Note

On the $\{k\}$-domination number of Cartesian products of graphs ${ }^{\star}$

Xinmin Hou*, You Lu
Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China

ARTICLE INFO

Article history:

Received 14 June 2007
Received in revised form 24 July 2008
Accepted 25 July 2008
Available online 19 August 2008

Keywords:

Packing number
Domination number
$\{k\}$-domination number
Cartesian product

Abstract

Let $G \square H$ denote the Cartesian product of graphs G and H. In this paper, we study the $\{k\}$-domination number of Cartesian product of graphs and give a new lower bound of $\gamma^{\{k\}}(G \square H)$ in terms of packing and $\{k\}$-domination numbers of G and H. As applications of this lower bound, we prove that: (i) For $k=1$, the new lower bound improves the bound given by Chen, et al. [G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing's conjecture, J. Graph Theory 21 (1996) 103-111]. (ii) The product of the $\{k\}$-domination numbers of two any graphs G and H, at least one of which is a (ρ, γ)-graph, is no more than $k \gamma^{\{k\}}(G \square H)$. (iii) The product of the $\{2\}$-domination numbers of any graphs G and H, at least one of which is a $(\rho, \gamma-1)$-graph, is no more than $2 \gamma^{\{2\}}(G \square H)$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex $v \in V$, denoted by $N_{G}(v)$, is the set of adjacent vertices of v, and the closed neighborhood $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $S \subseteq V(G)$, $N_{G}(S)=\cup_{v \in S} N_{G}(v)$ and $N_{G}[S]=N_{G}(S) \cup S$. The subgraph induced by S is denoted by $G[S]$. A set $S \subseteq V(G)$ is an independent set if no two vertices in S are adjacent.

For $S \subseteq V(G), S$ is a dominating set if for any vertex $v \in V(G),\left|N_{G}[v] \cap S\right| \geq 1$, and a packing of G if for any two distinct vertices u and v in $S, N_{G}[u] \cap N_{G}[v]=\emptyset$. The minimum cardinality of dominating set of G is the domination number $\gamma(G)$. The packing number $\rho(G)$ is the maximum cardinality of a packing of G. For any graph $G, \rho(G) \leq \gamma(G)$. For $0 \leq k<\gamma(G)$, we define graph G to be a $(\rho, \gamma-k)$-graph if $\rho(G)=\gamma(G)-k$. It is known that a tree T is a (ρ, γ)-graph.

For a subset Y of the reals $\mathbb{R}, Y \subseteq \mathbb{R}$, the weight of a function $f: V(G) \rightarrow Y$ is $\omega(f)=\sum_{v \in V(G)} f(v)$, and for $S \subseteq V(G)$ we define $f(S)=\sum_{v \in S} f(v)$, so $\omega(f)=f(V(G))$. For any fixed positive integer k, the function $f: V(G) \rightarrow \mathbb{N}$ is called a $\{k\}$-dominating function of G if for every $v \in V(G), f\left(N_{G}[v]\right) \geq k$, where $\mathbb{N}=\{0,1,2 \ldots\}$ is the set of nonnegative integers. The $\{k\}$-domination number $\gamma^{\{k\}}(G)$ of G is the minimum weight of a $\{k\}$-dominating function. One can clearly restrict to functions with range $\{0,1,2, \ldots, k\}$.

For the parameters $\rho(G), \gamma(G)$ and $\gamma^{\{k\}}(G)$, Domke, et al. [4] showed that
Proposition 1 ([4,7]). For any graph G and positive integer $k, k \rho(G) \leq \gamma^{\{k\}}(G) \leq k \gamma(G)$.
As an immediate consequence of Proposition 1, we have the following result.
Corollary 2. If G is $a(\rho, \gamma)$-graph, then $\gamma^{\{k\}}(G)=k \rho(G)=k \gamma(G)$.

