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vertex of e with degree k — 1in G — e, say x, deleting x and then adding edges between any
pair of non-adjacent vertices in N¢_. (x). Xu and Guo [Ligiong Xu, Xiaofeng Guo, Removable
edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete
Math. 308 (2008) 1726-1731] proved that a 5-connected graph G has no removable edge

gﬂﬁfie edge if and only if G = Kg, using this result, they gave a construction method for 5-connected
Contractible edge graphs. A k-connected graph G is said to be a quasi (k + 1)-connected if G has no nontrivial
Quasi connectivity k-vertex cut. Jiang and Su [Hongxing Jiang, Jianji Su, Minimum degree of minimally quasi
6+ -operation (k+ 1)-connected graphs, ]. Math. Study 35 (2002) 187-193] conjectured that for k > 4 the

minimum degree of a minimally quasi k-connected graph is equal to k — 1. In the present
paper, we prove this conjecture and prove for k > 3 that a k-connected graph G has no
removable edge if and only if G is isomorphic to either Ky, or (when k is even) the graph
obtained from K}, by removing a 1-factor. Based on this result, a construction method for
k-connected graphs is given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [5]. We consider only finite and simple graphs.

Let k be an integer such that k > 2 and G be a k-connected graph. An edge e of G is said to be k-contractible if the
contraction of the edge results in a k-connected graph. Tutte [26] proved that every 3-connected graph with order at least
5 contains a 3-contractible edge, using this result, he gave a construction methods for 3-connected graphs. A construction
methods of 4-connected graphs was given by Slater [22]. A non-complete k-connected graph G is called contraction-critical
k-connected if every edge of G is not k-contractible. Contractible edges in k-connected graphs and properties of contraction-
critical k-connected graphs are investigated by Mader, Egawa, Enomoto, Ando, Kriesell, Kawarabayashi, Su Jianji, and Yuan
Xudong et al. [1-3,7,8,12-17,19,24,25].

For removable edges of k-connected graphs, Holton et al. [ 10] first defined removable edges in a 3-connected graph. Later,
Yin Jianhua [29] defined removable edges in a 4-connected graph.The distribution of removable edges in 3-connected and
4-connected graphs has been studied (see [23,27]). Recently, Xu and Guo [28] generalized the concept of removable edges
in a 3-connected graph and a 4-connected graph to k-connected graphs.
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Definition 1 (/28]). Let G be a k-connected graph, and let e be an edge of G. Let G © e denote the graph obtained from G by
the following operation: (1) delete e from G to get G — e; (2) for any end vertex of e with degree k — 1in G — e, say x, delete
x, and then add edges between any pair of non-adjacent vertices in Ng_.(x). If G © e is k-connected, then e is said to be a
removable edge of G, otherwise e is said to be a non-removable edge of G.

Barnette and Grunbaum [4] proved that a 3-connected graph of order at least five has a removable edge. Based on the
above graph operation and fact, a constructive characterization of minimally 3-connected graphs was given by Dawes [6],
which differs from the characterization provided by Tutte [26].

The graph C,f, for an integer n > 4, is defined as follows. Let C;, = viv, - - - v,v1 be an n-cycle. Then Crf is obtained from
C, by adding edges v;v; satisfying thatj =i+ 2 mod n, foreach1 <i < n.

In [29], Yin Jianhua proved that the 4-connected graph without removable edges is either C52 or Cg. Based on this result,
he provided a constructive characterization of 4-connected graphs, which is simpler than Slater’s method [22].

On the other hand, Politof and Satyanarayana [20,21] introduced the concept of quasi 4-connected graphs and
investigated their structure and properties, Mader [18] introduced the concept of n*-connected graph analogous to the
quasi (n + 1)-connected graph. Jiang Hongxing and Su Jianji [ 11] further investigated some properties of quasi k-connected
graphs.

Let S be a vertex cut set of a graph G with |S| = k (k > 2). The vertex cut set S is said to be a nontrivial k-vertex cut of
G, if the set of the components of G — S can be partitioned into two sets, each of which has to contain at least two vertices.
A (k — 1)-connected graph is quasi k-connected if it has no nontrivial (k — 1)-vertex cut. Clearly, every k-connected graph
is quasi k-connected. A quasi k-connected graph G is minimally quasi k-connected if G — uv is not quasi k-connected for all
uv € E(G). Suppose that G is a quasi k-connected, uv € E(G), and G — uv is not quasi k-connected. Then either G — uv is
not (k — 1)-connected, or G — uv is (k — 1)-connected. If G — uv is (k — 1)-connected, then in G — uv there is a nontrivial
(k — 1)-vertex cut, hence [V(G)| > (k—1)+2 x 2=k + 3.

