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a b s t r a c t

In this paper, we investigate the existence of resolvable group divisible designs (RGDDs)
with block size four, group-type hn and general index λ. The necessary conditions for the
existence of such a design are n ≥ 4, hn ≡ 0 (mod 4) and λh(n − 1) ≡ 0 (mod 3). These
necessary conditions are shown to be sufficient for all λ ≥ 2, with the definite exceptions
of (λ, h, n) ∈ {(3, 2, 6)} ∪ {(2j+ 1, 2, 4) : j ≥ 1}. The known existence result for λ = 1 is
also improved.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a set of positive integers and let λ be a positive integer. A group divisible design (GDD), denoted by (K , λ)-GDD,
is a triple (X,G,B)where:
1. X is a finite set of points,
2. G is a set of subsets of X , called groups, which partition X ,
3. B is a collection of subsets of X with sizes from K , called blocks, such that every pair of points from distinct groups occurs
in exactly λ blocks, and

4. no pair of points belonging to a group occurs in any block.

The group-type (or type) of the GDD is the multiset {|G| : G ∈ G}. An ‘‘exponential’’ notation is usually used to describe
the group-type: a type 1i2j3k . . . denotes i occurrences of 1, j occurrences of 2, etc. When K = {k}, we write (K , λ)-GDD as
(k, λ)-GDD. Further, we denote (K , 1)-GDD as K -GDD and (k, 1)-GDD as k-GDD.
A (K , λ)-GDD is said to be resolvable and denoted by (K , λ)-RGDD if its blocks can be partitioned into parallel classes each

of which partitions the set of points.
Resolvable groupdivisible designs have been instrumental in the construction of other types of designs.Many researchers

have been involved in investigating the existence of resolvable group divisible designs. Simple counting arguments show
that if there is a (k, λ)-RGDD of type hn, then

n ≥ k,
hn ≡ 0 (mod k) and
λh(n− 1) ≡ 0 (mod k− 1).

The above necessary conditions for the existence of a (k, λ)-RGDD of type hn have been proved to be sufficient for
k = 3 (see [1,17,19]), with the definite exception of (3, λ)-RGDDs of type hn for (λ, h, n) ∈ {(1, 2, 6), (1, 6, 3)} ∪ {(2j +
1, 2, 3), (4j + 2, 1, 6) : j ≥ 0}. However, the case for k = 4 remains open despite the effort of many authors (see [7–9,
11–15,18,20,23–25]), and we have the following known results.
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Theorem 1.1. The necessary conditions for the existence of a (4, 1)-RGDD of type hn, namely, n ≥ 4, hn ≡ 0 (mod 4) and
h(n− 1) ≡ 0 (mod 3), are also sufficient except for (h, n) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting:
1. h = 2 and n ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 142, 178, 184, 202, 214, 238, 250, 334, 346}; h = 10 and
n ∈ {4, 34, 52, 94}; h ∈ [14, 454] ∪ {478, 502, 514, 526, 614, 626, 686} and n ∈ {10, 70, 82}.

2. h = 6 and n ∈ {6, 54, 68}; h = 18 and n ∈ {18, 38, 62}.
3. h = 9 and n = 44.
4. h = 12 and n = 27; h = 24 and n = 23; h = 36 and n ∈ {11, 14, 15, 18, 23}.

Theorem 1.2. The necessary conditions for the existence of a (4, 3)-RGDD of type hn, namely, n ≥ 4 and hn ≡ 0 (mod 4), are
also sufficient except for (h, n) ∈ {(2, 4), (2, 6)} and possibly excepting (h, n) = (2, 54).

In this paper, the main focus of our attention will be on the existence of (4, λ)-RGDDs of type hn with general index
λ. We will show that the necessary conditions for the existence of such designs are also sufficient for all λ ≥ 2, with the
definite exceptions of (λ, h, n) ∈ {(3, 2, 6)} ∪ {(2j+ 1, 2, 4) : j ≥ 1}. We will also improve the known existence result for
(4, 1)-RGDDs.

2. Updating the cases for λ = 1, 3

In this section, we shall improve the known results on the existence of (4, 1)-RGDDs and (4, 3)-RGDDs.

