

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

On the Roman domination number of a graph

O. Favaron a,b, H. Karami c, R. Khoeilar c, S.M. Sheikholeslami c,*

- a Univ Paris-Sud, LRI, UMR 8623, Orsay, F-91405, France
- b CNRS, Orsay, F-91405, France

ARTICLE INFO

Article history:
Received 3 December 2007
Received in revised form 5 July 2008
Accepted 22 September 2008
Available online 4 November 2008

Keywords: Roman domination number

ABSTRACT

A Roman dominating function of a graph G is a labeling $f:V(G)\longrightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_R(G)$ of G is the minimum of $\sum_{v\in V(G)}f(v)$ over such functions. A Roman dominating function of G of weight $\gamma_R(G)$ is called a $\gamma_R(G)$ -function. A Roman dominating function $f:V\longrightarrow\{0,1,2\}$ can be represented by the ordered partition (V_0,V_1,V_2) of V, where $V_i=\{v\in V\mid f(v)=i\}$. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11–22] posed the following question: What can we say about the minimum and maximum values of $|V_0|, |V_1|, |V_2|$ for a γ_R -function $f=(V_0,V_1,V_2)$ of a graph G? In this paper we first show that for any connected graph G of order $n\geq 3$, $\gamma_R(G)+\frac{\gamma(G)}{2}\leq n$, where $\gamma(G)$ is the domination number of G. Also we prove that for any γ_R -function $f=(V_0,V_1,V_2)$ of a connected graph G of order $n\geq 3$, $|V_0|\geq \frac{n}{5}+1$, $|V_1|\leq \frac{4n}{5}-2$ and $|V_2|\leq \frac{2n}{5}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly V and E). The order |V| of G is denoted by n. For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of v is d(v) = |N(v)|. The minimum degree of G is denoted by d(G) (briefly d(G)). The open neighborhood of a set d(G) is the set d(G)0 is the set d(G)1. The vertex d(G)2 is the set d(G)3 is the set d(G)4. The d(G)5 is the set d(G)6 is the set d(G)6 is the set d(G)7. The d(G)8 is the set d(G)9 is the set d(G)9 is the set d(G)9. The d(G)9 is the set d(G)9 is the set d(G)9 is the set d(G)9 is the set d(G)9. The vertex d(G)9 is the set d(G)9 is

A subset S of vertices of G is a dominating set if N[S] = V. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of minimum cardinality of G is called a $\gamma(G)$ -set. Ore proved that every graph of minimum degree $\delta \geq 1$ satisfies $\gamma(G) \leq n/2$ and the following theorem gives the characterization of the extremal graphs.

Theorem A ([3]). For a connected graph G with order $n \ge 2$, $\gamma(G) = n/2$ if and only if G is the cycle C_4 or the corona HoK₁ of a connected graph H.

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [6,7] as a function $f : V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a RDF is the value $\omega(f) = \sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, equals the minimum weight

E-mail addresses: Odile.Favaron@Iri.fr (O. Favaron), s.m.sheikholeslami@azaruniv.edu, sm_sheikholeslami@yahoo.com (S.M. Sheikholeslami).

^c Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, Islamic Republic of Iran

^{*} Corresponding author.

of a RDF on G. A $\gamma_R(G)$ -function is a Roman dominating function of G with weight $\gamma_R(G)$. A Roman dominating function $f: V \longrightarrow \{0, 1, 2\}$ can be represented by the ordered partition (V_0, V_1, V_2) of V, where $V_i = \{v \in V \mid f(v) = i\}$. In this representation, its weight is $\omega(f) = |V_1| + 2|V_2|$. For a more thorough treatment of domination parameters and for terminology not presented here see [4,8].

