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a b s t r a c t

A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an
adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In
this new move one pebble is removed at vertices v and w adjacent to a vertex u and an
extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is
possible to move a pebble to that vertex using rubbling moves. The rubbling number of a
graph is the smallest numberm needed to guarantee that any vertex is reachable from any
pebble distribution of m pebbles. The optimal rubbling number is the smallest number m
needed to guarantee a pebble distribution ofm pebbles fromwhich any vertex is reachable.
We determine the rubbling and optimal rubbling number of some families of graphs and
we show that Graham’s conjecture does not hold for rubbling numbers.

Published by Elsevier B.V.

1. Introduction

Graph pebbling has its origin in number theory. It is a model for the transportation of resources. Starting with a pebble
distribution on the vertices of a simple connected graph, a pebbling move removes two pebbles from a vertex and adds one
pebble at an adjacent vertex. We can think of the pebbles as fuel containers. Then the loss of the pebble during a move is
the cost of transportation. A vertex is called reachable if a pebble can be moved to that vertex using pebbling moves. There
are several questions we can ask about pebbling. How many pebbles will guarantee that every vertex is reachable, or that
all vertices are reachable at the same time? How can we place the smallest number of pebbles such that every vertex is
reachable? For a comprehensive list of references for the extensive literature see the survey papers [5,6].
In the current paper we propose the study of an extension of pebbling called rubbling. In this version we also allow

a move that removes a pebble from the vertices v and w that are adjacent to a vertex u, and adds a pebble at vertex u.
We find rubbling versions of some of the well-known pebbling tools such as the transition digraph, the No Cycle Lemma,
squishing and smoothing. We use these tools to find rubbling numbers and optimal rubbling numbers for some families of
graphs including paths, trees, complete graphs, complete bipartite graphs, wheels and cycles. We also show that Graham’s
conjecture does not hold for rubbling numbers.
Our techniques are similar to those used in the pebbling literature, but they are not the same. Some rubbling results

require completely different tools, some require more efforts than their pebbling counterparts. Some graphs have equal
pebbling and rubbling numbers, some have a much smaller rubbling number than pebbling number. It seems intriguing to
understandwhat graph properties are responsible for these differences, in particular, what property forces the pebbling and
the rubbling number to be the same. Rubbling also seems to be connected to fractional pebbling. Developing the theory of
rubbling may introduce new tools and deeper understanding of pebbling.
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2. Preliminaries

Let G be a simple connected graph. We use the notation V (G) for the vertex set and E(G) for the edge set. A pebble
function on a graph G is a function p : V (G)→ Z where p(v) is the number of pebbles placed at v. A pebble distribution is a
nonnegative pebble function. The size of a pebble distribution p is the total number of pebbles

∑
v∈V (G) p(v). We are going

to use the notation p(v1, . . . , vn, ∗) = (a1, . . . , an, q(∗)) to indicate that p(vi) = ai for i ∈ {1, . . . , n} and p(w) = q(w) for
allw ∈ V (G) \ {v1, . . . , vn}.

Definition 2.1. Consider a pebble function p on the graph G. If {v, u} ∈ E(G) then the pebbling move (v, v → u) removes
two pebbles at vertex v and adds one pebble at vertex u to create a new pebble function

p(v,v→u)(v, u, ∗) = (p(v)− 2, p(u)+ 1, p(∗)).

If {w, u} ∈ E(G) and v 6= w then the strict rubbling move (v,w→ u) removes one pebble each at vertices v andw and adds
one pebble at vertex u to create a new pebble function

p(v,w→u)(v,w, u, ∗) = (p(v)− 1, p(w)− 1, p(u)+ 1, p(∗)).

A rubbling move is either a pebbling move or a strict rubbling move.

Note that the rubbling moves (v,w→ u) and (w, v→ u) are the same. Also note that the resulting pebble function might
not be a pebble distribution even if p is.

Definition 2.2. A rubbling sequence is a finite sequence s = (s1, . . . , sk) of rubbling moves. The pebble function obtained
from the pebble function p after applying the moves in s is denoted by ps.

The concatenation of the rubbling sequences r = (r1, . . . , rk) and s = (s1, . . . , sl) is denoted by rs = (r1, . . . , rk, s1, . . . , sl).

Definition 2.3. A rubbling sequence (s1, . . . , sn) is executable from the pebble distribution p if p(s1,...,si) is nonnegative for all
i ∈ {1, . . . , n}. A vertex v of G is reachable from the pebble distribution p if there is an executable rubbling sequence s such
that ps(v) ≥ 1. The rubbling number ρ(G) of a graph G is the minimum number m such that every vertex of G is reachable
from any pebble distribution of sizem.

A vertex is reachable if a pebble can bemoved to that vertex using rubblingmoves with actual pebbles without ever running
out of pebbles. Changing the order ofmoves in an executable rubbling sequence smay result in a sequence r that is no longer
executable. On the other hand the ordering of the moves has no effect on the resulting pebble function, that is, ps = pr . This
justifies the following definition.

Definition 2.4. Let S be amultiset of rubblingmoves. The pebble function obtained from the pebble function p after applying
the moves in S in any order is denoted by pS .

