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a b s t r a c t

A familyA of sets is said to be t-intersecting if any two sets inA contain at least t common
elements. A t-intersecting family is said to be trivial if there are at least t elements common
to all its sets.
Let X be an r-set {x1, . . . , xr }. For k ≥ 2, we define SX,k and S∗X,k to be the families of

k-signed r-sets given by

SX,k := {{(x1, a1), . . . , (xr , ar )}: a1, . . . , ar are elements of {1, . . . , k}},
S∗X,k := {{(x1, a1), . . . , (xr , ar )}: a1, . . . , ar are distinct elements of {1, . . . , k}}.

S∗X,k can be interpreted as the family of permutations of r-subsets of {1, . . . , k}. For a family
F , we define SF ,k :=

⋃
F∈F SF ,k and S∗F ,k :=

⋃
F∈F S∗F ,k.

This paper features two theorems. The first one is as follows: For any two integers s and
t with t ≤ s, there exists an integer k0(s, t) such that, for any k ≥ k0(s, t) and any family
F with t ≤ max{|F |: F ∈ F } ≤ s, the largest t-intersecting sub-families of SF ,k are trivial.
The second theorem is an analogue of the first one for S∗F ,k.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Notation and definitions

We start with some standard notation for sets. N is the set {1, 2, . . .} of positive integers. For m, n ∈ N with m ≤ n, the
set {i ∈ N:m ≤ i ≤ n} is denoted by [m, n], and ifm = 1 then we also write [n]. For a set X , the power set {A: A ⊆ X} of X is
denoted by 2X , and the uniform sub-family {Y ⊆ X: |Y | = r} of 2X is denoted by

(
X
r

)
.

For a family F of sets, we denote the union of all sets in F by U(F ). For a set V , we set

F [V ] := {F ∈ F : V ⊆ F}, F (V ) := {F ∈ F : F ∩ V 6= ∅}.

For u ∈ U(F ), we abbreviate F ({u}) to F (u). We call F (u) a star of F . More generally, if T is a t-subset of a set in F , then
we call F [T ] a t-star of F .
A familyA is said to be intersecting if A∩B 6= ∅ for any A, B ∈ A. More generally,A is said to be t-intersecting if |A∩B| ≥ t

for any A, B ∈ A. A t-intersecting familyA is said to be trivial if |
⋂
A∈A A| ≥ t (i.e. there are at least t elements common to

all the sets in A); otherwise, A is said to be non-trivial. Note that a t-star of a family F is a maximal trivial t-intersecting
sub-family of F .
In the following, unless otherwise stated, sets and families are to be assumed non-empty and finite.
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1.2. Intersecting sub-families of 2[n] and
(
[n]
r

)
The study of intersecting families took off with the publication of [13], which features the classical result, known as the

Erdős–Ko–Rado (EKR) Theorem, that says that, if r ≤ n/2 and A is an intersecting sub-family of
(
[n]
r

)
, then A has size

at most
(
n−1
r−1

)
, which is the size of a star of

(
[n]
r

)
. There are various proofs of this theorem, two of which are particularly

short and beautiful: Katona’s [21] using the cycle method and Daykin’s [7] using another fundamental result known as the
Kruskal–Katona Theorem [22,25]. Hilton andMilner [19] determined the size of a largest non-trivial intersecting sub-family
of
(
[n]
r

)
, and consequently they established that, if r < n/2, then no non-trivial intersecting sub-family of

(
[n]
r

)
is as large

as the stars of
(
[n]
r

)
.

The facts we have just mentioned inspire us to make the following definition. We say that a family F is EKR if the set
of largest intersecting sub-families of F contains a star, and strictly EKR if the set of largest intersecting sub-families of F
contains only stars.
Also in [13], Erdős, Ko and Rado initiated the study of t-intersecting families for t ≥ 2. They pointed out the simple fact

that 2[n] is EKR, and they posed the following question:What is the size of an extremal (i.e. largest) t-intersecting sub-family
of 2[n] for t ≥ 2? The answer in a complete form was given by Katona [23]. It is interesting that, for n > t ≥ 2, no extremal
t-intersecting sub-family of 2[n] is a t-star.
For the uniform case, Erdős, Ko and Rado [13] proved that, for t < r , there exists an integer n0(r, t) such that, for all

n ≥ n0(r, t), the largest t-intersecting sub-families of
(
[n]
r

)
are the t-stars. For t ≥ 15, Frankl [14] showed that the smallest

such n0(r, t) is (r − t + 1)(t + 1) + 1 and that, if n = (r − t + 1)(t + 1), then t-stars are extremal but not uniquely
so. Subsequently, Wilson [33] proved the sharp upper bound

