Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note The L(d, 1)-number of powers of paths

Anja Kohl

Institute of Discrete Mathematics and Algebra, TU Bergakademie Freiberg, 09596 Freiberg, Germany

ARTICLE INFO

ABSTRACT

220 (2000) 57-66].

Article history: Received 16 January 2007 Received in revised form 18 August 2008 Accepted 20 August 2008 Available online 11 September 2008

Keywords: Distance two labelling *L*(*d*, 1)-labelling Powers of paths

1. Introduction

Let G = (V, E) be a simple, undirected graph with vertex set V and edge set E. For $x, y \in V$ we denote by d(x, y) the distance between x and y, which is the number of edges in a shortest (x, y)-path. The rth power of a graph G, written G^r , is a graph on the same vertex set such that two vertices are joined by an edge if and only if their distance in G is at most r. Let P_n^r , $r \ge 1$, denote the rth power of a path with n vertices.

Given a graph G = (V, E) and a positive integer d, an L(d, 1)-labelling of G is a function

 $f: V \to \{0, 1, \ldots\}$ such that if two vertices x and y are adjacent, then $|f(x) - f(y)| \ge d$; if

they are at distance 2, then $|f(x) - f(y)| \ge 1$. The L(d, 1)-number of G, denoted by $\lambda_{d,1}(G)$,

is the smallest number m such that G has an L(d, 1)-labelling with $m = \max\{f(x) \mid x \in V\}$.

We correct the result on the L(d, 1)-number of powers of paths given by Chang et al. in [G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On L(d, 1)-labelings of graphs, Discrete Math.

Given a graph G = (V, E) and a positive integer d, an L(d, 1)-labelling of G is a function $f : V \to \{0, 1, ...\}$ such that for any two vertices $x, y \in V$

- 1. $|f(x) f(y)| \ge d$, if d(x, y) = 1 and
- 2. $|f(x) f(y)| \ge 1$, if d(x, y) = 2.

The L(d, 1)-number of G, denoted by $\lambda_{d,1}(G)$, is the smallest number m such that G has an L(d, 1)-labelling with $m = \max\{f(x)|x \in V\}$.

L(d, 1)-labellings arose from a variation of the frequency assignment problem introduced by Hale [7]. There has been a high interest in such distance constrained labellings in recent years; see e.g. [1–6,8–10].

In this paper we determine $\lambda_{d,1}(P_n^r)$ for all $d, r, n \in \mathbb{N}_+ := \mathbb{N} \setminus \{0\}$, for which partially wrong values were presented by Chang et al. [3].

2. Main result

Theorem 1. Let $d, r, n \in \mathbb{N}_+$ and $a := \min\{d, r+1\}$. Then $\lambda_{1,1}(P_n^r) = \min\{n-1, 2r\}$, and for $d \ge 2$,

$$\lambda_{d,1}(P_n^r) = \begin{cases} (n-1)d, & \text{if } n \le r+1 \\ \left\lceil \frac{n}{r+1} \right\rceil - 1 + rd, & \text{if } r+1 < n \le a(r+1) \\ a + rd, & \text{if } a(r+1) < n. \end{cases}$$
(1)

ELSEVIER

© 2008 Elsevier B.V. All rights reserved.

E-mail address: kohl@math.tu-freiberg.de.

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.08.018

Note that the results on $\lambda_{d,1}(P_n^r)$ given by Chang et al. are wrong for any case where min $\{d, r+1\} \ge 3$ and n > 3(r+1). The next two subsections are devoted to the proof of this theorem.

2.1. Preliminaries

Let n > r + 1. We define color levels $C_i := \{jd, 1 + jd, \dots, d - 1 + jd\}$ for $j = 0, 1, \dots, r + 1$. Since two labels within the same color level have difference at most d - 1, any r + 1 consecutive vertices in P_n^r have to get labels from pairwise distinct color levels. For simplification we partition the vertex set of P_n^r into parts of r + 1 consecutive vertices

$$V(P_n^r) = \{v_0^0, \dots, v_r^0; v_0^1, \dots, v_r^1; \dots; v_0^{q-1}, \dots, v_r^{q-1}; v_0^q, \dots, v_{p-1}^q\}$$

such that $n = q(r + 1) + p, p \in \{1, 2, ..., r + 1\}$. Note that $q = \lceil \frac{n}{r+1} \rceil - 1 \ge 1$.

