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a b s t r a c t

We show that a complete equipartite graph with four partite sets has an edge-disjoint
decomposition into cycles of length k if and only if k ≥ 3, the partite set size is even, k
divides the number of edges in the equipartite graph and the total number of vertices in
the graph is at least k.We also show that a complete equipartite graphwith four evenpartite
sets has an edge-disjoint decomposition into paths with k edges if and only if k divides the
number of edges in the equipartite graph and the total number of vertices in the graph is
at least k+ 1.
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1. Introduction and preliminaries

In this paperwegive necessary and sufficient conditions for the existence of an edge-disjoint decomposition of a complete
equipartite graph, having four parts of equal even size, into cycles andpaths of length k. Beforeweventure further,we remind
the reader of some definitions. A complete equipartite graph Kn(m) has its nm vertices partitioned into n parts (often referred
to as partite sets), of size m, and there is an edge between any two vertices in different partite sets, but no edge between
any two vertices in the same partite set.
The lexicographic product G ∗ H of graphs G and H is the graph with vertex set V (G) × V (H), and with an edge joining

(g1, h1) to (g2, h2) if and only if: g1 is adjacent to g2 in G; or g1 = g2 and h1, h2 are adjacent in H . Here we shall be concerned
with graphs such as Kn∗Km, which is the same as the complete equipartite graph Kn(m) having n parts of sizem. (Here as usual
Km denotes the complement of Km.) We shall also use the notation K(a1, a2, . . . , an) for the complete multipartite graph
with n parts of sizes a1, a2, . . . , an. We point out that if G has an edge-disjoint decomposition into subgraphs G1,G2, . . . ,Gt ,
then G ∗ Km has an edge-disjoint decomposition into subgraphs G1 ∗ Km, G2 ∗ Km, . . . ,Gt ∗ Km.
The standard notation for a path on n vertices is Pn. In this paper, in the context of edge-disjoint decompositions, we are

more interested in a path’s length, so we let Lk denote a path of length k (on k+ 1 vertices), and Tk a trail of length k (which
may be on fewer than k+ 1 vertices).
The problem of determining necessary and sufficient conditions for the existence of an edge-disjoint decomposition of a

complete graph Kn (n odd) into k-cycleswas finally completed in [1,12]. This graph can be regarded as a complete equipartite
graph in which all the parts have size 1. The same cycle decomposition problem for the graph Kn − F where F is a 1-factor,
when n is even, was also solved in these papers. This latter graph can be regarded as a complete multipartite graph with n/2
parts of size 2.
For paths, Tarsi [15] gave necessary and sufficient conditions for an edge-disjoint decomposition of Kn into paths Lk.
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Some work has also been done on cycle decompositions of complete equipartite graphs with arbitrary part sizem, Kn(m)
or Kn ∗ Km, chiefly when the cycle length is small and specified (see [5] for small even length and arbitrary part sizes),
or else of prime length [10] or of length twice a prime [13]. Less work seems to have been done for paths in equipartite or
multipartite graphs, although for short paths on atmost five vertices the paper [3] dealswith arbitrary completemultipartite
graphs. Liu [8,9] deals with resolvable cycle decompositions of complete equipartite graphs with any number of parts; the
resolvability of course means a greater restriction on possible cycle lengths.
In this paper and its partner paper [2], instead of restricting the cycle (or path) length, or restricting the part sizes, we

restrict the total number of parts. The paper [4] dealt with cycles in tripartite graphs, and [2] deals with paths in tripartite
graphs, and both cycles and paths in equipartite graphs having 5 parts. When the number of parts is even, as in this
paper where we concentrate on four parts, unless the part size is also even, the graph has odd degree, rendering cycle
decompositions impossible and path decompositions more restricted. So here we deal with complete equipartite graphs
having four parts of even size, and give necessary and sufficient conditions for an edge-disjoint decomposition into cycles
and paths of length k.
In what follows we can assume that all paths have length at least 3. Of course any graph can be decomposed into paths

of length 1! Also it has long been known that any connected graph with an even number of edges has an edge-disjoint
decomposition into paths of length 2. The following is due to Hoffman [6], although it may first have been shown by Kotzig.
Let G be a connected graph with an even number of edges, and replace each (undirected) edge by a single directed edge,
randomly directed. If all the outdegrees of vertices are even, we stop; otherwise take two vertices with odd outdegree
(there must be an even number!), and find a path (not directed) between them. Reversing the orientations along this path
will ensure that the end vertices of this path now have even outdegree; the inner vertices on this path have their outdegrees
unchanged. Since G is finite, continue until all outdegrees are even. Now each path of length 2 can be taken as a pair of
directed edges in this graph, both directed away from the same vertex which is the centre vertex of the path.
Subsequently we denote a k-cycle on the vertex set {xi | 1 6 i 6 k}, with edges {x1, xk} and {xi, xi+1} for 1 6 i 6 k − 1,

by (x1, x2, . . . , xk) or (xk, xk−1, . . . , x2, x1) or by any cyclic shift of these. A path on the vertex set {xi | 1 6 i 6 k+ 1}, with
edges {xi, xi+1} for 1 6 i 6 k, will be denoted by [x1, x2, . . . , xk+1] or by [xk+1, xk, . . . , x2, x1].
The notation ` MOLS(n) will refer to a set of ` mutually orthogonal latin squares of order n. (Here, if ` = 1, we really

mean any one latin square of order n.)
In Section 2we state some ‘‘blowing up’’ type lemmaswhichwe use. Then Section 3 starts with cycles and paths of length

0 (mod 4), goes on to deal with cycles and paths of length 2 (mod 4), and concludes with odd length cycles and paths, first
those which have length a multiple of 3, and then those of length coprime to 3. Perhaps surprisingly, most of the methods
used are so similar for paths and cycles that we deal with them simultaneously in Section 3. Section 4 gives a concluding
theorem and includes some remarks on decomposition into paths when the four part sizes are odd.

2. Some useful lemmas

We need the following results which are proved in our partner paper [2] or in Cavenagh [4].

Theorem 2.1. If the complete multipartite graph K(a1, a2, . . . , an) has a decomposition into cycles of length k, then the graph
K(a1`, a2`, . . . , an`)
(i) has a decomposition into cycles of length k; and
(ii) has a decomposition into cycles of length k`.

There is a corresponding theorem for paths, which follows from Lemmas 2.1 and 2.2 in [2]:

Theorem 2.2. If the complete multipartite graph K(a1, a2, . . . , an) has a decomposition into paths of length k, then the graph
K(a1`, a2`, . . . , an`)
(i) has a decomposition into paths of length k; and
(ii) has a decomposition into paths of length k`.

