Note

The $L(d, 1)$-number of powers of paths

Anja Kohl

Institute of Discrete Mathematics and Algebra, TU Bergakademie Freiberg, 09596 Freiberg, Germany

ARTICLE INFO

Article history:

Received 16 January 2007
Received in revised form 18 August 2008
Accepted 20 August 2008
Available online 11 September 2008

Keywords:

Distance two labelling
$L(d, 1)$-labelling
Powers of paths

Abstract

Given a graph $G=(V, E)$ and a positive integer d, an $L(d, 1)$-labelling of G is a function $f: V \rightarrow\{0,1, \ldots\}$ such that if two vertices x and y are adjacent, then $|f(x)-f(y)| \geq d$; if they are at distance 2 , then $|f(x)-f(y)| \geq 1$. The $L(d, 1)$-number of G, denoted by $\lambda_{d, 1}(G)$, is the smallest number m such that G has an $L(d, 1)$-labelling with $m=\max \{f(x) \mid x \in V\}$. We correct the result on the $L(d, 1)$-number of powers of paths given by Chang et al. in [G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On L(d, 1)-labelings of graphs, Discrete Math. 220 (2000) 57-66].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple, undirected graph with vertex set V and edge set E. For $x, y \in V$ we denote by $d(x, y)$ the distance between x and y, which is the number of edges in a shortest (x, y)-path. The r th power of a graph G, written G^{r}, is a graph on the same vertex set such that two vertices are joined by an edge if and only if their distance in G is at most r. Let $P_{n}^{r}, r \geq 1$, denote the r th power of a path with n vertices.

Given a graph $G=(V, E)$ and a positive integer d, an $L(d, 1)$-labelling of G is a function $f: V \rightarrow\{0,1, \ldots\}$ such that for any two vertices $x, y \in V$

1. $|f(x)-f(y)| \geq d$, if $d(x, y)=1$ and
2. $|f(x)-f(y)| \geq 1$, if $d(x, y)=2$.

The $L(d, 1)$-number of G, denoted by $\lambda_{d, 1}(G)$, is the smallest number m such that G has an $L(d, 1)$-labelling with $m=$ $\max \{f(x) \mid x \in V\}$.
$L(d, 1)$-labellings arose from a variation of the frequency assignment problem introduced by Hale [7]. There has been a high interest in such distance constrained labellings in recent years; see e.g. [1-6,8-10].

In this paper we determine $\lambda_{d, 1}\left(P_{n}^{r}\right)$ for all $d, r, n \in \mathbb{N}_{+}:=\mathbb{N} \backslash\{0\}$, for which partially wrong values were presented by Chang et al. [3].

2. Main result

Theorem 1. Let $d, r, n \in \mathbb{N}_{+}$and $a:=\min \{d, r+1\}$. Then $\lambda_{1,1}\left(P_{n}^{r}\right)=\min \{n-1,2 r\}$, and for $d \geq 2$,

$$
\lambda_{d, 1}\left(P_{n}^{r}\right)= \begin{cases}(n-1) d, & \text { if } n \leq r+1 \tag{1}\\ {\left[\frac{n}{r+1}\right\rceil-1+r d,} & \text { if } r+1<n \leq a(r+1) \\ a+r d, & \text { if } a(r+1)<n .\end{cases}
$$

[^0]Note that the results on $\lambda_{d, 1}\left(P_{n}^{r}\right)$ given by Chang et al. are wrong for any case where $\min \{d, r+1\} \geq 3$ and $n>3(r+1)$.
The next two subsections are devoted to the proof of this theorem.

2.1. Preliminaries

Let $n>r+1$. We define color levels $C_{j}:=\{j d, 1+j d, \ldots, d-1+j d\}$ for $j=0,1, \ldots r+1$. Since two labels within the same color level have difference at most $d-1$, any $r+1$ consecutive vertices in P_{n}^{r} have to get labels from pairwise distinct color levels. For simplification we partition the vertex set of P_{n}^{r} into parts of $r+1$ consecutive vertices

$$
V\left(P_{n}^{r}\right)=\left\{v_{0}^{0}, \ldots, v_{r}^{0} ; v_{0}^{1}, \ldots, v_{r}^{1} ; \ldots ; v_{0}^{q-1}, \ldots, v_{r}^{q-1} ; v_{0}^{q}, \ldots, v_{p-1}^{q}\right\}
$$