[^0]0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.07.030

For graphs G and H, the Cartesian product $G \square H$ is the graph with vertex set $V(G) \times V(H)$, where two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. The most famous open problem involving domination in graphs is Vizing's conjecture [8] which states that: For any graphs G and $H, \gamma(G) \gamma(H) \leq \gamma(G \square H)$. The best general upper bound to date on $\gamma(G) \gamma(H)$ in terms of $\gamma(G \square H)$ is due to Clark and Suen [3]. They proved that: For any graphs G and $H, \gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$. In [2], Chen, et al. gave a lower bound of $\gamma(G \square H)$ in terms of the packing and the domination numbers of G and H. They proved that

$$
\begin{equation*}
\gamma(G \square H) \geq \rho(G) \gamma(H)+\rho(H)(\gamma(G)-\rho(G)) \tag{1}
\end{equation*}
$$

In [7,6], Hartnell and Rall proved that Vizing's conjecture is true for (ρ, γ)-graphs and ($\rho, \gamma-1$)-graphs.
The inability of proving or disproving Vizing's conjecture lead authors to pose different variations of the original problem. The $\{k\}$-domination version of Vizing's conjecture has been studied by Bres̆ar, Henning and Klarzar [1]. They proved that

$$
\begin{equation*}
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H) \leq k(k+1) \gamma^{\{k\}}(G \square H) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H) \leq 2 k \gamma^{\{k\}}(G \square H)+k \psi(G, H) \tag{3}
\end{equation*}
$$

where $\psi(G, H)=\min \left\{|V(H)|\left(k \gamma(G)-\gamma^{\{k\}}(G)\right),|V(G)|\left(k \gamma(H)-\gamma^{\{k\}}(H)\right)\right\}$.
In this paper, we give a lower bound of $\gamma^{\{k\}}(G \square H)$ in terms of packing and $\{k\}$-domination numbers of G and H. The main result is

Theorem 3. For any graphs G and H and positive integer $k \geq 1$, the following statements are true.
(i) $\gamma^{\{k\}}(G \square H) \geq \max \left\{\rho(G) \gamma^{\{k\}}(H), \rho(H) \gamma^{\{k\}}(G)\right\}$.
(ii) Let $m=\gamma^{\{k\}}(G)-k \rho(G)$. If $m>0$, then $\gamma^{\{k\}}(G \square H) \geq \rho(G) \gamma^{\{k\}}(H)+\gamma^{\{m\}}(H)$.

Some applications of the theorem are given in Section 3.

2. The proof of Theorem 3

In this section, we give a proof of Theorem 3.
Let $A=\left\{v_{1}, \ldots, v_{\rho(G)}\right\}$ be a maximum packing of G. Then the sets $N_{G}\left[v_{i}\right]$ are pairwise disjoint for $i=1, \ldots, \rho(G)$. Let $\Pi_{i}=N_{G}\left[v_{i}\right]$ and $\Pi_{0}=V(G)-\cup_{i=1}^{\rho(G)} \Pi_{i}$. Then $\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{\rho(G)}\right\}$ is a partition of $\mathrm{V}(\mathrm{G})$ (note that Π_{0} is possibly empty). For $i=1, \ldots, \rho(G)$ and $w \in V(H)$, let $H_{v_{i}}=\left\{v_{i}\right\} \times V(H), G_{w}=V(G) \times\{w\}$, and $G_{i, w}=\Pi_{i} \times\{w\}$. Clearly, the subgraphs induced by $H_{v_{i}}$ (resp. G_{w}) is isomorphic to H (resp. G). In the following, instead of $(G \square H)\left[H_{v_{i}}\right]$ and $(G \square H)\left[G_{w}\right]$, we simply use $H_{v_{i}}$ and G_{w}.

Let f be a minimum $\{k\}$-dominating function of $G \square H$, then $\omega(f)=\gamma^{\{k\}}(G \square H)$. For any (u, v) in $G \square H$, we simply use $f(u, v)$ instead of $f((u, v))$.