Assume that there exists a proper L(d, 1)-labelling f of P_n^r such that $f(v) \in \bigcup_{i=0}^r C_i$ for all $v \in V(P_n^r)$. Let π be that permutation of the numbers 0, 1, ..., r for which $f(v_{\pi(i)}^0) \in C_j$ for every $j \in \{0, 1, ..., r\}$. Set $J_i := \{\pi^{-1}(l) \mid 0 \le l \le r\} =$ $\{0, 1, ..., r\}$ for $i \in \{0, 1, ..., q - 1\}$, and $J_q := \{\pi^{-1}(l) \mid 0 \le l \le p - 1\}$. Then we note the following assertions:

Claim 2. $f(v_{\pi(i)}^i) \in C_i$ for $i \in \{1, 2, ..., q\}; j \in J_i$.

Proof. For $i \in \{1, 2, ..., q\}$ and $j \in J_i$ there exist r vertices that are adjacent both to $v_{\pi(i)}^{i-1}$ and $v_{\pi(i)}^{i}$. Hence for both vertices the same r color levels are forbidden. Since f uses only r + 1 color levels the two vertices $v_{\pi(i)}^{i-1}$ and $v_{\pi(i)}^{i}$ have to receive labels from the same color level, which is C_j because of $f(v_{\pi(j)}^0) \in C_j$. #

Claim 3. $f(v_{\pi(i)}^{i-1}) \neq f(v_{\pi(i)}^{i})$ for $i \in \{1, 2, ..., q\}; j \in J_i$.

Proof. For $i \in \{1, 2, ..., q\}$ and $j \in J_i$ the two vertices $v_{\pi(i)}^{i-1}$ and $v_{\pi(i)}^i$ have distance 2; therefore they have to receive distinct labels. #

Claim 4. For $i \in \{0, 1, \ldots, q-1\}$ and $j \in J_i$ let $a_j := f(v_{\pi(i)}^i) - jd$. Then $a_j \in \{0, 1, \ldots, d-1\}$ and $a_r \ge a_{r-1} \ge \ldots \ge a_0$.

Proof. Since $f(v_{\pi(j)}^i) \in C_j$, it follows that $a_j \in \{0, 1, \dots, d-1\}$. Let $k \in \{0, 1, \dots, r-1\}$. By the definition of C_k and C_{k+1} , $f(v_{\pi(k+1)}^i) > f(v_{\pi(k)}^i)$, and calling in the distance 1 condition, we conclude $f(v_{\pi(k+1)}^i) - f(v_{\pi(k)}^i) \ge d$. This implies $a_{k+1} \ge a_k$ for any $k \in \{0, 1, \dots, r-1\}$.

Claim 5. If $\pi(j) < \pi(j+1)$ then $f(v_{\pi(j+1)}^i) \ge \max\left\{f(v_{\pi(j)}^i), f(v_{\pi(j)}^{i+1})\right\} + d$ for $i \in \{0, 1, \dots, q-1\}; j \in J_{i+1} \land j \le r-1$. If $\pi(j) > \pi(j+1) \text{ then } f(v_{\pi(j+1)}^{i}) \ge \max\left\{f(v_{\pi(j)}^{i-1}), f(v_{\pi(j)}^{i})\right\} + d \text{ for } i \in \{1, 2..., q\}; j \in J_i \land j \le r-1.$

Proof. If $i \leq q-1$, $\pi(j) < \pi(j+1)$, $j \leq r-1$, and $j \in J_{i+1}$ then the vertices $v_{\pi(j)}^i$, $v_{\pi(j)}^{i+1}$, $v_{\pi(j+1)}^i$ exist and $v_{\pi(j+1)}^i$ is adjacent to both $v_{\pi(j)}^i$ and $v_{\pi(j)}^{i+1}$. If $i \geq 1$, $\pi(j) > \pi(j+1)$, $j \leq r-1$, and $j \in J_i$ then the vertices $v_{\pi(j)}^{i-1}$, $v_{\pi(j)}^i$, $v_{\pi(j+1)}^i$ exist and $v_{\pi(j+1)}^i$ is adjacent to both $v_{\pi(i)}^{i-1}$ and $v_{\pi(i)}^{i}$. Applying the distance 1 condition yields the desired inequalities. #

For $k \in \{0, 1, \dots, r\}$ let i_k be the number of integers $j, j \in \{0, 1, \dots, k-1\}$, such that $\pi(j+1) < \pi(j)$.

Lemma 6. Let $k \in \{0, 1, ..., r\}$.