Applying Theorem 2.5 and Corollary 2.6 from our paper [2], we have the following two results, which we use frequently
throughout this paper.

Theorem 2.3. If the complete multipartite graph K(a1, a2, . . . , an) has a decomposition into closed trails of length k, each having
maximum degree ∆(Tk) = ∆ and (vertex) chromatic number χ(Tk) = χ , then for all ` > ∆/2, provided there exist at least
χ − 2MOLS (`), the graph K(a1`, a2`, . . . , an`) has a decomposition into cycles of length k.

Corollary 2.4. Suppose the complete multipartite graph K(a1, a2, . . . , an) has a decomposition into closed trails of length k, each
having vertex chromatic number χ(Tk) = χ with maximum degree∆. Let ` > ∆/2 (if the minimum degree of Tk is strictly less
than∆) or ` > ∆/2 if Tk has regular degree∆. Then, provided there exist at least χ−2MOLS (`), the graph K(a1`, a2`, . . . , an`)
has a decomposition into paths of length k.

The following lemma will be used to deal with two special cases of Theorem 3.12 in Section 3. The graph λK denotes the
multigraph obtained from the graph K by replacing each of its edges with λ edges.
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Lemma 2.5. Let λ be an odd prime. Suppose that λKn(m) decomposes into cycles of length k. Suppose, in turn, that for each cycle
C1 = (v0, v1, . . . , vk−1) in the decomposition, there exists a cycle C2 = (v′0, v

′

1, v
′

2, . . . , v
′

k−1) in the decomposition which shares
at least two edges with C1 which have the same ‘‘direction’’ within the cycle (for some orientation of the cycle). That is, there exist
i, j, g, h such that i 6= j, g 6= h and vi = v′g , vi+1 = v

′

g+1, vj = v
′

h and vj+1 = v
′

h+1, where subscripts are calculated modulo k.
Then there exists a decomposition of Kn(mλ) into cycles of length kλ.

Proof. First, assign to each edge of λKn(m) an integer between 0 and λ − 1 (inclusive) in such a way that if two distinct
edges have the same end vertices, they are labelled differently. Label the partite sets of λKn(m) with A1, A2, . . . , An. Let
C = (v0, v1, . . . , vk−1) be a cycle in the decomposition. Suppose, for a particular i, that vi ∈ Aj and vi+1 ∈ Ak and that
edge e = {vi, vi+1} (in this cycle) has been assigned integer x. If j < k, we assign the edge e a weight x; otherwise j > k and
we assign this edge e weight −x. We then define the weight of the cycle C to be the sum of the weights of its edges. We say
that a cycle is good if its weight is not divisible by λ; otherwise it is bad.
Our aim is to, if necessary, swap labellings of the edges so that every cycle is good. If every cycle is already good we are

done. Otherwise assume C1 is some bad cycle and a ‘‘partner’’ cycle is C2. Let e1 = {vi, vi+1} and f1 = {vj, vj+1} be edges
in C1, and suppose (by the conditions of this lemma) that these pairs of vertices appear in the same order in C2, as edges e2
and f2. Suppose furthermore that the edges e1 and e2 are labelled with w and x, respectively. Then clearlyw 6= x. Similarly,
suppose that the edges f1 and f2 are labelled with y and z, respectively. Again, we have y 6= z.
If both C1 and C2 are bad, then swapping the labelsw and x between edges e1 and e2will make both of them good. Assume

then that C2 is good. If using label x on edge e2 with label y on edge f2 makes C2 good, then we swap y and z, making both
C1 and C2 good. Similarly, if using labelw on edge e2 with label z on edge f2 makes C2 good, then we swapw and x, making
both C1 and C2 good.
Otherwise, the pairs (w, z) and (x, y) both give a weight for C2 which is divisible by λ. Thus the total weight induced by

edges e2 and f2 must be the same for (w, z) and (x, y). Let vi ∈ Ap, vi+1 ∈ Aq, vj ∈ Ar and vj+1 ∈ As. If (p < q and r < s) or
(p > q and r > s), then, since λ is prime,

w + z ≡ x+ y (mod λ). (1)

Otherwise either (p < q and r > s) or (p > q and r < s) and

w − z ≡ x− y (mod λ). (2)

Now, if we swap both w with x and y with z, then C2 must be good. If such a swap also makes C1 good we are
done. Otherwise, the pairs (w, y) and (x, z) both give a weight for C1 which is divisible by λ. This implies that either
w + y ≡ x + z (mod λ) (if (p < q and r < s) or (p > q and r > s)) or w − y ≡ x − z (mod λ) (otherwise). In both
cases, using Eq. (1) or (2), we havew = x, a contradiction.
Repeating this process for each bad cycle, we have a labelling for which all cycles are good. Moreover, we still have the

property that each edge between the same pair of vertices uses a different label. Next, we replace each multi-edge of λKn(m)
with a copy of the complete bipartite graph K(λ, λ), to obtain the graph Kn(mλ). Specifically, we replace each vertex v with
v1, v2, . . . , vλ and we replace each edge {v,w} in λKn(m) with the edges of the form {vi, wj}, for all i, j, 1 ≤ i, j ≤ λ.
We associate an edge {v,w} in λKn(m) labelled with integer xwith the edges of difference x in the copy of K(λ, λ), where

if v ∈ Aq and w ∈ Ar , then we take edges of the form {vi, wi+x} or {vi, wi−x}, depending on whether q < r or q > r ,
respectively.
We then simply replace each cycle of length k in λKn(m) with the k sets of λ edges in Kn(mλ) that correspond to the edges

of the cycle. Since λ is prime, these edges either form k disjoint λ-cycles, or precisely one kλ-cycle. In fact, the condition that
each cycle is good guarantees the latter. �

3. The 4-partite case

As remarked in Section 1, we assume that our paths always have at least 3 edges.
We first list some known results that will be exploited. The following well-known theorem is an easy part of a more

general result due to Sotteau [14].

Theorem 3.1 ([14]). The complete bipartite graph K(2m, 2m) decomposes into 2k-cycles if and only if k divides 4m2 and k 6 2m.

A corresponding theorem for paths is due to Parker [11]; we give the equipartite case here, since that suffices for our
purposes.

Theorem 3.2 ([11]). The complete bipartite graph K(2m, 2m) decomposes into k-paths if and only if k divides 4m2 and k < 4m.
If m is odd, the complete bipartite graph K(m,m) decomposes into k-paths if and only if k is odd, k divides m2 and k 6 m.

The tripartite equipartite case has been solved for cycles [4].

Theorem 3.3. The complete tripartite graph K(m,m,m) decomposes into cycles of length k if and only if k ≤ 3m and k|3m2.

