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a b s t r a c t

A strong defensive alliance in a graph G = (V , E) is a set of vertices A ⊆ V , for which
every vertex v ∈ A has at least as many neighbors in A as in V − A. We call a partition A, B
of vertices to be an alliance-free partition, if neither A nor B contains a strong defensive
alliance as a subset.Weprove that a connected graphGhas an alliance-free partition exactly
when G has a block that is other than an odd clique or an odd cycle.

© 2008 Elsevier B.V. All rights reserved.

1. Definitions and notation

Consider a graph G = (V , E)without loops or multiple edges with order n = |V | and sizem = |E|. For any vertex v ∈ V ,
the open neighborhood of v is the set N(v) = {u : uv ∈ E}, while the closed neighborhood of v is the set N[v] = N(v) ∪ {v}.
The degree of a vertex v is defined as deg(v) = |N(v)|. For a set S ⊆ V and vertex v ∈ V , we denote NS(v) = N(v) ∩ S and
degS(v) = |N(v) ∩ S| = |NS(v)| = deg(v) − degV−S(v). Similarly, N[v] ∩ S = NS[v]. The open and closed neighborhoods
of sets of vertices S ⊆ V are defined as follows: N(S) =

⋃
v∈S N(v), and N[S] = N(S) ∪ S. A graph G′ =

(
V ′, E ′

)
is a

subgraph of a graph G = (V , E), written G′ ⊆ G if V ′ ⊆ V and E ′ ⊆ E ∩ V ′ × V ′. If S ⊆ V , the subgraph induced by S is
the graph G[S] = (S, E ∩ S × S). Let V1 and V2 partition V . The set of edges, which have one end vertex in V1 and the other
in V2 is denoted as 〈V1, V2〉. A cut vertex is a vertex whose removal disconnects the graph. A graph with no cut vertex is
called a nonseparable graph. A block is a maximal nonseparable subgraph of a graph. Other definitions and notation will be
introduced as needed.

2. Alliance-free sets and alliance covers

Defensive alliances in graphs were first introduced by Hedetniemi, et al. [12]. Other types of alliances have been
subsequently proposed, for example, (strong) offensive alliances [8], global alliances [11], and powerful alliances [5]. A
nonempty set A ⊆ V is a strong defensive alliance [12] (also known as cohesive set [14] or 0-defensive alliance [16]) if for all
vertices v ∈ A, degA(v) ≥ degV−A(v). That is, every vertex in a strong defensive alliance A has at least as many neighbors in
A as in V − A. Throughout this paper, strong defensive alliances will be simply referred to as alliances. An alliance A is called
minimal if no proper subset of A is an alliance. Note that if A is a minimal alliance then G[A] is connected. Otherwise, any
connected component of G[A] is also an alliance, which contradicts A being a minimal alliance.
A set X ⊆ V is alliance free if for all alliances A, A− X 6= ∅. A set Y ⊆ V is an alliance cover if for all alliances A, A∩ Y 6= ∅.

An alliance cover Y is minimal if no proper subset of Y is an alliance cover. A minimum alliance cover is a minimal alliance
cover of smallest cardinality. A set X ⊂ V is an alliance cover if and only if V − X is alliance free [15].
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3. Alliance-free partitions

In this paper, we deal with the problem of partitioning the vertex set of a graph G into alliance-free sets. We refer to such
a partition as an alliance-free partition and say G is partitionable if it has an alliance-free partition. Problems of partitioning
the vertex set of a graph with constraints on the degrees of vertices in the sets can be traced to the problem of unfriendly
partition of graphs introduced by Borodin and Kostochka [4] in 1977. A partition is said to be unfriendly if each vertex has
as many or more neighbors outside the set in which it occurs than inside it. The problem has also been studied in [1,3,6,17].
Note that, in an unfriendly partition, if every vertex has strictlymore neighbors outside the set in which it occurs than inside
it, then the partition is an alliance-free partition. However, the converse is not true, i.e., a vertex in an alliance-free partition
may have the same number of neighbors inside the set in which it occurs as outside it.
A similar but complementary problem was studied in [9,14], where a bipartition of the vertex set into alliances was

sought. Such a partition is called Satisfactory Partition. The problem of bi-partitioning the vertex set with constraints on the
minimum degrees is addressed in [7,10,13,18,19].
There exists an unfriendly graph bipartition for every finite graph [17]. (There are infinite graphs with no unfriendly

bipartition, however, all graphs have an unfriendly 3-partition [17].) This is not the case for satisfactory partitions and
alliance-free partitions. For example, odd cliques and complete bipartite graphs Kp,q (when p or q is odd) do not have
satisfactory partitions, and odd cliques and odd cycles do not have alliance-free partitions. The satisfactory partition problem
is known to be NP-complete [2]. In this paper, we characterize graphs having alliance-free partitions. In particular, we show
the following:

Theorem 1. A connected graph G is partitionable if and only if G has a block that is other than an odd clique or an odd cycle.

