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a b s t r a c t

Let G be a planar graph without 5-cycles or without 6-cycles. In this paper, we prove that if
G is connected and δ(G) ≥ 2, then there exists an edge xy ∈ E(G) such that d(x)+d(y) ≤ 9,
or there is a 2-alternating cycle. By using the above result, we obtain that (1) its linear 2-
arboricity la2(G) ≤ d∆(G)+12 e+6, (2) its list total chromatic number is∆(G)+1 if∆(G) ≥ 8,
and (3) its list edge chromatic number is∆(G) if∆(G) ≥ 8.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [3].
For a real number x, dxe is the least integer not less than x and bxc is the largest integer not larger than x. Given a graph
G = (V , E), let N(v) = {u | uv ∈ E(G)}, d(v) = |N(v)| is the degree of the vertex v, Nk(v) = {u | u ∈ N(v) and d(u) = k},
and nk(v) = |Nk(v)|. We use ∆(G) and δ(G) to denote the maximum (vertex) degree and the minimum (vertex) degree,
respectively. A k-, k+- or k−-vertex is a vertex of degree k, at least k or at most k, respectively. For s ≥ 2, an even cycle
C = v1v2 · · · v2sv1 is called a 2-alternating cycle if d(v1) = d(v3) = · · · d(v2s−1) = 2.
An edge-partition of a graph G is a decomposition of G into subgraphs G1,G2, . . . ,Gm such that E(G) = E(G1) ∪ E(G2) ∪

· · · ∪ E(Gm) and E(Gi)∩ E(Gj) = ∅ for i 6= j. A linear k-forest is a graph whose components are paths of length at most k. The
linear k-arboricity of G, denoted by lak(G), is the least integer m such that G can be edge-partitioned into m linear k-forests.
The case la1(G) is the edge chromatic number χ ′ of G.
The linear k-arboricity of a graph was first introduced by Habib and Péroche [9]. They posed the following conjecture.

Conjecture A. For a graph G of order n and a positive integer i,

lai(G) ≤


⌈
(∆n+ 1)/2

⌊
in
i+ 1

⌋⌉
if ∆ 6= n− 1,⌈

(∆n)/2
⌊
in
i+ 1

⌋⌉
if ∆ = n− 1.
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The linear k-arboricity of cycles, trees, complete graphs, and complete bipartite graphs has been determined in [7,8].
Thomassen [15] proved that lak(G) ≤ 2 for a cubic graph G, where k ≥ 5, and this result is the best possible. Chang [5] and
Chang et al. [6] investigated the algorithmic aspects of the linear k-arboricity. It was further studied by Bermond et al. [2],
Jackson andWormald [11], and Aldred andWormald [1]. Lih, Tong, andWang [13] proved that for a planar graph G, we have
la2(G) ≤ d∆(G)+12 e + 12; moreover, la2(G) ≤ d

∆(G)+1
2 e + 6 if G does not contain 3-cycles. Qian and Wang [14] proved that

for a planar graph Gwithout 4-cycles, la2(G) ≤ d∆(G)+12 e + 3. In this paper, we will prove that for a planar graph Gwithout
5-cycles or without 6-cycles, la2(G) ≤ d∆(G)+12 e + 6.
A proper total coloring of a graph G is a coloring of V (G) ∪ E(G) such that no two adjacent or incident elements receive

the same color. The total chromatic number χ ′′(G) is the smallest number of colors such that G has a proper total coloring.
A graph G is said to be totally f -choosable if, whenever we give lists of f (x) colors to each element x ∈ V (G) ∪ E(G), there
exists a proper total coloring of Gwhere each element is colored with a color from its own list. If f (x) = k for every element
x ∈ V (G) ∪ E(G), we say G is totally k-choosable. The list total chromatic number χ ′′list(G) is the smallest integer k such that
G is totally k-choosable. The list edge chromatic number χ ′list(G) of G is defined similarly in terms of coloring edges alone.
Obviously, χ ′list(G) ≥ χ

′(G) ≥ ∆(G) and χ ′′list(G) ≥ χ
′′(G) ≥ ∆(G)+ 1.

Conjecture B. For any graph G, (a) χ ′list(G) = χ
′(G) and (b) χ ′′list(G) = χ

′′(G).

Part (a) of Conjecture B was posed independently by Vizing, by Gupta, by Abertson and Collins, and by Bollobás and
Harris (see [4]), and is well-known as the List Coloring Conjecture. Part (b) of the conjecture was posed by Borodin,
Kostochka and Woodall [4]. Both parts of this conjecture are still very much open. For a planar graph G, it is proved that
χ ′list(G) = χ ′(G) = ∆(G) and χ ′′list(G) = χ ′′(G) = ∆(G) + 1 if ∆(G) ≥ 12 [4], or ∆(G) ≥ 7 and G does not contain 3-
cycles [4], or ∆(G) ≥ 7 and G does not contain 4-cycles [10]. In the paper, we will prove both these results if G is a planar
graph with maximum degree at least 8 and without 5-cycles or without 6-cycles.
In the next section, we will prove that if G is a connected planar graph with δ(G) ≥ 2 and without 5-cycles or without

6-cycles, then there exists an edge xy ∈ E(G) such that d(x) + d(y) ≤ 9, or there exists a 2-alternating cycle. In Section 3,
we will use the above result to prove our main results.

2. Planar graphs without 5- or without 6-cycles

In the section, all graphs are planar graphs which have been embedded in the plane. For a planar graph G, the degree of
a face f , denoted by d(f ), is the number of edges incident with it, where each cut edge is counted twice. A k-, k+- or k−-face
is a face of degree k, at least k or at most k, respectively. For a face f of G, let ni(f ) denote the number of the i-vertices on the
boundary of f . For v ∈ V (G), we use fi(v) to denote the number of i-faces incident with v. A 2-vertex in G is called improper
if it is incident with a 3-face. Let S2(v) be the number of 2-vertices any of which is adjacent to v and is incident with a 3-face
and a 4-face.
First, let us prove some structural properties for the graphs without 5-cycles.

Lemma 1. Let G be a planar graph without 5-cycles and δ(G) ≥ 2. If d(x) + d(y) ≥ 10 for any edge xy ∈ E(G), and there are
no 2-alternating cycles, then all of the following results hold.

(a) Any vertex v is incident with at most b 2d(v)3 c 3-faces.
(b) A 3-face is adjacent to a 4-face if and only if the two faces are incident with a common 2-vertex.
(c) If a face is adjacent to two nonadjacent 3-faces then the face must be a 6+-face.
(d) For any vertex v, if d(v) ≥ 7 and v is incident with a 3-face, then v is incident with at most d(v)−2 faces of degree at most 4.