Lemma 4. $\gamma^{\{k\}}(G \square H) \geq \max \left\{\rho(G) \gamma^{\{k\}}(H), \rho(H) \gamma^{\{k\}}(G)\right\}$.
Proof. For $i=1, \ldots, \rho(G)$, define $h_{i}(w)=f\left(G_{i, w}\right)$ for $w \in V(H)$. Then, for any $w \in V(H)$,

$$
\begin{aligned}
h_{i}\left(N_{H}[w]\right) & =\sum_{u \in N_{H}[w]} h_{i}(u)=\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)=f\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(G_{i, u}\right) \\
& \geq f\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(v_{i}, u\right)=f\left(N_{G \square H}\left[\left(v_{i}, w\right)\right]\right) \geq k .
\end{aligned}
$$

Hence, h_{i} is a $\{k\}$-dominating function of H, so $w\left(h_{i}\right)=\sum_{u \in V(H)} f\left(G_{i, u}\right) \geq \gamma^{\{k\}}(H)$.
Thus,

$$
\gamma^{\{k\}}(G \square H) \geq \sum_{i=1}^{\rho(G)} \sum_{w \in V(H)} f\left(G_{i, w}\right) \geq \sum_{i=1}^{\rho(G)} \gamma^{\{k\}}(H)=\rho(G) \gamma^{\{k\}}(H)
$$

By the symmetry of G and H, the result follows.
Lemma 5. Let $m=\gamma^{\{k\}}(G)-k \rho(G)$. If $m>0$, then

$$
\gamma^{\{k\}}(G \square H) \geq \rho(G) \gamma^{\{k\}}(H)+\gamma^{\{m\}}(H) .
$$

Proof. If $m=\gamma^{\{k\}}(G)-k \rho(G)>0$, then $\Pi_{0} \neq \emptyset$. (If not, define $\phi(v)=k$ if $v \in A ; 0$ otherwise. Then ϕ is a $\{k\}$-dominating function of G with weight $k|A|=k \rho(G)$, a contradiction.) Let $G_{0, w}=\Pi_{0} \times\{w\}, w \in V(H)$.

For $i=1, \ldots, \rho(G)$ and $w \in V(H)$, define

$$
r\left(G_{i, w}\right)=\min \left\{\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)-k, f\left(G_{i, w}\right)-f\left(v_{i}, w\right)\right\} .
$$

Claim 1. Let $\sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)=l_{w}$. If $l_{w}<m$, then

$$
\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) \geq m-l_{w}
$$

Proof of Claim 1. Let $t=\max \left\{r\left(G_{i, w}\right) \mid 1 \leq i \leq \rho(G)\right\}$. For $0 \leq j \leq t$, let $A_{j}=\left\{v_{i} \mid r\left(G_{i, w}\right)=j\right\}$, let $B_{j}=\left\{v_{i} \mid r\left(G_{i, w}\right)=\right.$ $\left.\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)-k=j\right\}$ and $C_{j}=A_{j}-B_{j}$, that is $C_{j}=\left\{v_{i} \mid \bar{r}\left(G_{i, w}\right)=f\left(G_{i, w}\right)-f\left(v_{i}, w\right)=j<\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)-k\right\}$. Clearly, $A_{0}, A_{1}, \ldots, A_{t}$ is a partition of A, and B_{j}, C_{j} is a partition of A_{j}. Let $B=\cup_{j=0}^{t} B_{j}$ and $C=\cup_{j=0}^{t} C_{j}$. Then $B \cup C=A$ and $|B|+|C|=|A|=\rho(G)$. Further,

$$
\begin{equation*}
\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right)=\sum_{j=0}^{t} j\left|A_{j}\right|=\sum_{j=0}^{t} j\left(\left|B_{j}\right|+\left|C_{j}\right|\right) \tag{4}
\end{equation*}
$$

For $v \in V(G)$, define

$$
f_{w}(v)= \begin{cases}f\left(v_{i}, w\right)+\sum_{u \in N_{H}(w)} f\left(G_{i, u}\right) & : v=v_{i} \in B \\ k & : v=v_{i} \in C \\ \sum_{u \in N_{H}[w]} f(v, u) & : v \in \Pi_{0} \\ f(v, w) & : v \in V(G)-\Pi_{0}-A\end{cases}
$$

We claim that f_{w} is a $\{k\}$-dominating function of G, that is for any $v \in V(G), f_{w}\left(N_{G}[v]\right) \geq k$. Clearly, $f_{w}(v) \geq f(v, w)$ for any $v \in V(G)$.