3. Rubbling trees

The pebbling number of trees was found in [2]. We modify Chung’s argument to find the rubbling number of trees. Let v

be a vertex of a tree G. Let
→v

G be the digraph obtained from G by directing the edges towards v. A path partition of
→v

G is an

ordered partitionP = (P1, . . . , Pm) of the edges of
→v

G into directed paths so that pi ≥ pi+1 where pi is the length of Pi for all

i. We call (p1, . . . , pm) the length sequence of P . A path partition of G is a path partition of
→v

G for some vertex v of G. A path
partition P majorizes another path partition P ′ if (p1, . . . , pm) ≥ (p′1, . . . , p

′

m′) in the lexicographic order. A path partition

is v-maximum if it majorizes all path partitions of
→v

G . A path partition ismaximum if it majorizes all path partitions of G.
For k ∈ N and v ∈ V (G) let ρ(G, v, k) be the minimum number m such that for every pebble distribution p on G with

size m there is an executable rubbling sequence s with ps(v) ≥ k. Note that ρ(G) = max{ρ(G, v, 1) | v ∈ V (G)}. Also note
that ρ(G, v, k + 1) − 1 is the maximum size of a pebble distribution on G from which at most k pebbles can be moved to
vertex v.

Proposition 3.1. Let v be a vertex of the tree G and (p1, . . . , pm) be the length sequence of a v-maximum path partition P of
→v

G . Then ρ(G, v, k) = k2p1 +
∑m
i=2 2

pi−1 −m+ 1 for all k ≥ 1.

Proof. We use induction on the number of vertices of G. The formula clearly works when |V (G)| = 1. For the inductive step
let {v1, . . . , vn} be the set of vertices adjacent to v. The removal of v from

→v

G creates a digraph that is the disjoint union

of the directed trees
→v1
G1 , . . . ,

→vn
Gn . The path partition P induces a maximum path partition of

→vi
Gi with length sequence
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(pi,1−1, pi,2, . . . , pi,mi) for all i. With this notation, the multisets {p1, . . . , pm} and {p1,1, . . . , p1,m1 , . . . , pn,1, . . . , pn,mn} are
equal. We can assume without loss of generality that p1 = p1,1. Let ki be the number of pebbles reaching vi from Gi. Then

ρ(G, v, k) = max

{
n∑
i=1

(ρ(Gi, vi, ki + 1)− 1) |
⌊
k1 + · · · + kn

2

⌋
< k

}
+ 1

and so by the inductive hypothesis

ρ(G, v, k) = max

{
n∑
i=1

(
(ki + 1)2pi,1−1 +

mi∑
j=2

2pi,j−1 −mi

)
| k1 + · · · + kn ≤ 2k− 1

}
+ 1.

Since 2a+2b ≥ 2a−1+2b+1 for all integers satisfying a > b, themaximum occurs when k1 = 2k−1 and k2 = · · · = kn = 0.
So

ρ(G, v, k) = 2k2p1,1−1 +
m1∑
j=2

2p1,j−1 −m1 +
n∑
i=2

(
2pi,1−1 +

mi∑
j=2

2pi,j−1 −mi

)
+ 1

= k2p1,1 +
m1∑
j=2

2p1,j−1 +
n∑
i=2

mi∑
j=1

2pi,j−1 −
n∑
i=1

mi + 1

= k2p1 +
m∑
i=2

2pi−1 −m+ 1. �

Proposition 3.2. Let (p1, . . . , pm) be the length sequence of a maximum path partition of G. Then ρ(G) = 2p1 +
∑m
i=2 2

pi−1 −

m+ 1.

Proof. The result follows from the previous proposition and the fact that 2a + 2b ≥ 2a−1 + 2b+1 for all integers satisfying
a > b. �

The pebbling number of G is π(G) =
∑m
i=1 2

pi −m+ 1 by [2]. The following is an important special case of Proposition 3.2.

Proposition 3.3. The rubbling number of the path Pn with n vertices is ρ(Pn) = 2n−1.

Note that the pebbling number of Pn is alsoπ(Pn) = 2n−1. As another application of Proposition 3.2, we can find the rubbling
number of a complete binary tree.

Proposition 3.4. The rubbling number of the complete binary tree Bh with height h is ρ(Bh) = 4h + (h− 3)2h−1 + 2.

Proof. The length sequence of a maximum path partition is

(2h,

2︷ ︸︸ ︷
h− 1, h− 1,

22︷ ︸︸ ︷
h− 2, . . . , h− 2, . . . ,

2h−1︷ ︸︸ ︷
1, . . . , 1 ).

The result now follows from the calculation below

ρ(Bh) = 22h − 1+ 2(2h−2 − 1)+ · · · + 2h−2(2− 1)+ 2h−1(20 − 1)+ 1
= 4h + (h− 2)2h−1 − (1+ 2+ · · · + 2h−2)+ 1
= 4h + (h− 3)2h−1 + 2. �

4. The transition digraph and the No Cycle Lemma

Definition 4.1. Given a multiset S of rubbling moves on G, the transition digraph T (G, S) is a directed multigraph whose
vertex set is V (G), and each move (v,w → u) in S is represented by two directed edges (v, u) and (w, u). The transition
digraph of a rubbling sequence s = (s1, . . . , sn) is T (G, s) = T (G, S), where S = {s1, . . . , sn} is the multiset of moves in s.
Let d−T (G,S) represent the in-degree and d

+

T (G,S) the out-degree in T (G, S). We simply write d
− and d+ if the transition digraph

is clear from context.