such that $n=q(r+1)+p, p \in\{1,2, \ldots, r+1\}$. Note that $q=\left\lceil\frac{n}{r+1}\right\rceil-1 \geq 1$.
Assume that there exists a proper $L(d, 1)$-labelling f of P_{n}^{r} such that $f(v) \in \bigcup_{j=0}^{r} C_{j}$ for all $v \in V\left(P_{n}^{r}\right)$. Let π be that permutation of the numbers $0,1, \ldots, r$ for which $f\left(v_{\pi(j)}^{0}\right) \in C_{j}$ for every $j \in\{0,1, \ldots, r\}$. Set $J_{i}:=\left\{\pi^{-1}(l) \mid 0 \leq l \leq r\right\}=$ $\{0,1, \ldots, r\}$ for $i \in\{0,1, \ldots, q-1\}$, and $J_{q}:=\left\{\pi^{-1}(l) \mid 0 \leq l \leq p-1\right\}$. Then we note the following assertions:

Claim 2. $f\left(v_{\pi(j)}^{i}\right) \in C_{j}$ for $i \in\{1,2, \ldots, q\} ; j \in J_{i}$.
Proof. For $i \in\{1,2, \ldots, q\}$ and $j \in J_{i}$ there exist r vertices that are adjacent both to $v_{\pi(j)}^{i-1}$ and $v_{\pi(j)}^{i}$. Hence for both vertices the same r color levels are forbidden. Since f uses only $r+1$ color levels the two vertices $v_{\pi(j)}^{i-1}$ and $v_{\pi(j)}^{i}$ have to receive labels from the same color level, which is C_{j} because of $f\left(v_{\pi(j)}^{0}\right) \in C_{j}$. \#

Claim 3. $f\left(v_{\pi(j)}^{i-1}\right) \neq f\left(v_{\pi(j)}^{i}\right)$ for $i \in\{1,2, \ldots q\} ; j \in J_{i}$.
Proof. For $i \in\{1,2, \ldots q\}$ and $j \in J_{i}$ the two vertices $v_{\pi(j)}^{i-1}$ and $v_{\pi(j)}^{i}$ have distance 2 ; therefore they have to receive distinct labels. \#

Claim 4. For $i \in\{0,1, \ldots, q-1\}$ and $j \in J_{i}$ let $a_{j}:=f\left(v_{\pi(j)}^{i}\right)-j d$. Then $a_{j} \in\{0,1, \ldots, d-1\}$ and $a_{r} \geq a_{r-1} \geq \ldots \geq a_{0}$.
Proof. Since $f\left(v_{\pi(j)}^{i}\right) \in C_{j}$, it follows that $a_{j} \in\{0,1, \ldots, d-1\}$. Let $k \in\{0,1, \ldots, r-1\}$. By the definition of C_{k} and C_{k+1}, $f\left(v_{\pi(k+1)}^{i}\right)>f\left(v_{\pi(k)}^{i}\right)$, and calling in the distance 1 condition, we conclude $f\left(v_{\pi(k+1)}^{i}\right)-f\left(v_{\pi(k)}^{i}\right) \geq d$. This implies $a_{k+1} \geq a_{k}$ for any $k \in\{0,1, \ldots, r-1\}$. \#

Claim 5. If $\pi(j)<\pi(j+1)$ then $f\left(v_{\pi(j+1)}^{i}\right) \geq \max \left\{f\left(v_{\pi(j)}^{i}\right), f\left(v_{\pi(j)}^{i+1}\right)\right\}+d$ for $i \in\{0,1, \ldots q-1\} ; j \in J_{i+1} \wedge j \leq r-1$. If $\pi(j)>\pi(j+1)$ then $f\left(v_{\pi(j+1)}^{i}\right) \geq \max \left\{f\left(v_{\pi(j)}^{i-1}\right), f\left(v_{\pi(j)}^{i}\right)\right\}+d$ for $i \in\{1,2 \ldots q\} ; j \in J_{i} \wedge j \leq r-1$.

