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a b s t r a c t

Let G�H denote the Cartesian product of graphs G and H . In this paper, we study the
{k}-domination number of Cartesian product of graphs and give a new lower bound of
γ {k}(G�H) in terms of packing and {k}-domination numbers of G and H . As applications of
this lower bound, we prove that: (i) For k = 1, the new lower bound improves the bound
given by Chen, et al. [G. Chen, W. Piotrowski, W. Shreve, A partition approach to Vizing’s
conjecture, J. Graph Theory 21 (1996) 103–111]. (ii) The product of the {k}-domination
numbers of two any graphs G and H , at least one of which is a (ρ, γ )-graph, is no more
than kγ {k}(G�H). (iii) The product of the {2}-domination numbers of any graphs G and H ,
at least one of which is a (ρ, γ − 1)-graph, is no more than 2γ {2}(G�H).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex v ∈ V ,
denoted by NG(v), is the set of adjacent vertices of v, and the closed neighborhood NG[v] = NG(v) ∪ {v}. For S ⊆ V (G),
NG(S) = ∪v∈S NG(v) andNG[S] = NG(S)∪S. The subgraph induced by S is denoted by G[S]. A set S ⊆ V (G) is an independent
set if no two vertices in S are adjacent.
For S ⊆ V (G), S is a dominating set if for any vertex v ∈ V (G), |NG[v] ∩ S| ≥ 1, and a packing of G if for any two distinct

vertices u and v in S, NG[u] ∩NG[v] = ∅. The minimum cardinality of a dominating set of G is the domination number γ (G).
The packing number ρ(G) is the maximum cardinality of a packing of G. For any graph G, ρ(G) ≤ γ (G). For 0 ≤ k < γ (G),
we define graph G to be a (ρ, γ − k)-graph if ρ(G) = γ (G)− k. It is known that a tree T is a (ρ, γ )-graph.
For a subset Y of the reals R, Y ⊆ R, the weight of a function f : V (G) → Y is ω(f ) =

∑
v∈V (G) f (v), and for S ⊆ V (G)

we define f (S) =
∑

v∈S f (v), so ω(f ) = f (V (G)). For any fixed positive integer k, the function f : V (G) → N is called a
{k}-dominating function of G if for every v ∈ V (G), f (NG[v]) ≥ k, where N = {0, 1, 2 . . .} is the set of nonnegative integers.
The {k}-domination number γ {k}(G) of G is the minimum weight of a {k}-dominating function. One can clearly restrict to
functions with range {0, 1, 2, . . . , k}.
For the parameters ρ(G), γ (G) and γ {k}(G), Domke, et al. [4] showed that

Proposition 1 ([4,7]). For any graph G and positive integer k, kρ(G) ≤ γ {k}(G) ≤ kγ (G).

As an immediate consequence of Proposition 1, we have the following result.

Corollary 2. If G is a (ρ, γ )-graph, then γ {k}(G) = kρ(G) = kγ (G).
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For graphs G and H , the Cartesian product G�H is the graph with vertex set V (G) × V (H), where two vertices (u1, v1)
and (u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). The most
famous open problem involving domination in graphs is Vizing’s conjecture [8] which states that: For any graphs G and
H , γ (G)γ (H) ≤ γ (G�H). The best general upper bound to date on γ (G)γ (H) in terms of γ (G�H) is due to Clark and
Suen [3]. They proved that: For any graphs G and H , γ (G)γ (H) ≤ 2γ (G�H). In [2], Chen, et al. gave a lower bound of
γ (G�H) in terms of the packing and the domination numbers of G and H . They proved that

γ (G�H) ≥ ρ(G)γ (H)+ ρ(H)(γ (G)− ρ(G)). (1)

In [7,6], Hartnell and Rall proved that Vizing’s conjecture is true for (ρ, γ )-graphs and (ρ, γ − 1)-graphs.
The inability of proving or disproving Vizing’s conjecture lead authors to pose different variations of the original problem.