The transition digraph only depends on the rubbling moves and the graph but not on the pebble distribution or on the order
of the moves. It is possible that T (G, S) = T (G, R) even if S 6= R. If T (G, S) = T (G, R) then pS = pR, so the effect of a rubbling
sequence on a pebble function only depends on the transition digraph. In fact we have the following.
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Fig. 4.1. Arrows of T (G,Q ). The solid arrows belong to C .

Lemma 4.2. If p is a pebble function on G and S is a multiset of rubbling moves then

pS(v) = p(v)+ d−(v)/2− d+(v)

for all v ∈ V (G).

Proof. The three terms on the right-hand side represent the original number of pebbles, the number of pebbles arrived at
v and the number of pebbles moved away from v. �

We are often interested in the value of qR(v) − pS(v). The function 1 defined in the following lemma is going to simplify
our notation. The three parameters of1 represent the change in the number of pebbles, the change in the in-degree and the
change in the out-degree. The proof is a trivial calculation.

Lemma 4.3. Define1(a, b, c) = a+ b/2− c. Then

qR(v)− pS(v) = 1(q(v)− p(v), d−T (G,R)(v)− d
−

T (G,S)(v), d
+

T (G,R)(v)− d
+

T (G,S)(v)).

If the rubbling sequence s is executable from a pebble distribution p then we must have ps ≥ 0. This motivates the
following terminology.

Definition 4.4. Amultiset S of rubbling moves on G is balancedwith a pebble distribution p at vertex v if pS(v) ≥ 0. We say
that S is balancedwith p if S is balanced with p at all v ∈ V (G), that is, pS ≥ 0. We say that a rubbling sequence s is balanced
with p if the multiset of moves in s is balanced with p.

S is trivially balanced with a pebble distribution at v if d+T (G,S)(v) = 0. The balance condition is necessary but not sufficient
for a rubbling sequence to be executable. The pebble distribution p(u, v, w) = (1, 1, 1) on the cycle C3 is balanced with
s = ((u, u → v), (v, v → w), (w,w → u)), but s is not executable. The problem is caused by the cycle in the transition
digraph. The goal of this section is to overcome this difficulty.

Definition 4.5. Amultiset of rubbling moves or a rubbling sequence is called acyclic if the corresponding transition digraph
has no directed cycles. Let S be amultiset of rubblingmoves. An acyclic multiset R ⊆ S is called an untangling of S if pR ≥ pS .

Proposition 4.6. Every multiset of rubbling moves has an untangling.

Proof. Let S be themultiset of rubblingmoves. Suppose that T (G, S) has a directed cycle C . LetQ be themultiset of elements
of S corresponding to the arrows of C , see Fig. 4.1. We show that pR ≥ pS where R = S \ Q . If v ∈ V (C) then there is an
a ≤ −1 such that

pR(v)− pS(v) = 1(0,−2, a) = −1− a ≥ 0.

If v ∈ V (G) \ V (C) then there is an a ≤ 0 such that

pR(v)− pS(v) = 1(0, 0, a) ≥ 0.

We can repeat this process on R until we eliminate all the cycles. This can be finished in finitely many steps since every step
decreases the number of edges in R. The resulting multiset is an untangling of S. �

Note that a multiset of moves can have several untanglings. Also note that if a pebble distribution p is balanced with S and
R is an untangling of S then pR ≥ pS ≥ 0 and so p is also balanced with R.

Proposition 4.7. If the pebble distribution p onG is balancedwith the acyclicmultiset S of rubblingmoves then there is a sequence
s of the elements of S such that s is executable from p.

Proof. First note that if the pebble distribution q on G is balanced with the multiset R of rubbling moves and t = (v,w→
u) ∈ R such that d−T (G,R)(v) = 0 = d

−

T (G,R)(w) then t is executable from q. If v 6= w then q(v) ≥ d+T (G,R)(v) ≥ 1 and
q(w) ≥ d+T (G,R)(w) ≥ 1. If v = w then q(v) ≥ d

+(v) ≥ 2. In both cases t is executable from q.
We define s recursively. Let R1 = S. Since R1 is acyclic, we must have a move s1 = (v1, w1 → u1) ∈ R1 such that

d−T (G,R1)(v1) = 0 = d
−

T (G,R1)
(w1). Then s1 is executable from p. Let Ri = Ri−1 \ {si−1}. Then Ri is acyclic so we must have

a move si = (vi, wi → ui) ∈ Ri such that d−T (G,Ri)(vi) = 0 = d
−

T (G,Ri)
(wi). Then p(s1,...,si−1) is balanced with Ri since

(p(s1,...,si−1))Ri = pS ≥ 0 and so si is executable from p(s1,...,si−1). The sequence s = (s1, . . . , s|S|) is an ordering of the elements
of S that is executable from p. �
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Fig. 5.1. Arrows in T (G, S) representing the possible types of rubbling moves in E. The vertices in the same box are equivalent. The solid arrows connect
equivalent vertices. The calculation on the left shows the change in

∑
i(
1
2 d
−(vi)− d+(vi)) after the removal of one of the rubbling moves.

The following is the rubbling version of the No Cycle Lemma for pebbling [3,7,8].