It is known that $\gamma_R(G) \leq 2\gamma(G)$ for every graph G[2]. If $\delta(G) \geq 2$ and $n \geq 8$, then $\gamma(G) \leq 2n/5$ [5], thus implying $\gamma_R(G) + \frac{\gamma(G)}{2} \le \frac{5\gamma(G)}{2} \le n$. But if $\delta(G) = 1$, then $\gamma(G)$ can be as large as n/2 and we can only deduce from $\gamma_R(G) \le 2\gamma(G)$ that $\gamma_R(G) + \frac{\gamma(G)}{2} \le 5n/4$. The main purpose of this paper is to prove in Section 2 that the inequality $\gamma_R(G) + \frac{\gamma(G)}{2} \le n$ also holds in graphs with minimum degree 1. The technique we use in Theorem 2 also gives another proof of the following result, already obtained by Chambers, Kinnersley, Prince and West.

Theorem B ([1]). If G is a connected n-vertex graph, then $\gamma_R(G) \leq 4n/5$, with equality if and only if G is C_5 or is the union of $\frac{n}{5}P_5$ with a connected subgraph whose vertex set is the set of centers of the components of $\frac{n}{5}P_5$.

Section 3 is related to a problem posed by Cockayne et al. in [2]:

Problem 1. What can we say about the minimum and maximum values of $|V_0|$, $|V_1|$, $|V_2|$ for a γ_R -function $f = (V_0, V_1, V_2)$ of a graph G?

In Theorem 3 we present an answer to this question.

2. Bound on the sum $\gamma_R(G) + \frac{\gamma(G)}{2}$

The following definitions will provide the extremal families for Theorems 2 and 3.

Definition 1. – \mathcal{F} is the family of graphs obtained from a connected graph H by identifying each vertex of H with the central vertex of a path P_5 or with an internal vertex of a path P_4 where the |V(H)| paths are vertex-disjoint.

- g is the family of graphs of \mathcal{F} such that each vertex of H is identified with the central vertex of a P_5 .
- g' is the family of graphs of g constructed from a graph H having a vertex of degree |V(H)| 1.

Theorem 2. For any connected graph G of order n > 3,

- (a) $\gamma_R(G) + \frac{\gamma(G)}{2} \le n$ with equality if and only if G is C_4 , C_5 , C_4 0 K_1 or G belongs to \mathcal{F} . (b) [1] $\gamma_R(G) \le \frac{4n}{5}$ with equality if and only if G is C_5 or belongs to \mathcal{G} .

Proof. Let $f = (V_0, V_1, V_2)$ be a $\gamma_R(G)$ -function such that $|V_2|$ is maximum. It is proved in [2] that for such a function no edge exists between V_1 and V_2 and every vertex v of V_2 has at least two V_2 -private neighbors, one of them can be v itself if it is isolated in V_2 (true for every $\gamma_R(G)$ -function), the set V_1 is independent and every vertex of V_0 has at most one neighbor in V_1 . Moreover we add the condition that the number $\mu(f)$ of vertices of V_2 with only one neighbor in V_0 is minimum. Suppose that $N_{V_0}(v) = \{w\}$ for some $v \in V_2$. Then the partition $V_0' = (V_0 \setminus \{w\}) \cup \{v\} \cup N_{V_1}(w), V_1' = V_1 \setminus N_{V_1}(w), V_2' = (V_2 \setminus \{v\}) \cup \{w\}$ is a Roman dominating function f' such that $\omega(f') = \omega(f) - 1$ if $N_{V_1}(w) \neq \emptyset$, or $\omega(f') = \omega(f), |V_2'| = |V_2|$ but $\mu(f') < \mu(f)$ if $N_{V_1}(w) = \emptyset$ since then, G being connected of order at least 3, w is not isolated in V_0 . Therefore every vertex of V_2 has at least two neighbors in V_0 . Let A be a largest subset of V_2 such that for each $v \in A$ there exists a subset A_v of $N_{V_0}(v)$ such that the sets A_v are disjoint, $|A_v| \ge 2$ and $\bigcup_{v \in A} A_v = \bigcup_{v \in A} N_{V_0}(v)$. Note that A_v contains all the external V_2 -private neighbors of v. Let $A' = V_2 \setminus A$.