Theorem 2.1. The necessary conditions for the existence of a (4, 1)-RGDD of type hn, namely, n ≥ 4, hn ≡ 0 (mod 4) and
h(n− 1) ≡ 0 (mod 3), are also sufficient except for (h, n) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting:
1. h = 2 and n ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 142, 178, 184, 202, 214, 238, 250, 334, 346}; h = 10 and
n ∈ {4, 34, 52, 94}; h ∈ [14, 454] ∪ {478, 502, 514, 526, 614, 626, 686} and n ∈ {10, 70, 82}.

2. h = 6 and n ∈ {6, 54, 68}; h = 18 and n ∈ {18, 38, 62}.
3. h = 9 and n = 44.
4. h = 24 and n = 23; h = 36 and n ∈ {11, 14, 15, 18, 23}.

Proof. By Theorem 1.1, we only need to construct a (4, 1)-RGDD of type 1227. Let the point set be (Z104 ∪ {x, y, z, w})× Z3,
and let the group set be {{j, j+ 26, j+ 52, j+ 78} × Z3 : j = 0, . . . , 25} ∪ {{x, y, z, w} × Z3}. Below are the required base
blocks.

{(25, 0), (18, 2), (13, 1), (x, 0)}, {(3, 0), (7, 1), (90, 2), (y, 0)},
{(52, 0), (88, 1), (98, 2), (z, 0)}, {(96, 0), (20, 1), (54, 2), (w, 0)},
{(0, 0), (34, 2), (45, 0), (53, 2)}, {(11, 0), (35, 2), (77, 1), (99, 2)},
{(102, 0), (64, 0), (78, 2), (84, 0)}, {(71, 0), (72, 2), (33, 2), (56, 2)},
{(47, 0), (101, 2), (38, 1), (43, 0)}, {(73, 0), (19, 2), (27, 0), (58, 1)},
{(14, 0), (75, 0), (86, 0), (100, 1)}, {(2, 0), (12, 2), (39, 2), (61, 2)},
{(10, 0), (29, 2), (82, 2), (1, 0)}, {(9, 0), (59, 0), (83, 0), (6, 2)},
{(28, 0), (57, 2), (16, 2), (26, 2)}, {(92, 0), (44, 1), (23, 0), (17, 0)},
{(97, 0), (85, 0), (74, 1), (37, 0)}, {(62, 0), (21, 2), (70, 0), (69, 0)},
{(31, 0), (48, 2), (51, 1), (15, 1)}, {(67, 0), (76, 1), (89, 2), (46, 0)},
{(80, 0), (55, 0), (49, 1), (36, 2)}, {(65, 0), (5, 2), (40, 1), (60, 0)},
{(66, 0), (32, 0), (103, 0), (68, 2)}, {(95, 0), (93, 0), (63, 1), (4, 0)},
{(8, 0), (22, 0), (50, 0), (79, 1)}, {(42, 0), (81, 1), (24, 2), (41, 2)},
{(94, 0), (91, 0), (87, 1), (30, 1)}.

Here, we first develop these blocks (−, mod 3) to get a parallel class. Then, we develop this parallel class (mod 104, −) to
obtain the (4, 1)-RGDD of type 1227 as required. �

Theorem 2.2. The necessary conditions for the existence of a (4, 3)-RGDD of type hn, namely, n ≥ 4 and hn ≡ 0 (mod 4), are
also sufficient except for (h, n) ∈ {(2, 4), (2, 6)}.

Proof. By Theorem 1.2, we only need to construct a (4, 3)-RGDD of type 254. Let the point set be Z106 ∪ {x, y}, and let the
group set be {{j, j+ 53} : j = 0, . . . , 52} ∪ {{x, y}}. Below are the required base blocks.