Lemma 4.8 (No Cycle). Let p be a pebble distribution on G and v ∈ V (G). The following are equivalent.
(1) v is reachable from p.
(2) There is a multiset S of rubbling moves such that S is balanced with p and pS(v) ≥ 1.
(3) There is an acyclic multiset R of rubbling moves such that R is balanced with p and pR(v) ≥ 1.
(4) v is reachable from p through an acyclic rubbling sequence.

Proof. If v is reachable from p then there is an executable sequence s of rubbling moves. The multiset S of rubbling moves
of s is balanced with p and pS(v) ≥ 1. So (1) implies (2). If S satisfies (2) then an untangling R of S satisfies (3). Suppose
R satisfies (3). By Proposition 4.7, there is an executable ordering r of the moves of R. This r is acyclic and v is reachable
through r since pr(v) = pR(v) ≥ 1. So (3) implies (4). Finally, (4) clearly implies (1). �

Corollary 4.9. If a vertex is reachable from a pebble distribution p on G then it is also reachable by a rubbling sequence in which
no move of the form (v, a→ u) is followed by a move of the form (u, b→ v).

5. Basic results

It is clear from the definition that for all graphsGwehave ρ(G) ≤ π(G)whereπ is the pebbling number. For the pebbling
number we have 2diam(G) ≤ π(G). This is also true for the rubbling number.

Proposition 5.1. If the graph G has diameter d then 2d ≤ ρ(G).

Proof. Let v0 and vd be vertices at distance d. Let p(v0, ∗) = (m, 0) be a pebble distribution from which vd is reachable
through the rubbling sequence s. We now build a quotient rubbling problem. Let [v] be the equivalence class of v in the
partition of the vertices of G according to their distances from v0. The quotient simple graph H is isomorphic to Pd+1 with
leaves [v0] = {v0} and [vd]. Let q([v]) =

∑
w∈[v] p(w) for all [v] ∈ V (H) and note that q([v0], ∗) = (m, 0). The rubbling

sequence s induces a multiset R of rubbling moves on H . We construct this R from the multiset S of rubbling moves of s. Let
E be the multiset of moves of S of the form (v,w → u) where v ∈ [u] or w ∈ [u]. Define R to be the multiset of moves of
the form ([v], [w] → [u])where (v,w→ u) runs through the elements of S \ E.
We show that R is balanced with q. Fig. 5.1 shows the possible types of moves in E. The removal of any of these moves

does not decrease the value of
∑

vi∈[v]
( 12d
−(vi)− d+(vi)) and so

qR([v]) =
∑
vi∈[v]

pS\E(vi) ≥
∑
vi∈[v]

pS(vi) ≥ 0

since p is balanced with S.
We also have qR([vd]) ≥ 1 since vd is reachable and so pS(vd) ≥ 1. Thus [vd] is reachable from q and so the result now

follows from Proposition 3.3. �

For the pebbling number we have π(G) ≥ |V (G)|. This inequality does not hold for the rubbling number as we can see in
the next result.

Proposition 5.2. We have the following values for the rubbling number:
a. ρ(Kn) = 2 for n ≥ 2 where Kn is the complete graph with n vertices;
b. ρ(Wn) = 4 for n ≥ 5 where Wn is the wheel with n vertices;
c. ρ(Km,n) = 4 for m, n ≥ 2 where Km,n is a complete bipartite graph;
d. ρ(Qn) = 2n for n ≥ 1 where Qn is the n-dimensional hypercube;

Proof. a. A single pebble is clearly not sufficient but any vertex is reachable with two pebbles using a single move.
b. If we have 4 pebbles then we can move 2 pebbles to the center using two moves. Then any other vertex is reachable

from the center in a single move. On the other hand ρ(Wn) ≥ 2diam(Wn) = 22 = 4.
c. It is easy to see that from any pebble distribution of size 4 any vertex is reachable in at most 3 moves. On the other

hand we have ρ(Km,n) ≥ 2diam(Km,n) = 22 = 4.
d. We know [2] that π(Qn) = 2n. The result now follows from the inequality 2n = 2diam(Qn) ≤ ρ(Qn) ≤ π(Qn) = 2n. �
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Fig. 5.2. The Petersen graph P .

The pebbling numbers of these graphs are π(Kn) = n, π(Wn) = n, π(Km,n) = m+ n and π(Qn) = 2n.

Proposition 5.3. The rubbling number of the Petersen graph P is ρ(P) = 5.

Proof. Consider Fig. 5.2. It is easy to see that vertex w is not reachable from the pebble distribution p(r, s, ∗) = (3, 1, 0)
and so ρ(P) > 4. To show that ρ(P) ≤ 5, assume that a vertex is not reachable from a pebble distribution p of size 5. Since
P is vertex transitive, we can assume that this vertex isw. Then we must have

p(a)+ p(b)+ p(c)+
⌊
p(q)+ p(r)

2

⌋
+

⌊
p(s)+ p(t)

2

⌋
+

⌊
p(u)+ p(v)

2

⌋
≤ 1,

otherwise we could make the total number of pebbles at vertices a, b and c more than 2 after which w is reachable. This
forces p(a) = p(b) = p(c) = 0 and two of the remaining terms to be 0 as well. So by symmetry we can assume that the last
term is 1 and all the other terms are 0. Then we must have p(u) + p(v) = 3 and p(q) + p(r) = 1 = p(s) + p(t). A simple
case analysis shows thatw is reachable from this p, which is a contradiction. �

We know from [5] that the pebbling number of the Petersen graph is π(P) = 10.