Case 1. $A' = \emptyset$. In this case $|V_0| \ge 2|V_2|$ and $|V_1| \le |V_0|$ since every vertex of V_0 has at most one neighbor in V_1 . Since V_0 is a dominating set of G and $|V_2| \le |V_0|/2$ we have

$$\gamma_R(G) + \frac{1}{2}\gamma(G) \le |V_1| + 2|V_2| + \frac{1}{2}|V_0| \le |V_1| + |V_2| + |V_0| = n.$$

If $\gamma_R(G) + \frac{1}{2}\gamma(G) = n$ then $|V_0| = 2|V_2|$ and V_0 is a $\gamma(G)$ -set. On the other hand,

$$5\gamma_R(G) = 5|V_1| + 10|V_2| = 4n - 4|V_0| + |V_1| + 6|V_2| = 4n - 3(|V_0| - 2|V_2|) - (|V_0| - |V_1|) \le 4n.$$

Hence $\gamma_R(G) \leq \frac{4n}{5}$ and if $\gamma_R(G) = \frac{4n}{5}$, then $|V_0| = 2|V_2|$ and $|V_0| = |V_1|$.

Case 2. $A' \neq \emptyset$.

Let $B = \bigcup_{v \in A} A_v$ and $B' = V_0 \setminus B$. Every vertex x in A' has exactly one V_2 -private neighbor x' in V_0 and $N_{B'}(x) = \{x'\}$ for otherwise x could be added to A. This shows that

$$|A'| = |B'|. \tag{1}$$

Moreover since $|N_{V_0}(x)| \ge 2$, each vertex $x \in A'$ has at least one neighbor in B. Let $x_B \in B \cap N_{V_0}(x)$ and let x_A be the vertex of A such that $x_B \in A_{x_A}$. The vertex x_A is well defined since the sets A_v with $v \in A$ form a partition of B.

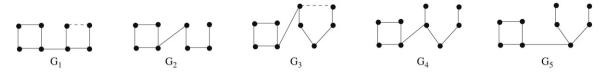


Fig. 1.

Claim 1. $|A_{x_A}| = 2$ for each $x \in A'$ and each $x_B \in B \cap N_{V_0}(x)$.

Proof of Claim 1. If $|A_{x_A}| > 2$, then by putting $A'_{x_A} = A_{x_A} \setminus \{x_B\}$ and $A_x = \{x', x_B\}$ we can see that $A_1 = A \cup \{x\}$ contradicts the choice of A. Hence $|A_{x_A}| = 2$, x_A has a unique external V_2 -private neighbor x'_A and $A_{x_A} = \{x_B, x'_A\}$. Note that the vertices x_A and x are isolated in V_2 since they must have a second V_2 -private neighbor. \square

Claim 2. If $x, y \in A'$ then $x_B \neq y_B$ and $A_{x_A} \neq A_{y_A}$.

Proof of Claim 2. Let x' and y' be respectively the unique external V_2 -private neighbors of x and y. Suppose that $x_B = y_B$, and thus $x_A = y_A$. The function $g: V(G) \to \{0, 1, 2\}$ defined by $g(x_B) = 2$, $g(x) = g(y) = g(x_A) = 0$, $g(x'_A) = g(x') = g(y') = 1$ and g(v) = f(v) otherwise, is a RDF of G of weight less that $\gamma_R(G)$, a contradiction. Hence $x_B \neq y_B$. Since $\{x'_A, x_B\} \subseteq A_{x_A}$ and $|A_{x_A}| = 2$, the vertex y_B is not in A_{x_A} . Therefore $A_{y_A} \neq A_{x_A}$. \square

Let $A'' = \{x_A | x \in A' \text{ and } x_B \in B \cap N_{V_0}(x)\}$ and $B'' = \bigcup_{v \in A''} A_v$. By Claims 1 and 2,

$$|B''| = 2|A''|$$
 and $|A''| \ge |A'|$. (2)

Let $A''' = V_2 \setminus (A' \cup A'')$ and $B''' = \bigcup_{v \in A'''} A_v = V_0 \setminus (B' \cup B'')$. By the definition of the sets A_v ,

$$|B'''| \ge 2|A'''|. \tag{3}$$

Claim 3. If $x \in A'$ and $x_B \in B \cap N_{V_0}(x)$, then x', x_B and x'_A have no neighbor in V_1 . Hence B''' dominates V_1 .