Define a set S to be an alliance-free cover if S is both alliance free and an alliance cover. Equivalently, S is an alliance-free
cover if for all alliances X , X ∩ S 6= ∅ and X ∩ (V − S) 6= ∅. Thus, we have the following:

Lemma 2. A set S is an alliance-free cover if and only if V − S is an alliance-free cover.

From Lemma 2, we conclude the following:

Theorem 3. A graph G is partitionable if and only if G has an alliance-free cover.

4. When G is not partitionable

We call an alliance cover X to be special if X contains an alliance UX and a vertex u ∈ UX such that X − u is alliance free.

Lemma 4. If G is not partitionable and X is a special alliance cover in G then X contains a unique minimal alliance UX , such that
G[UX ] is a connected component of G[X] and ∀x ∈ UX :

(1) degX (x) = degV−X (x), and
(2) (V − X) ∪ {x} is also a special alliance cover.

Proof. Since, by definition of special alliance, there exists a vertex u ∈ X such that X − {u} is alliance free, the alliance UX
containing u is the only alliance in X . Since X is an alliance cover, V − X is alliance free. Also, since G is not partitionable and
X − {u} is alliance free, the set (V − X) ∪ {u}must contain an alliance. Hence degX (u) = degV−X (u).
Suppose now that there exists v ∈ UX , such that degX (v) > degV−X (v). Let v be the nearest such vertex to u in G[UX ]

and let P : u = v1, v2, . . . , vk, v be a shortest path from u to v. Since V − X is alliance free and degV−X (v) < degX (v),
(V − X) ∪ {v} is alliance free. Also, since degX (vk) = degV−X (vk) and v ∈ N(vk), UX − {v} is not an alliance. This implies
that X − {v} is also alliance free, which is contrary to G not being partitionable. Hence ∀x ∈ UX , degX (x) = degV−X (x) and
the graph G[UX ], induced by UX , is a connected component of the graph G[X]. Since G is not partitionable, for any x ∈ UX ,
the set (V − X) ∪ {x}must contain an alliance and hence, is a special alliance cover. �

The following result is immediate from Lemma 4.

Corollary 5. If G is not partitionable and X is a special alliance cover in G then for any x ∈ UX ⊆ X and y ∈ U(V−X)∪{x},
X ′ = (X − {x}) ∪ {y} is a special alliance cover, and y ∈ UX ′ .

The following result shows the existence of special alliance covers in the graphs that are not partitionable.

Lemma 6. If G is not partitionable then for every v ∈ V (G), there exists a special alliance cover X such that the minimal alliance
UX contains v.
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Proof. For any vertex v ∈ V (G), order the vertices v1, v2, . . . , vn = v, such that vi is adjacent to at least one vj with j > i,
for all i < n. Now perform the following procedure:

X ← Ø, Y ← Ø, i← 1
While i ≤ n
Begin
If |NX (vi)| ≤ |NY (vi)| , X ← X ∪ {vi} else Y ← Y ∪ {vi}
i← i+ 1
End.

Since G is not partitionable, assume with out loss of generality that X contains an alliance UX . Let vk be the first vertex in
the procedurewhose addition to X formed an alliance in X . If k < n then by procedure, |NX (vk)| < |NY (vk)|+|NV−X−Y (vk)|,
a contradiction, hence k = n. Thus, both X −{vn} and Y are alliance free, which implies that X is a special alliance cover and
vn = v is in the alliance UX . �

Corollary 7. If G is not partitionable, then G is Eulerian.

The following theorem describes the partitionable graphs in terms of their blocks.

Theorem 8. A connected graph G is partitionable if and only if some block of G is partitionable.
Proof. The proof is by induction on the number of blocks in graph G. The statement is true if G is itself a block, and hence,
the base case is true. Assume that the statement is true for all graphs with at most r blocks, for a fixed but arbitrary r ≥ 1.
Consider a graph G with r + 1 blocks and let x be a cut-vertex in G. Let G1 be the graph induced by V1 ⊂ V , where x ∈ V1
and V1 − {x} induces a connected component in graph G− {x}. Also, let G2 be the graph induced by V2 = (V − V1) ∪ {x}.
First, assume that G is partitionable and thus has an alliance-free cover, say B′. Further, assume that neither G1 nor G2 is