The {k}-domination version of Vizing’s conjecture has been studied by Bres̆ar, Henning and Klarzar [1]. They proved that

γ {k}(G)γ {k}(H) ≤ k(k+ 1)γ {k}(G�H) (2)

and

γ {k}(G)γ {k}(H) ≤ 2kγ {k}(G�H)+ kψ(G,H), (3)

where ψ(G,H) = min{|V (H)|(kγ (G)− γ {k}(G)), |V (G)|(kγ (H)− γ {k}(H))}.
In this paper, we give a lower bound of γ {k}(G�H) in terms of packing and {k}-domination numbers of G and H . The

main result is

Theorem 3. For any graphs G and H and positive integer k ≥ 1, the following statements are true.
(i) γ {k}(G�H) ≥ max{ρ(G)γ {k}(H), ρ(H)γ {k}(G)}.
(ii) Let m = γ {k}(G)− kρ(G). If m > 0, then γ {k}(G�H) ≥ ρ(G)γ {k}(H)+ γ {m}(H).

Some applications of the theorem are given in Section 3.

2. The proof of Theorem 3

In this section, we give a proof of Theorem 3.
Let A = {v1, . . . , vρ(G)} be a maximum packing of G. Then the sets NG[vi] are pairwise disjoint for i = 1, . . . , ρ(G). Let

Πi = NG[vi] and Π0 = V (G) − ∪
ρ(G)
i=1 Πi. Then {Π0,Π1, . . . ,Πρ(G)} is a partition of V(G) (note that Π0 is possibly empty).

For i = 1, . . . , ρ(G) and w ∈ V (H), let Hvi = {vi} × V (H), Gw = V (G)× {w}, and Gi,w = Πi × {w}. Clearly, the subgraphs
induced by Hvi (resp. Gw) is isomorphic to H (resp. G). In the following, instead of (G�H)[Hvi ] and (G�H)[Gw], we simply
use Hvi and Gw .
Let f be a minimum {k}-dominating function of G�H , then ω(f ) = γ {k}(G�H). For any (u, v) in G�H , we simply use

f (u, v) instead of f ((u, v)).

Lemma 4. γ {k}(G�H) ≥ max{ρ(G)γ {k}(H), ρ(H)γ {k}(G)}.

Proof. For i = 1, . . . , ρ(G), define hi(w) = f (Gi,w) forw ∈ V (H). Then, for anyw ∈ V (H),

hi(NH [w]) =
∑

u∈NH [w]

hi(u) =
∑

u∈NH [w]

f (Gi,u) = f (Gi,w)+
∑

u∈NH (w)

f (Gi,u)

≥ f (Gi,w)+
∑

u∈NH (w)

f (vi, u) = f (NG�H [(vi, w)]) ≥ k.

Hence, hi is a {k}-dominating function of H , sow(hi) =
∑
u∈V (H) f (Gi,u) ≥ γ

{k}(H).
Thus,

γ {k}(G�H) ≥
ρ(G)∑
i=1

∑
w∈V (H)

f (Gi,w) ≥
ρ(G)∑
i=1

γ {k}(H) = ρ(G)γ {k}(H).

By the symmetry of G and H , the result follows. �

Lemma 5. Let m = γ {k}(G)− kρ(G). If m > 0, then

γ {k}(G�H) ≥ ρ(G)γ {k}(H)+ γ {m}(H).
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Proof. Ifm = γ {k}(G)− kρ(G) > 0, thenΠ0 6= ∅. (If not, define φ(v) = k if v ∈ A; 0 otherwise. Then φ is a {k}-dominating
function of Gwith weight k|A| = kρ(G), a contradiction.) Let G0,w = Π0 × {w},w ∈ V (H).
For i = 1, . . . , ρ(G) andw ∈ V (H), define

r(Gi,w) = min

{ ∑
u∈NH [w]

f (Gi,u)− k, f (Gi,w)− f (vi, w)

}
.