( n−t
r−t

)
for the size of a t-intersecting sub-family of

(
[n]
r

)
for

all t and n ≥ (r − t + 1)(t + 1). Frankl [14] conjectured that an extremal t-intersecting sub-family of
(
[n]
r

)
has size

max{|{A ∈
(
[n]
r

)
: |A ∩ [t + 2i]| ≥ t + i}|: i ∈ {0} ∪ [r − t]}. A remarkable proof of this long-standing conjecture together

with a complete characterisation of the extremal structures was finally obtained by Ahlswede and Khachatrian [1].

Theorem 1.1 (Ahlswede and Khachatrian [1]). Let 1 ≤ t ≤ r ≤ n, and let A be an extremal t-intersecting sub-family of
(
[n]
r

)
.

(i) If (r − t + 1)(2 + t−1
i+1 ) < n < (r − t + 1)(2 + t−1

i ) for some i ∈ {0} ∪ N - where, by convention, (t − 1)/i = ∞ if i

= 0- thenA = {A ∈
(
[n]
r

)
: |A ∩ X | ≥ t + i} for some X ∈

(
[n]
t+2i

)
.

(ii) If t ≥ 2 and (r − t + 1)(2+ t−1
i+1 ) = n for some i ∈ {0} ∪ N, thenA = {A ∈

(
[n]
r

)
: |A∩ X | ≥ t + j} for some j ∈ {i, i+ 1}

and X ∈
(
[n]
t+2j

)
.

Many other beautiful results were inspired by the seminal Erdős–Ko–Rado paper [13]. The survey papers [10] and [15]
are recommended.
We now proceed to the first of the two main themes of the paper.

1.3. Intersecting families of signed sets

Let X be an r-set {x1, . . . , xr}. Let y1, . . . , yr ∈ N. We call the set {(x1, y1), . . . , (xr , yr)} a k-signed r-set if |{y1, . . . , yr}| ≤
k. For an integer k ≥ 2, we define SX,k to be the family of k-signed r-sets given by

SX,k := {{(x1, a1), . . . , (xr , ar)}: a1, . . . , ar ∈ [k]}.

We shall set S∅,k := ∅.
The Cartesian product X × Y of sets X and Y is the set {(x, y): x ∈ X, y ∈ Y }. So SX,k = {A ⊂ X × [k]: |A ∩ ({x} × [k])|

= 1 for all x ∈ X}.
For a family F of sets, we define

SF ,k :=
⋃
F∈F

SF ,k.

We remark that the ‘signed sets’ terminology was introduced in [4] for a setting that can be re-formulated as S( [n]
r

)
,k
, and

the general formulation SF ,k was introduced by the author in [5], the theme of which is the following conjecture.
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Conjecture 1.2 (Borg [5]). Let F be any family, and let k ≥ 2. Then:

(i) SF ,k is EKR;
(ii) SF ,k is not strictly EKR iff k = 2 and there exist at least three elements u1, u2, u3 of U(F ) such that F (u1) = F (u2) =

F (u3) and SF ,2((u1, 1)) is a largest star of SF ,2.

The main result in the same paper is that this conjecture is true if F is compressed with respect to an element u∗ of U(F )
(i.e. u ∈ F ∈ F \ F (u∗) implies (F \ {u}) ∪ {u∗} ∈ F ). This generalises a well-known result that was first stated by
Meyer [31] and proved in different ways by Deza and Frankl [10], Bollobás and Leader [4], Engel [11] and Erdős et al. [12],
and that can be described by saying that the conjecture is true for F =

(
[n]
r

)
. Berge [3] and Livingston [30] had proved (i)

and (ii) respectively for the special caseF = {[n]} (other proofs are found in [18,32]). In [5] the conjecture is also verified for
F uniform and EKR; Holroyd and Talbot [20] had essentially proved (i) for such a family F in a graph-theoretical context.
The t-intersection problem for sub-families of S[n],k has also been solved. Frankl and Füredi [16] were the first to

investigate it, and the following result had been a conjecture that they made and that they verified for k ≥ t + 1 ≥ 16
in [16].