For the removable edges, non-removable edges, and quasi connectivity of a graph G, the following results are given in
Refs. [28,11].

Theorem 1 ([28]). Let G be a k-connected graph of order at least k + 3 (k > 3), and xy € E(G). Then xy is non-removable if and
only if there exists S C V(G — xy) with |S| = k — 1 such that G — xy — S has exactly two components A, B with |A| > 2 and
|B| > 2, moreover x € A,y € B.

Theorem 2 ([28]). Let G be a k-connected graph of order at least k + 3 (k > 3). Then G has no removable edge if and only if G
is minimally quasi k-connected.

Theorem 3 ([11]). If Gis minimally quasi 5-connected, then §(G) = 4.

For minimally quasi k-connected graphs, the following conjecture was posed by Jiang and Suin [11].

Conjecture 1 ([11]). If G is a minimally quasi k-connected graph with k > 4, then §(G) = k — 1.

Using Theorem 3, Xu and Guo [28] gave a construction method for 5-connected graphs, and pointed out that if
Conjecture 1 is true then the conclusion of the following conjecture would hold.

Conjecture 2 ([28]). Let G be a k-connected (k > 3). G has no removable edge if and only if either G = K1 for k being odd,
or G is isomorphic to either Kiy1 or Hy42),2 for k being even (here H.2) 2 denotes the graph obtained from K., by deleting
a 1-factor).

Let G be a minimally quasi k-connected graph. Let xy be an edge in G such that « (G—xy) > k— 1. Thenin G —xy thereis a
nontrivial (k— 1)-vertex cut, say S. A connected component of G — xy — S is called a (xy, S)-fragment of G. A (xy, S)-fragment
A of G is called a (xy, S)-atom of G if A has the minimum number of vertices in all (xy, S)-fragments of G for every edge xy
in G with ¥ (G — xy) > k — 1 and every nontrivial (k — 1)-vertex cut S of G — xy. For a (xy, S)-fragment of G, the following
property is obvious.

Property 1. Let G be a minimally quasi k-connected graph, xy an edge in G such that k(G — xy) > k — 1, and S a nontrivial
(k — 1)-vertex cut of G — xy. Then (i) G — xy — S has at most three connected components; (ii) if G — xy — S has exactly three
components, then the component containing neither x nor y is a trivial component that is a (xy, S)-atom of G; (iii) if G—xy — S
has exactly two connected components, then every component has at least two vertices; (iv) if G is k-connected, then, for any
(xy, S)-fragment of G, G — xy — S has exactly two connected components, and a (xy, S)-atom of G has at least two vertices.

For a subgraph C of G, when there is no ambiguity, we write simply C for V(C) (resp. |C| for [V (C)]).
Theorem 4 ([11]). Let k be an integer such that k > 3. If G be a minimally quasi k-connected graph with §(G) = k, and let A be
a (xy,S)-atomof G.Then | A |= 2. Let x € Aand A = {x, z}, then xz € E(G), d(x) = d(z) = k,and | N(x) "N N(z) |= k — 2.

In this paper, we prove that Conjecture 1 holds, and using this result prove for k > 3 that a k-connected graph G has no
removable edge if and only if G is isomorphic to either K or (when k is even) the graph obtained from Kj , by deleting a
1-factor. Based on this result, we give a construction method for k-connected graphs.
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2. Minimally quasi k-connected graphs
We now prove Conjecture 1.

Theorem 5. If G is a minimally quasi k-connected graph with k > 3, then 6(G) = k — 1.

Proof. Assume that G is a minimally quasi k-connected graph. Since quasi k-connected graph is (k — 1)-connected, §(G) >
k—1.

If 5(G) > k, then G is k-connected. Otherwise there would be a (k — 1)-vertex cut T of G. Since G is quasi k-connected
graph, T is a trivial (k — 1)-vertex cut of G, and in G — T there is a component with only one vertex, implying §(G) = k — 1,
a contradiction.

It is easy to see that if G is both k-connected and minimally quasi k-connected, then G is a minimally k-connected graph,
and so §(G) = k by a result on minimally k-connected graph of Halin [9]. Hence for a minimally quasi k-connected G we
have thatk — 1 < §(G) < k, moreover, if §(G) = k, then G is k-connected.