{x, 51, 23, 47}, {y, 81, 38, 7}, {0, 80, 19, 25},
{58, 67, 73, 105}, {87, 11, 82, 103}, {54, 84, 102, 94},
{17, 74, 69, 14}, {61, 3, 68, 43}, {30, 22, 34, 55},
{9, 60, 96, 20}, {15, 27, 83, 4}, {36, 32, 88, 97},
{6, 16, 62, 45}, {72, 89, 79, 63}, {2, 41, 21, 75},
{35, 40, 18, 42}, {95, 93, 24, 46}, {50, 86, 66, 44},
{52, 65, 8, 85}, {29, 77, 64, 5}, {104, 92, 78, 1},
{91, 59, 90, 48}, {10, 56, 28, 13}, {76, 12, 39, 53},
{26, 57, 70, 49}, {71, 99, 37, 98}, {100, 31, 101, 33}.
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Here, the above base blocks form a parallel class. Then, we develop this parallel class +1 mod 106 to obtain a (4, 3)-RGDD
of type 254 as required. �

3. Recursive constructions

To describe our recursive constructions, we need the following auxiliary designs. For more detailed information on some
of these related combinatorial structures, the reader is referred to [2,3,26].
A (K , λ)-frame is a GDD (X,G,B) in which the collection of blocks B can be partitioned into holey parallel classes each

of which partitions X \G for some G ∈ G. A uniform frame is a frame in which all groups are of the same size. The group-type
(or type) of the frame is the multiset {|G| : G ∈ G}. As with GDDs we shall use an ‘‘exponential’’ notation to describe the
group-type. The following results are known.

Theorem 3.1 ([4,6,10,13,16,20,28]). There exists a (4, 1)-frame of type hu if and only if u ≥ 5, h ≡ 0 (mod 3) and h(u− 1) ≡
0 (mod 4), except possibly where:

1. h = 36 and u = 12;
2. h ≡ 6 (mod 12) and
(a) h = 6 and u ∈ {7, 23, 27, 35, 39, 47};
(b) h = 30 or h ∈ {n : 66 ≤ n ≤ 2190} and u ∈ {7, 23, 27, 39, 47};
(c) h ∈ {42, 54} ∪ {n : 2202 ≤ n ≤ 11238} and u ∈ {23, 27};
(d) h = 18 and u ∈ {15, 23, 27}.

A transversal design (TD) TDλ(k, n) is a GDD of group-type nk with block size k and index λ. A TDλ(k, n) is resolvable if the
corresponding GDD is resolvable. When λ = 1, we write TDλ(k, n) as TD(k, n). A resolvable TD(k, n) (denoted by RTD(k, n))
is equivalent to a TD(k+1, n). It is well known that the existence of a TD(k, n) is equivalent to the existence of k−2mutually
orthogonal Latin squares (MOLS) of order n. In this paper, we mainly employ the following known results on RTDs.

Lemma 3.2 ([3]). An RTD(4, n) exists for all n ≥ 4 except for n = 6 and possibly excepting n = 10.

To obtain our main results, we shall use the following basic constructions. The proofs for these can be found in [5].

Construction 3.3 (Breaking up Groups). If there exist a (k, λ)-RGDD of type (hm)u and a (k, λ)-RGDD of type hm, then there
exists a (k, λ)-RGDD of type hmu.

Construction 3.4 (Weighting). Let (X,G,B) be a GDD, and let w : X → Z+ ∪ {0} be a weight function on X. Suppose that for
each block B ∈ B , there exists a (k, λ)-frame of type {w(x) : x ∈ B}. Then there is a (k, λ)-frame of type {

∑
x∈Gw(x) : G ∈ G}.

Construction 3.5 (Inflating RGDDs by RTDs). If there exist a (k, λ)-RGDD of type hu and an RTDµ(k, m), then there exists a
(k, λµ)-RGDD of type (mh)u.

Construction 3.6 (Frame Constructions). Suppose there is a (k, λ)-frame with type T = {ti : i = 1, 2, . . . , n}. Suppose also
that t|ti and that there exists a (k, λ)-RGDD of type t1+ti/t for i = 1, 2, . . . , n. Then there exists a (k, λ)-RGDD of type tu where
u = 1+

∑n
i=1

ti
t .

4. (4, 2)-RGDDs of type hn

In this section, we deal with the case of λ = 2. It is easy to see that the necessary conditions for the existence of (4, 2)-
RGDDs of type hn are the same as those of (4, 1)-RGDDs. Since the existence of (4, 1)-RGDDs simply implies that of (4, 2)-
RGDDs, we only need to deal with the cases undetermined in Theorem 2.1.

