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Powers of paths

1. Introduction

Let G = (V, E) be a simple, undirected graph with vertex set V and edge set E. For x,y € V we denote by d(x, y) the
distance between x and y, which is the number of edges in a shortest (x, y)-path. The rth power of a graph G, written G, is
a graph on the same vertex set such that two vertices are joined by an edge if and only if their distance in G is at most r. Let
P}, r > 1, denote the rth power of a path with n vertices.

Given a graph G = (V, E) and a positive integer d, an L(d, 1)-labelling of G is a function f : V — {0, 1, ...} such that for
any two verticesx,y € V

1. Ifx) —f()| >d,ifd(x,y) = 1and
2. f(0) —fWl > 1,ifdx,y) = 2.

The L(d, 1)-number of G, denoted by A4 1(G), is the smallest number m such that G has an L(d, 1)-labelling with m =
max{f (x)|x € V}.

L(d, 1)-labellings arose from a variation of the frequency assignment problem introduced by Hale [7]. There has been a
high interest in such distance constrained labellings in recent years; see e.g. [1-6,8-10].

In this paper we determine A4 1(Py) foralld, r,n € Ny := N\ {0}, for which partially wrong values were presented by
Chang et al. [3].

2. Main result

Theorem 1. Let d, r,n € N4 and a := min{d, r 4+ 1}. Then A1 1(P;) = min{n — 1, 2r}, and for d > 2,

(n— 1), ifn<r+1

Aa1(Py) = ’711—‘ —1+rd, ifr+l1<n=<a(r+1) (1)
r
a+rd, ifar +1) < n.
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Note that the results on A4 1 (P},) given by Chang et al. are wrong for any case where min{d, r + 1} > 3and n > 3(r 4+ 1).
The next two subsections are devoted to the proof of this theorem.

2.1. Preliminaries

Letn > r + 1. We define color levels C; := {jd, 1+jd,...,d — 14 jd} forj =0, 1, ...r 4 1. Since two labels within the
same color level have difference at most d — 1, any r 4+ 1 consecutive vertices in P, have to get labels from pairwise distinct
color levels. For simplification we partition the vertex set of P} into parts of r 4 1 consecutive vertices

V(P = {vg,...,v?; v&,...,v1, vg ],...,vf_l; vg,...,vgfl}
suchthatn =q(r+ 1) +p,p e {1,2,...,r + 1}. Note that g = (H_Lll —-1>1

Assume that there exists a proper L(d, 1)-labelling f of P/ such that f(v) € U;:O G forall v € V(Py). Let 7 be that
permutation of the numbers 0, 1, ..., r for whichf(vg(i)) € Cforeveryje {0,1,...,r}.Set]; == (7' )0<l<r})=
{0,1,...,r}forie{0,1,...,9—1},and J; := {mr~1(}) | 0 < I < p — 1}. Then we note the following assertions:

Claim 2. f(v} ;) € Gforie{1,2,...,q}j €]

Proof. Fori € {1,2,...,q}andj € J; there exist r vertices that are adjacent both to vm) and vno) Hence for both vertices
the same r color levels are forbidden. Since f uses only r + 1 color levels the two vertices v} ; ! and v () have to receive labels
from the same color level, which is G because off(vn(l)) €G. #

Claim 3. f (v} }) # f(vl, ;) fori € {1,2,...q}j €.

Proof. Fori € {1,2,...q}andj € J; the two vertices vj’T_(:) and vj"T(j) have distance 2; therefore they have to receive distinct
labels. #

Claim4. Forie {0,1,...,9— 1} andj € J; let g ::f(v;U))—jd.Thenaje{O,l,...,d—l}andarzar,1 > ... > .

Proof. Sincef(vjr(i)) € G, it follows thatag; € {0,1,...,d — 1}.Letk € {0, 1,...,r — 1}. By the definition of C; and Gy,

FQL g1y > F(VE ), and calling in the distance 1 condition, we conclude f (v} ., 1)) — f (vl,) > d. This implies a1 > ay
foranyk € {0,1,...,r—1}. #

Claim5. If 7(j) < w(j+ 1) thenf(vn(m)) > max{f(vn(/)) f(vjf(l]) }+dfori e{0,1,...q—1LjefimAnj<r—1If
7)) >n(+ l)thenf(vmﬂ)) > max {f(vn(])) f(Un@)} +dforie{l,2...q);jefinj<r—1

Proof. Ifi <q—1,7() < (+1),j <r—1,andj € Ji; then the vertices vm), ;jb) n(1+1) exist and vjr(,ﬂ) is adjacent
to both v’ ;, and v”rl Ifi>1,7() >n(+1),j <r—1andj € J; then the vertices vm), ) Vigian) €Xistand vl o o is
adjacent to both vﬂ(‘) and vn . Applying the distance 1 condition yields the desired inequalities. #

Fork € {0, 1, ..., r}leti, be the number of integersj,j € {0, 1, ...,k — 1},such that 7 j + 1) < 7 (j).