Proof of Claim 3. Let w be a vertex of V_1 . If w has a neighbor in $B' \cup B''$, let $g : V(G) \to \{0, 1, 2\}$ be defined by

 $g(x'_A) = 2$, $g(w) = g(x_A) = 0$, g(v) = f(v) otherwise if w is adjacent to x'_A ,

g(x') = 2, g(w) = g(x) = 0, g(v) = f(v) otherwise if w is adjacent to x',

 $g(x_B) = 2$, $g(w) = g(x_A) = g(x) = 0$, $g(x'_A) = g(x') = 1$, g(v) = f(v) otherwise if w is adjacent to x_B .

In each case, g is a RDF of weight less than $\gamma_R(G)$, a contradiction. Therefore $N(w) \subseteq B'''$.

We are now ready to establish the two parts of the theorem.

(a) By Claim 3, $B''' \cup A' \cup A''$ is a dominating set of G. Therefore, by (1)–(3),

$$\begin{split} \gamma(G) &\leq |B'''| + |A'| + |A''| \\ &\leq |B'''| + |B''| \\ &\leq (2|B'''| - 2|A'''|) + (2|B''| - 2|A''|) + (2|B'| - 2|A'|). \end{split}$$

Hence $\gamma(G) \le 2|V_0| - 2|V_2|$ and $\gamma_R(G) + \frac{1}{2}\gamma(G) \le (|V_1| + 2|V_2|) + (|V_0| - |V_2|) = n$.

If $\gamma_R(G) + \frac{1}{2}\gamma(G) = n$ then |A''| = |A'|, |B'''| = 2|A'''| and $B''' \cup A' \cup A''$ is a $\gamma(G)$ -set. We note that these conditions of equality include that of Case 1 since in Case 1, $A' = A'' = \emptyset$, $A''' = V_2$ and $B''' = V_0$.

The first condition, |A''| = |A'|, implies that each vertex x of A' has exactly one neighbor x_B in B. Hence the vertices of $A' \cup A'' \cup B' \cup B''$ (in Case 2) can be partitioned into 5-paths $x'xx_Bx_Ax_A'$ with $x' \in B'$, $x \in A'$, $x_A \in A''$ and x_B , $x_A' \in B''$. The second condition, |B'''| = 2|A'''|, implies that $|A_v| = 2$ for each $v \in A$. Hence the vertices of $A''' \cup B'''$ can be partitioned into 3-paths v_1vv_2 with $v \in A'''$ and $v_1, v_2 \in B'''$. The third condition, $A' \cup A'' \cup B'''$ is a $\gamma(G)$ -set, implies that for each $v \in A'''$, at least one of v_1, v_2 has a neighbor in v_1 for otherwise $v_1v_2 \cup v_3 \cup v_4 \cup v_4 \cup v_5 \cup v_4 \cup v_5 \cup v_4 \cup v_4 \cup v_5 \cup v_4 \cup v_5 \cup v_4 \cup v_5 \cup$