Theorem 1.3 (Ahlswede, Khachatrian [2]; Frankl, Tokushige [17]). If A is an extremal t-intersecting sub-family of S[n],k, then
|A| = max{|{A ∈ S[n],k: |A ∩ ([t + 2i] × [1])| ≥ t + i}|: i ∈ {0} ∪ N}.

It follows from this result that the set of extremal t-intersecting sub-families of S[n],k contains t-stars iff k ≥ t + 1. What
led to this result was the accomplishment of Theorem 1.1. As in Theorem 1.1, Ahlswede and Khachatrian [2] also determined
the extremal t-intersecting sub-families of S[n],k, and it turns out that the structure of a t-star of S[n],k is the unique extremal
structure iff k ≥ t + 2. Kleitman [24] had long established Theorem 1.3 for k = 2.
To the best of the author’s knowledge, apart from a general result we present later, no results for t-intersecting

sub-families of SF ,k with |F | ≥ 2 have been established. However, some very important results have been obtained for
a modification of the problem, which we describe next.

1.4. Intersecting families of permutations and partial permutations

For an r-set X := {x1, . . . , xr}, we define S∗X,k to be the special sub-family of SX,k given by

S∗X,k :=

{
{(x1, a1), . . . , (xr , ar)}: {a1, . . . , ar} ∈

(
[k]
r

)}
.

Note that S∗X,k 6= ∅ iff r ≤ k.
For a family F , we define S∗F ,k to be the special sub-family of SF ,k given by

S∗F ,k :=
⋃
F∈F

S∗F ,k.

An r-partial permutation of a set N is a pair (A, f )where A ∈
(
N
r

)
and f : A→ N is an injection. An |N|-partial permutation

of N is simply called a permutation of N . Clearly, the family of permutations of [n] can be re-formulated as S∗
[n],n, and the

family of r-partial permutations of [n] can be re-formulated as S∗(
[n]
r

)
,n
.

Let X be as above. S∗X,k can be interpreted as the family of permutations of sets in
(
[k]
r

)
: consider the bijection

β: S∗X,k → {(A, f ): A ∈
(
[k]
r

)
, f : A → A is a bijection} defined by β({(x1, a1), . . . , (xr , ar)}) := ({a1, . . . , ar}, f ) where,

for b1 < · · · < br such that {b1, . . . , br} = {a1, . . . , ar}, f (bi) := ai for i = 1, . . . , r . S∗X,k can also be interpreted as the

sub-family X := {(A, f ): A ∈
(
[k]
r

)
, f : A → [r] is a bijection} of the family of r-partial permutations of [k]: consider an

obvious bijection from S∗X,k to S∗(
[k]
r

)
,r
and another one from S∗(

[k]
r

)
,r
toX.

In [8,9] the study of intersecting permutations was initiated. Deza and Frankl [9] showed that S∗
[n],n is EKR. So an

intersecting sub-family of S∗
[n],n has size atmost (n−1)!. Only a few years ago, Cameron and Ku [6] and Larose andMalvenuto

[28] independently proved that furthermore S∗
[n],n is strictly EKR.

Ku and Leader [27] proved that S∗(
[n]
r

)
,n
is EKR for all r ∈ [n], and they also showed that S∗(

[n]
r

)
,n
is strictly EKR for all

r ∈ [8, n− 3]. Naturally, they conjectured that S∗(
[n]
r

)
,n
is also strictly EKR for the few remaining values of r . This was settled

by Li and Wang [29] using tools forged by Ku and Leader.
When it comes to t-intersecting families of permutations, things are of course much harder, and the most interesting

challenge comes from the following conjecture.
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Conjecture 1.4 (Deza and Frankl [9]). For any t ∈ N, there exists n0(t) ∈ N such that, for any n ≥ n0(t), the size of a
t-intersecting sub-family of S∗

[n],n is at most that of a t-star of S∗
[n],n, i.e. (n− t)!.