Lemma6. Letk € {0,1,...,1}.

If m(0) = O then max{f(vn(k)) f(v;f(,:))} >k+1+4+kdfori=1iy,...,i,+q—k—11If 7(0) > 0 then this inequality holds
onlyfori=1iy,...,ix+q—k—2.
Proof. Suppose 7 (0) = 0. We apply induction on k. ‘ .

Letk = 0.Thenip = 0andf(vy) > Ofori € {0, 1, ..., q}.ByClaim 3, max{f(v;(o)),f(v;;é))} > 1forie {0,1,...,q—1}.

Assuming the statement holds for k we prove it for k + 1 (k > 0).

Case 1.7t (k) < w(k+ 1),i.e. i1 = iy. 4

By the induction hypothesis and Claim 5,f(v;r(k+1)) >k+ 14 (k+ 1)dfori € {ig, ..., ix+q— k— 1}, and according to
Claim 3, max {f(v;(k+1)),f(v;“:,:+l))] > k424 (k+ Ddfori€ {ig, ..., 0 +q— (k+ 1) — 1),

Case2.7mw(k) > w(k+1),ie iy =i+ 1.

By the induction hypothesis and Claim 5,f(v§1(k+])) >k+ 1+ (k+ Ddfori e {ix+1,...,i + q — k}. Using Claim 3,
we obtain max £ (vl 1)), F 5L 1) | 2 k24 e Ddfori e (i + 1, i+ 1+ = (k+ 1) = 1),

If #(0) > O then in the induction basis we can just guarantee max{f(v;(o)),f(vn(()))} 1fori € {0,1,...,q — 2}

because the vertex vfr 0) May not exist. The induction step is analogous to that for the case 7 (0) = 0. Hence, we only have
to reduce the upper bound for the variableiby 1. O
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Lemma 7. There exists an integer i,i € {0, 1, ..., q}, such thatf(v;(r)) >r+14rdifg>r+1 andf(v;(r)) >q+rdif
q<r+1

Proof. Let ¢ > r + 1. The two vertices v;’(r) and vj;(t)l exist because of i > Oandi, +1 <r+ 1 < q— 1.By Lemma 6,

max{f(vj;(r)),f(vgﬁ;)])} > r 4+ 1+ rd. Hence, there is a vertex with label at least r + 1 + rd.

Letq <r+ landt :=7"'(0).
Case 1.t = 0. According to Lemma 6 there exists i’ € {i;_1, ig—1 + 1} such thatf(vjr(qfl)) >q+(q— 1d.Sinceiz_1 >0

andig_q +1<q— litfollowsthat0 <i <q—1. Hence,f(vf;(r)) > q + rd, by Claim 4.
Case2.t >0Aqg=1.
By Claim 3, max{f(vg(t)),f(v}r([))} > 1+ td. Hence, if t = r then the vertex with label at least 1 + rd = q + rd exists. If

t < rthen the vertex v ., is adjacent to v3 ,, and v}, such that we can conclude f (v3,,)) > 1+ (t + 1)d, by Claim 5.

According to Claim 4 it follows thatf(vgm) >1+rd=q+rd

Case3.t >0AN2=<q=<r+1 )

According to Lemma 6 there exists i* € {ig_, i;—» + 1} such thatf(v;:(qu)) >q—14(qg—2)d.

Subcase 3.1.t > q — 2. .

Since ig_» > 0and ig_, + 1 < q — 1 it follows that 0 < i* < q — 1. Hence, we can apply Claim 4 to obtainf(v;:(tfl)) >
q — 1+ (t — 1)d. The vertices UZ(I)» v;::[)l exist and they are adjacent to Ug(r71)~ Therefore max{f(vf(t)),f(vf:[)l)} > q+td,

by Claim 3. By an argument similar to that for Claim 4, we getf(vjm)) >q+rd.
Subcase 3.2.t < q— 2.
From0 < t < q — 2 we know thati;_, > Tandq > 3.
Suppose iy, =q—2,ie.m(q—2) <m(q—3) <--- < w(0).Thent = q—2 holds. Because of 1 < i;_, < i* < q—1,the

vertices U:(le), vj:<q_l) exist and they are adjacent to Uf:(q_z) = vj':([). Hence, it follows that max{f(v:(;ll)),f(v:(q_u)} >

g+ (g — 1)d, by Claim 3. Applying Claim 4 we obtain max{f(vf:(:;),f(v;jm)} > q+ rd. Therefore a vertex with label at least
q + rd exists.