Proof. Since if there are three 3-faces f1, f2, f3 such that they are incident with a common vertex and f2 is incident with f1
and f3, then vertices incidentwith them form a 5-cycle, so (a) holds. If a 3-face is incidentwith a 4-face, then all three vertices
incident with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident with these two faces and it
follows that the vertex is a 2-vertex. Hence, (b) holds. For (c), suppose that a face f is adjacent to two nonadjacent 3-faces. It
is obvious that f is not a 3-face for otherwise a 5-cycle appears. By (b), f is not a 4-face. So f must be a 6+-face and (c) holds.
For (d), suppose that d(v) ≥ 7 and v is incident with a 3-face. If v is a cut vertex, then (d) is obvious. So assume that v is

not a cut vertex. Let f1, f2, . . . , fd be faces incident with v in a clockwise order, and v1, v2, . . . , vd be vertices incident with
v, where vi is incident with fi, fi+1, i = 1, 2, . . . , d − 1, and vd is incident with fd and f1. Assume that f1 is the 3-face. Then
by (a), f2 or fd is not a 3-face. Without loss of generality, assume that fd is not a 3-face.
Suppose that fd is a 4-face. Then d(vd) = 2 by (b). Thus f2 must be a 3-face or a 6+-face. If f2 is a 3-face, then f3 must

be a 6+-face. So one of f2 and f3 is a 6+-face. Similarly, by (c), fd−1 must be a 4-face or a 6+-face. If fd−1 is a 4-face, then
C = vvdv1vd−1v is a 2-alternating cycle. Hence, one of fd and fd−1 is a 6+-face.
Suppose that fd is a 6+-face. If f2 is a 3-face, then f3 must be a 4-face or 6+-face. If f3 is a 4-face, then d(v2) = 2 and

d(v3) 6= 2 by (b). So f4 must be a 6+-face. If f2 is a 4-face, then f3 must be a 4-face or a 6+-face by (c). If f3 is a 4-face, then
C = vv1vdv2v is a 2-alternating cycle. Thus we have max{d(f2), d(f3), d(f4)} ≥ 6. The proof of (d) is completed. �
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Fig. 1. d(f ) = d(f ′) = 4 and the other vertices and edges of G are in the shaded regions.

Fig. 2. d(f ) = 3, d(f ′) = 5, and the other vertices and edges of G are in the shaded regions.

Lemma 2. Let G be a 2-connected planar graph without 6-cycles. Then the following two results hold.
(a) Two 4-faces, f and f ′, are adjacent if and only if they are isomorphic to one of the configurations in Fig. 1.
(b) A 3-face f is adjacent to a 5-face f ′ if and only if they are isomorphic to one of the configurations in Fig. 2.

Lemma 3. Let G be a 2-connected planar graph without 6-cycles, and d(x) + d(y) ≥ 10 for any edge xy ∈ E(G), and there are
no 2-alternating cycles in G. Let v be a vertex with d(v) = d ≥ 5, let f1, f2, . . . , fd be the faces incident with v in a clockwise
order, and v1, v2, . . . , vd be neighbors of v, where vi is incident with fi, fi+1, i = 1, 2, . . . , d− 1, and vd is incident with fd and
f1. Then all of the following statements hold.
(a) If d(f1) = d(f2) = 4, then d(fd) 6= 4, d(vd) > 2 and there is at most one 3-face in {f3, fd}. Moreover if d(f3) = 4, then

d(v1) > 2 and d(v2) = 2.
(b) If d(f1) = 3 and d(f2) = 5, then d(fd) 6= 4, 5, 6 and d(vd) > 2. Moreover if d(f3) = 4, then d(v2) = 2.
(c) If d(f1) = d(f2) = d(f3) = 3, thenmin{d(fd), d(f4)} ≥ 4, f4 and fd are not 5-faces. This implies that v is incident with at

most b 3d(v)4 c 3-faces. Moreover if f4 is a 4-face, then v3 must be a 2-vertex and d(v4) > 2. Similarly, if d(fd) = 4, then d(vd) = 2
and d(vd−1) > 2.
(d) If d(f1) = d(f2) = 3 and min{d(f3), d(fd)} ≥ 4, then both f3 and fd cannot simultaneously be 4-cycles or 5-cycles.

Moreover if max{d(f3), d(fd)} ≤ 5, thenmin{d(v2), d(vd)} = 2 andmin{d(v3), d(vd−1)} > 2.
(e) Suppose that d(f1) = d(f3) = 3 and d(f2) ≥ 4. Then d(f2) = 5 if and only if d(v1) = d(v2) = 2 and vdv3 ∈ E(G), and

d(f2) = 4 if and only if there is just one 2-vertex in {v1, v2} and v1v3 ∈ E(G).
(f) Suppose that d(f1) = d(f4) = 3 andmin{d(f2), d(f3)} ≥ 4. Thenmax{d(f2), d(f3)} ≥ 5; moreover if min{d(v1), d(v2)} ≥

3, thenmax{d(f2), d(f3)} ≥ 7.
(g) If d(v) ≥ 7 and v is incidentwith a3-face, then v is incidentwith atmost d(v)−24−-faces;moreover, if f4−(v) = d(v)−2

and f3(v) ≥ f4(v), then f7+(v) = 2.
(h) If d(v) ≥ 8 and f3(v)+ S2(v) > b d(v)2 c, then f7+(v) ≥ 2.

Proof. (a) and (b) are obvious by Lemma 2. And it is easy to check (c)-(e) by (a) and (b). For (f), if max{d(f2), d(f3)} ≤ 4, then
d(f2) = d(f3) = 4. It is a contradiction to (a). Hence max{d(f2), d(f3)} ≥ 5. Moreover, if min{d(v1), d(v2)} ≥ 3, we suppose
max{d(f2), d(f3)} ≤ 5, then max{d(f2), d(f3)} = 5. From (b), we have min{d(v1), d(v2)} = 2. This leads to a contradiction.
So we have max{d(f2), d(f3)} ≥ 7. Thus we prove (f ).
Before proving (g), we give some basic notions needed in the following. Let F(v) = {f ∈ F(G): the face f is incident with

v}, F3(v) = {f ∈ F(v): d(f ) = 3 and f is incident with v}. A cluster of F3(v) is a subgraph of Gwhich consists of a nonempty
minimal set of 3-faces in F3(v) such that no other 3-face in F3(v) is adjacent to a member of this set. A cluster of F(v) \ F3(v)
is defined similarly. We use p and q to denote the number of faces in the largest cluster of F3(v) and F(v) \ F3(v).
Let us begin to prove (g). By (c), we have p ≤ 3.