Proof. If $i \leq q-1, \pi(j)<\pi(j+1), j \leq r-1$, and $j \in J_{i+1}$ then the vertices $v_{\pi(j)}^{i}, v_{\pi(j)}^{i+1}, v_{\pi(j+1)}^{i}$ exist and $v_{\pi(j+1)}^{i}$ is adjacent to both $v_{\pi(j)}^{i}$ and $v_{\pi(j)}^{i+1}$. If $i \geq 1, \pi(j)>\pi(j+1), j \leq r-1$, and $j \in J_{i}$ then the vertices $v_{\pi(j)}^{i-1}, v_{\pi(j)}^{i}, v_{\pi(j+1)}^{i}$ exist and $v_{\pi(j+1)}^{i}$ is adjacent to both $v_{\pi(j)}^{i-1}$ and $v_{\pi(j)}^{i}$. Applying the distance 1 condition yields the desired inequalities. \#

For $k \in\{0,1, \ldots, r\}$ let i_{k} be the number of integers $j, j \in\{0,1, \ldots, k-1\}$, such that $\pi(j+1)<\pi(j)$.
Lemma 6. Let $k \in\{0,1, \ldots, r\}$.
If $\pi(0)=0$ then $\max \left\{f\left(v_{\pi(k)}^{i}\right), f\left(v_{\pi(k)}^{i+1}\right)\right\} \geq k+1+k d$ for $i=i_{k}, \ldots, i_{k}+q-k-1$. If $\pi(0)>0$ then this inequality holds only for $i=i_{k}, \ldots, i_{k}+q-k-2$.
Proof. Suppose $\pi(0)=0$. We apply induction on k.
Let $k=0$. Then $i_{0}=0$ and $f\left(v_{0}^{i}\right) \geq 0$ for $i \in\{0,1, \ldots, q\}$. By Claim $3, \max \left\{f\left(v_{\pi(0)}^{i}\right), f\left(v_{\pi(0)}^{i+1}\right)\right\} \geq 1$ for $i \in\{0,1, \ldots, q-1\}$.
Assuming the statement holds for k we prove it for $k+1(k \geq 0)$.
Case 1. $\pi(k)<\pi(k+1)$, i.e. $i_{k+1}=i_{k}$.
By the induction hypothesis and Claim 5, $f\left(v_{\pi(k+1)}^{i}\right) \geq k+1+(k+1) d$ for $i \in\left\{i_{k}, \ldots, i_{k}+q-k-1\right\}$, and according to
Claim 3, $\max \left\{f\left(v_{\pi(k+1)}^{i}\right), f\left(v_{\pi(k+1)}^{i+1}\right)\right\} \geq k+2+(k+1) d$ for $i \in\left\{i_{k}, \ldots, i_{k}+q-(k+1)-1\right\}$.
Case 2. $\pi(k)>\pi(k+1)$, i.e. $i_{k+1}=i_{k}+1$.
By the induction hypothesis and Claim 5, $f\left(v_{\pi(k+1)}^{i}\right) \geq k+1+(k+1) d$ for $i \in\left\{i_{k}+1, \ldots, i_{k}+q-k\right\}$. Using Claim 3, we obtain $\max \left\{f\left(v_{\pi(k+1)}^{i}\right), f\left(v_{\pi(k+1)}^{i+1}\right)\right\} \geq k+2+(k+1) d$ for $i \in\left\{i_{k}+1, \ldots, i_{k}+1+q-(k+1)-1\right\}$.

If $\pi(0)>0$ then in the induction basis we can just guarantee $\max \left\{f\left(v_{\pi(0)}^{i}\right), f\left(v_{\pi(0)}^{i+1}\right)\right\} \geq 1$ for $i \in\{0,1, \ldots, q-2\}$ because the vertex $v_{\pi(0)}^{q}$ may not exist. The induction step is analogous to that for the case $\pi(0)=0$. Hence, we only have to reduce the upper bound for the variable i by 1 .