If $\pi(0) = 0$ then $\max\{f(v_{\pi(k)}^{i+1}), f(v_{\pi(k)}^{i+1})\} \ge k + 1 + kd$ for $i = i_k, \dots, i_k + q - k - 1$. If $\pi(0) > 0$ then this inequality holds only for $i = i_k, \dots, i_k + q - k - 2$.

Proof. Suppose $\pi(0) = 0$. We apply induction on *k*.

Let k = 0. Then $i_0 = 0$ and $f(v_0^i) \ge 0$ for $i \in \{0, 1, ..., q\}$. By Claim 3, max $\{f(v_{\pi(0)}^i), f(v_{\pi(0)}^{i+1})\} \ge 1$ for $i \in \{0, 1, ..., q-1\}$. Assuming the statement holds for *k* we prove it for k + 1 ($k \ge 0$). Case 1. $\pi(k) < \pi(k+1)$, i.e. $i_{k+1} = i_k$.

By the induction hypothesis and Claim 5, $f(v_{\pi(k+1)}^i) \ge k+1+(k+1)d$ for $i \in \{i_k, \ldots, i_k+q-k-1\}$, and according to Claim 3, max $\left\{ f(v_{\pi(k+1)}^i), f(v_{\pi(k+1)}^{i+1}) \right\} \ge k+2+(k+1)d$ for $i \in \{i_k, \dots, i_k+q-(k+1)-1\}$.

Case 2. $\pi(k) > \pi(k+1)$, i.e. $i_{k+1} = i_k + 1$. By the induction hypothesis and Claim 5, $f(v_{\pi(k+1)}^i) \ge k + 1 + (k+1)d$ for $i \in \{i_k + 1, ..., i_k + q - k\}$. Using Claim 3, we obtain max $\left\{ f(v_{\pi(k+1)}^i), f(v_{\pi(k+1)}^{i+1}) \right\} \ge k+2+(k+1)d$ for $i \in \{i_k+1, \dots, i_k+1+q-(k+1)-1\}$.

If $\pi(0) > 0$ then in the induction basis we can just guarantee max{ $f(v_{\pi(0)}^i), f(v_{\pi(0)}^{i+1})$ } ≥ 1 for $i \in \{0, 1, \dots, q-2\}$ because the vertex $v_{\pi(0)}^{q}$ may not exist. The induction step is analogous to that for the case $\pi(0) = 0$. Hence, we only have to reduce the upper bound for the variable *i* by 1. \Box

Lemma 7. There exists an integer $i, i \in \{0, 1, ..., q\}$, such that $f(v_{\pi(r)}^i) \ge r + 1 + rd$ if q > r + 1 and $f(v_{\pi(r)}^i) \ge q + rd$ if $q \leq r + 1$.

Proof. Let q > r + 1. The two vertices $v_{\pi(r)}^{i_r}$ and $v_{\pi(r)}^{i_r+1}$ exist because of $i_r \ge 0$ and $i_r + 1 \le r + 1 \le q - 1$. By Lemma 6, $\max\{f(v_{\pi(r)}^{i_r}), f(v_{\pi(r)}^{i_r+1})\} \ge r + 1 + rd$. Hence, there is a vertex with label at least r + 1 + rd. Let $q \le r + 1$ and $t := \pi^{-1}(0)$.

Case 1. t = 0. According to Lemma 6 there exists $i' \in \{i_{q-1}, i_{q-1} + 1\}$ such that $f(v_{\pi(q-1)}^{i'}) \ge q + (q-1)d$. Since $i_{q-1} \ge 0$ and $i_{q-1} + 1 \le q - 1$ it follows that $0 \le i' \le q - 1$. Hence, $f(v_{\pi(r)}^{i'}) \ge q + rd$, by Claim 4.

Case 2. $t > 0 \land q = 1$. By Claim 3, max{ $f(v_{\pi(t)}^0), f(v_{\pi(t)}^1)$ } $\ge 1 + td$. Hence, if t = r then the vertex with label at least 1 + rd = q + rd exists. If t < r then the vertex $v_{\pi(t+1)}^0$ is adjacent to $v_{\pi(t)}^0$ and $v_{\pi(t)}^1$, such that we can conclude $f(v_{\pi(t+1)}^0) \ge 1 + (t+1)d$, by Claim 5. According to Claim 4 it follows that $f(v_{\pi(r)}^0) \ge 1 + rd = q + rd$.

Case 3. $t > 0 \land 2 \le q \le r + 1$.

According to Lemma 6 there exists $i^* \in \{i_{q-2}, i_{q-2}+1\}$ such that $f(v_{\pi(a-2)}^{i^*}) \ge q - 1 + (q-2)d$. *Subcase* 3.1. t > q - 2.