Case 1. p = 1. We assume that d(f1) = 3 and min{d(f2), d(fd)} ≥ 4. Suppose d(v) = 7. Then there is no 2-vertex incident
with v. If d(f2) = 4, then f3 cannot be a 3-face, otherwise, a 6-cycle appears. If d(f3) = 4, then d(f4) ≥ 5 by (a). So
max{d(f2), d(f3), d(f4)} ≥ 5. Similarly, max{d(fd), d(fd−1), d(fd−2)} ≥ 5, so f4−(v) ≤ d(v)−2. Suppose d(v) ≥ 8. If one of v1
and vd is a 2-vertex, without loss of generality, we assume d(v1) = 2, then f2 can be a 4-face. If d(f2) = 4, then f3must be a 3-
face or a 7+-face. If d(f3) = 3, then f4 must be a 4-face or a 7+-face. If d(f4) = 4, then d(v4) > 2 by Lemma (a), so d(f5) ≥ 7.
Hence max{d(f2), d(f3), d(f4), d(f5)} ≥ 5. Similarly, we have max{d(fd), d(fd−1), d(fd−2)} ≥ 5. So f4−(v) ≤ d(v) − 2. If
min{d(v1), d(vd)} > 2, it is easy to check that max{d(fd), d(fd−1), d(fd−2)} ≥ 5 and max{d(f2), d(f3), d(f4)} ≥ 5. We omit
the details here. Hence, f4−(v) ≤ d(v)− 2.
Now suppose f4−(v) = d(v)− 2 and f3(v) ≥ f4(v). If d(v) is odd, then f3(v) ≥

d(v)−1
2 . Since p = 1, q = 1 or 2. And there

is only one cluster of F(v) \ F3(v) having two faces. If d(v) is even, then f3(v) ≥ d(v)−2
2 and f4+(v) ≤

d(v)−2
2 . Since p = 1,
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Fig. 3.

there exists a cluster of F(v) \ F3(v)with q = 1, otherwise, f4+(v) ≥
d(v)−2
2 × 2 = d(v)− 2 > d(v)−2

2 , a contradiction. And
there are at least two clusters of F(v) \ F3(v) with q ≤ 2, otherwise, f4+(v) ≥ (

d(v)−2
2 − 1)× 3 + 1 ≥ 3d(v)−10

2 > d(v)+2
2 , a

contradiction. In the following, we discuss by the value of q.
Suppose q = 1. Without loss of generality, we assume that d(f1) = d(f3) = 3 and min{d(f2), d(f4), d(fd)} ≥ 4. By (e) and

the proof above, if f2 is not a 7+-face, then there are at least two 7+-faces in {f4, . . . , fd}.
Suppose q = 2. Without loss of generality, we assume that d(f1) = d(f4) = 3 and min{d(f2), d(f3), d(f5), d(fd)} ≥ 4. By

(f), if max{d(f2), d(f3)} ≤ 5, then it is easy to show that there are at least two 7+-faces in {f5, . . . , fd}.
Since there are at least two clusters of F(v) \ F3(v)with q ≤ 2, we have f7+(v) ≥ 2.

Case 2. p = 2. We assume that d(f1) = d(f2) = 3 and min{d(f3), d(fd)} ≥ 4. Suppose d(v) = 7. Then there is no 2-vertex
incident with v, so there is at most one 4-face in {f3, fd} by (a). Without loss of generality, we assume d(f3) = 4. Then
d(f4) ≥ 7 and d(fd) ≥ 7 by (d). Suppose d(v) ≥ 8. If d(f3) = 5 and d(fd) = 4 (the case d(f3) = 4 and d(fd) = 5 can be
settled similarly), then d(vd) = 2 and min{d(v3), d(vd−1)} > 2 by (d). So one of f4 and fd−1 is a 7+-face. Now we assume
max{d(f3), d(fd)} ≥ 7. Without loss of generality, we assume d(fd) ≥ 7. Suppose d(f3) = 4. Then f4 cannot be a 5-face,
otherwise, a 6-cycle appears. If d(f4) = 3, then f5 must be a 4-face or a 7+-face. If d(f5) = 4, then d(f6) ≥ 7. If d(f4) = 4,
then d(v3) > 2 by (a). So d(f5) ≥ 7. Hence, max{d(f4), d(f5), d(f6)} ≥ 7. Suppose d(f3) = 5, it is easy to check that there is
one 7+-face in {f4, f5, f6}. Hence, f7+(v) ≥ 2. Certainly, f4−(v) ≤ d(v)− 2.
Case 3. p = 3. Without loss of generality, we assume that d(f1) = d(f2) = d(f3) = 3. If d(v) = 7, then there is no 2-vertex in
N(v), so d(f4) ≥ 7 and d(fd) ≥ 7 by (c). Suppose d(v) ≥ 8. Then f4 must be a 4-face or a 7+-face by (c). If f4 is a 4-face, then
d(v3) = 2 and d(v4) > 2, so f5 must be a 7+-face. Thus one of f4 and f5 is a 7+-face. Similarly, one of fd and fd−1 is a 7+-face.
Hence, f7+(v) ≥ 2. Certainly, f4−(v) ≤ d(v)− 2. Hence the proof of (g) is completed.
Before proving (h), we also need to give some basic notions as follows. A 4-face in G is called improper if it is incident

with an improper 2-vertex. F∗3 (v) = F3(v) ∪ {f ∈ F(v) : f is an improper 4-face}. A cluster of F
∗

3 (v) and F(v) \ F
∗

3 (v) is
defined similarly to a cluster of F3(v) above. We use p∗ and q∗ to denote the number of faces in the largest cluster of F∗3 (v)
and F(v) \ F∗3 (v), respectively.
For (h), it is obvious that p∗ ≤ 5. Suppose p∗ = 5. Then there are only two isomorphic configurations in Fig. 3(1) and

(2). Suppose p∗ = 4. Then there are three isomorphic configurations in Fig. 3(3), (4) and (5). Suppose p∗ = 3. Then there
are three isomorphic configurations in Fig. 3(6), (7) and (8). By the proof of (g), it is easy to check that if any case in Fig. 3
appears, then f7+(v) ≥ 2.
It remains to show that f7+(v) ≥ 2 if p∗ ≤ 2 and f3(v)+S2(v) > b

d(v)
2 c. It is obvious that |F

∗

3 (v)| = f3(v)+S2(v). If p
∗
≤ 2,

then there exists one cluster of F(v) \ F∗3 (v)with q
∗
= 1, otherwise, |F(v) \ F∗3 (v)| ≥ d

f3(v)+S2(v)
p∗ e× 2 ≥ d f3(v)+S2(v)2 e× 2 ≥

f3(v) + S2(v) > d(v) − (f3(v) + S2(v)) = d(v) − |F∗3 (v)| = |F(v) \ F
∗

3 (v)| for f3(v) + S2(v) > b
d(v)
2 c, a contradiction.