Lemma 7. There exists an integer $i, i \in\{0,1, \ldots, q\}$, such that $f\left(v_{\pi(r)}^{i}\right) \geq r+1+r d$ if $q>r+1$ and $f\left(v_{\pi(r)}^{i}\right) \geq q+r d$ if $q \leq r+1$.
Proof. Let $q>r+1$. The two vertices $v_{\pi(r)}^{i_{r}}$ and $v_{\pi(r)}^{i_{r}+1}$ exist because of $i_{r} \geq 0$ and $i_{r}+1 \leq r+1 \leq q-1$. By Lemma 6, $\max \left\{f\left(v_{\pi(r)}^{i_{r}}\right), f\left(v_{\pi(r)}^{i_{r}+1}\right)\right\} \geq r+1+r d$. Hence, there is a vertex with label at least $r+1+r d$.

Let $q \leq r+1$ and $t:=\pi^{-1}(0)$.
Case 1. $t=0$. According to Lemma 6 there exists $i^{\prime} \in\left\{i_{q-1}, i_{q-1}+1\right\}$ such that $f\left(v_{\pi(q-1)}^{i^{\prime}}\right) \geq q+(q-1) d$. Since $i_{q-1} \geq 0$ and $i_{q-1}+1 \leq q-1$ it follows that $0 \leq i^{\prime} \leq q-1$. Hence, $f\left(v_{\pi(r)}^{i^{\prime}}\right) \geq q+r d$, by Claim 4 .

Case 2. $t>0 \wedge q=1$.
By Claim 3, $\max \left\{f\left(v_{\pi(t)}^{0}\right), f\left(v_{\pi(t)}^{1}\right)\right\} \geq 1+t d$. Hence, if $t=r$ then the vertex with label at least $1+r d=q+r d$ exists. If $t<r$ then the vertex $v_{\pi(t+1)}^{0}$ is adjacent to $v_{\pi(t)}^{0}$ and $v_{\pi(t)}^{1}$, such that we can conclude $f\left(v_{\pi(t+1)}^{0}\right) \geq 1+(t+1) d$, by Claim 5 .
According to Claim 4 it follows that $f\left(v_{\pi(r)}^{0}\right) \geq 1+r d=q+r d$.
Case 3. $t>0 \wedge 2 \leq q \leq r+1$.
According to Lemma 6 there exists $i^{*} \in\left\{i_{q-2}, i_{q-2}+1\right\}$ such that $f\left(v_{\pi(q-2)}^{i^{*}}\right) \geq q-1+(q-2) d$.
Subcase 3.1. $t>q-2$.
Since $i_{q-2} \geq 0$ and $i_{q-2}+1 \leq q-1$ it follows that $0 \leq i^{*} \leq q-1$. Hence, we can apply Claim 4 to obtain $f\left(v_{\pi(t-1)}^{i^{*}}\right) \geq$ $q-1+(t-1) d$. The vertices $v_{\pi(t)}^{i^{*}}, v_{\pi(t)}^{i^{i^{*}+1}}$ exist and they are adjacent to $v_{\pi(t-1)}^{i^{*}}$. Therefore $\max \left\{f\left(v_{\pi(t)}^{i^{*}}\right), f\left(v_{\pi(t)}^{i^{*}+1}\right)\right\} \geq q+t d$, by Claim 3. By an argument similar to that for Claim 4 , we get $f\left(v_{\pi(r)}^{i^{*}}\right) \geq q+r d$.

Subcase 3.2. $t \leq q-2$.
From $0<t \leq q-2$ we know that $i_{q-2} \geq 1$ and $q \geq 3$.
Suppose $i_{q-2}=q-2$, i.e. $\pi(q-2)<\pi(q-3)<\cdots<\pi(0)$. Then $t=q-2$ holds. Because of $1 \leq i_{q-2} \leq i^{*} \leq q-1$, the vertices $v_{\pi(q-1)}^{i^{*}-1}, v_{\pi(q-1)}^{i^{*}}$ exist and they are adjacent to $v_{\pi(q-2)}^{i^{*}}=v_{\pi(t)}^{i^{*}}$. Hence, it follows that max $\left\{f\left(v_{\pi(q-1)}^{i^{*}-1}\right), f\left(v_{\pi(q-1)}^{i^{*}}\right)\right\} \geq$ $q+(q-1) d$, by Claim 3. Applying Claim 4 we obtain $\max \left\{f\left(v_{\pi(r)}^{i^{*}-1}\right), f\left(v_{\pi(r)}^{i^{*}}\right)\right\} \geq q+r d$. Therefore a vertex with label at least $q+r d$ exists.