Claim 1. Let
∑
u∈NH [w]

f (G0,u) = lw . If lw < m, then

ρ(G)∑
i=1

r(Gi,w) ≥ m− lw.

Proof of Claim 1. Let t = max{r(Gi,w) | 1 ≤ i ≤ ρ(G)}. For 0 ≤ j ≤ t , let Aj = {vi | r(Gi,w) = j}, let Bj = {vi | r(Gi,w) =∑
u∈NH [w]

f (Gi,u) − k = j} and Cj = Aj − Bj, that is Cj = {vi | r(Gi,w) = f (Gi,w) − f (vi, w) = j <
∑
u∈NH [w]

f (Gi,u) − k}.
Clearly, A0, A1, . . . , At is a partition of A, and Bj, Cj is a partition of Aj. Let B = ∪tj=0 Bj and C = ∪

t
j=0 Cj. Then B ∪ C = A and

|B| + |C | = |A| = ρ(G). Further,

ρ(G)∑
i=1

r(Gi,w) =
t∑
j=0

j|Aj| =
t∑
j=0

j(|Bj| + |Cj|). (4)

For v ∈ V (G), define

fw(v) =



f (vi, w)+
∑

u∈NH (w)

f (Gi,u) : v = vi ∈ B

k : v = vi ∈ C∑
u∈NH [w]

f (v, u) : v ∈ Π0

f (v,w) : v ∈ V (G)−Π0 − A.

We claim that fw is a {k}-dominating function of G, that is for any v ∈ V (G), fw(NG[v]) ≥ k. Clearly, fw(v) ≥ f (v,w) for any
v ∈ V (G).
If v ∈ Π0, then

fw(NG[v]) = fw(v)+
∑

v′∈NG(v)

fw(v′)

≥

∑
u∈NH [w]

f (v, u)+
∑

v′∈NG(v)

f (v′, w)

= f (NG�H [(v,w)]) ≥ k.

If v ∈ V (G)−Π0, then there exists some vi ∈ A (1 ≤ i ≤ ρ(G)) such that v ∈ NG[vi], and so vi ∈ NG[v]. If vi ∈ B, then

fw(NG[v]) =
∑

v′∈NG[v]
v′ 6=vi

fw(v′)+ fw(vi)

≥

∑
v′∈NG[v]
v′ 6=vi

f (v′, w)+ f (vi, w)+
∑

u∈NH (w)

f (Gi,u)

≥

∑
v′∈NG[v]

f (v′, w)+
∑

u∈NH (w)

f (v, u)

= f (NG�H [(v,w)]) ≥ k.

If vi ∈ C , then fw(NG[v]) =
∑

v′∈NG[v]
fw(v′) ≥ fw(vi) = k. The claim follows.

Since Gw is isomorphic to G, ω(fw) ≥ γ {k}(G). So,

kρ(G)+m = γ {k}(G) ≤ ω(fw)

=

∑
vi∈B

fw(vi)+
∑
vi∈C

k+
∑
v∈Π0

∑
u∈NH [w]

f (v, u)+
∑

v 6∈(Π0∪A)

f (v,w)

=

∑
vi∈B

∑
u∈NH (w)

f (Gi,u)+
∑
vi∈C

(k− f (vi, w))+ lw +
ρ(G)∑
i=1

f (Gi,w)
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=

∑
vi∈B

∑
u∈NH [w]

f (Gi,u)+
∑
vi∈C

(f (Gi,w)+ k− f (vi, w))+ lw

=

t∑
j=0

∑
vi∈Bj

(k+ j)+
∑
vi∈Cj

(k+ j)

+ lw
= k

t∑
j=0

(|Bj| + |Cj|)+
t∑
j=0

j(|Bj| + |Cj|)+ lw

= kρ(G)+
ρ(G)∑
i=1

r(Gi,w)+ lw.