And there are at least two clusters of F(v) \ F∗3 (v) with q
∗
≤ 2, otherwise, |F(v) \ F∗3 (v)| ≥ (d

f3(v)+S2(v)
p∗ e − 1) × 3 + 1 ≥

(d
f3(v)+S2(v)

2 e − 1) × 3 + 1 > d(v) − (f3(v) + S2(v)) = |F(v) \ F∗3 (v)| for f3(v) + S2(v) > b
d(v)
2 c, a contradiction. In the

following, we discuss by the value of q∗.
Suppose q∗ = 1. Without loss of generality, we assume that f2 ∈ F(v) \ F∗3 (v) and {f1, f3} ⊂ Q

∗

3 (v). If d(f1) = d(f3) = 3,
then the proof is similar to the proof of q = 1 in (g). If d(f1) = 3 and f3 is an improper 4-face (the case d(f3) = 3 and f1 is
an improper 4-face can be settled similarly), then d(v2) > 2, so d(f2) 6= 5 by (e) and d(f2) 6= 4 for f3 ∈ F(v) \ F∗3 (v). Hence,
d(f2) ≥ 7. If f1, f3 are improper 4-faces, then d(v1) > 2 and d(v2) > 2, then d(f2) 6= 4, 5 by (e). Hence, d(f2) ≥ 7.
Suppose q∗ = 2.Without loss of generality, we assume that {f2, f3} ⊂ F(v)\F∗3 (v) and {f1, f4} ⊂ F

∗

3 (v). If d(f1) = d(f4) =
3, then the proof is similar to the proof of q = 2 in (g). If d(f1) = 3 and f4 is an improper 4-face (the case d(f4) = 3 and f1 is
an improper 4-face can be settled similarly), then d(v3) > 2, so d(f3) ≥ 7 by (f). If f1, f4 are improper 4-faces, then d(v1) > 2
and d(v3) > 2. Since f2, f3 ∈ F(v) \ F∗3 (v), then max{d(f2), d(f3)} ≥ 7 by (f).
Hence, if f3(v) + S2(v) > b d(v)2 c and there are at least two clusters of F(v) \ F

∗

3 (v) with q
∗
≤ 2, then f7+(v) ≥ 2. The

proof of (h) is completed. �
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Theorem 4. Let G be a connected planar graph with δ(G) ≥ 2. If G contains no 5-cycles or contains no 6-cycles, then G contains
an edge xy such that d(x)+ d(y) ≤ 9, or G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not satisfying the theorem. Let G2 be the subgraph
induced by the edges incident with the 2-vertices of G. Since d(x) + d(y) ≥ 10 for every edge xy ∈ E(G), every pair of
2-vertices is nonadjacent. Since G does not contain any 2-alternating cycle, G2 does not contain any cycle at all. So every
component of G2 is a tree and there exists a matching M such that all 2-vertices in G2 are saturated. Here if uv ∈ M and
d(u) = 2, we call v the 2-master of u.
From Euler’s formula |V (G)| − |E(G)| + |F(G)| = 2, we can derive the following identity.∑

v∈V (G)

(2d(v)− 6)+
∑
f∈F(G)

(d(f )− 6) = −12 < 0.

Let ω denote the weight function defined on V (G)
⋃
F(G) by ω(v) = 2d(v) − 6 if v ∈ V (G) and ω(f ) = dG(f ) − 6

if f ∈ F(G). Next, we will define a set of discharging rules. Once the discharging is finished, a new weight function ω′ is
produced. We will show that ω′ is nowhere negative. This leads to the following obvious contradiction since the total sum
of weights is kept fixed during discharging.

0 ≤
∑

x∈V (G)∪F(G)

ω′(x) =
∑

x∈V (G)∪F(G)

ω(x) = −12 < 0.

Hence, the contradiction proves the theorem.
First, suppose that G contains no 5-cycles. The discharging rules are defined as follows.

R1.1. Each 2-vertex receives 2 from its 2-master.
R1.2. For a 3-face f and its incident vertex v, f receives 12 from v if d(v) = 4, 1 if d(v) = 5,

5
4 if d(v) = 6 and

3
2 if d(v) ≥ 7.

R1.3. For a 4-face f and its incident vertex v, f receives 12 from v if 4 ≤ d(v) ≤ 6, 1 if d(v) ≥ 7.

Let f ∈ F(G). Clearly, ω′(f ) = ω(f ) = d(f ) − 6 ≥ 0 if d(f ) ≥ 6. Suppose d(f ) = 3. Then ω(f ) = 3 − 6 = −3. If f is
incident with a 3−-vertex, then other incident vertices of f are 7+-vertices and it follows that ω′(f ) ≥ ω(f ) + 2 × 3

2 = 0.
If f is incident with a 4-vertex, then ω′(f ) ≥ ω(f ) + 1

2 + 2 ×
5
4 = 0. If all vertices incident with f are 5

+-vertices, then
ω′(f ) ≥ ω(f ) + 3 × 1 = 0. Suppose d(f ) = 4. If f is incident with a vertex of degree at most 3, then f is incident with at
least two 7+-vertices and it follows that ω′(f ) ≥ ω(f )+ 2× 1 = 0. Otherwise, ω′(f ) ≥ ω(f )+ 4× 1

2 = 0.
Let v ∈ V (G). If d(v) = 2, then ω′(v) = ω(v) + 2 = 0 by R1.1. If d(v) = 3, then ω′(v) = ω(v) ≥ 0. If d(v) = 4, then

ω′(v) ≥ ω(v)−4× 12 = 0. If d(v) = 5, thenω
′(v) ≥ 10−6−max{3×1+2× 12 , 2×1+3×

1
2 , 1+4×

1
2 , 5×

1
2 } = 0. If d(v) = 6,

thenω′(v) ≥ ω(v)−max{4× 54+2×
1
2 , 6×

1
2 } = 0. Suppose d(v) = 7. Then all neighbors of v are 3

+-vertices. By Lemma 1,
v is incident with at most four 3-faces, and if a 3-face f is incident with v, then v is incident with at most five 4−-faces. So
ω′(v) ≥ ω(v)−max{4× 32+

1
2 , 7×1} ≥ 0. Suppose d(v) = 8. Ifv is not incidentwith a 3-face, thenω

′(v) = ω(v)−2−8×1 =
0. So assume that v is incident with at least one 3-face. By Lemma 1(d), v is incident with at most six 4−-faces. If v is incident
with at least five 3-faces, then v is incident with exactly five 3-faces and by Lemma 1(c) all 4+-faces incident with v must
be 6+-faces; it follows thatω′(v) = ω(v)−2−5× 3

2 =
1
2 > 0; otherwise,ω

′(v) = ω(v)−2−4× 3
2 −2×1 = 0. Suppose

d(v) ≥ 9. Similarly, we have ω′(v) ≥ ω(v)− 2−max{b 2d(v)3 c ×
3
2 − (d(v)− 2− b

2d(v)
3 c)× 1, d(v)× 1} ≥ 0. Hence, the

proof of the case when G contains no 5-cycles is completed.
Now for the harder part, suppose that G contains no 6-cycles. If G is not 2-connected, then take an end block B of G, let

u be the corresponding cut vertex in B. Let v ∈ N(u)
⋂
V (B), w ∈ N(u) \ V (B), such that u, v, w lie on a common face.