Suppose $i_{q-2} \leq q-3$. Hence, $1 \leq i^{*} \leq q-2$. If $\pi(q-2)<\pi(q-1)$ then $\max \left\{f\left(v_{\pi(q-1)}^{i^{*}-1}\right), f\left(v_{\pi(q-1)}^{i^{*}}\right)\right\} \geq q+(q-1) d$, according to Claim 5. By Claim 4, $\max \left\{f\left(v_{\pi(r)}^{i^{*}-1}\right), f\left(v_{\pi(r)}^{i^{*}}\right)\right\} \geq q+r d$. If $\pi(q-2)>\pi(q-1)$ we use an analogous argument to show $\max \left\{f\left(v_{\pi(r)}^{i^{*}}\right), f\left(v_{\pi(r)}^{i^{*}+1}\right)\right\} \geq q+r d$. This proves the existence of a vertex with label at least $q+r d$.

2.2. Proof of Theorem 1

$$
\text { If } d=1 \text { then } \lambda_{1,1}\left(P_{n}^{r}\right)=\lambda_{1,0}\left(P_{n}^{2 r}\right)=\chi\left(P_{n}^{2 r}\right)-1=\min \{n-1,2 r\}
$$

Now suppose $d \geq 2$. If $n \leq r+1$ then $P_{n}^{r} \cong K_{n}$, and therefore $\lambda_{d, 1}\left(P_{n}^{r}\right)=\lambda_{d, 0}\left(P_{n}^{r}\right)=d \cdot \lambda_{1,0}\left(P_{n}^{r}\right)=d\left(\chi\left(P_{n}^{r}\right)-1\right)=d(n-1)$.
Let $n>r+1$. Obviously, $\lambda_{d, 1}\left(P_{n}^{r}\right) \geq \lambda_{d, 1}\left(P_{r+1}^{r}\right)=r d$. If we label the first vertices using the sequence

$$
\underbrace{0, d, \ldots,(r+1) d}_{r+2 \text { terms }}, \quad \underbrace{1,1+d, \ldots, 1+r d}_{r+1 \text { terms, }}
$$

and repeat this pattern if necessary for the remaining vertices, then we obtain a proper $L(d, 1)$-labelling with maximum label at most $(r+1) d$. Hence, $\lambda_{d, 1}\left(P_{n}^{r}\right) \leq(r+1) d$.

Assume that there exists an $L(d, 1)$-labelling f of P_{n}^{r} with $\max _{v \in V\left(P_{n}^{r}\right)} f(v)<(r+1) d$, i.e. $\forall v \in V\left(P_{n}^{r}\right): f(v) \in \bigcup_{j=0}^{r} C_{j}$. By Lemma 7,

$$
\max _{v \in V\left(P_{n}^{r}\right)} f(v) \geq \begin{cases}q+r d, & \text { for } q \leq r+1 \tag{2}\\ r+1+r d, & \text { for } q>r+1\end{cases}
$$

This contradicts the assumption $\max _{v \in V\left(P_{n}^{r}\right)} f(v)<(r+1) d$ for the case $d \leq \min \{q, r+1\}$. Here the labelling scheme specified above is optimal and yields $\lambda_{d, 1}\left(P_{n}^{r}\right)=(r+1) d$.

Now let $d>\min \{q, r+1\}$. By inequality (2), $\lambda_{d, 1}\left(P_{n}^{r}\right) \geq q+r d$ for $q \leq r+1$ and $\lambda_{d, 1}\left(P_{n}^{r}\right) \geq r+1+r d$ for $q>r+1$. For both cases we show that the lower bound is sharp by construction of a proper $L(d, 1)$-labelling with maximum label $q+r d$ or $r+1+r d$, respectively.