Lemma 4.1. There exists a (4, 2)-RGDD of type 24.

Proof. Let the point set be I4 × Z2, and let the group set be {{j} × Z2 : j = 0, 1, 2, 3}. Below are the required base blocks.

{(0, 0), (1, 0), (2, 0), (3, 0)},
{(0, 0), (1, 0), (2, 1), (3, 1)},
{(0, 1), (1, 0), (2, 1), (3, 0)},
{(0, 0), (1, 1), (2, 1), (3, 0)}.

Here, the single base block in each row gives a parallel class when it is developed by (−, mod 2). In total, we have 4 such
parallel classes. �

Lemma 4.2. There exists a (4, 2)-RGDD of type 210.
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Proof. Let the point set be (Z6 × I3) ∪ {x, y}, and let the group set be {{i, i + 3} × {j} : i = 0, 1, 2, j = 0, 1, 2} ∪ {{x, y}}.
Below are the required base blocks.

{x, (0, 0), (0, 1), (0, 2)}, {x, (0, 0), (4, 1), (2, 2)},
{y, (1, 0), (1, 1), (1, 2)}, {y, (1, 0), (5, 1), (3, 2)},
{(2, 0), (3, 0), (4, 1), (5, 1)}, {(2, 0), (4, 0), (1, 1), (3, 1)},
{(4, 0), (5, 0), (2, 2), (3, 2)}, {(3, 0), (5, 0), (0, 2), (4, 2)},
{(2, 1), (3, 1), (4, 2), (5, 2)}, {(0, 1), (2, 1), (1, 2), (5, 2)}.

Here, both the 5 base blocks listed in the left-hand column and the right-hand column form a parallel class. Then, we develop
these two parallel classes (mod 6,−) to obtain the RGDD as required. �

Lemma 4.3. There exists a (4, 2)-RGDD of type 34.

Proof. Let the point set be I3 × I4, and let the group set be {I3 × {j} : j = 0, 1, 2, 3}. Below are the required blocks.

{(0, 0), (0, 1), (0, 2), (0, 3)}, {(1, 0), (1, 1), (1, 2), (1, 3)}, {(2, 0), (2, 1), (2, 2), (2, 3)},
{(0, 0), (0, 1), (1, 2), (1, 3)}, {(1, 0), (1, 1), (2, 2), (2, 3)}, {(2, 0), (2, 1), (0, 2), (0, 3)},
{(0, 0), (1, 1), (0, 2), (2, 3)}, {(1, 0), (2, 1), (1, 2), (0, 3)}, {(2, 0), (0, 1), (2, 2), (1, 3)},
{(0, 0), (1, 1), (2, 2), (0, 3)}, {(1, 0), (2, 1), (0, 2), (1, 3)}, {(2, 0), (0, 1), (1, 2), (2, 3)},
{(0, 0), (2, 1), (1, 2), (2, 3)}, {(1, 0), (0, 1), (2, 2), (0, 3)}, {(2, 0), (1, 1), (0, 2), (1, 3)},
{(0, 0), (2, 1), (2, 2), (1, 3)}, {(1, 0), (0, 1), (0, 2), (2, 3)}, {(2, 0), (1, 1), (1, 2), (0, 3)}.

Here, the blocks in each row form a parallel class. �

Lemma 4.4. There exists a (4, 2)-RGDD of type 64.

Proof. Let the point set be I4 × Z6, and let the group set be {{j} × Z6 : j = 0, 1, 2, 3}. Below are the required base blocks.

{(0, 0), (1, 0), (2, 0), (3, 0)}, {(0, 0), (1, 2), (2, 3), (3, 0)},
{(0, 1), (1, 1), (2, 2), (3, 2)}, {(0, 1), (1, 4), (2, 4), (3, 5)},
{(0, 2), (1, 3), (2, 1), (3, 5)}, {(0, 2), (1, 5), (2, 1), (3, 4)},
{(0, 3), (1, 2), (2, 5), (3, 4)}, {(0, 3), (1, 1), (2, 5), (3, 1)},
{(0, 4), (1, 5), (2, 4), (3, 3)}, {(0, 4), (1, 0), (2, 2), (3, 3)},
{(0, 5), (1, 4), (2, 3), (3, 1)}, {(0, 5), (1, 3), (2, 0), (3, 2)}.