We need the following result, completed by Liu [8,9]. (Note that this result includes hamiltonian decompositions, when
k = mn.)
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Table 1
Possible values of k

Case Cycle/path length k

I 24s2t
II 12s2t with s2t odd
III 8s2t with s2t not divisible by 3
IV 4s2t with s2t odd and not divisible by 3

Theorem 3.4 ([8,9]).When k > 3 and n > 2, there is a resolvable k-cycle decomposition of Kn(m) (i.e., a Ck-factorization of Kn(m))
if and only if

k|mn, m(n− 1) is even, and k is even if n = 2,

except there is no resolvable 3-cycle decomposition of K(2, 2, 2), K(6, 6, 6) or K(2, 2, 2, 2, 2, 2), nor any resolvable 6-cycle
decomposition of K(6, 6).

The next theorem follows from a more general result in [5].

Theorem 3.5 ([5]). When k ∈ {4, 6, 8} and n > 2, there is a k-cycle decomposition of Kn(m) if and only if k divides mn and
m(n− 1) is even.

The following theorem, due to Leach and Rodger [7], will also be useful in constructing closed even trails from unions of
bipartite 2-factors.

Theorem 3.6 ([7]). Let U be any 2-factor of the complete bipartite graph K(2s, 2s). Let H be the graph formed by removing the
edges of U from K(2s, 2s). Then there exists a hamilton decomposition of H except when s = 2 and U consists of two 4-cycles.

We next give an outline of the approach taken in the following proofs. Our aim is to decompose K(2m, 2m, 2m, 2m) into
cycles or paths of length k = as2t , where a, s and t are positive integers such that a is the largest factor of k which divides
24, and t is square-free. Since k divides 24m2, it follows that we can write m = m′st , for some integer m′. The necessary
condition k 6 8m (or k < 8m for paths) is then equivalent to as 6 8m′ (respectively, as < 8m′). (In fact, when as = 8m′, we
can work with a hamiltonian decomposition into cycles, a case usually dealt with by Theorem 3.4. So we assume for now
that as < 8m′.)
For most cases, we first decompose K(2s, 2s, 2s, 2s) into (at worst) tripartite closed trails of length as2 (using all 8s

vertices) in such a way that the difference between minimum and maximum degree in each trail is at most 2. (Note that
closed trails are by definition connected graphs; care is taken in the following proofs to ensure this!)
Since all vertices in a closed trail have even degree, the maximum degree in each trail of length as2 in K(2s, 2s, 2s, 2s)

must be at most

2
⌊
as2

8s

⌋
+ 2 = 2

(⌊as
8

⌋
+ 1

)
< 2(m′ + 1),

and so 2(bas/8c + 1) 6 2m′. Thus either Theorem 2.3 (for cycles) or Corollary 2.4 (for paths) may be applied to obtain
a decomposition of K(2sm′, 2sm′, 2sm′, 2sm′) into cycles or paths of length as2. Finally, we apply Theorem 2.1 (for cycles)
or Theorem 2.2 (for paths) to obtain a decomposition of K(2sm′t, 2sm′t, 2sm′t, 2sm′t) (which is K(2m, 2m, 2m, 2m)) into
cycles or paths of length as2t = k. There are some exceptions and variations to the above strategy, particularly for small
values of s and t , which will be dealt with as they arise.
In the following two theorems we deal with cycles and paths of even length. Since both of these are bipartite graphs,

these cases are easier to deal with.

Theorem 3.7. Let k be a positive integer divisible by 4. Then the graph K(2m, 2m, 2m, 2m) has an edge-disjoint decomposition
into cycles (paths) of length k if and only if k|24m2 and k 6 8m (k < 8m).

Proof. The necessity of the conditions is clear. Table 1 is a summary of the division of cases.
Henceforth the partite sets of K(2s, 2s, 2s, 2s) are labelled A1, A2, A3 and A4.

Case I: Suppose first that 24 divides k. Let k = 24s2t , where s and t are positive integers and t is square-free. Then since
k|24m2, we have st|m, so let m = stm′ for some positive integer m′. Moreover, k 6 8m means that 3s 6 m′, with strict
inequality for paths.
Case Ia: We deal with the case m′ = 6 separately since there do not exist two MOLS of order 6. So (since 3s 6 m′ for
cycles and 3s < m′ for paths) we need only consider s = 1 or 2 (for cycles) and s = 1 (for paths). If s = 1, we first
take a hamilton decomposition of K(6, 6, 6, 6) into 24-cycles, which exists by Theorem 3.4. From Theorem 2.1(i), there
is thus a decomposition of K(12, 12, 12, 12) into 24-cycles. Moreover, since 24-cycles are bipartite closed trails, we can
apply Corollary 2.4 to obtain a decomposition of K(12, 12, 12, 12) into paths of length 24. We then apply Theorems 2.1(ii)
and 2.2(ii) to obtain decompositions of K(12t, 12t, 12t, 12t) into cycles (respectively, paths) of length 24t . If s = 2, then
2m = 24t and 2k = 96t , so the required decomposition is a hamilton decomposition into cycles, which exists from
Theorem 3.4.
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Table 2
Possible values of k

Case Cycle/path length k

I 6s2t with s2t odd
II 2s2t with s2t odd and not divisible by 3

Case Ib: Now assume that m′ 6= 6. Since 3s 6 m′ and s > 1, we have m′ > 2, so there exists a pair of MOLS of order m′. We
beginwith the graph K(2s, 2s, 2s, 2s)whichmay be thought of as a closed trail of length 24s2 with vertex chromatic number
4 and maximum degree 6s. Thus we may apply Theorem 2.3 or Corollary 2.4 (since m′ > 3s) to obtain a decomposition of
K(2sm′, 2sm′, 2sm′, 2sm′) into cycles or paths of length 24s2m′, respectively. Finally we apply Theorems 2.1(ii) or 2.2(ii) to
obtain the required decomposition.
Case II: Here k/12 is an odd integer. We have k = 12s2t , where s and t are positive integers and t is square-free. Then since
k|24m2, it follows that st|m, and so let m = stm′ for some positive integer m′. Moreover, k 6 8m implies that 3s 6 2m′. In
fact, since s is odd, we have 3s < 2m′.
Our aim is to decompose K(2s, 2s, 2s, 2s) into two closed trails, each of which has length 12s2, is bipartite and has