Denote by B∗ the graph constructed from four copies B1, B2, B3, B4 of B and one copy u′v′ of uv such that the copy ui of u
in Bi is identified with the copy vi+1 of v in Bi+1 for i = 1, 2, 3 and u′ is identified with v1. It is easy to see that B∗ has an
embedding in the plane such that v′ and u4 are on the boundary of the outer face. Since G is not 2-connected, there is a face
f which is incident with w, v that are not contained in the same block of G. Now, we identify the vertices u4 and v′ with
w and v, respectively, and embed B∗ into f . The resulting graph G′ has fewer blocks than G. Clearly, G′ has no 6-cycles, no
2-alternating cycles and d(x)+ d(y) ≥ 10 for any edge xy ∈ E(G). Therefore, G′ is also a counterexample to the theorem. By
repeating the above construction sufficiently many times, we obtain a 2-connected counterexample.
So we may assume that G is 2-connected and hence all its facial walks are cycles. In particular, G has no faces of length 6.

The discharging rules are defined as follows.

R2.1. For a 3-face f and its incident vertex v, if there is a 3−-vertex incident with f , then f receives 32 from each 7
+-vertex.

Otherwise, f receives 12 from v if d(v) = 4, 1 if d(v) = 5,
5
4 if d(v) ≥ 6.

R2.2. For a 4-face f and its incident vertex v, if there are two 3−-vertices incident with f , then f receives 1 from each 7+-
vertex. Otherwise, f receives 12 from v if 4 ≤ d(v) ≤ 6,

3
4 if d(v) ≥ 7.

R2.3. For a 5-face f and its incident 5+-vertex v, f receives 13 from v.
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R2.4. Let u ∈ G be a 2-vertex, N(u) = {v,w} and v be its 2-master. If u is incident with a 3-face and a 4-face, then u receives
3
2 from v and

1
2 from w. If u is incident with a 3-face and a 8

+-face, then u receives 1 from the 8+-face and 1 from v.
Suppose u is incident with a 4-face and a 7+-face f . If d(f ) = 7 and n2(f ) = 3, then u receives 13 from f and

5
3 from v;

Otherwise, u receives 12 from f and
3
2 from v. In all the other cases, u receives 2 from v.

Let f ∈ F(G). Suppose d(f ) = 3. Then ω(f ) = 3 − 6 = −3. By R2.1, if f is incident with a 3−-vertex, then other
incident vertices of f are 7+-vertices and it follows that ω′(f ) ≥ ω(f ) + 2 × 3

2 = 0. If f is incident with a 4-vertex, then
ω′(f ) ≥ ω(f ) + 1

2 + 2 ×
5
4 = 0. If all vertices incident with f are 5

+-vertices, then ω′(f ) ≥ ω(f ) + 3 × 1 = 0. Suppose
d(f ) = 4. By R2.2, if f is incident with two vertices of degree at most 3, then f is incident with two 7+-vertices and it follows
thatω′(f ) ≥ ω(f )+2×1 = 0. Otherwise,ω′(f ) ≥ ω(f )+min{4× 12 ,

1
2 +2×

3
4 } = 0. By R2.3, if d(f ) = 5, then f is incident

with at least three 5+-vertices and it follows that ω′(f ) ≥ ω(f )+ 3× 1
3 = 0. Suppose d(f ) = 7. By R2.4, if n2(f ) = 3, then

we have ω′(f ) ≥ 7− 6− 3× 1
3 = 0, otherwise, n2(f ) ≤ 2, we have ω

′(f ) ≥ 7− 6− 2× 1
2 = 0. Suppose d(f ) ≥ 8. Then

n2(f ) ≤ b
d(f )−1
2 c for G containing no 2-alternating cycles. And f is incident with at most (d(f )− 7) improper 2-vertices for

otherwise after deleting these 2-vertices, f becomes a 6−-cycle and then a 6-cycle appears, a contradiction. By R2.4, each
improper 2-vertex incident with f receives 1 from f and the other 2-vertices in n2(f ) receive at most 12 from f , so we have
ω′(f ) ≥ ω(f )− 1× (d(f )− 7)− 1

2 × [b
d(f )−1
2 c − (d(f )− 7)] ≥ 0.

Let v ∈ V (G). If d(v) = 2, then ω′(v) = ω(v) + 2 = 0 by R2.4. If d(v) = 3, then ω′(v) = ω(v) = 0. If
d(v) = 4, then ω′(v) ≥ ω(v) − 4 × 1

2 = 0 by R2.1 and R2.2. If d(v) = 5, then f3(v) ≤ 3 by Lemma 3(c), so we have
ω′(v) ≥ 10− 6−max{3× 1+ 2× 1

2 , 2× 1+ 3×
1
2 , 1+ 4×

1
2 , 5×

1
2 } = 0 by R2.1 and R2.2. Similarly, if d(v) = 6, then

ω′(v) ≥ ω(v)−max{4× 54+2×
1
2 , 6×

1
2 } = 0. Suppose d(v) = 7. Then all neighbors of v are 3

+-vertices.We have f3(v) ≤ 5
by Lemma 3(c), and if f3(v) ≥ 1, then f3(v) + f4(v) ≤ 5 by Lemma 3(g). By Lemma 3(h), if f3(v) ≥ 4, then f7+(v) ≥ 2. So
ω′(v) ≥ 14− 6−max{5× 3

2 , 4×
3
2 + 1, 3×

3
2 + 2× 1+ 2×

1
3 , 2×

3
2 + 3× 1+ 2×

1
3 ,
3
2 + 4× 1+ 2×

1
3 , 7× 1} =

1
3 > 0.

Our task is now to prove ω′(v) ≥ 0 if d(v) ≥ 8.
Suppose d(v) = 8. Then f3(v) ≤ 6 by Lemma 3(c) and ω(v) = 16 − 6 = 10. There can be a 2-vertex in N(v), and we

assume that v is the 2-master of some 2-vertex, denoted as u, in N2(v), otherwise, the problem becomes easier. Note that
S2(v) ≤ 3 for otherwise it is easy to obtain a 6-cycle or a 2-alternating cycle. If f3(v) ≤ 1, then S2(v) ≤ 1 and it follows that
ω′(v) ≥ ω(v)−2− 32×f3(v)−1×f4(v)−

1
2×S2(v)−

1
3×f5(v) ≥ 10−2−max{8×1,

3
2+5×1+

1
2+2×

1
3 } = 0. If n2(v) = 0,

then ω′(v) ≥ 10−max{6× 3
2 , 8× 1} > 0. So assume that n2(v) ≥ 1 and f3(v) ≥ 2. By Lemma 3(g), f3(v)+ f4(v) ≤ 6. In

the following, let us discuss by the number of 3-faces.
Case 1. f3(v) = 6. Then all 4+-faces incident with v must be 7+-faces by Lemma 3(h), and any 2-vertex adjacent to v is
incident with a 8+-face, so it follows that ω′(v) ≥ 10− 1− 6× 3

2 = 0 by R2.4.
Case 2. f3(v) = 5. Then f +7 (v) ≥ 2 by Lemma 3(h) and f4(v) ≤ 1. Suppose f4(v) = 1. Then for any 2-vertex in N2(v), it is
incident with a 3-face. By R2.4, if u ∈ S2(v), then u receives 32 from v. If u is incident with a 8

+-face, then u receives 1 from
v. So it follows that ω′(v) ≥ 10 − max{1 + (5 × 3

2 + 1 +
1
2 ),

3
2 + (5 ×

3
2 + 1)} = 0. Otherwise, we have f4(v) = 0 and

f5(v) ≤ 1. Then ω′(v) ≥ 10− 2− (5× 3
2 +

1
3 ) =

1
6 > 0.