6. Squishing

The following terms are needed for the rubbling version of the Squishing Lemma of [1]. A thread in a graph is a path
containing vertices of degree 2. A pebble distribution is squished on a thread P if all the pebbles on P are placed on a single
vertex of P or on two adjacent vertices of P . A pebble distribution can be made squished using squishing moves. A squishing
move removes one pebble from each of two vertices on a thread and puts two pebbles on some vertex between them on the
thread.

Lemma 6.1. Let P be a thread in G. If vertex x 6∈ V (P) is reachable from the pebble distribution p then x is reachable from p
through a rubbling sequence in which there is no strict rubbling move of the form (v,w→ u) where u ∈ V (P).

Proof. Let S be an acyclic multiset of rubbling moves balanced with p such that pS(x) ≥ 1. Let E be the multiset of strict
rubbling moves of S of the form (v,w→ u)where u ∈ V (P).
If e = (v,w → u) ∈ E then we have d+T (G,S\{e})(u) = d

+

T (G,S)(u) = 0 since S is acyclic and so S \ {e} is balanced with p at
u. It is clear that pS\{e}(y) ≥ pS(y) for all y ∈ V (G) \ {u} and so S \ {e} is balanced with p. We still know that S \ {e} is acyclic
and pS\{e}(x) ≥ 1, so induction shows that R = S \ E is balanced with p.
By Proposition 4.7, there is an ordering r of the elements of R that is executable from p. Then v is reachable through r

since pr(v) = pS(v) ≥ 1. �

The following is the rubbling version of the Squishing Lemma for pebbling [1].

Lemma 6.2 (Squishing). If vertex v is not reachable from a pebble distribution with size n then there is a pebble distribution r of
size n that is squished on each thread not containing v such that v is not reachable from r either.

Proof. The result follows from the proof of [1, Lemma 4] and Lemma 6.1. �

7. Rubbling Cn

The Squishing Lemma allows us to find the rubbling numbers of cycles. The pebbling numbers π(C2k) = 2kπ(C2k+1) =
2
⌊
2k+1
3

⌋
+ 1 were determined in [10,1].

Proposition 7.1. The rubbling number of an even cycle is ρ(C2k) = 2k.
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Proof. It is well known [10] that π(C2k) = 2k. The first result now follows since

2k = 2diam(C2k) ≤ ρ(C2k) ≤ π(C2k) = 2k. �

Proposition 7.2. The rubbling number of an odd cycle is ρ(C2k+1) = b 7·2
k−1
−2

3 c + 1.

Proof. Let C2k+1 be the cycle with consecutive vertices

xk, xk−1, . . . , x1, v, y1, y2, . . . , yk, xk.

First we show that ρ(C2k+1) ≤ b 7·2
k−1
−2

3 c + 1. Let p be a pebble distribution on C2k+1 from which not every vertex is

reachable. It suffices to show that p contains at most b 7·2
k−1
−2

3 c pebbles. By symmetry, we can assume that v is the vertex
that is not reachable from p. By the Squishing Lemma, we can assume that p is squished on the thread with consecutive
vertices y1, . . . , yk, xk, . . . , x1.
First we consider the case when all the pebbles are at distance k from v, that is, p(xk, yk, ∗) = (a, b, 0). By symmetry, we

can assume that 0 ≤ a ≤ b. Then we must have⌊ a
2

⌋
+ b ≤ 2k − 1, (7.1)

otherwise we could move b a2c pebbles from vertex xk to vertex yk and then reach v from bk. Hence
a
2 <

⌊ a
2

⌋
+ 1 ≤

2k − 1− b+ 1 = 2k − b and so

a+ 2b ≤ 2k+1 − 1. (7.2)

We also must have⌊
b− 2k−1

2

⌋
+ a ≤ 2k−1 − 1, (7.3)

otherwisewe couldmove b b−2
k−1

2 c pebbles from vertex yk to vertex xk after which x1 is reachable from xk and y1 is reachable

from yk, and so vwould be reachable by themove (x1, y1 → v). Hence b−2
k−1

2 <
⌊
b−2k−1
2

⌋
+1 ≤ 2k−1−1−a+1 = 2k−1−a

and so

b+ 2a ≤ 2k + 2k−1 − 1. (7.4)

Adding (7.2) and (7.4) gives

3(a+ b) ≤ 2k+1 − 1+ 2k + 2k−1 − 1 = 7 · 2k−1 − 2,

which shows that |p| = a+ b ≤ b 7·2
k−1
−2

3 c.
Now we consider the case when some pebbles are closer to v than k, that is, p(xi, xi+1, ∗) = (b, a, 0) with b ≥ 1 and

a ≥ 0 for some 1 ≤ i < k. Then we must have
⌊ a
2

⌋
+ b ≤ 2i − 1 ≤ 2k−1 − 1 otherwise v is reachable. Hence

|p| = a+ b ≤ a−
⌊ a
2

⌋
+

⌊ a
2

⌋
+ b

≤

⌊ a
2

⌋
+ 1+ 2k−1 − 1 ≤ 2k−1 − 1− b+ 1+ 2k−1 − 1

= 2 · 2k−1 − 2 <
⌊
7 · 2k−1 − 2

3

⌋
.