partitionable. From Lemma 2, we may assume that x ∈ B′. Note that for i ∈ {1, 2}, Bi = B′ ∩ Vi is an alliance cover in graph
Gi. Thus each Bi must contain an alliance Ti in graph Gi. Now we have two cases. Case 1: For some i ∈ {1, 2}, x 6∈ Ti. Then,
Ti ⊆ B′ is also an alliance in graph G, which is contrary to B′ being an alliance-free cover in graph G. Case 2: x ∈ T1 ∩ T2. But
then, T1 ∪ T2 ⊆ B′ is an alliance in graph G, again a contradiction.
Since both cases lead to a contradiction, we conclude that at least one of G1 and G2 is partitionable. Thus, by induction

hypothesis, some block of G1 or G2 is partitionable. Hence, some block of G is partitionable.
Next, suppose some block of G is partitionable. We may assume without loss of generality that the block is in G1 and,

hence, by the induction hypothesis, G1 is partitionable. Let B1 be an alliance-free cover in G1. From Lemma 2, wemay assume
that x 6∈ B1. There are two cases. Case 1: G2 is partitionable. Then, there is an alliance-free cover B2 in G2. Once again, we
may assume that x 6∈ B2. But then B1 ∪ B2 is an alliance-free cover of graph G, thus G is partitionable. Case 2: If G2 is not
partitionable, every alliance cover in G2 contains some alliance. By Lemma 6, there exists a special alliance cover B2 in G2,
such that x ∈ UB2 . If B

′
= (B1 ∪ B2) − {x} is not an alliance cover of graph G then there must exist an alliance S in G, such

that S ∩ B′ = ∅ and x ∈ S. Since x ∈ UB2 ,
∣∣NV2∩S (x)∣∣ = ∣∣NV2−S (x)∣∣. From Corollary 7, we may assume that G is Eulerian,

and
∣∣NV1 (x)

∣∣ ≥ 2, hence, V1 ∩ S 6= ∅ and ∣∣NV1∩S(x)∣∣ ≥ ∣∣NV1−S(x)∣∣. But then, V1 ∩ S is also an alliance in graph G1, which
contradicts B1 being an alliance cover in G1. Hence, B′ is an alliance-free cover of graph G, and G is partitionable. �

5. When a block is not partitionable

From Theorem 8, a graph is not partitionable if and only if every block of G is not partitionable. In this section, we
characterize the blocks that are not partitionable.
Let G be an unpartitionable block and let X be a special alliance cover in G containing an alliance UX . Also let Y = V − X .

Lemma 9. If G is an unpartitionable block then the graph G[UX ] is a block.
Proof. Assume to the contrary that x is a cut vertex in G[UX ]. Let {a, b} ⊆ UX , such that every a− b path in G[UX ] contains
x. Since G is a block, there must be a path P in G from a to b that does not contain x. Since NX (UX ) = UX , P ∩ 〈X, Y 〉 6= ∅.
Assume now that the choice of X , x, a and b is such that |P ∩ 〈X, Y 〉| is minimum among all such choices. Further, assume
that P is a shortest such path in G. Let P ∩ 〈X, Y 〉 = {y1y2, y3y4, . . . , y4k−1y4k} for some k ≥ 1, where {y4i−3, y4i} ⊆ X and
{y4i−2, y4i−1} ⊆ Y , 1 ≤ i ≤ k. In addition, y2j may be the same as y2j+1, 0 < j < 2k. Since P is a shortest such path, y1 = a
and y4k = b. Let X0 = X and for 1 ≤ i ≤ k, define;

Xi = (Xi−1 − {y4i−3}) ∪ {y4i−1} , and
Yi = V − Xi.

From Corollary 5, ∀i, Xi is a special alliance cover. Also, ∀i > 0, {y4i−1, y4i, y4i+1} ⊆ UXi and y4i−1y4i ∈ E (G).
Let U ′ ⊆ UX0 such that G[U

′
] is a connected component in G[UX0 − a] and b ∈ U

′. Note that, ∀v ∈ U ′ − N(a),
degU ′(v) = degV−U ′(v). In particular, degU ′(b) = degV−U ′(b). Since b ∈ UXk and N(UXk) = UXk , U

′
⊆ UXk . Since none

of the vertices yi for i < 4k − 1 can be a neighbor of b, degU ′(b) = degV−U ′(b), and y4k−1b ∈ E(G), it follows that
degXk(b) > degYk(b), which is contrary to Xk being a special alliance cover. �
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Lemma 10. If G is not partitionable and {u, v} ⊆ UX , such that NV−X (u) ∩ NV−X (v) 6= ∅ then uv ∈ E(G).