Case 3. f3(v) = 4. Then f4(v) ≤ 2 by Lemma 3(g). Suppose f4(v) ≤ 1, then S2(v) ≤ 1. If S2(v) = 1, then f7+(v) ≥ 2
by Lemma 3(h), otherwise, S2(v) = 0, then f4(v) + f5(v) ≤ 6. So we have ω′(v) ≥ 10 − 2 − max{4 × 3

2 + 1 + 3 ×
1
3 , 4 ×

3
2 + 1 +

1
2 +

1
3 } = 0. Suppose f4(v) = 2. Then f7+(v) = 2 by Lemma 3(g) and S2(v) ≤ 2. If S2(v) = 0,

then ω′(v) ≥ 10 − 2 − (4 × 3
2 + 1 × 2) = 0. So we assume that S2(v) ≥ 1. Let us denote the two faces of

which vu is the common edge as fu1 and fu2. Since S2(v) ≥ 1, there exists at least a 4-face adjacent to a 3-face. Then
it is impossible that d(fu1) = d(fu2) = 4. fu1 and fu2 cannot be 7+-faces simultaneously, otherwise a 6-cycle or a 2-
alternating cycle appears. Without loss of generality, we assume that d(fu2) ≥ d(fu1). If d(fu1) = 3 and d(fu2) ≥ 8, then
ω′(v) ≥ 10 − 1 − (4 × 3

2 + 1 × 2 + 2 ×
1
2 ) = 0 by R2.4. If d(fu1) = 3 and d(fu2) = 4 or d(fu1) = 4 and d(fu2) ≥ 8, then

S2(v) = 1. So we have ω′(v) ≥ 10 − 3
2 − (4×

3
2 + 1× 2+ 1×

1
2 ) = 0 by R2.4. Suppose d(fu1) = 4 and d(fu2) = 7. Then

S2(v) = 1. Let u′ be the vertex which is adjacent to v and is incident with fu2 and we denote the other face which is incident
with vu′ as fu3. If d(u′) = 2, then d(fu3) = 4 for d(fu2) = 7. So we have S2(v) = 0, a contradiction to S2(v) = 1. Hence, we
assume d(u′) ≥ 3. If 3 ≤ d(u′) ≤ 7, then n2(fu2) < 3, so it follows that ω′(v) ≥ 10 − 3

2 − (4 ×
3
2 + 1 × 2 +

1
2 ) = 0 by

R2.4. If d(u′) ≥ 8, there must be a 3-face or a 4-face in {f1, f2, . . . fd} \ {fu1, fu2} receives 54 or
3
4 from v by R2.1 and R2.2. So it

follows that ω′(v) ≥ 10− 5
3 −max{4×

3
2 + 1+

3
4 +

1
2 , 3×

3
2 +

5
4 + 1× 2+

1
2 } =

1
12 > 0 by R2.4.

Case 4. f3(v) = 3. Then f4(v) ≤ 3. If f4(v) ≤ 1, then S2(v) ≤ 1, so it follows thatω′(v) ≥ 10−2− (3× 3
2 +1+

1
2 +4×

1
3 ) =

2
3 > 0. Suppose f4(v) = 2. Then S2(v) ≤ 2. If S2(v) ≤ 1, we have ω

′(v) ≥ 10 − 2 − (3 × 3
2 + 1 × 2 +

1
2 + 3 ×

1
3 ) = 0. If

S2(v) = 2, then f7+(v) ≥ 2 by Lemma 3(h). So we have ω′(v) ≥ 10− 2− (3× 3
2 + 1× 2+ 2×

1
2 +

1
3 ) =

1
6 > 0. Suppose

f4(v) = 3. Then S2(v) ≤ 3 and f7+(v) ≥ 2 by Lemma 3(g). If S2(v) ≤ 1, we haveω′(v) ≥ 10−2− (3× 32 +1×3+
1
2 ) = 0. If

S2(v) = 2, the proof is similar to the above case that f3(v) = 4 and f4(v) = 2. If S2(v) = 3, then f7+(v) = 2 by Lemma 3(h).
We denote the two 7+-faces as f and f ′. It is obvious that f is not adjacent to f ′, otherwise a 2-alternating cycle appears.
Then all the 2-vertices incident with v are improper 2-vertices. So we have ω′(v) ≥ 10− 3

2 − (3×
3
2 + 1× 3+ 2×

1
2 ) = 0.



3004 Q. Ma et al. / Discrete Mathematics 309 (2009) 2998–3005

Case 5. f3(v) = 2. Then f4(v) ≤ 4 and S2(v) ≤ 2. If f4(v) ≤ 3, then f4(v) + f5(v) ≤ 6, we have ω′(v) ≥ 10 −
2 − (2 × 3

2 + 1 × f4(v) +
1
3 × f5(v) + 2 ×

1
2 ) ≥ 2 −

2
3 × f4(v) ≥ 0. Suppose f4(v) = 4. If S2(v) = 0, we have

ω′(v) ≥ 10 − 2 − (2 × 3
2 + 1 × 4 + 2 ×

1
3 ) =

1
3 > 0. If S2(v) = 1, then v is incident with at least one 7

+-face. So it
follows that ω′(v) ≥ 10− 2− (2× 3

2 + 1× 4+
1
2 +

1
3 ) =

1
6 > 0. If S2(v) = 2, we can prove this case using an argument

similar to the above case that f3(v) = 4 and f4(v) = 2.
Suppose d(v) = 9. Then f3(v) ≤ 6 and ω(v) = 18− 6 = 12. If n2(v) ≤ 1, then we have ω′(v) ≥ 12− 2−max{6× 3

2 +

1, 9 × 1} = 0. In the following, we assume that n2(v) ≥ 2. If f3(v) ≤ 2, then S2(v) ≤ f3(v). Since f3(v) + f4(v) ≤ 7,
we have ω′(v) ≥ 12 − 2 − max{2 × 3

2 + 1 × 5 + 2 ×
1
3 + 2 ×

1
2 ,
3
2 + 1 × 6 + 2 ×

1
3 +

1
2 , 9 × 1} =

1
3 > 0.