Nowwe show thatwe can always distribute b 7·2
k−1
−2

3 c pebbles so that v is unreachable and so ρ(C2k+1) ≥ b 7·2
k−1
−2

3 c+1.

Let a = b 2
k

3 c and b = b
5·2k−1
3 c. It is easy to check that

a =


2k − 2
3

, k odd

2k − 1
3

, k even
, b =


5 · 2k−1 − 2

3
, k odd

5 · 2k−1 − 1
3

, k even
,

⌊
7 · 2k−1 − 2

3

⌋
=


7 · 2k−1 − 4

3
, k odd

7 · 2k−1 − 2
3

, k even

and so a+ b = b 7·2
k−1
−2

3 c. We show that v is unreachable from the pebble distribution p(xk, yk, ∗) = (a, b, 0).
It is easy to see that a and b satisfy (7.2) and (7.4). Suppose that v is reachable from p, that is, there is an acyclic multiset

S of rubbling moves that is balanced with p satisfying pS(v) ≥ 1. The balance condition at v shows that d−(v) ≥ 2. Hence S
must have at least one of (x1, y1 → v), (x1, x1 → v) or (y1, y2 → v).
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Fig. 8.1. The product graph C3�C3 .

First assume that (x1, y1 → v) ∈ S. The argument used in the proof of Proposition 3.3 shows that then T (G, S) has at
least 2i−1 arrows from xi to xi−1 and from yi to yi−1 for all i ∈ {2, . . . , k}. Since S is acyclic, any arrow in T (G, S) pointing to
xk must come from yk. So the balance condition at xk requires m arrows from yk to xk satisfying 2k−1 ≤ a+ m

2 . The balance
condition at yk gives 2k−1 +m ≤ b. Combining the two inequalities gives 2k + 2k−1 ≤ b+ 2awhich contradicts (7.4).
Next assume that (y1, y1 → v) ∈ S. Then T (G, S) has at least 2i arrows from yi to yi−1 for all i ∈ {2, . . . , k}. The balance

condition at yk requires m arrows from xk to yk satisfying 2k ≤ b + m
2 . We must have d

−(xk) = 0, otherwise there is a
directed path from v to xk which is impossible since S is acyclic. The balance condition at xk givesm ≤ a. Combining the two
inequalities gives 2k+1 ≤ a+ 2bwhich contradicts (7.2).
Similar argument shows that (x1, x1 → v) ∈ S is also impossible. �

8. Graham’s conjecture

The Cartesian product G�H of the graphs G and H has vertex set V (G�H) = V (G) × V (H) and edge set E(G�H) =
{{(v1, w1), (v2, w2)} | (v1 = v2 and {w1, w2} ∈ E(H)) or (w1 = w2 and {v1, v2} ∈ E(G))}.
Graham’s conjecture π(G�H) ≤ π(G)π(H) generated a lot of interest but it is still unresolved. We know from [4] that

the inequality holds for the optimal pebbling number.

Proposition 8.1. ρ(C3�C3) > 4.

Proof. Using the notation of Fig. 8.1, we show that w is not reachable from the pebble distribution p(u, v, ∗) = (3, 1, 0).
All the pebbles in p are of distance 2 from w. We have only 4 pebbles, so the only possibility to reach w is to use pebbling
moves that decrease the distance of the pebbles from w. This is impossible since u and v do not have a common neighbor
vertex that is at distance 1 fromw. �

It is not hard to see that ρ(C3�C3) = 5. Note that ρ(C3�C3) > 4 = ρ(C3)ρ(C3) so Graham’s conjecture does not hold for
rubbling numbers.

9. Optimal rubbling

Optimal pebbling was studied in [10,9,4,1]. In this section we investigate the optimal rubbling number of certain graphs.

Definition 9.1. The optimal rubbling number ρopt(G) of a graph G is the minimum number m for which there is a pebble
distribution of sizem from which every vertex of G is reachable.

Proposition 9.2. We have the following values for the optimal rubbling number:

a. ρopt(Kn) = 2 for n ≥ 2 where Kn is the complete graph with n vertices;
b. ρopt(Wn) = 2 for n ≥ 5 where Wn is the wheel with n vertices;
c. ρopt(Km,n) = 3 for m, n ≥ 3 where Km,n is the complete bipartite graph;
d. ρopt(P) = 4 where P is the Petersen graph.

