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a b s t r a c t

An edge e of a k-connected graph G is said to be a removable edge if G	e is still k-connected,
where G	 e denotes the graph obtained from G by deleting e to get G− e and, for any end
vertex of ewith degree k− 1 in G− e, say x, deleting x and then adding edges between any
pair of non-adjacent vertices inNG−e(x). Xu and Guo [Liqiong Xu, Xiaofeng Guo, Removable
edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete
Math. 308 (2008) 1726–1731] proved that a 5-connected graph G has no removable edge
if and only if G ∼= K6, using this result, they gave a construction method for 5-connected
graphs. A k-connected graph G is said to be a quasi (k+ 1)-connected if G has no nontrivial
k-vertex cut. Jiang and Su [Hongxing Jiang, Jianji Su, Minimum degree of minimally quasi
(k+1)-connected graphs, J. Math. Study 35 (2002) 187–193] conjectured that for k ≥ 4 the
minimum degree of a minimally quasi k-connected graph is equal to k− 1. In the present
paper, we prove this conjecture and prove for k ≥ 3 that a k-connected graph G has no
removable edge if and only if G is isomorphic to either Kk+1 or (when k is even) the graph
obtained from Kk+2 by removing a 1-factor. Based on this result, a construction method for
k-connected graphs is given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [5]. We consider only finite and simple graphs.
Let k be an integer such that k ≥ 2 and G be a k-connected graph. An edge e of G is said to be k-contractible if the

contraction of the edge results in a k-connected graph. Tutte [26] proved that every 3-connected graph with order at least
5 contains a 3-contractible edge, using this result, he gave a construction methods for 3-connected graphs. A construction
methods of 4-connected graphs was given by Slater [22]. A non-complete k-connected graph G is called contraction-critical
k-connected if every edge of G is not k-contractible. Contractible edges in k-connected graphs and properties of contraction-
critical k-connected graphs are investigated by Mader, Egawa, Enomoto, Ando, Kriesell, Kawarabayashi, Su Jianji, and Yuan
Xudong et al. [1–3,7,8,12–17,19,24,25].
For removable edges of k-connected graphs, Holton et al. [10] first defined removable edges in a 3-connected graph. Later,

Yin Jianhua [29] defined removable edges in a 4-connected graph.The distribution of removable edges in 3-connected and
4-connected graphs has been studied (see [23,27]). Recently, Xu and Guo [28] generalized the concept of removable edges
in a 3-connected graph and a 4-connected graph to k-connected graphs.
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Definition 1 ([28]). Let G be a k-connected graph, and let e be an edge of G. Let G	 e denote the graph obtained from G by
the following operation: (1) delete e from G to get G− e; (2) for any end vertex of ewith degree k− 1 in G− e, say x, delete
x, and then add edges between any pair of non-adjacent vertices in NG−e(x). If G 	 e is k-connected, then e is said to be a
removable edge of G, otherwise e is said to be a non-removable edge of G.

Barnette and Grunbaum [4] proved that a 3-connected graph of order at least five has a removable edge. Based on the
above graph operation and fact, a constructive characterization of minimally 3-connected graphs was given by Dawes [6],
which differs from the characterization provided by Tutte [26].
The graph C2n , for an integer n ≥ 4, is defined as follows. Let Cn = v1v2 · · · vnv1 be an n-cycle. Then C

2
n is obtained from

Cn by adding edges vivj satisfying that j ≡ i± 2 mod n, for each 1 ≤ i ≤ n.
In [29], Yin Jianhua proved that the 4-connected graph without removable edges is either C25 or C

2
6 . Based on this result,

he provided a constructive characterization of 4-connected graphs, which is simpler than Slater’s method [22].
On the other hand, Politof and Satyanarayana [20,21] introduced the concept of quasi 4-connected graphs and

investigated their structure and properties, Mader [18] introduced the concept of n+-connected graph analogous to the
quasi (n+ 1)-connected graph. Jiang Hongxing and Su Jianji [11] further investigated some properties of quasi k-connected
graphs.
Let S be a vertex cut set of a graph G with |S| = k (k ≥ 2). The vertex cut set S is said to be a nontrivial k-vertex cut of

