Pi_0 \times \{w\}, w \in V(H)$.

For $i = 1, ..., \rho(G)$ and $w \in V(H)$, define

.

$$r(G_{i,w}) = \min\left\{\sum_{u \in N_{H}[w]} f(G_{i,u}) - k, f(G_{i,w}) - f(v_{i}, w)\right\}$$

Claim 1. Let $\sum_{u \in N_{u}[w]} f(G_{0,u}) = l_{w}$. If $l_{w} < m$, then

$$\sum_{i=1}^{\rho(G)} r(G_{i,w}) \ge m - l_w.$$

Proof of Claim 1. Let $t = \max\{r(G_{i,w}) \mid 1 \le i \le \rho(G)\}$. For $0 \le j \le t$, let $A_j = \{v_i \mid r(G_{i,w}) = j\}$, let $B_j = \{v_i \mid r(G_{i,w}) = \sum_{u \in N_H[w]} f(G_{i,u}) - k = j\}$ and $C_j = A_j - B_j$, that is $C_j = \{v_i \mid r(G_{i,w}) = f(G_{i,w}) - f(v_i, w) = j < \sum_{u \in N_H[w]} f(G_{i,u}) - k\}$. Clearly, A_0, A_1, \ldots, A_t is a partition of A, and B_j, C_j is a partition of A_j . Let $B = \bigcup_{j=0}^t B_j$ and $C = \bigcup_{j=0}^t C_j$. Then $B \cup C = A$ and $|B| + |C| = |A| = \rho(G)$. Further,

$$\sum_{i=1}^{\rho(G)} r(G_{i,w}) = \sum_{j=0}^{t} j|A_j| = \sum_{j=0}^{t} j(|B_j| + |C_j|).$$
(4)

For $v \in V(G)$, define

$$f_{w}(v) = \begin{cases} f(v_{i}, w) + \sum_{u \in N_{H}(w)} f(G_{i,u}) : v = v_{i} \in B \\ k & : v = v_{i} \in C \\ \sum_{u \in N_{H}[w]} f(v, u) & : v \in \Pi_{0} \\ f(v, w) & : v \in V(G) - \Pi_{0} - A. \end{cases}$$

We claim that f_w is a $\{k\}$ -dominating function of G, that is for any $v \in V(G)$, $f_w(N_G[v]) \ge k$. Clearly, $f_w(v) \ge f(v, w)$ for any $v \in V(G)$.

If $v \in \Pi_0$, then

$$f_{w}(N_{G}[v]) = f_{w}(v) + \sum_{v' \in N_{G}(v)} f_{w}(v')$$

$$\geq \sum_{u \in N_{H}[w]} f(v, u) + \sum_{v' \in N_{G}(v)} f(v', w)$$

$$= f(N_{G \Box H}[(v, w)]) \geq k.$$

If $v \in V(G) - \Pi_0$, then there exists some $v_i \in A$ $(1 \le i \le \rho(G))$ such that $v \in N_G[v_i]$, and so $v_i \in N_G[v]$. If $v_i \in B$, then

$$f_{w}(N_{G}[v]) = \sum_{\substack{v' \in N_{G}[v] \\ v' \neq v_{i}}} f_{w}(v') + f_{w}(v_{i})$$

$$\geq \sum_{\substack{v' \in N_{G}[v] \\ v' \neq v_{i}}} f(v', w) + f(v_{i}, w) + \sum_{u \in N_{H}(w)} f(G_{i,u})$$

$$\geq \sum_{\substack{v' \in N_{G}[v] \\ v' \neq v_{i}}} f(v', w) + \sum_{u \in N_{H}(w)} f(v, u)$$

$$= f(N_{G \square H}[(v, w)]) \geq k.$$

.....