Here, both of the 6 base blocks listed in the left-hand column and the right-hand column form a parallel class. Then, we
develop these two parallel classes (−, mod 6) to obtain the RGDD as required. �

Lemma 4.5. There exists a (4, 2)-RGDD of type 66.

Proof. Let the point set be Z36, and let the group set be {{j, j+ 6, j+ 12, j+ 18, j+ 24, j+ 30} : j = 0, 1, 2, 3, 4, 5}. Below
are the required base blocks.

{2, 28, 30, 35}, {3, 7, 24, 32}, {13, 17, 33, 34},
{3, 5, 8, 30},
{0, 1, 10, 23}.

Here, all the base blocks are developed by+1mod 36. The blocks in the first row generate one parallel class when developed
by+12 mod 36 andgive in total 12 such classes. Each of the blocks in the second rowand the third rowgenerates oneparallel
class when developed by+4 mod 36. �

To get a conclusive result on the existence of (4, 2)-RGDDs, we need the existence results for (4, 2)-frames. To establish
the existence results for (4, 2)-frames, we need the concept of skew Room frames.
Let X be a set, and let {H1, . . . ,Hn} be a partition of X . An {H1, . . . ,Hn}-Room frame is an |X | × |X | array, F , indexed by X ,

which satisfies the properties:

1. every cell either is empty or contains an unordered pair of symbols of X ,
2. the subarrays H2k are empty, for 1 ≤ k ≤ n (these subarrays are referred to as holes),
3. each symbol of X \ Hk occurs precisely once in row (or column) r , where r ∈ Hk,
4. the pairs occurring in F are precisely those {i, j}where (i, j) ∈ X2 \ ∪nk=1 H

2
k .

A skew Room frame is a Room frame in which cell (i, j) is occupied if and only if cell (j, i) is empty.
The type of an {H1, . . . ,Hn}-Room frame F will be the multiset {|H1|, . . . , |Hn|}. We will say that F has type t

u1
1 · · · t

uk
k

provided there are uj Hi’s of cardinality tj, for 1 ≤ j ≤ k.
From a skewRoom frame of type hn one can get a 4-GDD of type (6h)n (see [21]). The 4-GDDhas groupsHi×Z6, 1 ≤ i ≤ n.

The block set B contains all blocks {(a, j), (b, j), (c, 1 + j), (r, 4 + j)}, where j ∈ Z6, {a, b} ∈ F , {a, b} occurs in column c
and row r .



2986 X. Sun, G. Ge / Discrete Mathematics 309 (2009) 2982–2989

If all the quadruples (a, b, c, r) can be partitioned into sets such that each set forms a partition of X \ Hi for some i, and
each Hi corresponds to 2h of the sets, we call the skew Room frame partitionable.
Skew Room frames have played an important role in the constructions of BIBDs and GDDs with block size four (see [21])

and the resolution of the existence problem for weakly 3-chromatic BIBDs with block size four (see [22]). Partitionable skew
Room frames were introduced by Colbourn, Stinson and Zhu in [4] to construct (4, 1)-frames and employed by Zhang and
Ge in [27] to construct super-simple (4, 2)-frames. Here, we restate their construction as follows.

Lemma 4.6 ([27, Lemma 3.2]). If there exists a partitionable skew Room frame of type hn, then there exists a (4, 2)-frame of
type (3h)n.

For the existence of partitionable skew Room frames of type hn, we have the following known results.

Theorem 4.7 ([27,28]). The necessary conditions for the existence of partitionable skew Room frames of type hn, namely, n ≥ 5
and h(n− 1) ≡ 0 (mod 4), are also sufficient except for hn ∈ {15, 19}, and possibly when:

1. h ≡ 1 (mod 2) and
(a) h = 1 and n ∈ {45, 57, 69, 77, 93};
(b) h ∈ A = {17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 79, 83} and n ∈ {5, 9, 45, 57, 69, 77, 93};
(c) h ≡ 1, 5 (mod 6) and h 6∈ {1} ∪ A, or h = 9, and n ∈ {9, 57};