Suppose f3(v) = 3. Then f4(v) ≤ 4 and S2(v) ≤ 3. If f4(v) ≤ 3, then f4(v) + f5(v) ≤ 6 and S2(v) ≤ f4(v), we have
ω′(v) ≥ 12− 2− (3× 3

2 + 1× f4(v)+
1
2 × S2(v)+

1
3 × f5(v)) ≥ 2−

2
3 × f4(v) ≥ 0. Suppose f4(v) = 4. If S2(v) ≤ 1, then

we have ω′(v) ≥ 12 − 2 − (3 × 3
2 + 1 × 4 +

1
2 × 1 + 2 ×

1
3 ) =

1
3 > 0. Otherwise, 2 ≤ S2(v) ≤ 3, then f7+(v) ≥ 2 by

Lemma 3(h). So we have ω′(v) ≥ 12− 2− (3× 3
2 + 1× 4+ 3×

1
2 ) = 0. Suppose f3(v) ≥ 4. Then f4(v) ≤ 3. If S2(v) = 3,

then f7+(v) ≥ 2 by Lemma 3(h). So f3(v) = 4 and f4(v) = 3. All the 2-vertices adjacent to v are incident with a 3-face. By
R2.4, we have ω′(v) ≥ 12−max{1+ 4× 3

2 + 1× 3+ 3×
1
2 ,
3
2 + 4×

3
2 + 1× 3+ 2×

1
2 } =

1
2 > 0. If S2(v) ≤ 2, it is easy

to check that ω′(v) ≥ 0 if f3(v) = 4, 5 or 6. We omit the details here.
Suppose d(v) ≥ 10. Then f3(v) ≤ b 3d(v)4 c and S2(v) ≤ min{f3(v), f4(v)}. If f3(v) = 0, then we have ω′(v) ≥

ω(v) − 2 − 1 × f4(v) ≥ d(v) − 8 > 0. Else, f3(v) ≥ 1, then f3(v) + f4(v) ≤ d(v) − 2. Suppose f3(v) ≥ f4(v).
Then S2(v) ≤ f4(v). By Lemma 3(g), if f3(v) + f4(v) = d(v) − 2, then f7+(v) = 2. So we have ω′(v) ≥ 2 × d(v) −
8 − ( 32 × f3(v) + 1 × f4(v) +

1
2 × S2(v)) ≥ 2 × d(v) − 8 −

3
2 (f3(v) + f4(v)) =

1
2 × (d(v) − 10) ≥ 0; otherwise,

f3(v)+f4(v) ≤ d(v)−3, then f5−(v) ≤ d(v), sowe haveω′(v) ≥ 2×d(v)−8−( 32×f3(v)+1×f4(v)+
1
3×f5(v)+

1
2×S2(v)) ≥

2×d(v)−8− 32 (f3(v)+f4(v))−
1
3×f5(v) ≥

1
2×(d(v)−9) > 0. Suppose f3(v) < f4(v). Then S2(v) ≤ f3(v) and f3(v) ≤ b

d(v)−3
2 c

for f3(v) + f4(v) ≤ d(v) − 2. So we have ω′(v) ≥ 2 × d(v) − 8 − ( 32 × f3(v) + 1 × f4(v) +
1
3 × f5(v) +

1
2 × S2(v)) ≥

2 × d(v) − 8 − (2 × f3(v) + f4(v) + 1
3 × f5(v)) ≥ d(v) − f3(v) −

20
3 . If d(v) = 10, then f3(v) ≤ 3. So we have

ω′(v) ≥ 10− 3− 20
3 =

1
3 > 0; otherwise, ω

′(v) ≥ d(v)− f3(v)− 20
3 ≥

1
6 × (3d(v)− 31) > 0.

Hence the proof of the theorem is completed. �

3. Main results and their proofs

Lemma 5. If a graph G can be edge-partitioned into m subgraphs G1,G2, . . . ,Gm, then la2(G) ≤
∑m
i=1 la2(Gi).

The above lemma is obvious since we just need to use disjoint color sets on the Gi’s.

Lemma 6 ([7]). For a forest T , we have la2(T ) ≤ d∆(T )+12 e.

Lemma 7 ([2]). For a graph G, we have la2(G) ≤ ∆(G).

Lemma 8. Every planar graph Gwithout 5-cycles orwithout 6-cycles has an edge-partition into two forests T1, T2 and a subgraph
H such that for every v ∈ V (G), dT1(v) ≤ ddG(v)/2e, dT2(v) ≤ ddG(v)/2e and dH(v) ≤ 4.

Proof. We prove the lemma by induction on the number |V (G)| + |E(G)|. If |V (G)| + |E(G)| ≤ 5, then the result holds
trivially. Let G be a planar graph with |V (G)| + |E(G)| ≥ 6. If∆(G) ≤ 4, it suffices to take H = G and T1 = T2 = ∅.
Suppose now that ∆(G) ≥ 5. We may assume that G is connected. If G′ is a proper subgraph of G, then G′ has an

edge-partition as desired by the induction hypothesis; call the graphs of this edge-partition T ′1, T
′

2, H
′. We will choose an

appropriate subgraph G′ so that we can extend T ′1
⋃
T ′2
⋃
H ′ to an edge-partition T1

⋃
T2
⋃
H of G satisfying the lemma.

If δ(G) = 1, let uv ∈ E(G)with dG(u) = 1. Define the graph G′ = G− uv.
If dH ′(v) ≤ 3, we let H = H ′ + uv and Ti = T ′i for i = 1 and 2. It is easy to see that the lemma holds.
If dH ′(v) = 4, we suppose that dT ′1(v) ≤ dT ′2(v). Since dG′(v) = dT ′1(v) + dT ′2(v) + dH ′(v) = dT ′1(v) + dT ′2(v) + 4 and

dG′(v) = dG(v) − 1, we have dT ′1(v) ≤ (dG(v) − 5)/2. Let T1 = T
′

1 + uv, T2 = T
′

2, and H = H
′. Thus dT2(x) = dT ′2(x) and

dH(x) = dH ′(x) for all x ∈ V (G′). Moreover, dT1(u) = 1 = ddG(u)/2e, dT1(v) = 1+dT ′1(v) ≤ 1+ (dG(v)−5)/2 < ddG(v)/2e,
and dT1(x) = dT ′1(x) for all x ∈ V (G) \ {u, v}.
Suppose next that δ(G) ≥ 2. By Theorem 4, we only need to consider two cases.