If $v \in \Pi_{0}$, then

$$
\begin{aligned}
f_{w}\left(N_{G}[v]\right) & =f_{w}(v)+\sum_{v^{\prime} \in N_{G}(v)} f_{w}\left(v^{\prime}\right) \\
& \geq \sum_{u \in N_{H}[w]} f(v, u)+\sum_{v^{\prime} \in N_{G}(v)} f\left(v^{\prime}, w\right) \\
& =f\left(N_{G \square H}[(v, w)]\right) \geq k .
\end{aligned}
$$

If $v \in V(G)-\Pi_{0}$, then there exists some $v_{i} \in A(1 \leq i \leq \rho(G))$ such that $v \in N_{G}\left[v_{i}\right]$, and so $v_{i} \in N_{G}[v]$. If $v_{i} \in B$, then

$$
\begin{aligned}
f_{w}\left(N_{G}[v]\right) & =\sum_{\substack{v^{\prime} \in N_{G}[v] \\
v^{\prime} \neq v_{i}}} f_{w}\left(v^{\prime}\right)+f_{w}\left(v_{i}\right) \\
& \geq \sum_{\substack{v^{\prime} \in N_{G}[v] \\
v^{\prime} \neq v_{i}}} f\left(v^{\prime}, w\right)+f\left(v_{i}, w\right)+\sum_{u \in N_{H}(w)} f\left(G_{i, u}\right) \\
& \geq \sum_{\substack{v^{\prime} \in N_{G}[v]}} f\left(v^{\prime}, w\right)+\sum_{u \in N_{H}(w)} f(v, u) \\
& =f\left(N_{G \square H}[(v, w)]\right) \geq k .
\end{aligned}
$$

If $v_{i} \in C$, then $f_{w}\left(N_{G}[v]\right)=\sum_{v^{\prime} \in N_{G}[v]} f_{w}\left(v^{\prime}\right) \geq f_{w}\left(v_{i}\right)=k$. The claim follows.
Since G_{w} is isomorphic to $G, \omega\left(f_{w}\right) \geq \gamma^{\{k\}}(G)$. So,

$$
\begin{aligned}
k \rho(G)+m & =\gamma^{\{k\}}(G) \leq \omega\left(f_{w}\right) \\
& =\sum_{v_{i} \in B} f_{w}\left(v_{i}\right)+\sum_{v_{i} \in C} k+\sum_{v \in \Pi_{0}} \sum_{u \in N_{H}[w]} f(v, u)+\sum_{v \notin\left(\Pi_{0} \cup A\right)} f(v, w) \\
& =\sum_{v_{i} \in B} \sum_{u \in N_{H}(w)} f\left(G_{i, u}\right)+\sum_{v_{i} \in C}\left(k-f\left(v_{i}, w\right)\right)+l_{w}+\sum_{i=1}^{\rho(G)} f\left(G_{i, w}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{v_{i} \in B} \sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)+\sum_{v_{i} \in C}\left(f\left(G_{i, w}\right)+k-f\left(v_{i}, w\right)\right)+l_{w} \\
& =\sum_{j=0}^{t}\left(\sum_{v_{i} \in B_{j}}(k+j)+\sum_{v_{i} \in G_{j}}(k+j)\right)+l_{w} \\
& =k \sum_{j=0}^{t}\left(\left|B_{j}\right|+\left|C_{j}\right|\right)+\sum_{j=0}^{t} j\left(\left|B_{j}\right|+\left|C_{j}\right|\right)+l_{w} \\
& =k \rho(G)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right)+l_{w} .
\end{aligned}
$$

The third equality follows from

$$
\sum_{v \in \Pi_{0}} \sum_{u \in N_{H}[w]} f(v, u)=\sum_{u \in N_{H}[w]} \sum_{v \in \Pi_{0}} f(v, u)=\sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)=l_{w}
$$

and

$$
\sum_{v \notin\left(\Pi_{0} \cup A\right)} f(v, w)=\sum_{i=1}^{\rho(G)}\left(f\left(G_{i, w}\right)-f\left(v_{i}, w\right)\right)=\sum_{i=1}^{\rho(G)} f\left(G_{i, w}\right)-\sum_{v_{i} \in B} f\left(v_{i}, w\right)-\sum_{v_{i} \in C} f\left(v_{i}, w\right) .
$$

The fifth equality follows from the definition of B_{j} and C_{j}. The last equality follows from $\sum_{j=0}^{t}\left(\left|B_{j}\right|+\left|C_{j}\right|\right)=\sum_{j=0}^{t}\left|A_{j}\right|=$ $|A|=\rho(G)$ and Eq. (4).