This conjecture suggests an obvious extension for the extremal case. It is worth pointing out that the condition n ≥ n0(t)
is necessary; [26, Example 3.1.1] illustrates this fact. An analogue of the statement of the conjecture for partial permutations
has been proved by Ku.

Theorem 1.5 (Ku [26, Theorem 6.6.6]). For any r, t ∈ Nwith r ≥ t, there exists n0(r, t) ∈ N such that, for any n ≥ n0(r, t), the
size of a t-intersecting sub-family of S∗(

[n]
r

)
,n
is at most that of a t-star of S∗(

[n]
r

)
,n
, i.e.

( n−t
r−t

)
(n−t)!
(n−r)! .

This result emerges as an immediate consequence of one of the two main theorems in this paper; see next section.

2. Results and conjectures

For a family F , let α(F ) denote the size of a largest set in F . Any t-intersecting sub-family of SF ,k or S∗F ,k trivially
consists of at most one set if α(F ) ≤ t . We now consider α(F ) > t .
In view of Conjecture 1.2, we suggest the following general conjecture for t-intersecting families of signed sets.

Conjecture 2.1. For any t ∈ N, there exists k0(t) ∈ N such that, for any k ≥ k0(t) and any family F with α(F ) > t, the largest
t-intersecting sub-families of SF ,k are trivial.

As we mentioned in Section 1.3, the t-stars of S[n],k are extremal t-intersecting sub-families of S[n],k iff k ≥ t + 1, and they
are uniquely extremal iff k ≥ t + 2. This suggests that, if Conjecture 2.1 is true, then, as is claimed by Conjecture 1.2 for
t = 1, the smallest value of k0(t) is t + 2 (and the largest t-stars of SF ,t+1 are among the largest t-intersecting sub-families
of SF ,t+1). We are able to prove a relaxation of the statement of Conjecture 2.1.

Theorem 2.2. For any r, t ∈ Nwith t < r, let k0(r, t) :=
( r
t

) ( r
t+1

)
. For any k ≥ k0(r, t) and any familyF with t < α(F ) ≤ r,

the largest t-intersecting sub-families of SF ,k are trivial.

Corollary 2.3. Conjecture 1.2 is true if k ≥ α(F )
(
α(F )
2

)
.

We next pose a similar problem for t-intersecting sub-families of S∗F ,k.

Conjecture 2.4. For any t ∈ N, there exists k∗0(t) ∈ N such that, for any k ≥ k∗0(t) and any family F with α(F ) > t, the largest
t-intersecting sub-families of S∗F ,k are trivial.

By taking k ≥ k∗0(t) and F = {[k]}, we get Conjecture 1.4. We are able to prove the following analogue of Theorem 2.2.

Theorem 2.5. For any r, t ∈ Nwith t < r, let k∗0(r, t) :=
( r
t

) ( 3r−2t−1
b
3r−2t−1
2 c

)
r!

(r−t−1)! + r + 1. For any k ≥ k
∗

0(r, t) and any family
F with t < α(F ) ≤ r, the largest t-intersecting sub-families of S∗F ,k are trivial.

By taking k ≥ k∗0(r, t) and F =
(
[k]
r

)
, we get Theorem 1.5.

We now proceed to the proofs of the two theorems above.

3. Proof of Theorem 2.2

We shall base the proof of Theorem 2.2 on the compression technique used in [10] and in [16]. We point out that this can
be avoided by applying an argument similar to the one for Theorem 2.5; however, the compression technique enables us to
obtain a neater proof and a value of k0(r, t) that is better than what we would obtain without using it.
For (a, b) ∈ [n] × [2, k], let∆a,b: 2

S2[n],k → 2S2[n],k be defined by
∆a,b(A) := {δa,b(A): A ∈ A} ∪ {A ∈ A: δa,b(A) ∈ A},

where δa,b: S2[n],k → S2[n],k is defined by

δa,b(A) :=
{
A \ {(a, b)} ∪ {(a, 1)} if (a, b) ∈ A;
A otherwise.