The third equality follows from∑
v∈Π0

∑
u∈NH [w]

f (v, u) =
∑

u∈NH [w]

∑
v∈Π0

f (v, u) =
∑

u∈NH [w]

f (G0,u) = lw

and ∑
v 6∈(Π0∪A)

f (v,w) =
ρ(G)∑
i=1

(f (Gi,w)− f (vi, w)) =
ρ(G)∑
i=1

f (Gi,w)−
∑
vi∈B

f (vi, w)−
∑
vi∈C

f (vi, w).

The fifth equality follows from the definition of Bj and Cj. The last equality follows from
∑t
j=0(|Bj| + |Cj|) =

∑t
j=0 |Aj| =

|A| = ρ(G) and Eq. (4).
Therefore, we have

∑ρ(G)
i=1 r(Gi,w) ≥ m− lw . The proof of the claim is completed.

In the rest of the proof, we will construct a {k}-dominating function, say fi, of H ∼= Hvi for each 1 ≤ i ≤ ρ(G) and an
{m}-dominating function, f0 say, of H such that ω(f ) =

∑ρ(G)
i=1 ω(fi)+ ω(f0).

We proceed as follows. Recall that lw is defined as
∑
u∈NH [w]

f (G0,u). For 0 ≤ t ≤ m − 1, define S ′t = {w | lw = t, w ∈
V (H)}. Let S0 be a maximum independent set of H[S ′0]. Let St be a maximum independent set of H

[
S ′t − NH[∪

t−1
j=0 Sj]

]
for

1 ≤ t ≤ m− 1 andm ≥ 2. By the definition of St , the vertices in St are not adjacent with the vertices in Sj for 0 ≤ j ≤ t − 1.
Hence ∪m−1t=0 St is an independent set of H . Let S = ∪

m−1
t=0 St and S̄ = V (H)− S.

For given 1 ≤ i ≤ ρ(G), define

fi(w) =
{
f (Gi,w)− r(Gi,w) :w ∈ S
f (Gi,w) :w ∈ S̄

for w ∈ V (H). We show that fi is a {k}-dominating function of H . Let w be any vertex of V (H). Recall that r(Gi,w) =
min{

∑
u∈NH [w]

f (Gi,u)− k, f (Gi,w)− f (vi, w)}.

Ifw ∈ S̄, then

fi(NH [w]) =
∑

u∈NH [w]

fi(u) = f (Gi,w)+
∑

u∈NH (w)

fi(u)

≥ f (Gi,w)+
∑

u∈NH (w)

(f (Gi,u)− r(Gi,u))

≥ f (Gi,w)+
∑

u∈NH (w)

f (vi, u)

= f (NG�H [(vi, w)]) ≥ k.

Ifw ∈ S, then, note that S is an independent set,

fi(NH [w]) =
∑

u∈NH [w]

fi(u) = fi(w)+
∑

u∈NH (w)

fi(u)

= f (Gi,w)− r(Gi,w)+
∑

u∈NH (w)

f (Gi,u)

=

∑
u∈NH [w]

f (Gi,u)− r(Gi,w)

≥ k.
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Hence, fi is a {k}-dominating function of H . So,

ω(fi) =
∑

w∈V (H)

fi(w)

=

∑
w∈S

(f (Gi,w)− r(Gi,w))+
∑
w∈S̄

f (Gi,w)

=

∑
w∈V (H)

f (Gi,w)−
∑
w∈S

r(Gi,w)

≥ γ {k}(H),

for i = 1, . . . , ρ(G).
Now define

f0(w) =

f (G0,w)+
ρ(G)∑
i=1

r(Gi,w) :w ∈ S

f (G0,w) :w ∈ S̄

forw ∈ V (H). We prove that f0 is an {m}-dominating function of H .
Recall that lw =

∑
u∈NH [w]

f (G0,u) for anyw ∈ V (H).
Case 1.w ∈ S. Note that S is an independent set in H .

f0(NH [w]) = f0(w)+
∑

u∈NH (w)

f0(u)

= f (G0,w)+
ρ(G)∑
i=1

r(Gi,w)+
∑

u∈NH (w)

f (G0,u)

= lw +
ρ(G)∑
i=1

r(Gi,w).