Suppose ig_, < q—3.Hence,1 <i* <q—2.1fn(q—2) <m(q— 1) then max{f(vj:(;l])),f(vg(qq))} >q+(q— 1d,
according to Claim 5. By Claim 4, max{f(vi*(:)l),f(vz(r))} >q+rd. Ifr(q—2) > w(qg — 1) we use an analogous argument

g
to show max({f (v:(r>), f (vj: (J;)])} > q + rd. This proves the existence of a vertex with label at least g +rd. O

2.2. Proof of Theorem 1

Ifd = 1then Ay 1(P}) = A1 0(P¥) = x(P¥) — 1 = min{n — 1, 2r}.
Now supposed > 2.1fn < r41thenP; = K;, and therefore A4 1 (P;) = Ag0(P;) = d-A1,0(P]) =d(x(P))—1) = d(n—1).
Letn > r + 1. Obviously, A4,1(P;) > Aq1(P;,;) = rd. If we label the first vertices using the sequence

0,d,...,(r+ 1), 1,1+d,...,14+1rd

r+2 terms r+1 terms,

and repeat this pattern if necessary for the remaining vertices, then we obtain a proper L(d, 1)-labelling with maximum
label at most (r + 1)d. Hence, 141 (P]) < (r + 1)d.

Assume that there exists an L(d, 1)-labelling f of P; with max,cypry f(v) < (r + 1)d, i.e. Vv € V(P}) : f(v) € U;:o G.
By Lemma 7,

max f(v) > q+rd, forg<r+1

veV(Ph) r+1+rd, forq>r+1. (2)

This contradicts the assumption max,eypr) f(v) < (r + 1)d for the case d < min{q, r + 1}. Here the labelling scheme
specified above is optimal and yields A4 1 (P]) = (r 4+ 1)d.

Now letd > min{q, r + 1}. By inequality (2), Aq,1(P;) > q+rdforq <r+1and Ay :(P]) > r+1+4rdforq > r + 1. For
both cases we show that the lower bound is sharp by construction of a proper L(d, 1)-labelling with maximum label q + rd
orr + 1+ rd, respectively.

If ¢ < r 4+ 1 we use the following decreasing labelling scheme:

q,9+d,...,q+rd,q—1,9g—14+d,...,q—1+rd,...,0,d,...,(p— 1)d.

r+1 terms r+1 terms p terms

So we obtain a proper L(d, 1)-labelling of P] with maximum label q 4 rd = [WLJ — 14 rd. Inthe caseof g > r + 1 we
apply an alternating labelling scheme:

0,1+d,...,r+rd, 1,2+d,...,r+1)+rd

r+1 terms r+1 terms
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ET o e sy g

I
2 2+4+d 242d ! 1 1+d 1+2d
I

0 d 2d

I
0 1+d 24+2d ! 1 24+d 3+2d 0 1+d 2+2d
I

Fig. 1. L(d, 1)-labellings of the graphs PZ and P3,.

and repeat it until all vertices have received a label. This provides a proper L(d, 1)-labelling of P] with maximum label
r+1+rd
Sorting the values for A4 1(P},) depending on n yields the result (1). O

Example 8. Let d > 3. We consider the two graphs sz and Plzo. According to the proof of Theorem 1, we label the vertices of
Pg,2 using the decreasing labelling scheme and those of Pfo using an alternating labelling scheme (see Fig. 1).

3. Concluding remarks

Distance constrained labellings can be generalized to an arbitrary number k of distance constraints.

Let p1,...,px € N.An L(py, ..., px)-labelling of a graph G = (V,E) is a function f : V — {0, 1, ...} such that
If x) — f(¥)| = p; for any two vertices x, y € V with distance d(x,y) < i < r. Ay, . p,(G) is the smallest number m for
which an L(py, . . ., px)-labelling of G with maximum label m exists.

Obviously, an L(d, 1)-labelling of a graph power G" is equivalenttoanL(d, ..., d, 1..., 1)-labelling of G (with 2r distance
constraints). Hence, the determination of A4 1 for a graph power provides several bounds and information for other distance
constrained labellings. Since paths and/or cycles occur as subgraphs in any graph G it is advisable to consider L(d, 1)-
labellings for powers of paths and cycles. In this paper we established A4 1 (P) foralld, n,r € N;.

Let C; be the rth power of a cycle with n vertices. In [9] we determined A4 1(C;) foralln,r € Nand d > 3 as well as
bounds for A, 1(C}). The calculation of these values is very extensive and needs a lot of case analysis; therefore we will not
present it here.
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