maximum degree 3s + 1. The result will then follow from either Theorems 2.1 and 2.3, or Theorem 2.2 and Corollary 2.4.
From Theorem 3.1, the edges between the partite sets A1 and A2 may be decomposed into cycles of length 4s. Similarly the
edges between A3 and A4 may be decomposed into cycles of length 4s. We construct one closed trail of length 12s2 by taking
all the 4s2 edges between A1 and A3, all the 4s2 edges between A2 and A4, (s+ 1)/2 of the 4s-cycles between A1 and A2 and
(s−1)/2 of the 4s-cycles between A3 and A4. Note that this subgraph is connected even when s = 1. The unused edges from
K(2s, 2s, 2s, 2s) form the second, isomorphic closed trail of length 12s2.
Case III: Here k is divisible by 8 but not divisible by 3. Let k = 8s2t , where s and t are positive integers and t is square-free.
Then since k|24m2, we havem = stm′ for some positive integerm′. Moreover, s 6 m′, with strict inequality for paths.
Case IIIa: We deal with the case s = 1 separately. A decomposition of both K(2, 2, 2, 2) and K(2m′, 2m′, 2m′, 2m′) into
8-cycles exists by Theorem 3.5. For paths, since m′ > 1 and 8-cycles are bipartite, we can apply Corollary 2.4 to obtain a
decomposition of K(2m′, 2m′, 2m′, 2m′) into paths of length 8. The result then follows as in previous cases.
Case IIIb: Now suppose s > 1. Our aim is to decompose K(2s, 2s, 2s, 2s) into three closed trails, each of which has length
8s2, is bipartite and has maximum degree 2s. The result will then follow, using results in Section 2, as described in Case II.
From Theorem 3.1, the edges between each pair of partite sets may be decomposed into cycles of length 4s. The first

closed trail of length 8s2 is constructed from (s − 1)/2 of the 4s-cycles between partite sets A1 and A2, (s + 1)/2 of the
4s-cycles between partite sets A2 and A3, (s − 1)/2 of the 4s-cycles between partite sets A3 and A4 and (s + 1)/2 of the
4s-cycles between partite sets A4 and A1. The second closed trail of length 8s2 is constructed from (s+ 1)/2 of the 4s-cycles
between partite sets A1 and A2, (s− 1)/2 of the 4s-cycles between partite sets A2 and A4, (s+ 1)/2 of the 4s-cycles between
partite sets A4 and A3 and (s− 1)/2 of the 4s-cycles between partite sets A3 and A1. The third closed trail is made up of the
remaining edges.
Case IV: Finally k/4 is odd and not divisible by 3. Let k = 4s2t , where s and t are positive integers and t is square-free. It
follows thatm = stm′ for some positive integerm′. Moreover, s 6 2m′. In fact since s is odd we must have s < 2m′.
Our aim is to decompose K(2s, 2s, 2s, 2s) into six closed trails, each of which has length 4s2, is bipartite and near-

regular (specifically, the difference between maximum and minimum degree must be 2). The result will then follow as
in previous cases.
We first decompose the edges between each pair of partite sets into 4s-cycles. Next, take a decomposition of 3K4 into six

paths of length 3, such that the middle edges of each path form a copy of K4. (Such a decomposition is straightforward to
verify). We label the vertices of K4 with 1, 2, 3 and 4. Then for each path [i, j, k, l] in the decomposition of 3K4, we construct
a closed trail of length 4s2 from (s− 1)/2 4s-cycles between partite sets Ai and Aj, one 4s-cycle between partite sets Aj and
Ak and (s− 1)/2 4s-cycles between partite sets Ak and Al. �

When the cycle or path length is congruent to 2 (mod 4) we must construct our closed trails using some cycles of length
2s.

Theorem 3.8. Let k be a positive even integer such that k ≡ 2 (mod 4). Then the graph K(2m, 2m, 2m, 2m) has an edge-disjoint
decomposition into cycles (paths) of length k if and only if k|24m2 and k 6 8m (k < 8m).

Proof. The necessity of the conditions is clear. Table 2 is a summary of the division of cases. Henceforth the partite sets of
K(2s, 2s, 2s, 2s) are labelled A1, A2, A3 and A4.
Case I: Here k is divisible by 6 and k/6 is odd. Let k = 6s2t , where s and t are odd positive integers and t is square-free.
Then since k|24m2, we havem = stm′ for some positive integerm′. Moreover, 3s 6 4m′. In fact since s is odd we must have
3s < 4m′.
Our aim is to decompose K(2s, 2s, 2s, 2s) into four closed trails, each of which has length 6s2, is bipartite and has

maximum degree 2d3s/4e 6 2m′. The result will then follow as in previous cases (in the theorem above).
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Table 3
The numbers of 4s-cycles between partite sets, 3s ≡ 1 (mod 4)

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

T1 (s− 1)/2 (s− 1)/2 0 0 (s+ 1)/4 (s+ 1)/4
T2 (s− 1)/2 (s− 1)/2 (s+ 1)/4 (s+ 1)/4 0 0
T3 0 0 (3s− 1)/4 (3s− 1)/4 0 0
T4 0 0 0 0 (3s− 1)/4 (3s−1)/4

Table 4
The numbers of 4s-cycles between partite sets, 3s ≡ 3 (mod 4)

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

T1 (s− 3)/2 (s− 3)/2 0 0 (s+ 3)/4 (s+ 3)/4
T2 (s− 3)/2 (s− 3)/2 (s+ 3)/4 (s+ 3)/4 0 0
T3 0 0 (3s− 3)/4 (3s− 3)/4 0 0
T4 0 0 0 0 (3s− 3)/4 (3s− 3)/4

From Theorem 3.6, the edges between partite sets A1 and A2 can be decomposed into one 2-factor (made up of two 2s-
cycles) and s − 1 4s-cycles. We perform a similar decomposition of the edges between A3 and A4. The edges between all
other pairs of partite sets are decomposed into 4s-cycles.
Case Ia: Suppose firstly that 3s ≡ 1 (mod 4). Then 6s2 = ((3s− 1)/4)× 8s+ 2s.
We first construct four disjoint bipartite (3s − 1)/2-regular spanning subgraphs (T1, T2, T3 and T4) of K(2s, 2s, 2s, 2s),

omitting the four 2s-cycleswhich are a 2-factor ofK(2s, 2s, 2s, 2s). The required decompositionwill then followby attaching
the four 2s-cycles to these subgraphs in any order to form bipartite, connected graphs.
Table 3 shows the number of 4s-cycles used between each pair of partite set by each Ti, 1 6 i 6 4.