G, if the set of the components of G− S can be partitioned into two sets, each of which has to contain at least two vertices.
A (k − 1)-connected graph is quasi k-connected if it has no nontrivial (k − 1)-vertex cut. Clearly, every k-connected graph
is quasi k-connected. A quasi k-connected graph G is minimally quasi k-connected if G − uv is not quasi k-connected for all
uv ∈ E(G). Suppose that G is a quasi k-connected, uv ∈ E(G), and G − uv is not quasi k-connected. Then either G − uv is
not (k− 1)-connected, or G− uv is (k− 1)-connected. If G− uv is (k− 1)-connected, then in G− uv there is a nontrivial
(k− 1)-vertex cut, hence |V (G)| ≥ (k− 1)+ 2× 2 = k+ 3.
For the removable edges, non-removable edges, and quasi connectivity of a graph G, the following results are given in

Refs. [28,11].

Theorem 1 ([28]). Let G be a k-connected graph of order at least k+ 3 (k ≥ 3), and xy ∈ E(G). Then xy is non-removable if and
only if there exists S ⊆ V (G − xy) with |S| = k − 1 such that G − xy − S has exactly two components A, B with |A| ≥ 2 and
|B| ≥ 2, moreover x ∈ A, y ∈ B.

Theorem 2 ([28]). Let G be a k-connected graph of order at least k + 3 (k ≥ 3). Then G has no removable edge if and only if G
is minimally quasi k-connected.

Theorem 3 ([11]). If G is minimally quasi 5-connected, then δ(G) = 4.
For minimally quasi k-connected graphs, the following conjecture was posed by Jiang and Su in [11].

Conjecture 1 ([11]). If G is a minimally quasi k-connected graph with k ≥ 4, then δ(G) = k− 1.
Using Theorem 3, Xu and Guo [28] gave a construction method for 5-connected graphs, and pointed out that if

Conjecture 1 is true then the conclusion of the following conjecture would hold.

Conjecture 2 ([28]). Let G be a k-connected (k ≥ 3). G has no removable edge if and only if either G ∼= Kk+1 for k being odd,
or G is isomorphic to either Kk+1 or H(k+2)/2 for k being even (here H(k+2)/2 denotes the graph obtained from Kk+2 by deleting
a 1-factor).

Let G be aminimally quasi k-connected graph. Let xy be an edge in G such that κ(G−xy) ≥ k−1. Then in G−xy there is a
nontrivial (k−1)-vertex cut, say S. A connected component of G−xy−S is called a (xy, S)-fragment of G. A (xy, S)-fragment
A of G is called a (xy, S)-atom of G if A has the minimum number of vertices in all (xy, S)-fragments of G for every edge xy
in G with κ(G− xy) ≥ k− 1 and every nontrivial (k− 1)-vertex cut S of G− xy. For a (xy, S)-fragment of G, the following
property is obvious.

Property 1. Let G be a minimally quasi k-connected graph, xy an edge in G such that κ(G − xy) ≥ k − 1, and S a nontrivial
(k− 1)-vertex cut of G− xy. Then (i) G− xy− S has at most three connected components; (ii) if G− xy− S has exactly three
components, then the component containing neither x nor y is a trivial component that is a (xy, S)-atom of G; (iii) if G− xy− S
has exactly two connected components, then every component has at least two vertices; (iv) if G is k-connected, then, for any
(xy, S)-fragment of G, G− xy− S has exactly two connected components, and a (xy, S)-atom of G has at least two vertices.

For a subgraph C of G, when there is no ambiguity, we write simply C for V (C) (resp. |C | for |V (C)|).

Theorem 4 ([11]). Let k be an integer such that k ≥ 3. If G be a minimally quasi k-connected graph with δ(G) = k, and let A be
a (xy, S)-atom of G. Then | A |= 2. Let x ∈ A and A = {x, z}, then xz ∈ E(G), d(x) = d(z) = k, and | N(x) ∩ N(z) |= k− 2.

In this paper, we prove that Conjecture 1 holds, and using this result prove for k ≥ 3 that a k-connected graph G has no
removable edge if and only if G is isomorphic to either Kk+1 or (when k is even) the graph obtained from Kk+2 by deleting a
1-factor. Based on this result, we give a construction method for k-connected graphs.
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2. Minimally quasi k-connected graphs

We now prove Conjecture 1.