Note that |∆a,b(A)| = |A|. It is known and easy to check that, ifA is t-intersecting, then∆a,b(A) is t-intersecting.We prove
a bit more than this.

Lemma 3.1. Let A ⊂ S2[n],k and V ⊆ [n]×[2, k] such that |(A∩B)\V | ≥ t for any A, B ∈ A. Then |(C∩D)\(V ∪{(a, b)})| ≥ t
for any C,D ∈ ∆a,b(A).

Proof. Let C,D ∈ ∆a,b(A). Let C ′ := (C\{(a, 1)})∪{(a, b)},D′ := (D\{(a, 1)})∪{(a, b)}. Suppose |(C∩D)\V | < t . So C andD
cannot both be inA. Suppose C,D 6∈ A; then (a, 1) is in both C andD, C ′ andD′ are inA, and |(C ′∩D′)\V | ≤ |(C∩D)\V | < t ,
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a contradiction. Thus, without loss of generality, C 6∈ A and D ∈ A. So (a, 1) ∈ C and C ′ ∈ A. If (a, b) 6∈ D then
|(C ′ ∩ D) \ V | ≤ |(C ∩ D) \ V | < t , contradicting C ′,D ∈ A. So (a, b) ∈ D and hence δa,b(D) ∈ A (because otherwise
D 6∈ ∆a,b(A)). But then |(C ′ ∩ δa,b(D)) \ V | = |(C ∩ D) \ V | < t , contradicting C ′, δa,b(D) ∈ A. We therefore conclude that
|(C ∩ D) \ V | ≥ t .
Now suppose |(C ∩ D) \ (V ∪ {(a, b)})| < t . Since |(C ∩ D) \ V | ≥ t , (a, b) ∈ C ∩ D. So C, δa,b(C),D, δa,b(D) ∈ A and

|(C ∩ δa,b(D)) \ V | = |(C ∩ D) \ (V ∪ {(a, b)})| < t , a contradiction. �

Corollary 3.2. Let A∗ be a t-intersecting sub-family of S2[n],k. Let

A := ∆n,k ◦ · · · ◦∆n,2 ◦ · · · ◦∆1,k ◦ · · · ◦∆1,2(A
∗).

Then |A ∩ B ∩ ([n] × [1])| ≥ t for any A, B ∈ A.

Proof. By repeated application of Lemma 3.1, |(A ∩ B) \ ([n] × [2, k])| ≥ t for any A, B ∈ A. The result follows since
(A ∩ B) \ ([n] × [2, k]) = A ∩ B ∩ ([n] × [1]). �

Lemma 3.3. Let F ⊆ 2[n], k ≥ 3 and (a, b) ∈ [n] × [2, k]. Suppose A is a non-trivial t-intersecting sub-family of SF ,k and
∆a,b(A) is a sub-family of a t-star SF ,k[Z] (Z ∈ S( [n]

t

)
,k
) of SF ,k. Then |A| < |SF ,k[Z]|.

Proof. Let Y := {z: (z, l) ∈ Z for some l ∈ [k]}. Given that ∆a,b(A) ⊆ SF ,k[Z], we have A ⊂ SF [Y ],k and, since A is
non-trivial, there exists A ∈ A such that |A ∩ Z | = t − 1 and Z ⊆ δa,b(A). So (a, 1) ∈ Z and Z ′ := Z \ {(a, 1)} ⊂ A for all
A ∈ A. Let Y ′ := Y \ {a}. Setting F ′ := {F \ Y ′: F ∈ F [Y ′]} and A′ := {A \ Z ′: A ∈ A[Z ′]}, we then have A′ ⊂ SF ′(a),k
(as A ⊂ SF [Y ],k and Y = Y ′ ∪ {a}) and |A′| = |A|. Since A is a non-trivial t-intersecting family and |Z ′| = t − 1, A′ is a
non-trivial intersecting family.
For F ′ ∈ F ′(a), letA′F ′ := A′ ∩ SF ′,k. SinceA′ is intersecting,A′F ′ is intersecting. SupposeA′F ′ 6= ∅. IfA