Therefore, we have $\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) \geq m-l_{w}$. The proof of the claim is completed.
In the rest of the proof, we will construct a $\{k\}$-dominating function, say f_{i}, of $H \cong H_{v_{i}}$ for each $1 \leq i \leq \rho(G)$ and an $\{m\}$-dominating function, f_{0} say, of H such that $\omega(f)=\sum_{i=1}^{\rho(G)} \omega\left(f_{i}\right)+\omega\left(f_{0}\right)$.

We proceed as follows. Recall that l_{w} is defined as $\sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)$. For $0 \leq t \leq m-1$, define $S_{t}^{\prime}=\left\{w \mid l_{w}=t, w \in\right.$ $V(H)\}$. Let S_{0} be a maximum independent set of $H\left[S_{0}^{\prime}\right]$. Let S_{t} be a maximum independent set of $H\left[S_{t}^{\prime}-N_{H}\left[\cup_{j=0}^{t-1} S_{j}\right]\right]$ for $1 \leq t \leq m-1$ and $m \geq 2$. By the definition of S_{t}, the vertices in S_{t} are not adjacent with the vertices in S_{j} for $0 \leq j \leq t-1$. Hence $\cup_{t=0}^{m-1} S_{t}$ is an independent set of H. Let $S=\cup_{t=0}^{m-1} S_{t}$ and $\bar{S}=V(H)-S$.

For given $1 \leq i \leq \rho(G)$, define

$$
f_{i}(w)=\left\{\begin{array}{l}
f\left(G_{i, w}\right)-r\left(G_{i, w}\right): w \in S \\
f\left(G_{i, w}\right) \\
: w \in \bar{S}
\end{array}\right.
$$

for $w \in V(H)$. We show that f_{i} is a $\{k\}$-dominating function of H. Let w be any vertex of $V(H)$. Recall that $r\left(G_{i, w}\right)=$ $\min \left\{\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)-k, f\left(G_{i, w}\right)-f\left(v_{i}, w\right)\right\}$.

If $w \in \bar{S}$, then

$$
\begin{aligned}
f_{i}\left(N_{H}[w]\right) & =\sum_{u \in N_{H}[w]} f_{i}(u)=f\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f_{i}(u) \\
& \left.\geq f\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(G_{i, u}\right)-r\left(G_{i, u}\right)\right) \\
& \geq f\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(v_{i}, u\right) \\
& =f\left(N_{G \square H}\left[\left(v_{i}, w\right)\right]\right) \geq k .
\end{aligned}
$$

If $w \in S$, then, note that S is an independent set,

$$
\begin{aligned}
f_{i}\left(N_{H}[w]\right) & =\sum_{u \in N_{H}[w]} f_{i}(u)=f_{i}(w)+\sum_{u \in N_{H}(w)} f_{i}(u) \\
& =f\left(G_{i, w}\right)-r\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(G_{i, u}\right) \\
& =\sum_{u \in N_{H}[w]} f\left(G_{i, u}\right)-r\left(G_{i, w}\right) \\
& \geq k .
\end{aligned}
$$

Hence, f_{i} is a $\{k\}$-dominating function of H. So,

$$
\begin{aligned}
\omega\left(f_{i}\right) & =\sum_{w \in V(H)} f_{i}(w) \\
& =\sum_{w \in S}\left(f\left(G_{i, w}\right)-r\left(G_{i, w}\right)\right)+\sum_{w \in \bar{S}} f\left(G_{i, w}\right) \\
& =\sum_{w \in V(H)} f\left(G_{i, w}\right)-\sum_{w \in S} r\left(G_{i, w}\right) \\
& \geq \gamma^{\{k\}}(H)
\end{aligned}
$$

for $i=1, \ldots, \rho(G)$.
Now define

$$
f_{0}(w)=\left\{\begin{array}{l}
f\left(G_{0, w}\right)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right): w \in S \\
f\left(G_{0, w}\right) \\
: w \in \bar{S}
\end{array}\right.
$$

for $w \in V(H)$. We prove that f_{0} is an $\{m\}$-dominating function of H.
Recall that $l_{w}=\sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)$ for any $w \in V(H)$.
Case 1. $w \in S$. Note that S is an independent set in H.