In this partition of V, each 4-path and 5-path has exactly two vertices in the $\gamma(G)$ -set $A' \cup A'' \cup B'''$ and contributes for 2 to $\gamma(G)$. Each 4-path has one vertex in V_2 , one in V_1 and two in V_0 and contributes for 3 to $\gamma_R(G)$. Each 5-path has either two vertices in V_2 and three in V_0 or one vertex in V_2 , two in V_0 and two in V_1 , and thus contributes for 4 to $\gamma_R(G)$. Hence each 4-path and 5-path of the partition induces in V_2 and V_3 are V_4 and V_4 and V_5 are V_4 and V_5 are V_6 and V_7 are V_8 and V_8 are V_8 are V_8 and V_9 are V_9 and V_9 are V_9 are V_9 and V_9 are V_9 are V_9 and V_9 are V_9 and V_9 are V_9 are V_9 are V_9 are V_9 and V_9 are V_9 are V_9 and V_9 are V_9 are V_9 are V_9 are V_9 and V_9 are V_9 and V_9 are V_9 are V_9 are V_9 are V_9 and V_9 are V_9 and V_9 are V_9

If a 4-path induces a C_4 and $G \neq C_4$, then there exists an edge between the C_4 and a 4-path or 5-path. The contribution of the two paths to $\gamma(G)$ and $\gamma_R(G)$ should be respectively 4 and 6 or 7. Fig. 1, where the dotted lines may exist or not, shows that this is impossible because $\gamma(G_i) = 3$ for $1 \leq i \leq 4$ and $\gamma_R(G_5) = 6 < 7$. Similarly Fig. 2 shows that it is not possible that a 5-path induces a C_5 and $G \neq C_5$ because $\gamma(G_1) = 3 < 4$, $\gamma_R(G_2) = 6 < 7$ and $\gamma_R(G_i) = 7 < 8$ for $3 \leq i \leq 5$.

We suppose that G is different from C_4 and C_5 . The set of the $k \ge 0$ P_4 's of the partition induces a subgraph J such that $\gamma(J) = 2k = |V(J)|/2$. By Theorem A, each component of J is the corona of a connected graph. Thus all the endvertices of

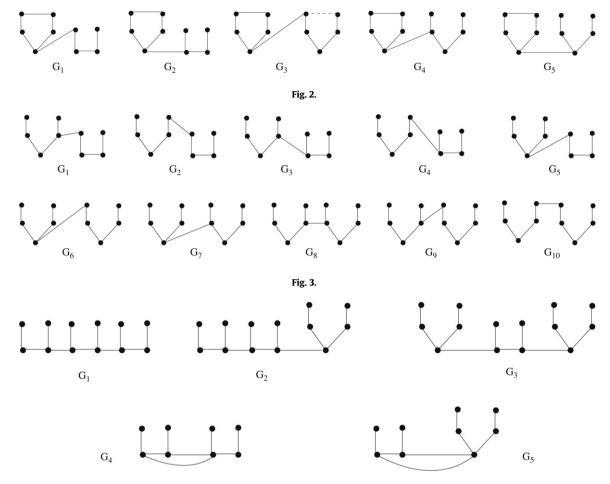


Fig. 4.

the P_4 's have degree 1 in J and every edge between two P_4 's joins vertices of degree 2 in each P_4 . Similarly Fig. 3 shows that the only possibility for the extremity of an edge between a P_5 and a P_4 or P_5 is to be the central vertex of a P_5 or a vertex of degree 2 of a P_4 (because $\gamma(G_i) = 3 < 4$ for $1 \le i \le 2$, $\gamma_R(G_i) = 6 < 7$ for $3 \le i \le 5$ and $\gamma_R(G_i) = 7 < 8$ for $6 \le i \le 10$).

Finally Fig. 4 shows that the two internal vertices of a P_4 cannot be adjacent to vertices of two different P_4 or P_5 , nor to the same internal vertex of another P_4 , nor to the central vertex of a P_5 (because $\gamma_R(G_1) = 8 < 9$, $\gamma_R(G_2) = 9 < 10$, $\gamma_R(G_3) = 10 < 11$, $\gamma_R(G_4) = 5 < 6$, $\gamma_R(G_5) = 6 < 7$). Therefore either G contains two P_4 's xyzt, x'y'z't' together with the edges yy', zz', or G consists of paths P_4 and P_5 joined by edges between the central vertex of each P_5 and one internal vertex of each P_4 . Since G is connected, $G = C_4 \circ K_1$ in the first case and G belongs to Family $\mathcal F$ in the second case.