Case Ib: Suppose next that 3s ≡ 3 (mod 4). We first deal with the case s = 1. Then K(2, 2, 2, 2) decomposes into 6-cycles by
Theorem 3.5. A decomposition of K(2, 2, 2, 2) into paths of length 6 is also easily obtained: take a decomposition of K4 into
two paths of length 3, and then blow up points two-fold, increasing the path length by 2 at the same time; see Theorem 2.2.
Otherwise s > 1. Then we write 6s2 = ((3s − 3)/4) × 8s + 6s. We first construct four disjoint bipartite (3s − 3)/2-

regular spanning subgraphs (T1, T2, T3 and T4) of K(2s, 2s, 2s, 2s), omitting a set of four 2s-cycles which are a 2-factor of
K(2s, 2s, 2s, 2s) and also four 4s-cycles. Each of these omitted cycles occurs either between A1 and A2 or between A3 and A4.
We match these 2s-cycles and 4s-cycles in one-to-one correspondence to form four graphs, each on 6s edges with degree at
most 2. The required decomposition will then follow by attaching these subgraphs in one-to-one correspondence with the
(3s− 3)/2-regular graphs to form bipartite, connected graphs.
Table 4 shows the number of 4s-cycles used between each pair of partite set by each Ti, 1 6 i 6 4.

Case II: Finally, we consider when k/2 is odd and not divisible by 3. Let k = 2s2t , where s and t are odd positive integers and
t is square-free. Then since k|24m2, we let m = stm′ for some positive integer m′. Moreover, s 6 4m′. In fact since s is odd
we must have s < 4m′.
If s = 1, then k > 2 implies that t > 1. By Theorems 3.1 and 3.2, there exists a decomposition of K(2m′t, 2m′t) into

2t-cycles or 2t-paths. Thus there exists a decomposition of K(2m′t, 2m′t, 2m′t, 2m′t) into 2t-cycles or 2t-paths.
Otherwise s > 5. Our aim is to decompose K(2s, 2s, 2s, 2s) into twelve closed trails, each of which has length 2s2, is

bipartite and near-regular of maximum degree (s + 1)/2 (specifically, the difference between maximum and minimum
degree must be 2). The result will then follow as in previous cases. From Theorem 3.6, the edges between every pair of
partite sets can be decomposed into one 2-factor (made up of two 2s-cycles) and s− 1 4s-cycles. Consider a decomposition
of 6K4 into twelve paths of length 3, such that the middle edges of each path form the graph 2K4. (Such a decomposition
exists by taking every possible 3-path within K4.)
Case IIa: Suppose firstly that s ≡ 1 (mod 4). Then we write 2s2 = ((s− 1)/4)× 8s+ 2s.
Then for each path [i, j, k, l] in the decomposition of 6K4, we construct a bipartite closed trail of length 2s2 from (s−1)/4

of the 4s-cycles between partite sets Ai and Aj, one 2s-cycle between partite sets Aj and Ak and (s − 1)/4 of the 4s-cycles
between partite sets Ak and Al.
Case IIb: Otherwise s ≡ 3 (mod 4). We write 2s2 = ((s− 3)/4)× 8s+ 6s.
Then for each path [i, j, k, l] in 6K4, we construct a bipartite closed trail of length 2s2 from (s − 3)/4 of the 4s-cycles

between partite sets Ai and Aj, one 2s-cycle between partite sets Aj and Ak, (s − 3)/4 of the 4s-cycles between partite sets
Ak and Al and finally one 4s-cycle between partite sets Al and Ai. �

Theorem 3.9. Let k be an odd integer divisible by 3. Let s and t be positive integers such that k = 3s2t, where t is square-free.
Then the graph K(2m, 2m, 2m, 2m) has an edge-disjoint decomposition into cycles or paths of length k if and only if st|m and
k 6 8m (with strict inequality for paths).

Proof. Let m = m′st , for some positive integer m′. Then 3s ≤ 8m′, with strict inequality for paths. We split our proof into
four cases, depending on the congruency of s. In each of the following cases, the partite sets of K(2s, 2s, 2s, 2s) are labelled
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Table 5
The differences used, between even/odd vertices

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

H1 0, (e, e) 1, (e, o) 1, (e, o)

H2 0, (o, o) 1, (o, e) 1, (o, e)

H3 1, (e, o) 1, (e, o) 0, (e, e)

H4 1, (o, e) 1, (o, e) 0, (o, o)

H5 0, (e, e) 0, (e, e) 0, (e, e)

H6 0, (o, o) 0, (o, o) 0, (o, o)

H7 1, (o, e) 0, (e, e) 1, (o, e)

H8 1, (e, o) 0, (o, o) 1, (e, o)

Fig. 1.

A1, A2, A3 and A4. We also label the vertices of K(2s, 2s, 2s, 2s)with {1i, 2i, . . . , (2s)i | 1 ≤ i ≤ 4}, where subscript i denotes
a vertex belonging to Ai. We then define the difference of an edge {xi, yj} to be x− y (mod 2s), where i < j (that is,

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}).

Observe that each difference between a pair of partite sets corresponds to a matching between those partite sets.
Our aim is always to decompose K(2s, 2s, 2s, 2s) into eight bipartite or tripartite closed trails of length 3s2with as regular

degree as possible. Each trail of length 3s2 is essentially made up unions of matchings (or 1-factors) between pairs of partite
sets. The result then follows as in previous theorems.
Case 1: s ≡ 1 (mod 8). Let s = 8s′ + 1. Then s′ ≥ 0. We write 3s2 = 3s′ × 8s+ 3s. If s = 1, we can decompose K(2, 2, 2, 2)
into cycles of length 6 by Theorem 3.5. We then split each 6-cycle into two 3-paths. It is also easy to obtain a decomposition
of K(2, 2, 2, 2) into 3-cycles. Otherwise s > 9.
We first use all the edges of difference 0 and 1 between pairs of partite sets of K(2s, 2s, 2s, 2s) to construct 8s triangles.