Proof. a. Not every vertex of Kn is reachable from a distribution of size 1 since n ≥ 2. On the other hand any vertex is
reachable by a single move from any distribution of size 2.
b. Again, not every vertex ofWn is reachable from a distribution of size 1. On the other hand, every vertex is reachable

from the distribution that has 2 pebbles at the center ofWn.
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Fig. 9.1. Visualization of a single rolling move with i = 2 and n = 5. An arrow indicates the transfer of a single pebble

Fig. 9.2. Four possible configurations for T (G, S \ R). The solid arrows represent the arrows of P .

c. Let A and B be the natural partition of the vertex set of Km,n. Let p be a pebble distribution of size 2. If p places both
pebbles on vertices in A then there is a vertex in A that is not reachable from p. If p places both pebbles on vertices in B then
there is a vertex in B that is not reachable from p. If p places one pebble on a vertex in A and one pebble on a vertex in B then
both A and B have vertices that are unreachable from p. On the other hand any vertex is reachable in at most two moves
from a pebble distribution that places one pebble on a vertex in A and two pebbles on a vertex in B.
d. Every vertex is reachable from the pebble distribution that has 4 pebbles on any of the vertices.We show that 3 pebbles

are not sufficient to make every vertex reachable using the notation of Fig. 5.2. By symmetry, we can assume that a pebble
is placed on vertex w and a second pebble is placed on w, a or q. A simple case analysis shows that in all three cases it is
impossible to place the third pebble to make each vertex reachable. �

The optimal pebbling numbers of these graphs are πopt(Kn) = 2, πopt(Wn) = 2, πopt(Km,n) = 3 and πopt(P) = 4.
Smoothing was used in [1] to study optimal pebbling numbers. A smoothing move removes two pebbles from a vertex v

containing at least three pebbles and adds one pebble at each neighbor of v. A smoothing move is only allowed if v has at
least three pebbles. Rolling moves serve the same purpose for rubbling as the smoothing moves for pebbling. We want to
restrict the set of possible pebble distributions we need to consider, to determine the value of the optimal rubbling number.

Definition 9.3. Let v1, . . . , vn be the consecutive vertices of a path such that the degree of v1 is 1 and the degrees of
v2, v3, . . . , vn−1 are all 2. The subgraph induced by {v1, . . . , vn} is called an arm of the graph. Let p be a pebble distribution
such that p(vi) ≥ 2 for some i ∈ {1, . . . , n − 1}, p(vn) = 0, and p(vj) ≥ 1 for all j ∈ {1, . . . , n − 1}. A single rolling move
creates a newpebble distribution q by taking one pebble from vi and placing it on vn, that is q(vi, vn, ∗) = (p(vi)−1, 1, p(∗)).
See Fig. 9.1.

Lemma 9.4. Let q be a pebble distribution on G obtained from the pebble distribution p by applying a single rolling move from vi
to vn on the arm with vertices v1, . . . , vn. If vertex u ∈ G is reachable from p then u is also reachable from q.

Proof. If u is a vertex of the arm then it is clearly reachable from q so we can assume that u is not on the arm. Let S be an
acyclic multiset of rubbling moves balanced with p such that pS(u) ≥ 1. Let P be a maximum length directed path in T (G, S)
starting at vi and not going further than vn. Then P has consecutive vertices vi = vn0 , vn1 . . . , vnk on the arm. Let R be the
multiset containing the elements of S without themoves corresponding to the arrows of P . We show that R is balanced with
q and so u is reachable from q since qR(u) = pS(u) ≥ 1. Fig. 9.2 shows the possible configurations for T (G, S \ R). If nk = n
then

qR(vnk) = pS(vnk)+1(1,−2, 0) = pS(vnk) ≥ 0,

while if nk 6= n then d+T (G,S)(vnk) = 0 and so

qR(vnk) = pS(vnk)+1(0,−2, 0) ≥ pS(vnk)− 1 ≥ 0.

So R is balanced with q at vnk . If d
+

T (G,S)(vn0) = 0 then n0 = nk, otherwise there is an a ∈ {−1,−2} such that

qR(vn0) = pS(vn0)+1(−1, 0, a) ≥ pS(vn0) ≥ 0

and so R is balanced with q at vn0 . If 0 < j < k then there is an a ∈ {−1,−2} such that

qR(vnj) = pS(vnj)+1(0,−2, a) ≥ pS(vnj) ≥ 0

and so R is balanced with q at vnj . It is clear that R is balanced with q at every other vertex. �
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Fig. 9.3. Visualization of a double rolling move with i = 2 and n = 5. An arrow indicates the transfer of a single pebble.

Fig. 9.4. The four possible configurations for T (G, S \ R̃). The solid arrows represent the moves corresponding to the arrows of P̃ . The dotted arrows
represent the moves corresponding to the arrows of P .

Definition 9.5. Let v1, . . . , vn be the consecutive vertices of a path such that the degrees of v2, v3, . . . , vn−1 are all 2. Let
p be a pebble distribution such that p(v1) = 0 = p(vn), p(vi) ≥ 2 for some i ∈ {2, . . . , n − 1} and p(vj) ≥ 1 for all
j ∈ {2, . . . , n− 1}. A double rolling move creates a new pebble distribution q by taking two pebbles from vi and placing one
pebble on v1 and one pebble on vn, that is q(vi, v1, vn, ∗) = (p(vi)− 2, 1, 1, p(∗)). See Fig. 9.3.

Lemma 9.6. Let q be a pebble distribution on G obtained from the pebble distribution p by applying a double rolling move from
vertex vi to vertices v1 and vn on the path with consecutive vertices v1, . . . , vn. If vertex u ∈ G is reachable from p then u is also
reachable from q.