2. h ≡ 2 (mod 4) and
(a) h = 2 and n ∈ {23, 27, 33, 39};
(b) h = 6 and n ∈ {9, 17, 27};
(c) h = 18 and n ∈ {23, 27};
(d) h ≡ 2, 10 (mod 12), h ≥ 10, and n ∈ {23, 27, 39};
(e) h ≡ 6 (mod 12), h ≥ 30, and n = 27;

3. h ≡ 0 (mod 4)
(a) h = 4 and n ∈ B = {12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 32, 34};
(b) h = 8 and n ∈ {8, 12};
(c) h ∈ C = {4k : k ∈ A} and n ∈ B \ {15};
(d) h ≡ 4, 20 (mod 24), h ≥ 20 and h 6∈ C, or h = 36, and n ∈ {12, 14};
(e) h ≡ 8, 12, 16 (mod 24), h 6∈ {8, 36, 40} ∪ C, and n = 12.

Now we are in a position to state our result on (4, 2)-frames.

Theorem 4.8. There exists a (4, 2)-frame of type hu if and only if u ≥ 5, h ≡ 0 (mod 3) and h(u − 1) ≡ 0 (mod 4), except
possibly where:

1. h = 36 and u = 12;
2. h ≡ 6 (mod 12) and
(a) h = 6 and u ∈ {23, 27};
(b) h = 18 and u = 27;
(c) h ∈ {n : 30 ≤ n ≤ 11238} and u ∈ {23, 27}.

Proof. Since the existence of (4, 1)-frames simply implies that of (4, 2)-frames, we only need to deal with the cases
undetermined in Theorem 3.1. Combining Lemma 4.6 and Theorem 4.7, we have (4, 2)-frames of types 67, 635, 647, 1815
and 1823. By Theorem 2.1, there exists a 4-RGDD of type 125. Completing all of its parallel classes gives a 5-GDD of type
125161. Applying Construction 3.4 with weight 3 gives a (4, 2)-frame of type 365481. Adjoin 6 infinite points and fill in the
holes with (4, 2)-frames of types 67 and 69 to obtain a (4, 2)-frame of type 639. Finally, inflate the (4, 2)-frames of type 6u
constructed previously with an RTD(4, t) for odd t ≥ 5 to obtain the (4, 2)-frames of type (6t)u as desired. �

Lemma 4.9. There exists a (4, 2)-RGDD of type 2n for each n ∈ {34, 46, 52, 94, 100, 118, 130, 142, 178, 184, 202, 214, 238,
250, 334, 346}.

Proof. For each given n, we write n = 3u+ 1 with u ∈ {11, 15, 17, 31, 33, 39, 43, 47, 59, 61, 67, 71, 79, 83, 111, 115}. By
Theorem 4.8, we have a (4, 2)-frame of type 6u. Adjoining 2 infinite points and applying Construction 3.6 give a (4, 2)-RGDD
of type 23u+1. Here, we need a (4, 2)-RGDD of type 24 as the input design, which comes from Lemma 4.1. �

Lemma 4.10. There exist (4, 2)-RGDDs of types 270 and 282.

Proof. By Theorem 2.1, we have a (4, 1)-RGDD of type 207, which simply gives a (4, 2)-RGDD of type 207. Applying
Construction 3.3 with a (4, 2)-RGDD of type 210 coming from Lemma 4.2 gives a (4, 2)-RGDD of type 270 as desired. On the
other hand, we have a (4, 2)-frame of type 189 by Theorem 4.8. Adjoining 2 infinite points and applying Construction 3.6
with a (4, 2)-RGDD of type 210 as the input design give a (4, 2)-RGDD of type 282. �

Lemma 4.11. There exist (4, 2)-RGDDs of types 654 and 668.
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Proof. By Theorem 2.1, we have (4, 1)-RGDDs of types 369 and 2417, which simply give (4, 2)-RGDDs of types 369 and 2417.
Applying Construction 3.3 with a (4, 2)-RGDD of type 66 coming from Lemma 4.5 and a (4, 2)-RGDD of type 64 coming from
Lemma 4.4 gives the desired (4, 2)-RGDDs of types 654 and 668 respectively. �

Lemma 4.12. There exist (4, 2)-RGDDs of types 944, 1818, 1838, 1862, 3611, 3614, 3615, 3618 and 3623.