These triangles, in turn, partition into eight sets of s pairwise disjoint triangles: H1,H2, . . .H8. Table 5 shows which
differences are used for each Hi, 1 ≤ i ≤ 8. The brackets indicate whether odd or even vertices are used in each partite
set. For example, 1, (o, e) in column Ai, Aj indicates that difference 1 is used between the odd vertices of Ai and the even
vertices of Aj. This is also illustrated in Fig. 1, where even vertices are coloured black and odd vertices are coloured white.
Note that twomatchings corresponding to consecutive differences between partite sets give a cycle of length 4s. In such a

fashion we can decompose the remaining edges between each pair of partite sets into cycles of length 4s. We now construct
eight regular, bipartite spanning subgraphs: T1, T2, . . . , T8, each of length 3s2 − 3s. Table 6 shows the number of 4s-cycles
used between each pair of partite sets for each Ti, 1 6 i 6 8. Observe that the graphs Ti∪Hi are each connected and tripartite
for s′ ≥ 1. Thus Ti ∪ Hi, 1 ≤ i ≤ 8, are the required closed trails of length 3s2.
Case 2: s ≡ 3 (mod 8). Let s = 8s′ + 3. Then s′ ≥ 0. We write 3s2 = 3s′ × 8s + 9s. We use the edges of difference 0 and 1
as in Case 1. Next, we use all the edges of differences 2, 3, 4 and 5 to obtain eight graphs, J1, J2, . . . , J8, each 2-regular on 6s
vertices. The differences each Ji uses are shown in Table 7. This is also illustrated in Fig. 2.
In the case s = 3 each Ji is in fact a 6s-cycle.
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Table 6
The numbers of 4s-cycles used

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

T1, T2 2s′ 2s′ 0 0 s′ s′
T3, T4 2s′ 2s′ s′ s′ 0 0
T5, T6 0 0 3s′ 3s′ 0 0
T7, T8 0 0 0 0 3s′ 3s′

Table 7
The differences used

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

J1 4 5 2
J2 5 2 4
J3 3 5 3
J4 4 4 5
J5 2 3 4
J6 5 4 2
J7 2 2 3
J8 3 3 5

Fig. 2.

Table 8
The differences used

A1, A2 A3, A4

J1 2, 4, (o, o)
J2 2, 4, (e, e)
J3 3, 5, (e, o)
J4 3, 5, (o, e)
J5 2, 4, (o, o)
J6 2, 4, (e, e)
J7 3, 5, (e, o)
J8 3, 5, (o, e)

Next, use any remaining differences to construct 4s-cycles between pairs of partite sets, as in Case 1. We also construct
eight regular, bipartite spanning subgraphs: T1, T2, . . . , T8, each of length 3s2 − 9s. This is done also as in Case 1 (using
s′ = (s− 3)/8 rather than s′ = (s− 1)/8). Finally, Ti ∪ Hi ∪ Ji for each i, 1 ≤ i ≤ 8 gives the required tripartite closed trails
of length 3s2. (Note that in the case s′ = 0, Ti and Hi are empty, but Ji is still connected, for each i.)
Case 3: s ≡ 7 (mod 8). Let s = 8s′ + 7. Then s′ ≥ 0. We write 3s2 = (3s′ + 2) × 8s + 5s. We use the edges of difference 0
and 1 as in Case 1. Next, we use all the edges of differences 2, 3, 4 and 5 between partite sets A1 and A2 and also between
partite sets A3 and A4, to obtain eight 2s-cycles: J1, J2, . . . , J8, as follows. Table 8 shows which differences are used in each
case. Brackets indicate whether odd or even vertices are used in each partite set. For example, 3, 5, (0, e) in column Ai, Aj
indicates that the differences 3 and 5 are used between the odd vertices of Ai and the even vertices of Aj.
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Table 9
The numbers of 4s-cycles used

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

T1, T2 2s′ + 1 2s′ + 1 0 0 s′ + 1 s′ + 1
T3, T4 2s′ + 1 2s′ + 1 s′ + 1 s′ + 1 0 0
T5, T6 0 0 3s′ + 2 3s′ + 2 0 0
T7, T8 0 0 0 0 3s′ + 2 3s′ + 2

Table 10
The differences used

A1, A2 A3, A4 A1, A4 A2, A3

J1 2, 4, (o, o) 3, 5, (e, o)

J2 2, 4, (e, e) 3, 5, (o, e)

J3 3, 5, (o, e) 2, 4, (o, o)

J4 3, 5, (e, o) 2, 4, (e, e)

J5 2, 4, (o, o) 3, 5, (e, o)

J6 2, 4, (e, e) 3, 5, (o, e)

J7 3, 5, (e, o) 2, 4, (o, o)

J8 3, 5, (o, e) 2, 4, (e, e)

Fig. 3.

Next, use any remaining differences to construct 4s-cycles between pairs of partite sets, as in Case 1. We then construct
eight regular, bipartite spanning subgraphs: T1, T2, . . . , T8, each of length 3s2 − 5s. Table 9 shows the number of 4s-cycles
used between each pair of partite sets for each Ti, 1 6 i 6 8. Finally, Ti ∪ Hi ∪ Ji for each i, 1 ≤ i ≤ 8 gives the required
tripartite closed trails of length 3s2.

Case 4: s ≡ 5 (mod 8). Let s = 8s′ + 5. Then s′ ≥ 0. Also 3s2 = (3s′ + 1)× 8s+ 7s. We use the edges of difference 0 and 1
as in Case 1. Next, we use all the edges of differences 2, 3, 4 and 5 between remaining pairs of partite sets (except between
partite sets A1 and A4 and between partite sets A2 and A3) to obtain eight pairs of 2s-cycles: J1, J2, . . . , J8, as follows. Table 10
showswhich differences are used in each case. The bracket notation is as in previous cases. Fig. 3 illustrates this, where even
vertices are black and odd ones are white.
In the case s = 3 each Ji is in fact a 6s-cycle.
Next, use any remaining differences to construct 4s-cycles between pairs of partite sets, as in Case 1. We then construct

eight regular, bipartite spanning subgraphs: T1, T2, . . . , T8, each of length 3s2 − 7s. Table 11 shows the number of 4s-cycles
used between each pair of partite sets for each Ti, 1 6 i 6 8. Finally, Ti ∪ Hi ∪ Ji for each i, 1 ≤ i ≤ 8 gives the required
tripartite closed trails of length 3s2. �

The final theorem in this paper requires four special cases, which are dealt with in the following two lemmas.
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Table 11
The numbers of 4s-cycles used

A1, A2 A3, A4 A1, A3 A2, A4 A1, A4 A2, A3

T1, T2 2s′ 2s′ 0 0 s′ + 1 s′ + 1
T3, T4 2s′ + 1 2s′ + 1 s′ s′ 0 0
T5, T6 0 0 3s′ + 1 3s′ + 1 0 0
T7, T8 0 0 0 0 3s′ + 1 3s′+ 1

Fig. 4. A ‘‘starter’’ path of length 25 in C8 ∗ K 5 .

Fig. 5. A ‘‘starter’’ path of length 49 in C8 ∗ K 7 .

Lemma 3.10. The graph K(10, 10, 10, 10) decomposes into twenty-four paths, each of length 25. The graph K(14, 14, 14, 14)
decomposes into twenty-four paths, each of length 49.