′

F ′ is non-trivial,
then, by Livingston’s theorem [30] (see Section 1.3), |A′F ′ | < k

|F ′|−1. Suppose A′F ′ is trivial; so A′F ′ ⊆ SF ′,k((c, d)) for some
(c, d) ∈ F ′ × [k]. SinceA′ is non-trivial, there exists A′ ∈ A′ such that (c, d) 6∈ A′. Thus, sinceA′ is intersecting, we actually
haveA′F ′ ⊆ {A ∈ SF ′,k((c, d)): A ∩ A′ 6= ∅}, and hence we again get |A′F ′ | < k

|F ′|−1.
We therefore have

|A| = |A′| =
∑

F ′∈F ′(a)

|A′F ′ | <
∑

F ′∈F ′(a)

k|F
′
|−1
=

∑
F∈F [Y ]

k|F |−t ,

and the result follows since
∑
F∈F [Y ] k

|F |−t
= |SF ,k[Z]|. �

Proof of Theorem 2.2. Let F be a family with t < α(F ) ≤ r . We may assume that F ⊆ 2[n] for some n ∈ N. Let
k ≥ k0(r, t). We prove the result by showing that, for any non-trivial t-intersecting sub-family B of SF ,k, there exists a
trivial t-intersecting sub-family of SF ,k that is larger thanB.
Let A∗ be a non-trivial t-intersecting sub-family of SF ,k. Let A := ∆n,k ◦ · · · ◦ ∆n,2 ◦ · · · ◦ ∆1,k ◦ · · · ◦ ∆1,2(A

∗). So
A ⊂ SF ,k and |A| = |A∗|. Let X := [n] × [1]. By Corollary 3.2,

|A ∩ B ∩ X | ≥ t for any A, B ∈ A. (1)

Suppose A is a trivial t-intersecting family, i.e. A ⊆ SF ,k[Z] for some Z ∈
(
S
t

)
, S ∈ SF ,k. By Lemma 3.3, we then have

|A∗| < |SF ,k[Z]|, and hence we are done.
Wenowassume thatA is a non-trivial t-intersecting family. Suppose |A′∩X | = t for some A′ ∈ A. Then, by (1), A′∩X ⊆ A

for all A ∈ A; but this contradicts the assumption thatA is non-trivial. So |A∩X | ≥ t+1 for all A ∈ A, and hence we obtain
a crude bound for the size ofAF := A ∩ SF ,k (F ∈ F ) as follows:

|AF | ≤ |{A ∈ SF ,k: |A ∩ (F × [1])| ≥ t + 1}| <
(
|F |
t + 1

)
k|F |−t−1 ≤

(
r
t + 1

)
k|F |−t−1. (2)

Let B ∈ A. Since A is t-intersecting (by (1)), each A ∈ A must contain at least one of the sets in
(
B
t

)
, and hence

A =
⋃
C∈
(
B
t

) A[C]. Choose C∗ ∈
(
B
t

)
such that |A[C]| ≤ |A[C∗]| for all C ∈

(
B
t

)
. We then have

|A| =

∣∣∣∣∣∣∣
⋃
C∈
(
B
t

)A[C]

∣∣∣∣∣∣∣ ≤
∑
C∈
(
B
t

) |A[C]| ≤
(
|B|
t

)
|A[C∗]| ≤

( r
t

)
|A[C∗]|. (3)
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Set G := {F ∈ F :A[C∗] ∩ SF ,k 6= ∅}. Let C be the trivial t-intersecting sub-family
⋃
G∈G SG,k[C∗] of SF ,k. Bringing all the

pieces together, we get

|A| ≤
( r
t

)
|A[C∗]| (by (3))

≤

( r
t

)∑
G∈G

|AG| =
∑
G∈G

( r
t

)
|AG|

<
∑
G∈G

( r
t

)( r
t + 1

)
k|G|−t−1 (by (2))

=

∑
G∈G

k0(r, t)k|G|−t−1 ≤
∑
G∈G

k|G|−t = |C|.

So |A∗| < |C| as |A∗| = |A|. Hence the result. �

4. Proof of Theorem 2.5

The proof of Theorem 2.5 is based on ideas from the preceding section and ideas used by Erdős, Ko and Rado [13] for
their result concerning t-intersecting sub-families of

(
[n]
r

)
. Unfortunately, the compression technique fails to work for

intersecting sub-families of S∗
[n],k.