Proof. By Theorem 2.1, we have (4, 1)-RGDDs of types 344, 618, 638, 662, 1211, 1214, 1215, 1218 and 1223. Applying
Construction 3.5 with an RTD2(4, 3) coming from Lemma 4.3 gives the desired (4, 2)-RGDDs. �

Theorem 4.13. The necessary conditions for the existence of a (4, 2)-RGDD of type hn, namely, n ≥ 4, hn ≡ 0 (mod 4) and
h(n− 1) ≡ 0 (mod 3), are also sufficient.

Proof. Combining Theorem 2.1, Lemmas 4.1–4.5 and Lemmas 4.9–4.12, the conclusion then follows. �

5. (4, λ)-RGDDs of type hn for λ ≥ 4

In this section, we discuss the existence of (4, λ)-RGDDs of type hn for λ ≥ 4. We begin with the following nonexistence
result.

Lemma 5.1. There does not exist a (4, λ)-RGDD of type 24 for any odd λ.

Proof. Suppose there exists a (4, λ)-RGDD of type 24. Let the point set beX = {a1, a2, b1, b2, c1, c2, d1, d2}, the group set
be {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} and the block set beB. For each block A ∈ B, we denoteX \ A as A. Since |X| = 8,
the (4, λ)-RGDD has the property that A

⋃
A forms a parallel class for any block A ∈ B, and we have in total 2λ such classes.

Then, the block setB can be partitioned into the following 2 parts, each of which has 2λ blocks.
Part 1: Each block contains the element a1.
In this part, we have in total 2λ blocks, whereλ of them contain the element b1 and the otherλ blocks contain the element

b2. Denote the set of the former λ blocks as B11 and the set of the latter λ blocks as B12. Suppose there are x blocks in B11
containing the element c1, where 0 ≤ x ≤ λ. That is, we have x blocks containing the elements {a1, b1, c1} simultaneously.
Now, we look at the pair {a1, c1}. It is easy to deduce that we have in total λ− x blocks inB12 containing {a1, b2, c1}, since
the pair {a1, c1} appears in λ blocks of the RGDD. Hence, we have λ− (λ− x) = x blocks inB12 containing {a1, b2, c2}.
Part 2: Each block contains the element a2.
Similarly to the case of Part 1, we have in total 2λ blocks, where λ of them contain the element b1 and the other λ blocks

contain the element b2. Denote the set of the former λ blocks asB21 and the set of the latter λ blocks asB22. Suppose there
are y blocks inB22 containing the element c2, where 0 ≤ y ≤ λ. That is, we have y blocks containing the elements {a2, b2, c2}
simultaneously. Now, we look at the pair {a2, c2}. It is easy to deduce that we have in total λ − y blocks in B21 containing
{a2, b1, c2}, since the pair {a2, c2} appears in λ blocks of the RGDD. Hence, we have λ− (λ− y) = y blocks inB21 containing
{a2, b1, c1}.
Now, we look at the blocks containing the pair {b1, c1}. We have x blocks in B11 and y blocks in B21. Hence, we have

λ = x + y, since the pair {b1, c1} appears in λ blocks of the RGDD. Furthermore, it is easy to see that: if a block A contains
{a1, b1, c1}, then A contains {a2, b2, c2}, and vice versa. Then, we have that the number of blocks containing {a1, b1, c1} is the
same as that of blocks containing {a2, b2, c2}. Consequently, we have x = y, which implies that λmust be even. �

With a similar proof to that of Lemma 5.1, we can get the following more general theorem.

Theorem 5.2. For each integer k ≥ 3 and any odd λ, there does not exist a (k, λ)-RGDD of type 2k.

Now, we deal with the case having 6 groups.

Lemma 5.3. There exists a (4, 6)-RGDD of type 26.

Proof. Let the point set be Z12, and let the group set be {{j, j+ 6} : j = 0, 1, 2, 3, 4, 5}. Below are the required base blocks.

{0, 1, 2, 4}, {3, 7, 8, 11}, {5, 6, 9, 10},
{0, 1, 3, 10},
{0, 2, 5, 7}.