If lw ≥ m, then f0(NH [w]) ≥ lw ≥ m.
If lw < m, then, by Claim 1,

f0(NH [w]) = lw +
ρ(G)∑
i=1

r(Gi,w) ≥ lw +m− lw = m.

Case 2.w ∈ S̄.
If lw ≥ m, then

f0(NH [w]) =
∑

u∈NH [w]

f0(u) ≥
∑

u∈NH [w]

f (G0,u) = lw ≥ m.

If 1 ≤ lw < m, thenw ∈ S ′lw andw 6∈ Slw . Since Slw is a maximum independent set ofH
[
S ′lw − NH[∪

lw−1
j=0 Sj]

]
,w ∈ NH [Slw ]

orw ∈ NH[∪
lw−1
j=0 Sj]. Hence, there exists 0 ≤ p ≤ lw and a vertexw

′ such thatw′ ∈ Sp andw′ ∈ NH [w]. So, by Claim 1,

f0(NH [w]) =
∑

u∈NH [w]−{w′}

f0(u)+ f0(w′)

≥

∑
u∈NH [w]−{w′}

f (G0,u)+ f (G0,w′)+
ρ(G)∑
i=1

r(Gi,w′)

≥

∑
u∈NH [w]

f (G0,u)+ (m− p)

≥ lw +m− lw = m.

If lw = 0, then w ∈ S ′0 and w 6∈ S0. Since S0 is a maximum independent set of H[S
′

0], there exists a vertex w
′
∈ S0 such

thatw′ ∈ NH [w]. So, by Claim 1,

f0(NH [w]) =
∑

u∈NH [w]−{w′}

f0(u)+ f0(w′) ≥ f0(w′) = f (G0,w′)+
ρ(G)∑
i=1

r(Gi,w) ≥ m.
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Therefore, f0 is an {m}-dominating function of H . So,

ω(f0) =
∑

w∈V (H)

f0(w)

=

∑
w∈S

(f (G0,w)+
ρ(G)∑
i=1

r(Gi,w))+
∑
w∈S̄

f (G0,w)

=

∑
w∈V (H)

f (G0,w)+
∑
w∈S

ρ(G)∑
i=1

r(Gi,w)

≥ γ {m}(H).

Thus,

γ {k}(G�H) = w(f ) =
ρ(G)∑
i=1

∑
w∈V (H)

f (Gi,w)+
∑

w∈V (H)

f (G0,w)

=

ρ(G)∑
i=1

[ ∑
w∈V (H)

f (Gi,w)−
∑
w∈S

r(Gi,w)

]
+

∑
w∈V (H)

f (G0,w)+
ρ(G)∑
i=1

∑
w∈S

r(Gi,w)

=

ρ(G)∑
i=1

w(fi)+ w(f0) ≥
ρ(G)∑
i=1

γ {k}(H)+ γ {m}(H)

= ρ(G)γ {k}(H)+ γ {m}(H).

The proof of the lemma is completed. �

Theorem 3 follows directly from Lemmas 4 and 5.

3. Some applications of Theorem 3

Define γ {0}(H) = 0. When k = 1, Theorem 3 implies that

γ (G�H) ≥ ρ(G)γ (H)+ γ {m}(H), (5)

wherem = γ (G)− ρ(G). By Proposition 1,

γ (G�H) ≥ ρ(G)γ (H)+ γ {m}(H) ≥ ρ(G)γ (H)+mρ(H).

This improves the lower bound (1) given by Chen, Piotrowski and Shreve [2].
Note that if ρ(G) = γ (G) or ρ(G) = γ (G)− 1, then (5) implies that γ (G�H) ≥ γ (G)γ (H). That is

Corollary 6. Vizing’s conjecture is true for (ρ, γ )-graphs and (ρ, γ − 1)-graphs.

This is a result originally given by Hartnell and Rall [6,7].
In [5], the authors proved that

Lemma 7 ([5]). If both G and H are connected graphs of order at least four and have domination number one-half their order,
then γ (G)γ (H) = γ (G�H).