If §(G) = k, then G is both k-connected as well as minimally quasi-k-connected. For uv € E(G), since G — uv is (k — 1)-
connected and is not quasi k-connected, by a discussion in introduction, we have |V (G)| > k 4 3. Then, by Theorem 2, each
edge of G is not removable.

By Theorem 4, we can choose a (xz, S)-atom A of G, where A = {x, y}, xy € E(G), d(x) =d(y) =k, Nk)NN(@y) =W =
{wy, wy, ..., wr2}, z€ V(G) —A—S.Let B =G — A — S, then z € B. Since xy is non-removable, by Theorem 1, take a
(xy, T)-fragment C of Gsuchthatx € C, y e D=G—T —C.Itiseasytoseethat ANC = {x}, AND = {y}, z € BN(CUT),
and W € SNT.Noting that |W| =k—2and |S| = |T| = k—1,if W #SNT,thenSNT =S =T,andsoBND=D—y # (}
and T is a (k — 1)-separator of G, which contradicts that G is k-connected. Hence W = S N T. Similarly, we have SN\ D # ,
so |SND| = 1.Let S N D = {s}, then s is a unique vertex in S not adjacent to x.

Forevery w; € W, i = 1,2,...,k — 2, by Theorem 1, take a (yw;, T;)-fragment C; of G such thaty € C;, w; € D; =
G —T; — G.Let M; = G; N S. In the following, i,j € {1,2, ...,k — 2}, i #].

Claim 1. ANG = {y}, ANT; = {x}, SN D; = {w;}, M; # @. Moreover, if |M;| = 1, then BN C; = @, hence |G| = 2.

Observe (xz, S)-atom A and (yw;, T;)-fragment C; of G. Clearly,y € AN G, w; € S N D;. Since xy, xw; € E(G), x € ANT;,
andsoANG ={y}, ANT; = {x}, AND; = #. From N(y) = S U {x}, we have S N D; = {w;}, hence BN D; # . Note that
[(T; — {x}) U{w;}| = |Ti| = k — 1 and G is k-connected, so G — ((T; — {x}) U {w;}) is connected, and z € BN D;. In this case,
if M; = ¢, then BN C; # @, T; — {x} is a vertex cut of G. This implies that |T; — {x}| > k, contradicting |T; — {x}| = k — 2.
Hence M; # @.1f BN C; # @, then (T; — {x}) U M; is a vertex cut of G, so |(T; — {x}) U M;| > k, implying |M;| > 2. Therefore
if IMj] =1,thenBN G =0,C = {y} UM, |G| = 2.

ByClalm 1,ifk = 3,thenC1 NA= {y}, GNS =M = {S}, CiNB = 78 DiNsS = {U)]}, NS = a, |T] ﬂB| =1
Then C; = {y, s}, |T1| = 2, x € Ty, dg(s) > k = 3, and so s must be adjacent to both x and y, W = {w1, s}, contradicting
that  W|=k—-2=1.

Hence suppose k > 4.

Claim2. ;NG = {y}, Mi N M; = @.

Observe (yw;, T;)-fragment G; and (ywj, Tj)-fragment G of G. By Claim 1, it is easy to see thaty € G NG, x € ;N T,
zeDiND;, wi e DiN(GUT)), w; € DN (GUT;). Then (T; — ) U (T; — ) is a separator of G, |(T; — G) U (T — G)| > k,
implying that [(T; — D;) U (T; — Dy)| = |Ti| + |Tj| — |(Ti — G) U (Tj — G)| < k — 2. In this case, if |GG N Cj| > 2, then
(T; — Dj) U (Tj — D) U {y} is a (k — 1)-separator of G, which contradicts that G is k-connected. Hence C; N (; = {y}. Since
M;NM; € GNG = {y}andy & M; N M, M; N M; = .

Claim 3. |M;| > 2.

First observe (xz, S)-fragment A and (yw;, T;)-fragment C; of G. By Claim 1, |[M;| > 1,A N G = {y}; moreover, if |M;| = 1
and let M; = {t},thenBNC; = P and G; = {y, t}. Since N(t) C T; U {y} and G is k connected, d(t) = k, N(t) = T; U {y}. Note
thatt € G and w; € D;, thent # w;. Since ty, tx € E(G),t € W.Lett = wj, then GG = {y, w;}, N(wj) = T; U {y}, wj is not
adjacent to w; and is adjacent to every vertex in S — {w;, w;}.