$$
\begin{aligned}
f_{0}\left(N_{H}[w]\right) & =f_{0}(w)+\sum_{u \in N_{H}(w)} f_{0}(u) \\
& =f\left(G_{0, w}\right)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right)+\sum_{u \in N_{H}(w)} f\left(G_{0, u}\right) \\
& =l_{w}+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) .
\end{aligned}
$$

If $l_{w} \geq m$, then $f_{0}\left(N_{H}[w]\right) \geq l_{w} \geq m$.
If $l_{w}<m$, then, by Claim 1 ,

$$
f_{0}\left(N_{H}[w]\right)=l_{w}+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) \geq l_{w}+m-l_{w}=m
$$

Case 2. $w \in \bar{S}$.
If $l_{w} \geq m$, then

$$
f_{0}\left(N_{H}[w]\right)=\sum_{u \in N_{H}[w]} f_{0}(u) \geq \sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)=l_{w} \geq m .
$$

If $1 \leq l_{w}<m$, then $w \in S_{l_{w}}^{\prime}$ and $w \notin S_{l_{w}}$. Since $S_{l_{w}}$ is a maximum independent set of $H\left[S_{l_{w}^{\prime}}^{\prime}-N_{H}\left[\cup_{j=0}^{l_{w}-1} S_{j}\right]\right], w \in N_{H}\left[S_{l_{w}}\right]$ or $w \in N_{H}\left[\cup_{j=0}^{l_{w}-1} S_{j}\right]$. Hence, there exists $0 \leq p \leq l_{w}$ and a vertex w^{\prime} such that $w^{\prime} \in S_{p}$ and $w^{\prime} \in N_{H}[w]$. So, by Claim 1 ,

$$
\begin{aligned}
f_{0}\left(N_{H}[w]\right) & =\sum_{u \in N_{H}[w]-\left\{w^{\prime}\right\}} f_{0}(u)+f_{0}\left(w^{\prime}\right) \\
& \geq \sum_{u \in N_{H}[w]-\left\{w^{\prime}\right\}} f\left(G_{0, u}\right)+f\left(G_{0, w^{\prime}}\right)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w^{\prime}}\right) \\
& \geq \sum_{u \in N_{H}[w]} f\left(G_{0, u}\right)+(m-p) \\
& \geq l_{w}+m-l_{w}=m .
\end{aligned}
$$

If $l_{w}=0$, then $w \in S_{0}^{\prime}$ and $w \notin S_{0}$. Since S_{0} is a maximum independent set of $H\left[S_{0}^{\prime}\right]$, there exists a vertex $w^{\prime} \in S_{0}$ such that $w^{\prime} \in N_{H}[w]$. So, by Claim 1 ,

$$
f_{0}\left(N_{H}[w]\right)=\sum_{u \in N_{H}[w]-\left\{w^{\prime}\right\}} f_{0}(u)+f_{0}\left(w^{\prime}\right) \geq f_{0}\left(w^{\prime}\right)=f\left(G_{0, w^{\prime}}\right)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) \geq m .
$$

Therefore, f_{0} is an $\{m\}$-dominating function of H. So,

$$
\begin{aligned}
\omega\left(f_{0}\right) & =\sum_{w \in V(H)} f_{0}(w) \\
& =\sum_{w \in S}\left(f\left(G_{0, w}\right)+\sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right)\right)+\sum_{w \in \bar{S}} f\left(G_{0, w}\right) \\
& =\sum_{w \in V(H)} f\left(G_{0, w}\right)+\sum_{w \in S} \sum_{i=1}^{\rho(G)} r\left(G_{i, w}\right) \\
& \geq \gamma^{\{m\}}(H) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\gamma^{\{k\}}(G \square H)=w(f) & =\sum_{i=1}^{\rho(G)} \sum_{w \in V(H)} f\left(G_{i, w}\right)+\sum_{w \in V(H)} f\left(G_{0, w}\right) \\
& =\sum_{i=1}^{\rho(G)}\left[\sum_{w \in V(H)} f\left(G_{i, w}\right)-\sum_{w \in S} r\left(G_{i, w}\right)\right]+\sum_{w \in V(H)} f\left(G_{0, w}\right)+\sum_{i=1}^{\rho(G)} \sum_{w \in S} r\left(G_{i, w}\right) \\
& =\sum_{i=1}^{\rho(G)} w\left(f_{i}\right)+w\left(f_{0}\right) \geq \sum_{i=1}^{\rho(G)} \gamma^{\{k\}}(H)+\gamma^{\{m\}}(H) \\
& =\rho(G) \gamma^{\{k\}}(H)+\gamma^{\{m\}}(H)
\end{aligned}
$$