Theorem 5. If G is a minimally quasi k-connected graph with k ≥ 3, then δ(G) = k− 1.

Proof. Assume that G is a minimally quasi k-connected graph. Since quasi k-connected graph is (k− 1)-connected, δ(G) ≥
k− 1.
If δ(G) ≥ k, then G is k-connected. Otherwise there would be a (k − 1)-vertex cut T of G. Since G is quasi k-connected

graph, T is a trivial (k− 1)-vertex cut of G, and in G− T there is a component with only one vertex, implying δ(G) = k− 1,
a contradiction.
It is easy to see that if G is both k-connected and minimally quasi k-connected, then G is a minimally k-connected graph,

and so δ(G) = k by a result on minimally k-connected graph of Halin [9]. Hence for a minimally quasi k-connected G we
have that k− 1 ≤ δ(G) ≤ k, moreover, if δ(G) = k, then G is k-connected.
If δ(G) = k, then G is both k-connected as well as minimally quasi-k-connected. For uv ∈ E(G), since G− uv is (k− 1)-

connected and is not quasi k-connected, by a discussion in introduction, we have |V (G)| ≥ k+ 3. Then, by Theorem 2, each
edge of G is not removable.
By Theorem 4, we can choose a (xz, S)-atom A of G, where A = {x, y}, xy ∈ E(G), d(x) = d(y) = k, N(x)∩N(y) = W =

{w1, w2, . . . , wk−2}, z ∈ V (G) − A − S. Let B = G − A − S, then z ∈ B. Since xy is non-removable, by Theorem 1, take a
(xy, T )-fragment C of G such that x ∈ C, y ∈ D = G− T − C . It is easy to see that A∩ C = {x}, A∩D = {y}, z ∈ B∩ (C ∪ T ),
andW ⊆ S∩ T . Noting that |W | = k−2 and |S| = |T | = k−1, ifW 6= S∩ T , then S∩ T = S = T , and so B∩D = D− y 6= ∅
and T is a (k− 1)-separator of G, which contradicts that G is k-connected. HenceW = S ∩ T . Similarly, we have S ∩ D 6= ∅,
so |S ∩ D| = 1. Let S ∩ D = {s}, then s is a unique vertex in S not adjacent to x.
For every wi ∈ W , i = 1, 2, . . . , k − 2, by Theorem 1, take a (ywi, Ti)-fragment Ci of G such that y ∈ Ci, wi ∈ Di =

G− Ti − Ci. LetMi = Ci ∩ S. In the following, i, j ∈ {1, 2, . . . , k− 2}, i 6= j.

Claim 1. A ∩ Ci = {y}, A ∩ Ti = {x}, S ∩ Di = {wi}, Mi 6= ∅. Moreover, if |Mi| = 1, then B ∩ Ci = ∅, hence |Ci| = 2.

Observe (xz, S)-atom A and (ywi, Ti)-fragment Ci of G. Clearly, y ∈ A ∩ Ci, wi ∈ S ∩ Di. Since xy, xwi ∈ E(G), x ∈ A ∩ Ti,
and so A ∩ Ci = {y}, A ∩ Ti = {x}, A ∩ Di = ∅. From N(y) = S ∪ {x}, we have S ∩ Di = {wi}, hence B ∩ Di 6= ∅. Note that
|(Ti − {x}) ∪ {wi}| = |Ti| = k− 1 and G is k-connected, so G− ((Ti − {x}) ∪ {wi}) is connected, and z ∈ B ∩ Di. In this case,
if Mi = ∅, then B ∩ Ci 6= ∅, Ti − {x} is a vertex cut of G. This implies that |Ti − {x}| ≥ k, contradicting |Ti − {x}| = k − 2.
HenceMi 6= ∅. If B ∩ Ci 6= ∅, then (Ti − {x}) ∪Mi is a vertex cut of G, so |(Ti − {x}) ∪Mi| ≥ k, implying |Mi| ≥ 2. Therefore
if |Mi| = 1, then B ∩ Ci = ∅, Ci = {y} ∪Mi, |Ci| = 2.
By Claim 1, if k = 3, then C1 ∩ A = {y}, C1 ∩ S = M1 = {s}, C1 ∩ B = ∅, D1 ∩ S = {w1}, T1 ∩ S = ∅, |T1 ∩ B| = 1.