Proof. A careful examination of the path in Fig. 4 shows that for each j, k with 1 6 j, k 6 5, there exists i with 1 6 i 6 8
such that there is an edge joining ij to (i + 1)k. Thus if we take 8 copies of this path by incrementing the partite set labels
modulo 8 (using residues 1, 2, . . . , 8), every edge between adjacent partite sets is covered, and we obtain a decomposition
of C8 ∗ K 5 into eight paths of length 25.
Similarly, Fig. 5 illustrates the starter path for a cyclic decomposition of C8 ∗K 7 into paths of length 49. Then, noting that

K(2, 2, 2, 2) decomposes into three 8-cycles (see Theorem 3.5), the results follow. �

Lemma 3.11. The graph K(10, 10, 10, 10) decomposes into twenty-four cycles, each of length 25. The graph K(14, 14, 14, 14)
decomposes into twenty-four cycles, each of length 49.

Proof. For the first part, it suffices to give a decomposition of 5K(2, 2, 2, 2) into 5-cycles which satisfies the conditions of
Lemma 2.5. We label the vertices of 5K(2, 2, 2, 2) with∞1,∞2, 11, 12, 21, 22, 31 and 32. Below are eight 5-cycles, listed in
rows so that the cycles in the same row share two consecutive edges.

(11, 21, 12,∞1, 22) (11, 21, 12, 22,∞2)
(∞1, 21,∞2, 22, 11) (∞1, 21,∞2, 12, 22)
(22, 32, 21, 12,∞2) (22, 32, 21, 11,∞1)
(22, 31, 21,∞1, 12) (22, 31, 21,∞2, 11).

The required twenty-four 5-cycles are formed by replacing each vertex ij with vertex (i + 1)j, where i + 1 is calculated
modulo 3 (using residues 1, 2 and 3) with∞ fixed.
For the second part, it suffices to give a decomposition of 7K(2, 2, 2, 2) into 7-cycles which satisfies the conditions of

Lemma 2.5. Using the same vertex-labelling as above, we list eight 7-cycles below, listed in rows so that the cycles in the



Elizabeth J. Billington et al. / Discrete Mathematics 309 (2009) 3061–3073 3071

Table 12
The differences used

A2, A3 A1, A4 A1, A2 A3, A4 A2, A4 A1, A3

H1 0, (e, e) −3, (e, o) −3, (e, o)
H2 −2, (e, e) +1, (e, o) −1, (e, o)
H3 +2, (e, e) −1, (e, o) +1, (e, o)
H4 −3, (e, o) −3, (e, o) 0, (e, e)
H5 −1, (e, o) +1, (e, o) −2, (e, e)
H6 +1, (e, o) −1, (e, o) +2, (e, e)
H7 0, (e, e) −2, (e, e) +2, (e, e)
H8 −2, (e, e) 0, (e, e) −2, (e, e)
H9 +2, (e, e) +2, (e, e) 0, (e, e)
H10 +1, (e, o) 0, (o, o) +1, (e, o)
H11 −1, (e, o) −2, (o, o) −3, (e, o)
H12 −3, (e, o) +2, (o, o) −1, (e, o)

Table 13
The numbers of 4s-cycles used

A2, A3 A1, A4 A1, A2 A3, A4 A2, A4 A1, A3

T1, T2, . . . , T8 s′ s′ 0 0 0 0
T9, T10, . . . , T16 0 0 s′ s′ 0 0
T17, T18, . . . , T24 0 0 0 0 s′ s′

same row share two common edges (shown as underlined pairs of vertices).

(21, 12, 32, 11, 22,∞2, 31) (21, 12,∞2, 11, 22, 31,∞1)
(21, 11,∞1, 12, 22, 32,∞2) (21, 11, 31, 12, 22,∞1, 32)
(∞1, 12, 32, 11,∞2, 22, 31) (∞1, 12, 22, 11,∞2, 31, 21)
(∞1, 11, 21, 12,∞2, 32, 22) (∞1, 11, 31, 12,∞2, 21, 32).

The required twenty-four 7-cycles are formed by replacing each vertex ij with vertex (i + 1)j, where i + 1 is calculated
modulo 3 (using residues 1, 2 and 3) with∞ fixed. �

Theorem 3.12. Let k be an odd integer not divisible by 3. Let s and t be positive integers such that k = s2t, where t is square-
free. Then the graph K(2m, 2m, 2m, 2m) has an edge-disjoint decomposition into cycles (paths) of length k if and only if st|m
and k ≤ 8m (with strict inequality for paths).

Proof. We first deal with the case s = 1. Then t ≥ 3. In fact, since k is not divisible by 3, t ≥ 5. Since t divides
m, we can decompose the complete bipartite graph K(2m, 2m) (and thus K(2m, 2m, 2m, 2m)) into paths of length t by
Theorem 3.2. For cycles, we begin with a decomposition of K(2, 2, 2, 2) into triangles. We replace each triangle with the
complete tripartite graph K(t, t, t) to obtain the graph K(2t, 2t, 2t, 2t). However, each copy of K(t, t, t) decomposes into
t-cycles by Theorem 3.3. Finally we can decompose K(2m, 2m, 2m, 2m) into t-cycles by Theorem 2.1(i).
The cases s = 3 and s = 9 do not arise because k is not divisible by 3. The cases s = 5 and s = 7 are done in Lemmas 3.10

and 3.11. Thus we henceforth assume that s ≥ 11.
Let m = m′st , for some positive integer m′. Then s ≤ 8m′, with strict inequality for paths. We split our proof into four

cases, depending on the congruency of s modulo 8. In each of the following cases, the partite sets of K(2s, 2s, 2s, 2s) are
labelled A1, A2, A3 and A4. We also label the vertices of K(2s, 2s, 2s, 2s)with {1i, 2i, . . . , (2s)i | 1 ≤ i ≤ 4}, where subscript i
denotes a vertex belonging to Ai. We then define the difference of an edge {xi, yj} to be x− y (mod 2s), where i < j. Observe
that each difference between a pair of partite sets corresponds to a matching between those partite sets.
Our aim is always to decompose K(2s, 2s, 2s, 2s) into twenty-four bipartite or tripartite closed trails of length s2 with as

regular degree as possible. Each trail of length s2 is essentially made up unions of matchings (or 1-factors) between pairs of
partite sets. The result then follows as in previous lemmas.
Case 1: s ≡ 3 (mod 8). Let s = 8s′ + 3. Then s′ ≥ 1. We write s2 = s′ × 8s+ 3s.
We first use all the edges of differences −3,−2,−1, 0, 1 and 2 between pairs of partite sets of K(2s, 2s, 2s, 2s) to

construct 24s triangles. These triangles, in turn, partition into twenty-four sets of spairwise disjoint triangles:H1,H2, . . .H24.
Table 12 shows which differences are used for each Hi, 1 ≤ i ≤ 12. The brackets indicate whether odd or even vertices are
used in each partite set. For example, 1, (o, e) in column Ai, Aj indicates that difference 1 is used between the odd vertices
of Ai and the even vertices of Aj. For each i, 1 ≤ i ≤ 12, H12+i is obtained from Hi by switching the parities of all vertices.
Note that twomatchings corresponding to consecutive differences between partite sets give a cycle of length 4s. In such a

fashion we can decompose the remaining edges between each pair of partite sets into cycles of length 4s. We now construct
twenty-four regular, bipartite spanning subgraphs: T1, T2, . . . , T24, each of length s2 − 3s. Table 13 shows the number of
4s-cycles used between each pair of partite sets for each Ti, 1 6 i 6 8. Finally, combining Ti with Hi for each i, 1 ≤ i ≤ 8,
gives the required tripartite closed trails of length s2.
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Table 14
The differences used