Conversely, it is easy to check that each of C_4 , C_5 , C_4 o K_1 satisfies $\gamma_R(G) + \frac{1}{2}\gamma(G) = n$. Let now G be a graph of \mathcal{F} composed of k_1 paths P_4 and k_2 paths P_5 . Then $\gamma(G) = 2k_1 + 2k_2$, $\gamma_R(G) = 2k_1 + 3k_2$ and $\gamma_R(G) + \frac{1}{2}\gamma(G) = 4k_1 + 5k_2 = n$.

(b) By Claim 3 and since each vertex of V_1 has at most one neighbor in V_0 , $|V_1| \le |B'''|$. Using this inequality and (1)–(3) we get

$$\begin{aligned} 5\gamma_R(G) &= 5|V_1| + 10|V_2| \\ &= 4n - 4|V_0| + |V_1| + 6|V_2| \\ &\leq 4n - 4|B'| - 4|B''| - 4|B'''| + |B'''| + 6|A'| + 6|A'''| + 6|A'''| \\ &\leq 4n + 2(|A'| - |A''|) + 3(2|A'''| - |B'''|) \\ &\leq 4n. \end{aligned}$$

Hence $\gamma_R(G) \leq \frac{4n}{5}$.

If $\gamma_R(G) = \frac{4n}{5}$ then |A''| = |A'|, |B'''| = 2|A'''| and $|V_1| = |B'''|$. We note that these conditions of equality include that of Case 1.

The first two conditions of equality, |A''| = |A'|, |B'''| = 2|A'''|, are the same as in Part (a) and imply that $V_2 \cup V_0$ can be partitioned into 5-paths and 3-paths. The third condition, $|V_1| = |B'''|$, implies that the edges between B''' and

 V_1 form a matching covering B''' and V_1 . Thus the 3-paths partitioning $A''' \cup B'''$ can be prolonged to 5-paths partitioning $A''' \cup B''' \cup V_1$. Hence V is partitioned into 5-paths, each of them contributes for 4 to $\gamma_R(G)$ and thus induces P_5 or C_5 in G. Also the configurations shown by G_3 , G_4 , G_5 in Fig. 1 and G_6 to G_{10} in Fig. 2, for which the global contribution of the two 5-paths to $\gamma_R(G)$ is too small, are impossible. Therefore $G \in \{C_5\} \cup \mathcal{G}$.

Conversely, every graph G in $\{C_5\} \cup \mathcal{G}$ obviously satisfies $\gamma_R(G) = \frac{4n}{5}$. \square

3. Bounds on $|V_0|$, $|V_1|$ and $|V_2|$ for a $\gamma_R(G)$ -function (V_0, V_1, V_2)

Theorem 3. Let $f = (V_0, V_1, V_2)$ be any $\gamma_R(G)$ -function of a connected graph G of order $n \geq 3$. Then

- 1. $1 \le |V_2| \le \frac{2n}{5}$ and a graph G admits a $\gamma_R(G)$ -function such that $|V_2| = \frac{2n}{5}$ if and only if G belongs to $\mathcal{G} \cup \{C_5\}$.
- 2. $0 \le |V_1| \le \frac{4n}{5} 2$ and a graph G admits a $\gamma_R(G)$ -function such that $|V_2| = \frac{4n}{5} 2$ if and only if G belongs to $\mathcal{G}' \cup \{C_5\}$. 3. $\frac{n}{5} + 1 \le |V_0| \le n 1$ and a graph G admits a $\gamma_R(G)$ -function such that $|V_0| = \frac{n}{5} + 1$ if and only if G belongs to $\mathcal{G}' \cup \{C_5\}$.