Then C1 = {y, s}, |T1| = 2, x ∈ T1, dG(s) ≥ k = 3, and so smust be adjacent to both x and y,W = {w1, s}, contradicting
that |W | = k− 2 = 1.
Hence suppose k ≥ 4.

Claim 2. Ci ∩ Cj = {y}, Mi ∩Mj = ∅.

Observe (ywi, Ti)-fragment Ci and (ywj, Tj)-fragment Cj of G. By Claim 1, it is easy to see that y ∈ Ci ∩ Cj, x ∈ Ti ∩ Tj,
z ∈ Di ∩ Dj, wi ∈ Di ∩ (Cj ∪ Tj), wj ∈ Dj ∩ (Ci ∪ Ti). Then (Ti − Cj) ∪ (Tj − Ci) is a separator of G, |(Ti − Cj) ∪ (Tj − Ci)| ≥ k,
implying that |(Ti − Dj) ∪ (Tj − Di)| = |Ti| + |Tj| − |(Ti − Cj) ∪ (Tj − Ci)| ≤ k − 2. In this case, if |Ci ∩ Cj| ≥ 2, then
(Ti − Dj) ∪ (Tj − Di) ∪ {y} is a (k − 1)-separator of G, which contradicts that G is k-connected. Hence Ci ∩ Cj = {y}. Since
Mi ∩Mj ⊆ Ci ∩ Cj = {y} and y 6∈ Mi ∩Mj,Mi ∩Mj = ∅.

Claim 3. |Mi| ≥ 2.

First observe (xz, S)-fragment A and (ywi, Ti)-fragment Ci of G. By Claim 1, |Mi| ≥ 1, A ∩ Ci = {y}; moreover, if |Mi| = 1
and letMi = {t}, then B∩ Ci = ∅ and Ci = {y, t}. Since N(t) ⊆ Ti ∪ {y} and G is k connected, d(t) = k, N(t) = Ti ∪ {y}. Note
that t ∈ Ci and wi ∈ Di, then t 6= wi. Since ty, tx ∈ E(G), t ∈ W . Let t = wj, then Ci = {y, wj}, N(wj) = Ti ∪ {y}, wj is not
adjacent towi and is adjacent to every vertex in S − {wi, wj}.
Next observe (xz, S)-fragment A and (ywj, Tj)-fragment Cj of G. By Claim 1, S ∩ Dj = {wj} andMj 6= ∅. From the fact that

wi is the unique vertex in S − {wj} not adjacent towj, we haveMj = {wi}. ReplacingMi withMj, a similar argument shows
that B ∩ Cj = ∅, Cj = {wi, y}, N(wi) = Tj ∪ {y}, wi is not adjacent towj and is adjacent to every vertex in S − {wi, wj}.
Take a (xwi, T ′)-fragment C ′ of G such that x ∈ C ′, wi ∈ D′, where D′ = G − T ′ − C ′. For (xz, S)-fragment A and

(xwi, T ′)-fragment C ′ of G, it is easy to see that x ∈ A ∩ C ′, wi ∈ S ∩ D′, z ∈ B ∩ (C ′ ∪ T ′). Note that yx, ywi ∈ E(G), then
A∩ T ′ = {y}, A∩ C ′ = {x}. We assert |S ∩D′| ≥ 2. Otherwise, S ∩D′ = {wi}, B∩D′ 6= ∅, hence (T ′−{y})∪ {wi}would be a
(k− 1)-separator of G, contrary to G is k-connected. Note that s is a unique vertex in S not adjacent to x, so S ∩ D′ = {wi, s}.
Then we have S ∩ C ′ 6= ∅. Otherwise, B ∩ C ′ 6= ∅, (T ′ − {y}) ∪ {x}would be a (k− 1)-separator of G, a contradiction. Since
wj is a unique vertex in S − {wi} not adjacent to wi, S ∩ C ′ = {wj}. This implies that both wi and s are not adjacent to wj,
again a contradiction.
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Hence Claim 3 holds.
Now we complete the proof of Theorem 5.
By Claims 2 and 3,Mi ∩Mj = ∅, |Mi| ≥ 2, |Mj| ≥ 2. From

⋃k−2
i=1 Mi ⊆ S, we have that

2(k− 2) ≤
k−2∑
i=1

|Mi| ≤ |S| = k− 1.