If $v_i \in C$, then $f_w(N_G[v]) = \sum_{v' \in N_G[v]} f_w(v') \ge f_w(v_i) = k$. The claim follows. Since G_w is isomorphic to $G, \omega(f_w) \ge \gamma^{\{k\}}(G)$. So,

$$k\rho(G) + m = \gamma^{(k)}(G) \le \omega(f_w)$$

= $\sum_{v_i \in B} f_w(v_i) + \sum_{v_i \in C} k + \sum_{v \in \Pi_0} \sum_{u \in N_H[w]} f(v, u) + \sum_{v \notin (\Pi_0 \cup A)} f(v, w)$
= $\sum_{v_i \in B} \sum_{u \in N_H(w)} f(G_{i,u}) + \sum_{v_i \in C} (k - f(v_i, w)) + l_w + \sum_{i=1}^{\rho(G)} f(G_{i,w})$

$$= \sum_{v_i \in B} \sum_{u \in N_H[w]} f(G_{i,u}) + \sum_{v_i \in C} (f(G_{i,w}) + k - f(v_i, w)) + l_w$$

$$= \sum_{j=0}^t \left(\sum_{v_i \in B_j} (k+j) + \sum_{v_i \in C_j} (k+j) \right) + l_w$$

$$= k \sum_{j=0}^t (|B_j| + |C_j|) + \sum_{j=0}^t j(|B_j| + |C_j|) + l_w$$

$$= k\rho(G) + \sum_{i=1}^{\rho(G)} r(G_{i,w}) + l_w.$$

The third equality follows from

$$\sum_{v \in \Pi_0} \sum_{u \in N_H[w]} f(v, u) = \sum_{u \in N_H[w]} \sum_{v \in \Pi_0} f(v, u) = \sum_{u \in N_H[w]} f(G_{0, u}) = l_u$$

and

$$\sum_{v \notin (\Pi_0 \cup A)} f(v, w) = \sum_{i=1}^{\rho(G)} (f(G_{i,w}) - f(v_i, w)) = \sum_{i=1}^{\rho(G)} f(G_{i,w}) - \sum_{v_i \in B} f(v_i, w) - \sum_{v_i \in C} f(v_i, w).$$

The fifth equality follows from the definition of B_j and C_j . The last equality follows from $\sum_{i=0}^{t} (|B_j| + |C_j|) = \sum_{i=0}^{t} |A_j| = \sum_{i=0}^{t} |A_j|$ $|A| = \rho(G)$ and Eq. (4).

Therefore, we have $\sum_{i=1}^{\rho(G)} r(G_{i,w}) \ge m - l_w$. The proof of the claim is completed. In the rest of the proof, we will construct a $\{k\}$ -dominating function, say f_i , of $H \cong H_{v_i}$ for each $1 \le i \le \rho(G)$ and an $\{m\}$ -dominating function, f_0 say, of H such that $\omega(f) = \sum_{i=1}^{\rho(G)} \omega(f_i) + \omega(f_0)$. We proceed as follows. Recall that l_w is defined as $\sum_{u \in N_H[w]} f(G_{0,u})$. For $0 \le t \le m - 1$, define $S'_t = \{w \mid l_w = t, w \in V_{W_i}\}$.

V(H)}. Let S_0 be a maximum independent set of $H[S'_0]$. Let S_t be a maximum independent set of $H\left[S'_t - N_H[\bigcup_{j=0}^{t-1} S_j]\right]$ for $1 \le t \le m-1$ and $m \ge 2$. By the definition of S_t , the vertices in S_t are not adjacent with the vertices in S_j for $0 \le j \le t-1$. Hence $\bigcup_{t=0}^{m-1} S_t$ is an independent set of *H*. Let $S = \bigcup_{t=0}^{m-1} S_t$ and $\overline{S} = V(H) - S$. For given $1 \le i \le \rho(G)$, define

$$f_{i}(w) = \begin{cases} f(G_{i,w}) - r(G_{i,w}) : w \in S \\ f(G_{i,w}) : w \in \overline{S} \end{cases}$$

for $w \in V(H)$. We show that f_i is a $\{k\}$ -dominating function of H. Let w be any vertex of V(H). Recall that $r(G_{i,w}) = 0$ $\min\{\sum_{u\in N_H[w]} f(G_{i,u}) - k, f(G_{i,w}) - f(v_i, w)\}.$

If $w \in \overline{S}$, then

$$f_{i}(N_{H}[w]) = \sum_{u \in N_{H}[w]} f_{i}(u) = f(G_{i,w}) + \sum_{u \in N_{H}(w)} f_{i}(u)$$

$$\geq f(G_{i,w}) + \sum_{u \in N_{H}(w)} (f(G_{i,u}) - r(G_{i,u}))$$

$$\geq f(G_{i,w}) + \sum_{u \in N_{H}(w)} f(v_{i}, u)$$

$$= f(N_{G \square H}[(v_{i}, w)]) \geq k.$$

If $w \in S$, then, note that S is an independent set,

$$f_{i}(N_{H}[w]) = \sum_{u \in N_{H}[w]} f_{i}(u) = f_{i}(w) + \sum_{u \in N_{H}(w)} f_{i}(u)$$