The following result gives a tight upper bound for γ {k}(G)γ {k}(H) in term of γ {k}(G�H) for (ρ, γ )-graphs.

Corollary 8. For integer k ≥ 1 and any graphs G and H, at least one of which is a (ρ, γ )-graph,

γ {k}(G)γ {k}(H) ≤ kγ {k}(G�H)

and this bound is sharp.

Proof. We may assume the graph G is a (ρ, γ )-graph, and so ρ(G) = γ (G). Hence, by Corollary 2, γ {k}(G) = kρ(G). By (i)
of Theorem 3,

γ {k}(G)γ {k}(H) = kρ(G)γ {k}(H) ≤ kγ {k}(G�H).

That the bound is sharp may be seen as follows. Let G′ and H ′ are any connected graph of order at least two. Let G (resp.
H) be obtained from G′ (resp. H ′) by adding exactly one vertex of degree one adjacent to each vertex V (G′) (resp. V (H ′)).
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Then ρ(G) = γ (G) = |V (G′)| = 1
2 |V (G)| and ρ(H) = γ (H) = |V (H

′)| = 1
2 |V (H)|. Thus, by Proposition 1, Corollary 2 and

Lemma 7,

k2γ (G)γ (H) = γ {k}(G)γ {k}(H) ≤ kγ {k}(G�H) ≤ k2γ (G�H) = k2γ (G)γ (H).

So,

γ {k}(G)γ {k}(H) = kγ {k}(G�H). �

The next result shows that the bound of Corollary 8 for k = 2 is valid not only for (ρ, γ )-graphs but also for (ρ, γ − 1)-
graphs.

Corollary 9. For any graphs G and H, at least one of which is a (ρ, γ − 1)-graph,

γ {2}(G)γ {2}(H) ≤ 2γ {2}(G�H).

Proof. We may assume the graph G is a (ρ, γ − 1)-graph, and so ρ(G) = γ (G) − 1. By Proposition 1, 2ρ(G) ≤ γ {2}(G) ≤
2ρ(G)+ 2.
If γ {2}(G) = 2ρ(G), then, by (i) of Theorem 3,

γ {2}(G)γ {2}(H) = 2ρ(G)γ {2}(H) ≤ 2γ {2}(G�H).

If γ {2}(G) = 2ρ(G)+ 1, thenm = 1. By Proposition 1 and (ii) of Theorem 3,

γ {2}(G)γ {2}(H) = 2ρ(G)γ {2}(H)+ γ {2}(H)
≤ 2ρ(G)γ {2}(H)+ 2γ (H)
= 2ρ(G)γ {2}(H)+ 2γ {1}(H)
≤ 2γ {2}(G�H).

If γ {2}(G) = 2ρ(G)+ 2, thenm = 2. By (ii) of Theorem 3,

γ {2}(G)γ {2}(H) = 2ρ(G)γ {2}(H)+ 2γ {2}(H) ≤ 2γ {2}(G�H). �

Note that a tree T is a (ρ, γ )-graph. By Corollary 8, for any tree T and any graph H ,

γ {k}(T )γ {k}(H) ≤ kγ {k}(T �H).

Let Cn be a cycle on n vertices. It is easy to check that Cn is a (ρ, γ )-graph if n ≡ 0(mod 3); a (ρ, γ − 1)-graph otherwise.
Hence, by Corollaries 8 and 9,

γ {2}(Cn)γ {2}(H) ≤ 2γ {2}(Cn �H)

for any graph H .
Clearly, the bounds given in Corollaries 8 and 9 are smaller than the bounds (2) and (3) given by Bres̆ar, Henning, and

Klavzar [1], hence improve the bounds (2) and (3) for (ρ, γ )-graphs and (ρ, γ − 1)-graphs. We conclude with an open
problem.

Question 1. For any graphs G and H and any positive integer k, is it true that

γ {k}(G)γ {k}(H) ≤ kγ {k}(G�H)?
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