Next observe (xz, S)-fragment A and (ywj, Tj)-fragment G; of G. By Claim 1, S N D; = {w;} and M; # @. From the fact that
w; is the unique vertex in S — {wj;} not adjacent to wj, we have M; = {w;}. Replacing M; with M;, a similar argument shows
that BN G =90, G = {w;, ¥}, N(w;) = T; U {y}, w; is not adjacent to w; and is adjacent to every vertex in S — {wj;, w;}.

Take a (xw;, T')-fragment C’ of G such that x € C/, w; € D', where D' = G — T’ — (C'. For (xz, S)-fragment A and
(xw;, T')-fragment C’ of G, it is easy to see thatx € ANC’, w; € SND’, z € BN (C’' UT'). Note that yx, yw; € E(G), then
ANT = {y}, ANC' = {x}. We assert |[SND'| > 2. Otherwise,SND" = {w;}, BND" # &, hence (T’ — {y}) U {w;} would be a
(k — 1)-separator of G, contrary to G is k-connected. Note that s is a unique vertex in S not adjacent to x,so S N D’ = {wj, s}.
Then we have S N C’ # (. Otherwise, BN C’ # @, (T’ — {y}) U {x} would be a (k — 1)-separator of G, a contradiction. Since
wj is a unique vertex in S — {w;} not adjacent to w;, S N C" = {wj;}. This implies that both w; and s are not adjacent to wj,
again a contradiction.
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Hence Claim 3 holds.
Now we complete the proof of Theorem 5.
By Claims 2 and 3, M; N M; = @, [M;| > 2, |M;| > 2. From |J-? M; C S, we have that

k—2
20k—2) <Y M| < IS|=k—1.
i=1

This implies k < 3, contrary to the assumptionk > 4. O

3. Arecursive construction method for k-connected graphs
By the definition of a removable edge of k-connected graphs, Xu and Guo [28] defined the following operations.

Definition 2 (/28]). Let G be a k-connected graph with k > 3, let e be a removable edge of G, and let H = G & e. Then H is
said to be obtained from G by a 0 ~-operation, denoted by H = 6~ (G), and G is said to be obtained from H by a 8+ -operation,
denoted by G = 0 (H). A " -operation is said to be the inverse operation of 8 ~-operation, and vice versa.

Let G be a k-connected graph with k > 3, and let e = xy be a removable edge of G. Let Ey = {xiX;|x;, X; € Ng_(X), X;iX; &
E(G)}, and Let Ey, = {yiyjlyi, i € No—e(¥), yiy; € E(G)}.

A 6~ -operation for G is one of the following three operations:

(1)ifdg(x) >k+1anddc(y) >k+1,H=G6Se=0"(G) =G —e;

(2)ifdg(x) = kanddg(y) >k+1,H=G6Se=0"(G) =G —x+ E,;

(3)ifde(x) =dc(y) =kkH=G60e=60"(G) =G—x—y+E +E.

In order to give an exact definition of a 9" -operation, we need the following theorem.

For a k-connected graph G and a minimum vertex cut T of G, the vertex set of a connected component of G — T is called
a T-fragment of G. A subset S of V(G) is called a fragment of G if there is a minimum vertex cut T of G such that S is a
T-fragment. A fragment of G is called an end fragment of G if any of its proper subsets is not a fragment of G.

Theorem 6. Let H be a k-connected graph withk > 3,let X = {x1, X2, ..., X1} CVH)andY = {y1,¥2, ..., Yk-1} C V(H).

(1) If HIX] = Ky—1, then Gx = (H — Ex) +x+ {xxi|i = 1,2, ...,k — 1} + xy is k-connected if and only if k(H — Ex) =
k(Gx —x) > k— 1, where Ex C E(H[X]),x ¢ V(H), y e V(H) — X;

(i) If HIX] = Ky and H[Y] = Ky_q, thenGyy = (H — Ex —Ey) +x+y+xy+{xxili = 1,2, ...,k — 1} + {yyili =
1,2,...,k — 1} is k-connected if and only if | X NY |< k — 2, k(H — Ex — Ey) = «k(Gxyy — X —y) > k — 2, and, if
k(H — Ex — Ey) = k(Gxy —x —y) = k — 2, any end fragment of H — Ex — Ey contains both a vertex in X and a vertexin Y,
where Ex C E(H[X]), Ey C E(H[Y]),x,y &€ V(H).

Proof. The necessity is obvious. We need only prove the sufficiency.