= $f(G_{i,w}) - r(G_{i,w}) + \sum_{u \in N_{H}(w)} f(G_{i,u})$
= $\sum_{u \in N_{H}[w]} f(G_{i,u}) - r(G_{i,w})$
 $\geq k.$

Hence, f_i is a {k}-dominating function of H. So,

$$\begin{split} \omega(f_i) &= \sum_{w \in V(H)} f_i(w) \\ &= \sum_{w \in S} (f(G_{i,w}) - r(G_{i,w})) + \sum_{w \in \overline{S}} f(G_{i,w}) \\ &= \sum_{w \in V(H)} f(G_{i,w}) - \sum_{w \in S} r(G_{i,w}) \\ &\ge \gamma^{\{k\}}(H), \end{split}$$

for $i = 1, ..., \rho(G)$. Now define

$$f_0(w) = \begin{cases} f(G_{0,w}) + \sum_{i=1}^{\rho(G)} r(G_{i,w}) : w \in S \\ f(G_{0,w}) & : w \in \bar{S} \end{cases}$$

for $w \in V(H)$. We prove that f_0 is an $\{m\}$ -dominating function of H.

Recall that $l_w = \sum_{u \in N_H[w]} f(G_{0,u})$ for any $w \in V(H)$. *Case* 1. $w \in S$. Note that *S* is an independent set in *H*.

$$f_0(N_H[w]) = f_0(w) + \sum_{u \in N_H(w)} f_0(u)$$

= $f(G_{0,w}) + \sum_{i=1}^{\rho(G)} r(G_{i,w}) + \sum_{u \in N_H(w)} f(G_{0,u})$
= $l_w + \sum_{i=1}^{\rho(G)} r(G_{i,w}).$

If $l_w \ge m$, then $f_0(N_H[w]) \ge l_w \ge m$. If $l_w < m$, then, by Claim 1,

$$f_0(N_H[w]) = l_w + \sum_{i=1}^{\rho(G)} r(G_{i,w}) \ge l_w + m - l_w = m.$$

Case 2. $w \in \overline{S}$. If $l_w \geq m$, then

$$f_0(N_H[w]) = \sum_{u \in N_H[w]} f_0(u) \ge \sum_{u \in N_H[w]} f(G_{0,u}) = l_w \ge m.$$

If $1 \le l_w < m$, then $w \in S'_{l_w}$ and $w \notin S_{l_w}$. Since S_{l_w} is a maximum independent set of $H\left[S'_{l_w} - N_H\left[\bigcup_{j=0}^{l_w-1} S_j\right]\right]$, $w \in N_H\left[S_{l_w}\right]$ or $w \in N_H[\cup_{i=0}^{l_w-1} S_j]$. Hence, there exists $0 \le p \le l_w$ and a vertex w' such that $w' \in S_p$ and $w' \in N_H[w]$. So, by Claim 1,

$$f_{0}(N_{H}[w]) = \sum_{u \in N_{H}[w] - \{w'\}} f_{0}(u) + f_{0}(w')$$

$$\geq \sum_{u \in N_{H}[w] - \{w'\}} f(G_{0,u}) + f(G_{0,w'}) + \sum_{i=1}^{\rho(G)} r(G_{i,w'})$$

$$\geq \sum_{u \in N_{H}[w]} f(G_{0,u}) + (m-p)$$

$$\geq l_{w} + m - l_{w} = m.$$

If $l_w = 0$, then $w \in S'_0$ and $w \notin S_0$. Since S_0 is a maximum independent set of $H[S'_0]$, there exists a vertex $w' \in S_0$ such that $w' \in N_H[w]$. So, by Člaim 1,

$$f_0(N_H[w]) = \sum_{u \in N_H[w] - \{w'\}} f_0(u) + f_0(w') \ge f_0(w') = f(G_{0,w'}) + \sum_{i=1}^{\rho(G)} r(G_{i,w}) \ge m.$$