Proof. By Theorem B, $|V_1| + 2|V_2| < 4n/5$.

1. If $V_2 = \emptyset$, then $V_1 = V$ and $V_0 = \emptyset$. The RDF (0, n, 0) is not minimum since $|V_1| + 2|V_2| > 4n/5$. Hence $|V_2| \ge 1$. On the other hand, $|V_2| \le 2n/5 - |V_1|/2 \le 2n/5$.

If $|V_2| = 2n/5$, then $4n/5 \le |V_1| + 2|V_2| = \gamma_R(G) \le 4n/5$. Therefore $\gamma_R(G) = 4n/5$ and by Theorem B, G is C_5 or belongs to g. Conversely define the function f by giving the value 2 to the vertices adjacent to leaves when $G \in g$ and to two non-adjacent vertices when $G = C_5$, and the value 0 to the other vertices. Then f is a $\gamma_R(G)$ -function with $|V_2| = 2n/5$.

2. Since $|V_2| \ge 1$, $|V_1| \le 4n/5 - 2|V_2| \le 4n/5 - 2$.

If $|V_1| = 4n/5 - 2$, then $4n/5 \le |V_1| + 2|V_2| = \gamma_R(G) \le 4n/5$. Therefore $\gamma_R(G) = 4n/5$, i.e., $G \in \{C_5\} \cup G$, and $|V_2| = 1$. When $G \in \mathcal{G}$, let G be obtained by identifying each vertex of a graph H with the central vertex of a P_5 and let $V_2 = \{x\}$. Then $V_0 = N(x), V_1 = V \setminus N[x]$ and $4n/5 - 2 = |V_1| = n - d(x) - 1$. Hence d(x) = n/5 + 1. The unique vertex x of V_2 belongs to *H* and must be adjacent to all the other vertices of *H*. Therefore $G \in \{C_5\} \cup \mathcal{G}'$.

Conversely if $G \in \mathcal{G}'$, the function f defined by f(x) = 2 for some vertex x of H of degree |V(H)| - 1, f(v) = 0 for $v \in N(x)$ and f(v) = 1 elsewhere is a $\gamma_R(G)$ function with $|V_1| = 4n/5 - 2$. Similarly, there exists a $\gamma_R(C_5)$ function with $|V_2| = 1$ and $|V_1| = 2 = 4n/5 - 2$.

3. The upper bound comes from $|V_0| \le n - |V_2| \le n - 1$. For the lower bound, adding side by side $2|V_0| + 2|V_1| + 2|V_2| = 2n$, $-|V_1| - 2|V_2| \ge -4n/5$ and $-|V_1| \ge -4n/5 + 2$ gives $2|V_0| \ge 2n/5 + 2$. Therefore $|V_0| \ge n/5 + 1$.

If $|V_0| = n/5 + 1$ then $|V_1| = 4n/5 - 2$ and thus $G \in \{C_5\} \cup \mathcal{G}'$. Conversely if $G \in \mathcal{G}'$ then the $\gamma_R(G)$ function described in Part 2 is such that $|V_0| = d(x) = |H| + 1 = n/5 + 1$. Also for the $\gamma_R(C_5)$ -function with $|V_2| = 1$, we have $|V_0| = 2 = n/5 + 1$. Note that the lower bounds 1 and 0 on $|V_2|$ and $|V_1|$ and the upper bound n-1 on $|V_0|$ cannot be improved since they are attained by stars.

Acknowledgement

The fourth author's research was supported by the Research Office of Azarbaijan University of Tarbiat Moallem.

References

- [1] E.W. Chambers, B. Kinnersley, N. Prince, D.B. West, Extremal problems for Roman domination SIAM J. Discrete Math. (in press).
- [2] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
- [3] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (4) (1985) 287–293.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [5] W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (6) (1989) 749-762.
- [6] C.S. Revelle, K.E. Rosing, Defendens imperium romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000) 585–594.
- [7] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (6) (1999) 136–139.
- [8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.