Let l(n, k, t) be the size of a largest non-trivial t-intersecting sub-family of S∗
[n],k, and let Pj := {(i, i): i ∈ [j]}.

Lemma 4.1. For any c, n, t ∈ N with t < n, let k0(c, n, t) := c
(
3n−2t−1
b
3n−2t−1
2 c

)
n!

(n−t−1)! + n+ 1. For any k ≥ k0(c, n, t),

|S∗
[n],k[Pt ]| > c(max{l(n, k, t), |S

∗

[n],k[Pt+1]|}).

Proof. Let k ≥ k0(c, n, t), and letA ⊂ S∗
[n],k be a non-trivial t-intersecting family of size l(n, k, t). Choose A1, A2 ∈ A such

that |A1 ∩ A2| ≤ |A ∩ B| for all A, B ∈ A.
Suppose |A1 ∩ A2| ≥ t + 1. Let (i∗, j∗) ∈ [n] × [k] such that (i∗, j∗) ∈ A1 ∩ A2. Let j′ ∈ [k] such that (i, j′) 6∈ A1 ∪ A2 for all

i ∈ [n] (note that such a j′ exists since k ≥ k0(c, n, t) > |A1∪A2|). Let A′1 := (A1\{(i
∗, j∗)})∪(i∗, j′). By choice of j′, A′1 ∈ S∗

[n],k.
Let A′ := A ∪ {A′1}. Since |A

′

1 ∩ A2| < |A1 ∩ A2|, it follows by choice of A1 and A2 that A
′

1 6∈ A and hence |A′| = |A| + 1.
Also by choice of A1 and A2, we have |A ∩ B| ≥ t + 1 for all A, B ∈ A, which implies thatA′ is t-intersecting. SinceA ⊂ A′

and A is non-trivially t-intersecting, |
⋂
A′∈A′ A

′
| ≤ |

⋂
A∈A A| < t . So A′ is a non-trivial t-intersecting sub-family of S∗

[n],k
of size greater than |A|; but this contradicts |A| = l(n, k, t). We therefore conclude that |A1 ∩ A2| = t . Thus, since A is
non-trivially t-intersecting, there exists A3 ∈ A such that A1 ∩ A2 6⊆ A3 and hence |A1 ∩ A2 ∩ A3| < t .
Let I := A1∪A2∪A3. Suppose there exists A∗ ∈ A such that |A∗∩ I| < t+1. Since |A1∩A2| = t and |A∗∩Ai| ≥ t for each

i ∈ [2], wemust then have A∗∩(A1∪A2) = A1∩A2. Thus, by our supposition, A∗∩I = A1∩A2. But then A∗∩A3 = A1∩A2∩A3,
which gives the contradiction that |A∗ ∩ A3| < t . Therefore

|A ∩ I| ≥ t + 1 for all A ∈ A. (4)

Now |I| = |A1 ∪ A2| + |A3| − |A3 ∩ (A1 ∪ A2)|. Since |A1 ∪ A2| = 2n − |A1 ∩ A2| = 2n − t and |A3 ∩ (A1 ∪ A2)| =
|A3 ∩ A1| + |(A3 ∩ A2) \ A1| ≥ t + (t − |A3 ∩ A2 ∩ A1|) ≥ 2t − (t − 1) = t + 1, it follows that

|I| ≤ (2n− t)+ n− (t + 1) = 3n− 2t − 1.

Taking J to be the smallest set such that I ⊂ [n] × J , we then have

n ≤ | J| ≤ 3n− 2t − 1.

For each i ∈ [t + 1, n], let Ai := {A ∈ A: |A ∩ ([n] × J)| = i}. By (4),
⋃n
i=t+1Ai is a partition for A. Let

x :=
∑n
i=t+1 |{A ∈ S∗

[n],k: |A ∩ ([n] × J)| = i}|. We therefore have

l(n, k, t) = |A| =
n∑

i=t+1

|Ai| < x =
n∑

i=t+1

(
| J|
i

)(n
i

)
i!
(
k− | J|
n− i

)
(n− i)!