Therefore, f_0 is an $\{m\}$ -dominating function of H. So,

$$\begin{split} \omega(f_0) &= \sum_{w \in V(H)} f_0(w) \\ &= \sum_{w \in S} (f(G_{0,w}) + \sum_{i=1}^{\rho(G)} r(G_{i,w})) + \sum_{w \in \bar{S}} f(G_{0,w}) \\ &= \sum_{w \in V(H)} f(G_{0,w}) + \sum_{w \in S} \sum_{i=1}^{\rho(G)} r(G_{i,w}) \\ &\ge \gamma^{\{m\}}(H). \end{split}$$

Thus,

$$\begin{split} \gamma^{\{k\}}(G \Box H) &= w(f) = \sum_{i=1}^{\rho(G)} \sum_{w \in V(H)} f(G_{i,w}) + \sum_{w \in V(H)} f(G_{0,w}) \\ &= \sum_{i=1}^{\rho(G)} \left[\sum_{w \in V(H)} f(G_{i,w}) - \sum_{w \in S} r(G_{i,w}) \right] + \sum_{w \in V(H)} f(G_{0,w}) + \sum_{i=1}^{\rho(G)} \sum_{w \in S} r(G_{i,w}) \\ &= \sum_{i=1}^{\rho(G)} w(f_i) + w(f_0) \ge \sum_{i=1}^{\rho(G)} \gamma^{\{k\}}(H) + \gamma^{\{m\}}(H) \\ &= \rho(G) \gamma^{\{k\}}(H) + \gamma^{\{m\}}(H). \end{split}$$

The proof of the lemma is completed. \Box

Theorem 3 follows directly from Lemmas 4 and 5.

3. Some applications of Theorem 3

Define $\gamma^{\{0\}}(H) = 0$. When k = 1, Theorem 3 implies that

$$\gamma(G \Box H) \ge \rho(G)\gamma(H) + \gamma^{\{m\}}(H),$$

where $m = \gamma(G) - \rho(G)$. By Proposition 1,

$$\gamma(G\Box H) \ge \rho(G)\gamma(H) + \gamma^{\{m\}}(H) \ge \rho(G)\gamma(H) + m\rho(H).$$

. .

This improves the lower bound (1) given by Chen, Piotrowski and Shreve [2]. Note that if $\rho(G) = \gamma(G)$ or $\rho(G) = \gamma(G) - 1$, then (5) implies that $\gamma(G \Box H) \ge \gamma(G)\gamma(H)$. That is

Corollary 6. Vizing's conjecture is true for (ρ, γ) -graphs and $(\rho, \gamma - 1)$ -graphs.

This is a result originally given by Hartnell and Rall [6,7]. In [5], the authors proved that

Lemma 7 ([5]). If both *G* and *H* are connected graphs of order at least four and have domination number one-half their order, then $\gamma(G)\gamma(H) = \gamma(G \Box H)$.

The following result gives a tight upper bound for $\gamma^{\{k\}}(G)\gamma^{\{k\}}(H)$ in term of $\gamma^{\{k\}}(G \Box H)$ for (ρ, γ) -graphs.

Corollary 8. For integer $k \ge 1$ and any graphs *G* and *H*, at least one of which is a (ρ, γ) -graph,

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) < k\gamma^{\{k\}}(G \Box H)$$

and this bound is sharp.

Proof. We may assume the graph *G* is a (ρ, γ) -graph, and so $\rho(G) = \gamma(G)$. Hence, by Corollary 2, $\gamma^{\{k\}}(G) = k\rho(G)$. By (i) of Theorem 3,

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) = k\rho(G)\gamma^{\{k\}}(H) \le k\gamma^{\{k\}}(G\,\Box\,H).$$

That the bound is sharp may be seen as follows. Let G' and H' are any connected graph of order at least two. Let G (resp. H) be obtained from G' (resp. H') by adding exactly one vertex of degree one adjacent to each vertex V(G') (resp. V(H')).

(5)

Then $\rho(G) = \gamma(G) = |V(G')| = \frac{1}{2}|V(G)|$ and $\rho(H) = \gamma(H) = |V(H')| = \frac{1}{2}|V(H)|$. Thus, by Proposition 1, Corollary 2 and Lemma 7,

$$k^2\gamma(G)\gamma(H) = \gamma^{\{k\}}(G)\gamma^{\{k\}}(H) \le k\gamma^{\{k\}}(G \square H) \le k^2\gamma(G \square H) = k^2\gamma(G)\gamma(H).$$

So,

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) = k\gamma^{\{k\}}(G \Box H).$$

The next result shows that the bound of Corollary 8 for k = 2 is valid not only for (ρ, γ) -graphs but also for $(\rho, \gamma - 1)$ -graphs.