The proof of the lemma is completed.
Theorem 3 follows directly from Lemmas 4 and 5.

3. Some applications of Theorem 3

Define $\gamma^{\{0\}}(H)=0$. When $k=1$, Theorem 3 implies that

$$
\begin{equation*}
\gamma(G \square H) \geq \rho(G) \gamma(H)+\gamma^{\{m\}}(H), \tag{5}
\end{equation*}
$$

where $m=\gamma(G)-\rho(G)$. By Proposition 1,

$$
\gamma(G \square H) \geq \rho(G) \gamma(H)+\gamma^{\{m\}}(H) \geq \rho(G) \gamma(H)+m \rho(H)
$$

This improves the lower bound (1) given by Chen, Piotrowski and Shreve [2].
Note that if $\rho(G)=\gamma(G)$ or $\rho(G)=\gamma(G)-1$, then (5) implies that $\gamma(G \square H) \geq \gamma(G) \gamma(H)$. That is
Corollary 6. Vizing's conjecture is true for (ρ, γ)-graphs and ($\rho, \gamma-1$)-graphs.
This is a result originally given by Hartnell and Rall $[6,7]$.
In [5], the authors proved that
Lemma 7 ([5]). If both G and H are connected graphs of order at least four and have domination number one-half their order, then $\gamma(G) \gamma(H)=\gamma(G \square H)$.

The following result gives a tight upper bound for $\gamma^{\{k\}}(G) \gamma^{\{k\}}(H)$ in term of $\gamma^{\{k\}}(G \square H)$ for (ρ, γ)-graphs.
Corollary 8. For integer $k \geq 1$ and any graphs G and H, at least one of which is $a(\rho, \gamma)$-graph,

$$
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H) \leq k \gamma^{\{k\}}(G \square H)
$$

and this bound is sharp.
Proof. We may assume the graph G is a (ρ, γ)-graph, and so $\rho(G)=\gamma(G)$. Hence, by Corollary $2, \gamma^{\{k\}}(G)=k \rho(G)$. By (i) of Theorem 3,

$$
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H)=k \rho(G) \gamma^{\{k\}}(H) \leq k \gamma^{\{k\}}(G \square H)
$$

That the bound is sharp may be seen as follows. Let G^{\prime} and H^{\prime} are any connected graph of order at least two. Let G (resp. H) be obtained from $G^{\prime}\left(\right.$ resp. $\left.H^{\prime}\right)$ by adding exactly one vertex of degree one adjacent to each vertex $V\left(G^{\prime}\right)$ (resp. $V\left(H^{\prime}\right)$).

Then $\rho(G)=\gamma(G)=\left|V\left(G^{\prime}\right)\right|=\frac{1}{2}|V(G)|$ and $\rho(H)=\gamma(H)=\left|V\left(H^{\prime}\right)\right|=\frac{1}{2}|V(H)|$. Thus, by Proposition 1, Corollary 2 and Lemma 7,

$$
k^{2} \gamma(G) \gamma(H)=\gamma^{\{k\}}(G) \gamma^{\{k\}}(H) \leq k \gamma^{\{k\}}(G \square H) \leq k^{2} \gamma(G \square H)=k^{2} \gamma(G) \gamma(H)
$$

So,

$$
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H)=k \gamma^{\{k\}}(G \square H)
$$

The next result shows that the bound of Corollary 8 for $k=2$ is valid not only for (ρ, γ)-graphs but also for $(\rho, \gamma-1)$ graphs.