<

n∑
i=t+1

(
3n− 2t − 1

i

)(n
i

)
i!
(
k− n
n− i

)
(n− i)!

≤

n∑
i=t+1

(
3n− 2t − 1

i

)
n!

(n− i)!
(k− n)(n−i)
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≤

(
3n− 2t − 1
b
3n−2t−1
2 c

)
n!

(n− t − 1)!

n∑
i=t+1

(k− n)(n−i)

=

(
k0(c, n, t)− n− 1

c

)(
1− (k− n)n−t

1− (k− n)

)
≤
(k− n)n−t − 1

c

<
1
c

(
(k− t)!
(k− n)!

)
=
|S∗
[n],k[Pt ]|

c
.

The result now follows since we also have |S∗
[n],k[Pt+1]| < x. �

Proof of Theorem 2.5. Let F be a family with t < α(F ) ≤ r . Let k0(
( r
t

)
, n, t) be as in the statement of Lemma 4.1 with

c =
( r
t

)
. Let k ≥ k∗0(r, t). So we have

k ≥ k0
(( r
t

)
, r, t

)
= max

{
k0
(( r
t

)
, n, t

)
: n ∈ [r]

}
. (5)

LetA be a non-trivial t-intersecting sub-family of S∗F ,k.
For any F ∈ F and any family B ⊆ S∗F ,k, set BF := B ∩ S∗F ,k. For all F ∈ F , choose F ′ ∈ S∗( F

t

)
,k
. We show that, for all

F ∈ F ,( r
t

)
|AF | < |S

∗

F ,k[F
′
]|. (6)

If AF is a non-trivial t-intersecting family, then (6) follows immediately from (5) and Lemma 4.1. Now suppose AF is a
trivial t-intersecting family. Setting T :=

⋂
A∈AF

A, we then have |T | ≥ t . If |T | ≥ t + 1, then (6) again follows immediately
from (5) and Lemma 4.1. It remains to consider |T | = t . Since A is a non-trivial t-intersecting family, there exists A1 ∈ A
such that T 6⊆ A1 and hence |T ∩ A1| < t . Let D1 := A1 ∩ (F × [k]). Let F1 be the subset of F such that D1 ∈ S∗F1,k. Let
F2 := F \ F1. Let Y := {y ∈ [k] : (x, y) 6∈ D1 ∪ T for all x ∈ F}, and let y1, . . . , y|Y | be the distinct elements of Y . We
have |Y | ≥ k − |D1| − |T | = k − |F1| − t = k − (|F | − |F2|) − t ≥ k∗0(r, t) − r − t + |F2| > |F2|. If F2 6= ∅ and
x1, . . . , x|F2| are the distinct elements of F2, then we take D2 to be the set {(x1, y1), . . . , (x|F2|, y|F2|)} in S∗F2,k; otherwise we
take D2 := ∅. Let A2 := D1 ∪ D2. Clearly A2 ∈ S∗F ,k. Therefore AF ∪ {A2} is a non-trivial t-intersecting sub-family of S∗F ,k
because |

⋂
A′∈AF∪{A2}

A′| = |T ∩ A2| = |T ∩ D1| = |T ∩ A1| < t and, for all A ∈ AF , |A2 ∩ A| ≥ |D1 ∩ A| = |A1 ∩ A| ≥ t . By
(5) and Lemma 4.1, it follows that

( r
t

)
|AF ∪ {A2}| < |S∗F ,k[F

′
]|, and hence (6).

Now, as in the proof of Theorem 2.2, by choosing B ∈ A and C∗ ∈
(
B
t

)
such that |A[C]| ≤ |A[C∗]| for all C ∈

(
B
t

)
, we

get

|A| ≤
( r
t

)
|A[C∗]|.

Set G := {F ∈ F :A[C∗] ∩ S∗F ,k 6= ∅}. Let C be the trivial t-intersecting sub-family
⋃
G∈G S∗G,k[C

∗
] of S∗F ,k. Bringing all the

pieces together, we get

|A| ≤
( r
t

)
|A[C∗]| ≤

∑
G∈G

( r
t

)
|AG| <

∑
G∈G

|CG| = |C|,

where the strict inequality follows by (6). Hence the result. �
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