(i) If« (H — Ex) = k(Gx — x) > k, then Gy clearly is k-connected. Now suppose k (H — Ex) = k(Gx —x) =k — 1. Let T
be any minimum vertex cut of H — Ex. Since H is k-connected, any fragment of H — Ex contains a vertex in X, and so T will
not be a vertex cut in Gx. Hence Gy is k-connected.

(ii) If « (H —Ex —Ey) = k(Gxy —x—Y) > k — 1, then by reasoning similar to the proof of (i), Gxy is k-connected. Suppose
k(H — Ex — Ey) = k(Gxy — x —y) = k — 2. For any minimum vertex cut T of H — Ex — Ey, since any end fragment of
H — Ex — Ey contains both a vertex in X and a vertex in Y, any connected component of H — Ex — Ey — T contains both a
vertex in X and a vertex in Y, and so any one of T, T U {x}, and T U {y} will not be a vertex cut of Gxy. For a vertex cut S of
H — Ex — Ey with | S |= k — 1, any connected component of H — Ex — Ey — S contains either a vertex in X or a vertexin Y,
since H is k-connected. Therefore, S is also not a vertex cut of Gyy. Now it follows that Gyy is k-connected. O

Definition 3. Let H be a k-connected graphwith k > 3,and letX = {x1, X2, ..., %1} CV(H)andY = {y1,¥2, ..., Yk-1} C
V(H). Let G be a k-connected graph obtained from H by a 81 -operation. The ™ -operation is one of the following three
operations:

(1)G=07(H) = H + xy, wherex,y € V(H),and xy € E(H);

(2Q)H[X] = K1, G =0TH) = H —Ex +x+ {xx]i = 1,2,...,k— 1} + xy, wherex ¢ V(H),y € V(H) — X, and
Ex C E(H[X]) suchthatk(H — Ex) = k(G—x) >k —1;

(3)H[X] = Ki_1and H[Y] = Ki_1,G =0T (H) = H—Ex —Ey +x+y+xy+{xxli= 1,2, ..., k—=1}+{yyli= 1,2, ...,
k—1},wherex,y € V(H),| XNY |< k—2,and Ex € E(H[X]) andEy C E(H[Y]) suchthatx(H—Ex —Ey) = k(G—x—y) >
k—2,and, ifx(H — Ex — Ey) = k(G —x —y) = k — 2, any end fragment of H — Ex — Ey contains both a vertex in X and a
vertexinY.

Theorem 7. Let G be a k-connected graph with k > 3. Then G has no removable edge if and only if G is isomorphic to either Ky, 1
or (when k is even) the graph obtained from K, by deleting a 1-factor.
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Proof. The sufficiency is obvious. We need only prove the necessity.

Suppose that G has no removable edge.

If |V(G)| = k+ 3, then, by Theorems 2 and 5, G is minimally quasi k-connected and §(G) = k — 1, contradicting that G is
k-connected. Hence k + 1 < |V(G)| < k+ 2.

If|V(G)| = k+ 1, then G = Ky 1.

If |[V(G)| = k 4 2 and k is even, then G can only be the graph obtained from Kj, by removing a 1-factor.

If [V(G)] = k + 2 and k is odd, G is a spanning subgraph of Ky, with §(G) = k. So G can be obtained from K, by
removing (k 4+ 1)/2 independent edges. Then G has a vertex of degree k + 1 whose any incident edge would be a removable
edge of G, a contradiction.

The proof is thus completed. O

By Theorem 7, we can give a recursive construction method of k-connected graphs.

Theorem 8. Let G be a k-connected graph with k > 3. Then (i) G can be transformed by a number of 0~ -operations into either
Ki41 or (when k is even) the graph H .2, obtained from K, by deleting a 1-factor; (ii) G can be obtained from either K1 or
Hk42)/2 by a number of 0 -operations.

Proof. (i) Let G be a k-connected graph with k > 3, and suppose that G is not Ki; or (when k is even) H42),2. Then, by
Theorem 7, G has a removable edge, say e, and G; = 6~ (G) = G S ey is a k-connected graph with less edges or less vertices
than G. Repeating the above discuss, by the finiteness of G, we can obtain a series of k-connected graphs G1, G, ..., G; o
that Gi = 607(Gy), i=1,2,...,t — 1,and G, is isomorphic to either Ky, or (when k is even) H4) 2.

(ii) By using 6+ -operations, G can be obtained from either Kj..1 or (when k is even) Hy42y2. O
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