Proof. Let {u, v} ⊆ UX , such that z ∈ NV−X (u) ∩ NV−X (v). By Corollary 5, X ′ = (X − {u}) ∪ {z} is a special alliance cover,
and z ∈ UX ′ . Since v ∈ NX ′ (z), v ∈ UX ′ , i.e., |NV−X ′ (v)| = |NX ′ (v)|, which is possible only if uv ∈ E (G). �

Lemma 11. If G is an unpartitionable block and X is a special alliance cover with |UX | > 2 then for any {a, b} ⊂ UX ,
NY (a) ∩ NY (b) 6= ∅, where Y = V − X.

Proof. Let |UX | > 2 and {a, b} ⊆ UX . From Lemma 9, ∀x ∈ UX , |NUX (x)| ≥ 2. Let y2 ∈ NY (a). Since G is a block, there
must exist a path P from y2 to b that does not contain a. Let P be such a path, for which |P ∩ 〈X, Y 〉| is minimum among all
such paths. Let y1 = a and P ∩ 〈X, Y 〉 = {y3y4, y5y6, . . . , y4k−1y4k}, k ≥ 1, where {y4i−3, y4i} ⊆ X and {y4i−2, y4i−1} ⊆ Y ,
1 ≤ i ≤ k. Further, y2j may be the same as y2j+1, 0 < j < 2k. Also, let y4k+1 = b, X0 = X and for 1 ≤ i ≤ k, define;

Xi = (Xi−1 − {y4i−3}) ∪ {y4i−1} , and
Yi = V − Xi.

From Corollary 5, ∀i, Xi is a special alliance cover. Also, ∀i > 0, {y4i−1, y4i, y4i+1} ⊆ UXi and y4i−1y4i ∈ E (G). Note
that, ∀i, 0 < i < k, U ′ ∩ UXi = ∅, where U

′
= UX − {y1}, otherwise, there is a y2 − b path P ′ ⊆ P such that∣∣P ′ ∩ 〈X, Y 〉∣∣ < |P ∩ 〈X, Y 〉|, a contradiction. Since b ∈ UXk , U

′
⊆ UXk . Hence, ∀zi ∈ NUX (a), y4k−1zi ∈ E(G). Since

|NUX (a)| > 1, there are at least two vertices z1, z2 in UX such that y4k−1 ∈ NY (z1) ∩ NY (z2). From Lemma 10, z1z2 ∈ E(G).
We now claim that ∀x ∈ UX , y4k−1 ∈ N(x). Suppose not. Then there must exist {u, v, w} ⊆ UX , such that {v, w} ⊆ N(u),

and y4k−1 ∈ (N(u) ∩ N(v)) − N(w). By Corollary 5, X ′ = (X − {u}) ∪ {y4k−1} is a special alliance cover, and y4k−1 ∈ UX ′ .
Also, since G[UX ] is a block and NX ′(UX ′) = UX ′ , NX ′(y4k−1) = NX (u), a contradiction. Hence, ∀x ∈ UX , y4k−1 ∈ N(x), which
completes the proof. �

Theorem 12. If G is a block, then G is partitionable if and only if G is neither an odd clique nor an odd cycle.

Proof. It is easy to see that odd complete graphs and odd cycles are not partitionable. To prove the sufficiency of the theorem,
let G be a block that is not partitionable and consider two exhaustive cases:
Case 1: There exists a special alliance cover X in G, such that |UX | > 2. Let Y = V − X . From Lemmas 10 and 11,

G[UX ] is a clique, and ∀x ∈ UX , G[UY∪{x}] is also a clique. Hence ∀x ∈ UX , N[x] = UX ∪ UY∪{x}. Also, from Lemma 4,
NY∪{x}

(
UY∪{x}

)
= UY∪{x}. Thus, from Lemma 11, for every {x, y} ⊂ UX , N[x] = N[y]. By the above arguments, ∀x ∈ UX ,

N[x] is a clique, and is a connected component of the graph G. Since G is connected, this is only possible if G = G[N[x]].
Hence, G is a complete graph. In addition, since even cliques are partitionable, G has odd order.
Case 2: For all special alliance covers X in G, |UX | = 2. From Lemma 6, for allw ∈ V , there exists a special alliance cover

B, such thatw ∈ UB. Since, |UB| = 2 and degUB (w) = degV−UB (w), deg (w) = 2, and hence, G is a cycle. Further, since even
cycles are partitionable, G is an odd cycle. �

From Theorems 8 and 12, we conclude that a connected graph G is partitionable if and only if G has a block that is other
than an odd clique or an odd cycle, which is our main result (Theorem 1 of Section 3).
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