Corollary 9. For any graphs G and H, at least one of which is a $(\rho, \gamma - 1)$ -graph,

$$\gamma^{\{2\}}(G)\gamma^{\{2\}}(H) \leq 2\gamma^{\{2\}}(G \Box H).$$

Proof. We may assume the graph *G* is a $(\rho, \gamma - 1)$ -graph, and so $\rho(G) = \gamma(G) - 1$. By Proposition 1, $2\rho(G) \le \gamma^{[2]}(G) \le 2\rho(G) + 2$.

If $\gamma^{\{2\}}(G) = 2\rho(G)$, then, by (i) of Theorem 3,

$$\gamma^{\{2\}}(G)\gamma^{\{2\}}(H) = 2\rho(G)\gamma^{\{2\}}(H) \le 2\gamma^{\{2\}}(G\,\Box\,H).$$

If $\gamma^{\{2\}}(G) = 2\rho(G) + 1$, then m = 1. By Proposition 1 and (ii) of Theorem 3,

$$\begin{split} \gamma^{\{2\}}(G)\gamma^{\{2\}}(H) &= 2\rho(G)\gamma^{\{2\}}(H) + \gamma^{\{2\}}(H) \\ &\leq 2\rho(G)\gamma^{\{2\}}(H) + 2\gamma(H) \\ &= 2\rho(G)\gamma^{\{2\}}(H) + 2\gamma^{\{1\}}(H) \\ &\leq 2\gamma^{\{2\}}(G \Box H). \end{split}$$

If $\gamma^{\{2\}}(G) = 2\rho(G) + 2$, then m = 2. By (ii) of Theorem 3,

 $\gamma^{\{2\}}(G)\gamma^{\{2\}}(H) = 2\rho(G)\gamma^{\{2\}}(H) + 2\gamma^{\{2\}}(H) \le 2\gamma^{\{2\}}(G \Box H). \quad \Box$

Note that a tree *T* is a (ρ, γ) -graph. By Corollary 8, for any tree *T* and any graph *H*,

 $\gamma^{\{k\}}(T)\gamma^{\{k\}}(H) \le k\gamma^{\{k\}}(T \Box H).$

Let C_n be a cycle on n vertices. It is easy to check that C_n is a (ρ, γ) -graph if $n \equiv 0 \pmod{3}$; a $(\rho, \gamma - 1)$ -graph otherwise. Hence, by Corollaries 8 and 9,

 $\gamma^{\{2\}}(C_n)\gamma^{\{2\}}(H) \leq 2\gamma^{\{2\}}(C_n \Box H)$

for any graph H.

Clearly, the bounds given in Corollaries 8 and 9 are smaller than the bounds (2) and (3) given by Brešar, Henning, and Klavzar [1], hence improve the bounds (2) and (3) for (ρ, γ) -graphs and $(\rho, \gamma - 1)$ -graphs. We conclude with an open problem.

Question 1. For any graphs G and H and any positive integer k, is it true that

$$\gamma^{\{k\}}(G)\gamma^{\{k\}}(H) \le k\gamma^{\{k\}}(G \Box H)?$$

References

- [1] B. Brešar, M.A. Henning, S. Klavzar, On integer domination in graphs and Vizing-liking problems, Taiwanese J. Math. 10 (5) (2006) 1317–1328.
- [2] G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing's conjecture, J. Graph Theory 21 (1996) 103–111.
- [3] W.E. Clark, S. Suen, An inequality related to Vizing's conjecture, Electron. J. Combin. 7 (1) (2000) Note 4, 3 pp. (electronic).
- [4] G. Domke, S.T. Hedetniemi, R.C. Laskar, G. Fricke, Relationships between integer and fractional parameters of graphs, in: Graph Theory, Combinatorics, and Applications, vol. 2, John Wiley & Sons, Inc., 1991, pp. 371–387.
- [5] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287–293.
- [6] B.L. Hartnell, D.F. Rall, Vizing's conjecture and the one-half argument, Discuss. Math. Graph Theory 15 (1995) 205–216.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Deliker, New York, 1998.
- [8] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi. Mat. Nauk 23 (6 (144)) (1968) 117-134.