If $q \leq r+1$ we use the following decreasing labelling scheme:

$$
\underbrace{q, q+d, \ldots, q+r d}_{r+1 \text { terms }}, \underbrace{q-1, q-1+d, \ldots, q-1+r d}_{r+1 \text { terms }}, \ldots, \underbrace{0, d, \ldots,(p-1) d}_{p \text { terms }} .
$$

So we obtain a proper $L(d, 1)$-labelling of P_{n}^{r} with maximum label $q+r d=\left\lceil\frac{n}{r+1}\right\rceil-1+r d$. In the case of $q>r+1$ we apply an alternating labelling scheme:

$$
\underbrace{0,1+d, \ldots, r+r d}_{r+1 \text { terms }}, \quad \underbrace{1,2+d, \ldots,(r+1)+r d}_{r+1 \text { terms }}
$$

Fig. 1. $L(d, 1)$-labellings of the graphs P_{9}^{2} and P_{10}^{2}.
and repeat it until all vertices have received a label. This provides a proper $L(d, 1)$-labelling of P_{n}^{r} with maximum label $r+1+r d$.

Sorting the values for $\lambda_{d, 1}\left(P_{n}^{r}\right)$ depending on n yields the result (1).
Example 8. Let $d \geq 3$. We consider the two graphs P_{9}^{2} and P_{10}^{2}. According to the proof of Theorem 1, we label the vertices of P_{9}^{2} using the decreasing labelling scheme and those of P_{10}^{2} using an alternating labelling scheme (see Fig. 1).

3. Concluding remarks

Distance constrained labellings can be generalized to an arbitrary number k of distance constraints.
Let $p_{1}, \ldots, p_{k} \in \mathbb{N}$. An $L\left(p_{1}, \ldots, p_{k}\right)$-labelling of a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1, \ldots\}$ such that $|f(x)-f(y)| \geq p_{i}$ for any two vertices $x, y \in V$ with distance $d(x, y) \leq i \leq r . \lambda_{p_{1}, \ldots, p_{k}}(G)$ is the smallest number m for which an $L\left(p_{1}, \ldots, p_{k}\right)$-labelling of G with maximum label m exists.

Obviously, an $L(d, 1)$-labelling of a graph power G^{r} is equivalent to an $L(d, \ldots, d, 1 \ldots, 1$)-labelling of G (with $2 r$ distance constraints). Hence, the determination of $\lambda_{d, 1}$ for a graph power provides several bounds and information for other distance constrained labellings. Since paths and/or cycles occur as subgraphs in any graph G it is advisable to consider $L(d, 1)$ labellings for powers of paths and cycles. In this paper we established $\lambda_{d, 1}\left(P_{n}^{r}\right)$ for all $d, n, r \in \mathbb{N}_{+}$.

Let C_{n}^{r} be the r th power of a cycle with n vertices. In [9] we determined $\lambda_{d, 1}\left(C_{n}^{r}\right)$ for all $n, r \in \mathbb{N}$ and $d \geq 3$ as well as bounds for $\lambda_{2,1}\left(C_{n}^{r}\right)$. The calculation of these values is very extensive and needs a lot of case analysis; therefore we will not present it here.

References

[1] T. Calamoneri, The $L(h, k)$-labelling problem: A survey and annotated bibliography, Comput. J. 49 (5) (2006) 585-608.
[2] T. Calamoneri, A. Pelc, R. Petreschi, Labeling trees with a condition at distance two, Discrete Math. 306 (14) (2006) 1534-1539.
[3] G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On $L(d, 1)$-labelings of graphs, Discrete Math. 220 (2000) 57-66.
[4] J. Fiala, J. Kratochvíl, On the computational complexity of the $L(2,1)$-labeling problem for regular graphs, Lecture Notes Comput. Sci. 3701 (2005) 228-236.
[5] J.P. Georges, D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congressus Numer. 109 (1995) 141-159.
[6] J.R. Griggs, X.T. Jin, Real number graph labellings with distance conditions, SIAM J. Discrete Math. 20 (2) (2006) 302-327.
[7] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497-1514.
[8] A. Kohl, Bounds for the $L(d, 1)$-number of diameter 2 graphs, trees and cacti, Int. J. Mobile Netw. Des. Innovation 1 (2) (2006) 124-135.
[9] A. Kohl, Knotenfärbungen mit Abstandsbedingungen, Dissertation, TU Bergakademie Freiberg, Germany, 2006 (in German).
[10] W.-F. Wang, The $L(2,1)$-labelling of trees, Discrete Appl. Math. 154 (3)(2006) 598-603.

[^0]: E-mail address: kohl@math.tu-freiberg.de.
 0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2008.08.018