A2, A3 A1, A4 A1, A2 A3, A4 A2, A4 A1, A3

J1 4, 6, (o, o)

J2 4, 6, (o, o)

J3 4, 6, (o, o)

J4 4, 6, (o, o)

J5 4, 6, (o, o)

J6 4, 6, (e, e)

J7 3, 5, (o, e)

J8 3, 5, (o, e)

J9 3, 5, (o, e)

J10 3, 5, (o, e)

J11 3, 5, (o, e)

J12 3, 5, (o, e)

Table 15
The differences used

A2, A3 A1, A4 A1, A2 A3, A4 A2, A4 A1, A3

J1 4, 6, (o, o) 7, 9, (e, o)

J2 7, 9, (o, e) 4, 6, (o, o)

J3 8, 10, (o, o) 4, 6, (o, o)

J4 7, 9, (o, e) 4, 6, (o, o)

J5 4, 6, (o, o) 7, 9, (o, e)

J6 4, 6, (e, e) 8, 10, (o, o)

J7 3, 5, (o, e) 8, 10, (o, o)

J8 8, 10, (o, o) 3, 5, (o, e)

J9 8, 10, (o, o) 3, 5, (o, e)

J10 7, 9, (o, e) 3, 5, (o, e)

J11 3, 5, (o, e) 7, 9, (e, o)

J12 3, 5, (o, e) 8, 10, (e, e)

Case 2: s ≡ 1 (mod 8). Let s = 8s′+1. Then s′ ≥ 2. Wewrite s2 = (s′−1)×8s+9s. We first use all the edges of differences
−3,−2,−1, 0, 1 and 2 between pairs of partite sets as in Case 1. Next, we use all the edges of differences 3, 4, 5, 6, 7 and 8
as follows. We construct twenty-four graphs, Ji (1 ≤ i ≤ 24), each on 6s edges and 2-regular. We do this in such a way that
each Ji uses three pairs of partite sets, and between each pair of partite sets the edges correspond to precisely one difference.
Moreover, we ensure that each Ji uses the same three partite sets as the corresponding graph Hi.
We next construct twenty-four regular, bipartite spanning subgraphs: T1, T2, . . . , T24, each of length s2− 9s, in the same

manner as in the previous case. The required tripartite closed trails are then precisely Ti ∪ Hi ∪ Ji, 1 ≤ i ≤ 24.

Case 3: s ≡ 5 (mod 8). Let s = 8s′ + 5. Then s′ ≥ 1. We write s2 = s′ × 8s + 5s. We first use all the edges of differences
−3,−2,−1, 0, 1 and 2 between pairs of partite sets of K(2s, 2s, 2s, 2s), as in Case 1. Next, we use all the edges of differences
3, 4, 5 and 6 as follows. We construct twenty-four 2s-cycles: Ji, 1 ≤ i ≤ 24. Table 14 shows which differences are used for
each 2s-cycle, and also the parity of vertices used. (The bracket notation is defined in Case 1). For each i, 1 ≤ i ≤ 24, J12+i is
obtained from Ji by changing the parities of vertices. We next construct twenty-four regular, bipartite spanning subgraphs:
T1, T2, . . . , T24, each of length s2− 5s, in the same manner as in previous cases. The required tripartite closed trails are then
precisely Ti ∪ Hi ∪ Ji, 1 ≤ i ≤ 24.

Case 4: s ≡ 7 (mod 8). Let s = 8s′ + 7. Then s′ ≥ 2. We write s2 = s′ × 8s + 7s. We first use all the edges of differences
−3,−2,−1, 0, 1 and 2 between pairs of partite sets of K(2s, 2s, 2s, 2s), as in Case 1. Next, we use all the edges of differences
3, 4, 5, 6, 7, 8, 9 and 10 as follows. We construct twenty-four pairs of 2s-cycles: Ji, 1 ≤ i ≤ 24. (The 2s-cycles in each pair
will be vertex-disjoint.) Table 15 shows which differences are used for each Ji, and also the parity of vertices used. For each
i, 1 ≤ i ≤ 24, J12+i is obtained from Ji by changing the parities of vertices. We next construct twenty-four regular, bipartite
spanning subgraphs: T1, T2, . . . , T24, each of length s2− 7s, in the same manner as in previous cases. The required tripartite
closed trails are then precisely Ti ∪ Hi ∪ Ji, 1 ≤ i ≤ 24. �



Elizabeth J. Billington et al. / Discrete Mathematics 309 (2009) 3061–3073 3073

4. Concluding comments

Combining the results in the previous section, we have shown the following.

Theorem 4.1. The complete equipartite graph K(m,m,m,m) has an edge-disjoint decomposition into cycles of length k if and
only if m is even, the number of edges in the graph, 6m2, is divisible by k, and k 6 4m.
The complete equipartite graph K(2m, 2m, 2m, 2m) having four even sized parts has an edge-disjoint decomposition into

paths of even length k if and only if the number of edges in the graph, 6m2, is divisible by k, and k < 8m.

If we turn our attention to the four-partite case where the part size, say m, is odd, a necessary condition for an edge-
disjoint decomposition into paths of length k is that twice the number of paths must be at least as large as the number of
vertices (since every vertex must be the end of an odd number of paths, and each path has two ends!). So for the graph
K(m,m,m,m)whenm is odd, besides k|6m2, a further necessary condition is that k 6 3m. (There are 6m2/k paths, and 4m
vertices, so there are 12m2/k path ends, and this must be at least 4m.)
We conjecture that these necessary conditions are sufficient in this case with four odd partite sets, and have some results

to support this. However, the techniques in this paper and its partner paper [2], if applied to a larger number of parts, lead
to an unmanageable number of cases; more general techniques will be required.
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