Corollary 9. For any graphs G and H, at least one of which is a ($\rho, \gamma-1$)-graph,

$$
\gamma^{\{2\}}(G) \gamma^{\{2\}}(H) \leq 2 \gamma^{\{2\}}(G \square H) .
$$

Proof. We may assume the graph G is a $(\rho, \gamma-1)$-graph, and so $\rho(G)=\gamma(G)-1$. By Proposition $1,2 \rho(G) \leq \gamma^{\{2\}}(G) \leq$ $2 \rho(G)+2$.

If $\gamma^{\{2\}}(G)=2 \rho(G)$, then, by (i) of Theorem 3,

$$
\gamma^{\{2\}}(G) \gamma^{\{2\}}(H)=2 \rho(G) \gamma^{\{2\}}(H) \leq 2 \gamma^{\{2\}}(G \square H)
$$

If $\gamma^{\{2\}}(G)=2 \rho(G)+1$, then $m=1$. By Proposition 1 and (ii) of Theorem 3,

$$
\begin{aligned}
\gamma^{\{2\}}(G) \gamma^{\{2\}}(H) & =2 \rho(G) \gamma^{\{2\}}(H)+\gamma^{\{2\}}(H) \\
& \leq 2 \rho(G) \gamma^{\{2\}}(H)+2 \gamma(H) \\
& =2 \rho(G) \gamma^{\{2\}}(H)+2 \gamma^{\{1\}}(H) \\
& \leq 2 \gamma^{\{2\}}(G \square H) .
\end{aligned}
$$

If $\gamma^{\{2\}}(G)=2 \rho(G)+2$, then $m=2$. By (ii) of Theorem 3,

$$
\gamma^{\{2\}}(G) \gamma^{\{2\}}(H)=2 \rho(G) \gamma^{\{2\}}(H)+2 \gamma^{\{2\}}(H) \leq 2 \gamma^{\{2\}}(G \square H)
$$

Note that a tree T is a (ρ, γ)-graph. By Corollary 8 , for any tree T and any graph H,

$$
\gamma^{\{k\}}(T) \gamma^{\{k\}}(H) \leq k \gamma^{\{k\}}(T \square H)
$$

Let C_{n} be a cycle on n vertices. It is easy to check that C_{n} is a (ρ, γ)-graph if $n \equiv 0(\bmod 3)$; a $(\rho, \gamma-1)$-graph otherwise. Hence, by Corollaries 8 and 9,

$$
\gamma^{\{2\}}\left(C_{n}\right) \gamma^{\{2\}}(H) \leq 2 \gamma^{\{2\}}\left(C_{n} \square H\right)
$$

for any graph H.
Clearly, the bounds given in Corollaries 8 and 9 are smaller than the bounds (2) and (3) given by Bres̆ar, Henning, and Klavzar [1], hence improve the bounds (2) and (3) for (ρ, γ)-graphs and ($\rho, \gamma-1$)-graphs. We conclude with an open problem.

Question 1. For any graphs G and H and any positive integer k, is it true that

$$
\gamma^{\{k\}}(G) \gamma^{\{k\}}(H) \leq k \gamma^{\{k\}}(G \square H) ?
$$

References

[1] B. Brešar, M.A. Henning, S. Klavzar, On integer domination in graphs and Vizing-liking problems, Taiwanese J. Math. 10 (5) (2006) $1317-1328$.
[2] G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing's conjecture, J. Graph Theory 21 (1996) 103-111.
[3] W.E. Clark, S. Suen, An inequality related to Vizing's conjecture, Electron. J. Combin. 7 (1) (2000) Note 4, 3 pp. (electronic).
[4] G. Domke, S.T. Hedetniemi, R.C. Laskar, G. Fricke, Relationships between integer and fractional parameters of graphs, in: Graph Theory, Combinatorics, and Applications, vol. 2, John Wiley \& Sons, Inc., 1991, pp. 371-387.
[5] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) $287-293$.
[6] B.L. Hartnell, D.F. Rall, Vizing's conjecture and the one-half argument, Discuss. Math. Graph Theory 15 (1995) 205-216.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Deliker, New York, 1998.
[8] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi. Mat. Nauk 23 (6 (144)) (1968) 117-134.

[^0]: The work was supported by NNSF of China (No. 10701068 and No. 10671191).

 * Corresponding author.

 E-mail address: xmhou@ustc.edu.cn (X. Hou).