This implies k ≤ 3, contrary to the assumption k ≥ 4. �

3. A recursive construction method for k-connected graphs

By the definition of a removable edge of k-connected graphs, Xu and Guo [28] defined the following operations.

Definition 2 ([28]). Let G be a k-connected graph with k ≥ 3, let e be a removable edge of G, and let H = G	 e. Then H is
said to be obtained from G by a θ−-operation, denoted by H = θ−(G), and G is said to be obtained from H by a θ+-operation,
denoted by G = θ+(H). A θ+-operation is said to be the inverse operation of θ−-operation, and vice versa.
Let G be a k-connected graph with k ≥ 3, and let e = xy be a removable edge of G. Let Ex = {xixj|xi, xj ∈ NG−e(x), xixj 6∈

E(G)}, and Let Ey = {yiyj|yi, yj ∈ NG−e(y), yiyj 6∈ E(G)}.
A θ−-operation for G is one of the following three operations:
(1) if dG(x) ≥ k+ 1 and dG(y) ≥ k+ 1, H = G	 e = θ−(G) = G− e;
(2) if dG(x) = k and dG(y) ≥ k+ 1, H = G	 e = θ−(G) = G− x+ Ex;
(3) if dG(x) = dG(y) = k, H = G	 e = θ−(G) = G− x− y+ Ex + Ey.
In order to give an exact definition of a θ+-operation, we need the following theorem.
For a k-connected graph G and a minimum vertex cut T of G, the vertex set of a connected component of G− T is called

a T -fragment of G. A subset S of V (G) is called a fragment of G if there is a minimum vertex cut T of G such that S is a
T -fragment. A fragment of G is called an end fragment of G if any of its proper subsets is not a fragment of G.

Theorem 6. Let H be a k-connected graph with k ≥ 3, let X = {x1, x2, . . . , xk−1} ⊂ V (H) and Y = {y1, y2, . . . , yk−1} ⊂ V (H).
(i) If H[X] ∼= Kk−1, then GX = (H − EX ) + x + {xxi|i = 1, 2, . . . , k − 1} + xy is k-connected if and only if κ(H − EX ) =

κ(GX − x) ≥ k− 1, where EX ⊆ E(H[X]), x 6∈ V (H), y ∈ V (H)− X;
(ii) If H[X] ∼= Kk−1 and H[Y ] ∼= Kk−1, then GXY = (H − EX − EY ) + x + y + xy + {xxi|i = 1, 2, . . . , k − 1} + {yyi|i =

1, 2, . . . , k − 1} is k-connected if and only if | X ∩ Y |≤ k − 2, κ(H − EX − EY ) = κ(GXY − x − y) ≥ k − 2, and, if
κ(H − EX − EY ) = κ(GXY − x − y) = k − 2, any end fragment of H − EX − EY contains both a vertex in X and a vertex in Y ,
where EX ⊆ E(H[X]), EY ⊆ E(H[Y ]), x, y 6∈ V (H).

Proof. The necessity is obvious. We need only prove the sufficiency.
(i) If κ(H − EX ) = κ(GX − x) ≥ k, then GX clearly is k-connected. Now suppose κ(H − EX ) = κ(GX − x) = k− 1. Let T

be any minimum vertex cut of H − EX . Since H is k-connected, any fragment of H − EX contains a vertex in X , and so T will
not be a vertex cut in GX . Hence GX is k-connected.
(ii) If κ(H− EX − EY ) = κ(GXY − x− y) ≥ k−1, then by reasoning similar to the proof of (i), GXY is k-connected. Suppose