Proof. If u ∈ {v1, . . . , vn} then it is clearly reachable from q so we can assume that u 6∈ {v1, . . . , vn}. Let S be an acyclic
multiset of rubblingmoves balancedwith p such that pS(u) ≥ 1. Let P be amaximum length directed path in T (G, S) starting
at vi and not going further than v1 or vn. Then P has consecutive vertices vi = vn0 , vn1 , . . . , vnk ∈ {v1, . . . , vn}. Let R be the
multiset containing the elements of S without the moves corresponding to the arrows of P . An argument similar to the one
in the proof of Lemma 9.4 shows that R is balanced with q at every vertex except maybe at vi. If nk = n0 or the arrow
(vn0 , vn1) in P corresponds to a pebbling move, then R is balanced with q at vi as well. Then u is reachable from q since
qR(u) = pS(u) ≥ 1.
Sowe can assume that (vn0 , vn1) corresponds to a strict rubblingmove and that k = 1. Let P̃ be amaximum length path in

T (G, R). Since k = 1, the length of P̃ is either 0 or 1. If this length is 0, then q is balanced with R at vi since d+T (G,R)(vi) = 0 and
we are done. If the length of P̃ is 1, then let R̃ be the multiset containing the elements of Rwithout the moves corresponding
to the arrows of P̃ . Fig. 9.4 shows the possibilities for T (G, S \ R̃). It is easy to check that R̃ is balanced with q in each case.
Thus u is reachable from q since qR̃(u) ≥ pS(u). �

Rolling moves make it possible to find the optimal rubbling number of paths and cycles. The optimal pebbling number
πopt(Pn) =

⌈ 2n
3

⌉
= πopt(Cn)was determined in [10,1].

Proposition 9.7. The optimal rubbling number of the path is ρopt(Pn) = d n+12 e.

Proof. Let Pn be the path with consecutive vertices v1, . . . , vn. It is clear that every vertex is reachable from the pebble
distribution

p(vi) =
{
1, i is odd or i = n
0, else

which has size d n+12 e.
Now assume that there is a pebble distribution of size d n+12 e−1 fromwhich every vertex of Pn is reachable. Let us apply all

available rolling moves (single or double). The process ends in finitely many steps since a rolling move reduces the number
of pebbles on vertices with more than one pebble by at least one. If there is a vertex with more than one pebble and a vertex
with no pebbles, then a rolling move is available. The number of pebbles is not larger than the number of vertices, so the
resulting pebble distribution q has at most one pebble on each vertex. Every vertex of Pn still must be reachable from q by
Lemma 9.6.
The only moves executable directly from q are strict rubbling moves. By the No Cycle Lemma we can assume that every

vertex is reachable by a sequence of moves in which a strict rubbling move (x, y→ z) is not followed by amove of the form
(z, z → x) or (z, z → y). So we can assume that every vertex is reachable through strict rubbling moves. Then we must
have q(v1) = 1 = q(vn) otherwise v1 or vn is not reachable.
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Table 1
Rubbling values without a known general formula.

n 2 3 4 5

ρopt(Bn) 2 4 6
ρopt(Qn) 2 3 4 6

A pigeon hole argument shows that there must be two neighbor vertices u and w such that q(u) = 0 = q(w). To avoid
the existence of such u and w, we would need to place at least

⌊ n−2
2

⌋
pebbles on the vertices v2, . . . , vn−1 but it is easy to

see that the d n+12 e − 3 pebbles available for this purpose are not sufficient.
Then neither u norw is reachable from q, which is a contradiction. �

Proposition 9.8. The optimal rubbling number of the cycle is ρopt(Cn) = d n2e for n ≥ 3.

Proof. Let Cn be the cycle with consecutive vertices v1, . . . , vn. It is clear that every vertex is reachable from the pebble
distribution

p(vi) =
{
1, i is odd
0, else

which has size d n2e.
Now assume that there is a pebble distribution of size d n2e − 1 from which every vertex of Cn is reachable. Let us apply

all available double rolling moves. The process ends in finitely many steps since a double rolling move reduces the number
of pebbles on vertices with more than one pebble by two. If there is a vertex with more than one pebble and two vertices
with no pebbles, then a double rolling move is available. The number of pebbles is smaller than the number of vertices, so
the resulting pebble distribution q has at most one pebble on each vertex. Every vertex of Cn still must be reachable from q.
The only moves executable directly from q are strict rubbling moves. The No Cycle Lemma implies that we can assume

that every vertex is reachable through strict rubblingmoves. A pigeon hole argument shows that theremust be two neighbor
vertices u andw such that q(u) = 0 = q(w). But then neither u norw is reachable from qwhich is a contradiction. �

10. Further questions

There are plenty of unanswered questions. We list a few of them.

• What is the optimal rubbling number of the complete binary tree Bn and the hypercube Qn. It is fairly easy to get answers
for small nwith a computer. The known values are listed in Table 1.
• The cover rubbling number of a graph G is the minimum number m such that for every pebble distribution p on G with
sizem there is an executable rubbling sequence swith ps(v) ≥ 1 for all v ∈ V (G). The cover pebbling number is defined
analogously. Is the cover rubbling number the same as the cover pebbling number for every graph? The answer might
depend on whether the cover pebbling theorem of [11] can be generalized for rubbling.
• We have π(Pn) = ρ(Pn), π(Qn) = ρ(Qn) and it is easy to check that π(L) = 8 = ρ(L) where L is the Lemke graph [6].
This is not always the case though. Is it possible to characterize those graphs for which the pebbling and the rubbling
numbers are the same? When is the rubbling number significantly smaller than the pebbling number?
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