Here, all the base blocks are developed by +1 mod 12. The blocks in the first row form one parallel class and generate in
total 12 parallel classes when they are developed by +1 mod 12. Each of the block in the second row and the third row
generates one parallel class when developed by+4 mod 12. �

Lemma 5.4. There exists a (4, 9)-RGDD of type 26.
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Proof. Let the point set be (Z2 × Z5) ∪ {x, y}, and let the group set be {Z2 × {j} : j = 0, 1, 2, 3, 4} ∪ {{x, y}}. Below are the
required base blocks.

{x, (0, 0), (0, 1), (0, 2)}, {y, (0, 3), (1, 0), (1, 4)}, {(0, 4), (1, 1), (1, 2), (1, 3)},
{x, (0, 4), (0, 0), (0, 2)}, {y, (0, 1), (1, 2), (1, 3)}, {(0, 3), (1, 4), (1, 0), (1, 1)},
{x, (0, 0), (0, 2), (1, 3)}, {y, (0, 3), (1, 4), (1, 1)}, {(0, 1), (0, 4), (1, 2), (1, 0)}.

Here, the blocks in each row form a parallel class. First, we develop these three parallel classes (mod 2,−) to get 6 parallel
classes. Then, we develop the resultant 6 parallel classes (−, mod 5) to obtain the RGDD as required. �

The following lemma is simple but useful.

Lemma 5.5. If there exist both a (4, λ)-RGDD of type hn and a (4, µ)-RGDD of type hn, then there exists a (4, xλ + yµ)-RGDD
of type hn for any nonnegative integers x, y.

Now, we are in a position to state our main result of this section.

Theorem 5.6. The necessary conditions for the existence of a (4, λ)-RGDD of type hn withλ ≥ 4, namely, n ≥ 4, hn ≡ 0 (mod 4)
and λh(n− 1) ≡ 0 (mod 3), are also sufficient except for (λ, h, n) = (2j+ 1, 2, 4) with j ≥ 2.

Proof. For n = 4, h = 2 and odd λ, the nonexistence result is proved in Lemma 5.1. For n = 4, h = 2 and even λ, we can
simply make copies of the (4, 2)-RGDD of type 24 coming from Lemma 4.1 to obtain the desired RGDDs.
For n = 6 and h = 2, we necessarily have that λ ≡ 0 (mod 3) and λ ≥ 6. The existence of a (4, 6)-RGDD of type 26 and

a (4, 9)-RGDD of type 26 has been shown in Lemmas 5.3 and 5.4 respectively. For the other values of λ ≡ 0 (mod 3) and
λ ≥ 12, we can write λ = 6x+ 9ywith x ≥ 0 and y ≥ 0. Applying Lemma 5.5 gives the desired RGDDs.
For the remaining parameters of n, h and λ, we can employ Lemma 5.5 again as follows: If λ ≡ 0 (mod 3), we can simply

make copies of the (4, 3)-RGDDs of type hn coming from Theorem 2.2. If λ 6≡ 0 (mod 3), we can write λ = 2x + 3y with
x ≥ 1 and y ≥ 0. The conclusion then follows by combining the existence results for (4, 2)-RGDDs of type hn coming from
Theorem 4.13 and (4, 3)-RGDDs of type hn coming from Theorem 2.2. �

6. Concluding remarks

Now, we are in a position to state our main result of this paper.

Theorem 6.1. The necessary conditions for the existence of a (4, λ)-RGDDof type hnwithλ ≥ 2, namely, n ≥ 4, hn ≡ 0 (mod 4),
and λh(n− 1) ≡ 0 (mod 3), are also sufficient with the definite exceptions of (λ, h, n) ∈ {(3, 2, 6)} ∪ {(2j+ 1, 2, 4) : j ≥ 1}.

Proof. The conclusion follows from Theorems 2.2, 4.13 and 5.6. �

In this paper, we investigate the existence of resolvable group divisible designs with block size four, group-type hn and
general index λ. We give a complete solution for the cases of λ ≥ 2. We also improve slightly the known result for the case
of λ = 1. However, to complete the existence problem of resolvable group divisible designs with block size four and index
unity, much work remains to be done.
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