κ(H − EX − EY ) = κ(GXY − x − y) = k − 2. For any minimum vertex cut T of H − EX − EY , since any end fragment of
H − EX − EY contains both a vertex in X and a vertex in Y , any connected component of H − EX − EY − T contains both a
vertex in X and a vertex in Y , and so any one of T , T ∪ {x}, and T ∪ {y} will not be a vertex cut of GXY . For a vertex cut S of
H − EX − EY with | S |= k− 1, any connected component of H − EX − EY − S contains either a vertex in X or a vertex in Y ,
since H is k-connected. Therefore, S is also not a vertex cut of GXY . Now it follows that GXY is k-connected. �

Definition 3. LetH be a k-connected graphwith k ≥ 3, and let X = {x1, x2, . . . , xk−1} ⊂ V (H) and Y = {y1, y2, . . . , yk−1} ⊂
V (H). Let G be a k-connected graph obtained from H by a θ+-operation. The θ+-operation is one of the following three
operations:
(1) G = θ+(H) = H + xy, where x, y ∈ V (H), and xy 6∈ E(H);
(2) H[X] ∼= Kk−1, G = θ+(H) = H − EX + x + {xxi|i = 1, 2, . . . , k − 1} + xy, where x 6∈ V (H), y ∈ V (H) − X , and

EX ⊆ E(H[X]) such that κ(H − EX ) = κ(G− x) ≥ k− 1;
(3)H[X] ∼= Kk−1 andH[Y ] ∼= Kk−1, G = θ+(H) = H−EX−EY +x+y+xy+{xxi|i = 1, 2, . . . , k−1}+{yyi|i = 1, 2, . . . ,

k−1}, where x, y 6∈ V (H), | X ∩Y |≤ k−2, and EX ⊆ E(H[X]) and EY ⊆ E(H[Y ]) such that κ(H−EX−EY ) = κ(G−x−y) ≥
k− 2, and, if κ(H − EX − EY ) = κ(G− x− y) = k− 2, any end fragment of H − EX − EY contains both a vertex in X and a
vertex in Y .

Theorem 7. Let G be a k-connected graph with k ≥ 3. Then G has no removable edge if and only if G is isomorphic to either Kk+1
or (when k is even) the graph obtained from Kk+2 by deleting a 1-factor.
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Proof. The sufficiency is obvious. We need only prove the necessity.
Suppose that G has no removable edge.
If |V (G)| ≥ k+ 3, then, by Theorems 2 and 5, G is minimally quasi k-connected and δ(G) = k− 1, contradicting that G is

k-connected. Hence k+ 1 ≤ |V (G)| ≤ k+ 2.
If |V (G)| = k+ 1, then G ∼= Kk+1.
If |V (G)| = k+ 2 and k is even, then G can only be the graph obtained from Kk+2 by removing a 1-factor .
If |V (G)| = k + 2 and k is odd, G is a spanning subgraph of Kk+2 with δ(G) = k. So G can be obtained from Kk+2 by

removing (k+ 1)/2 independent edges. Then G has a vertex of degree k+ 1 whose any incident edge would be a removable
edge of G, a contradiction.
The proof is thus completed. �

By Theorem 7, we can give a recursive construction method of k-connected graphs.

Theorem 8. Let G be a k-connected graph with k ≥ 3. Then (i) G can be transformed by a number of θ−-operations into either
Kk+1 or (when k is even) the graph H(k+2)/2 obtained from Kk+2 by deleting a 1-factor; (ii) G can be obtained from either Kk+1 or
H(k+2)/2 by a number of θ+-operations.

Proof. (i) Let G be a k-connected graph with k ≥ 3, and suppose that G is not Kk+1 or (when k is even) H(k+2)/2. Then, by
Theorem 7, G has a removable edge, say e1, and G1 = θ−(G) = G	 e1 is a k-connected graph with less edges or less vertices
than G. Repeating the above discuss, by the finiteness of G, we can obtain a series of k-connected graphs G1,G2, . . . ,Gt so
that Gi+1 = θ−(Gi), i = 1, 2, . . . , t − 1, and Gt is isomorphic to either Kk+1 or (when k is even) H(k+2)/2.
(ii) By using θ+-operations, G can be obtained from either Kk+1 or (when k is even) H(k+2)/2. �
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