Case 1. There is an edge xy ∈ E(G) such that dG(x)+ dG(y) ≤ 9.
Define G′ = G− xy and assume that dH ′(x) ≤ dH ′(y). If dH ′(y) ≤ 3, let H = H ′ + xy, T1 = T ′1 and T2 = T

′

2.
Assume that dH ′(y) = 4. In that case 1 ≤ dG′(x) ≤ 3 and dT ′1(y)+ dT ′2(y)+ dG′(x) ≤ 3. We may assume dT ′1(x) ≤ dT ′2(x).
If dG′(x) = 3, then y belongs to neither T ′1 nor T

′

2. Let T1 = T
′

1 + xy, T2 = T
′

2, and H = H
′. If dG′(x) = 2, then x belongs to

both T ′1 and T
′

2 since dT ′i (x) ≤ ddG′(x)/2e for i = 1 and 2. Also note that y does not belong to either T
′

1 or T
′

2, say T
′

1. Again let
T1 = T ′1+ xy, T2 = T

′

2, and H = H
′. We see that T1 is a forest and dT1(x) = 2 = d3/2e = ddG(x)/2e. If dG′(x) = 1, then x does
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not belong to T ′1. Let T1 = T
′

1+ xy, T2 = T
′

2, and H = H
′. We see that T1 is a forest and dT1(x) = 1 = ddG(x)/2e. Furthermore,

dT1(y) = dT ′1(y)+ 1 ≤ 3 < ddG(y)/2e.
Case 2. There is a 2-alternating cycle C = v1v2 · · · v2sv1, s ≥ 2, such that dG(v1) = dG(v3) = · · · = dG(v2s−1) = 2.
Define G′ = G− E(C). Let H = H ′, T1 = T ′1+ {v1v2, v3v4, . . . , v2s−1v2s} and T2 = T

′

2+ {v2v3, v4v5, . . . , v2sv1}. Note that
both T1 and T2 are forests. Since dG = dG′ + 2 for vertices x of the cycle C, we see that dT1(vj) = dT2(vj) = 1 = dG(vj)/2 for
j = 1, 3, . . . , 2s− 1, and dTi(vj) = dT ′i (vj)+ 1 ≤ ddG′(vj)/2e + 1 = ddG(vj)/2e for i = 1, 2 and j = 2, 4, . . . , 2s. �

The following is a direct consequence of Lemma 8.

Corollary 9. Let G be a planar graph without 5-cycles or without 6-cycles. Then G can be edge-partitioned into two forests T1, T2
and a subgraph H such that ∆(T1) ≤ d∆(G)/2e,∆(T2) ≤ d∆(G)/2e and∆(H) ≤ 4.

Now we are ready to prove our first main result.

Theorem 10. If G is a planar graph without 5-cycles or without 6-cycles, then la2 ≤ d(∆(G)+ 1)/2e + 6.

Proof. By Corollary 9, G has an edge-partition into two forests T1, T2 and a subgraph H with ∆(T1) ≤ d∆(G)/2e, ∆(T2) ≤
d∆(G)/2e, and∆(H) ≤ 4. Combining Lemmas 5–7, we obtain the following sequence of inequalities.

la2(G) ≤ la2(T1)+ la2(T2)+ la2(H)
≤ d(∆(T1)+ 1)/2e + d(∆(T2)+ 1)/2e +∆(H)
≤ 2d(d∆(G)/2e + 1)/2e + 4
≤ d(∆(G)+ 1)/2e + 6. �

Lemma 11 ([12]). χ ′′list(G) = χ
′′(G) for a graph G of the maximum degree 2.

Our second main result is the following theorem.

Theorem 12. Let ∆ ≥ 8 and let G be a planar graph with maximum degree ∆(G) ≤ ∆. If G contains no 5-cycles or contains
no 6-cycles, then χ ′list(G) = χ

′(G) = ∆(G) and χ ′′list(G) = χ
′′(G) = ∆(G)+ 1.

Proof. Let G be a minimal counterexample to Theorem 12 (∆(G) ≤ ∆). It is easy to see that δ(G) ≥ 2. Suppose first that G
contains an edge e = uw with d(u) + d(w) ≤ 9. Without loss of generality, assume d(u) ≤ d(w). Then d(u) ≤ 4. Color all
edges and (if appropriate) vertices of G− e from their lists. If we are coloring vertices, erase the color of u. There are now at
least ∆ − 7 ≥ 1 colors available to give to e, so color e with one of them. If we are coloring vertices, then there are now at
least∆+ 1− 2× 4 ≥ 1 colors available for u. Thus we can color all elements of G.
This contradiction shows that in fact d(u) + d(w) ≥ 10 for every edge e = uw of G. By Theorem 4, G must contain

a 2-alternating cycle C . Remove the edges and 2-vertices of C from G, and color the remaining edges and (if appropriate)
vertices of G from their lists, which is possible by theminimality of G as a counterexample. There are now at least two colors
available for each edge of C , and so these edges can be colored by Lemma 11; and now (if we are coloring vertices) the
vertices of C are easily colored. Thus G is not a counterexample, which is a contradiction. �

References

[1] R.E.L. Aldred, N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97–104.
[2] J.C. Bermond, J.L. Fouquet, M. Habib, B. Péroche, On linear k-arboricity, Discrete Math. 52 (1984) 123–132.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] O.V. Borodin, A.V. Kostochka, D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory, Series B 71 (1997) 184–204.
[5] G.J. Chang, Algorithmic aspects of linear k-arboricity, Taiwanese J. Math. 3 (1999) 73–81.
[6] G.J. Chang, B.L. Chen, H.L. Fu, K.C. Huang, Linear k-arboricity on trees, Discrete Appl. Math. 103 (2000) 281–287.
[7] B.L. Chen, H.L. Fu, K.C. Huang, Decomposing graphs into forests of paths with size less than three, Australas. J. Combin. 3 (1991) 55–73.
[8] H.L. Fu, K.C. Huang, The linear 2-arboricity of complete bipartite graphs, Australas. J. Combin. 38 (1994) 309–318.
[9] M. Habib, P. Peroche, Some problems about linear arboricity, Discrete Math. 41 (1982) 219–220.
[10] J.F. Hou, G.Z. Liu, J.S. Cai, List edge and list total colorings of planar graphs without 4-cycles, Theoret. Comput. Sci. 369 (2006) 250–255.
[11] B. Jackson, N.C. Wormald, On linear k-arboricity of cubic graphs, Discrete Math. 162 (1996) 293–297.
[12] M. Juvan, B. Mohar, R. Skrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998) 181–188.
[13] K.W. Lih, L.D. Tong, W.F. Wang, The linear 2-arboricity of planar graphs, Graphs and Combinatorics 19 (2003) 241–248.
[14] J. Qian, W.F. Wang, The linear 2-arboricity of planar graphs without 4-cycles, J. Zhejiang Norm. Univ. 29 (2006) 121–125.
[15] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory,

Ser. B 75 (1999) 100–109.


	Planar graphs without 5-cycles or without 6-cycles
	Introduction
	Planar graphs without 5- or without 6-cycles
	Main results and their proofs
	References