Since $i_{q-2} \ge 0$ and $i_{q-2} + 1 \le q - 1$ it follows that $0 \le i^* \le q - 1$. Hence, we can apply Claim 4 to obtain $f(v_{\pi(t-1)}^{i^*}) \ge 1$ q - 1 + (t - 1)d. The vertices $v_{\pi(t)}^{i^*}$, $v_{\pi(t)}^{i^*+1}$ exist and they are adjacent to $v_{\pi(t-1)}^{i^*}$. Therefore max{ $f(v_{\pi(t)}^{i^*}), f(v_{\pi(t)}^{i^*+1})$ } $\geq q + td$,

by Claim 3. By an argument similar to that for Claim 4, we get $f(v_{\pi(r)}^{i^*}) \ge q + rd$. Subcase 3.2. $t \leq q - 2$.

From $0 < t \le q - 2$ we know that $i_{q-2} \ge 1$ and $q \ge 3$. Suppose $i_{q-2} = q - 2$, i.e. $\pi(q-2) < \pi(q-3) < \cdots < \pi(0)$. Then t = q - 2 holds. Because of $1 \le i_{q-2} \le i^* \le q - 1$, the vertices $v_{\pi(q-1)}^{i^*-1}$, $v_{\pi(q-1)}^{i^*}$ exist and they are adjacent to $v_{\pi(q-2)}^{i^*} = v_{\pi(t)}^{i^*}$. Hence, it follows that $\max\{f(v_{\pi(q-1)}^{i^*-1}), f(v_{\pi(q-1)}^{i^*})\} \ge q + (q - 1)d$, by Claim 3. Applying Claim 4 we obtain $\max\{f(v_{\pi(r)}^{i^*-1}), f(v_{\pi(r)}^{i^*})\} \ge q + rd$. Therefore a vertex with label at least q + rd exists.

Suppose $i_{q-2} \le q-3$. Hence, $1 \le i^* \le q-2$. If $\pi(q-2) < \pi(q-1)$ then $\max\{f(v_{\pi(q-1)}^{i^*-1}), f(v_{\pi(q-1)}^{i^*})\} \ge q+(q-1)d$, according to Claim 5. By Claim 4, $\max\{f(v_{\pi(r)}^{i^*-1}), f(v_{\pi(r)}^{i^*})\} \ge q + rd$. If $\pi(q-2) > \pi(q-1)$ we use an analogous argument to show $\max\{f(v_{\pi(r)}^{i^*}), f(v_{\pi(r)}^{i^*+1})\} \ge q + rd$. This proves the existence of a vertex with label at least q + rd.

2.2. Proof of Theorem 1

If d = 1 then $\lambda_{1,1}(P_n^r) = \lambda_{1,0}(P_n^{2r}) = \chi(P_n^{2r}) - 1 = \min\{n - 1, 2r\}.$ Now suppose $d \ge 2$. If $n \le r + 1$ then $P_n^r \cong K_n$, and therefore $\lambda_{d,1}(P_n^r) = \lambda_{d,0}(P_n^r) = d \cdot \lambda_{1,0}(P_n^r) = d(\chi(P_n^r) - 1) = d(n-1).$ Let n > r + 1. Obviously, $\lambda_{d,1}(P_n^r) \ge \lambda_{d,1}(P_{r+1}^r) = rd$. If we label the first vertices using the sequence

$$\underbrace{\underbrace{0, d, \ldots, (r+1)d}_{r+2 \text{ terms}}, \underbrace{1, 1+d, \ldots, 1+rd}_{r+1 \text{ terms},}}_{r+1 \text{ terms},}$$

and repeat this pattern if necessary for the remaining vertices, then we obtain a proper L(d, 1)-labelling with maximum label at most (r + 1)d. Hence, $\lambda_{d,1}(P_n^r) \leq (r + 1)d$.

Assume that there exists an L(d, 1)-labelling f of P_n^r with $\max_{v \in V(P_n^r)} f(v) < (r+1)d$, i.e. $\forall v \in V(P_n^r) : f(v) \in \bigcup_{i=1}^r C_i$. By Lemma 7,

$$\max_{v \in V(P_n^r)} f(v) \ge \begin{cases} q + rd, & \text{for } q \le r+1\\ r+1 + rd, & \text{for } q > r+1. \end{cases}$$
(2)

This contradicts the assumption $\max_{v \in V(P_n^r)} f(v) < (r+1)d$ for the case $d \leq \min\{q, r+1\}$. Here the labelling scheme specified above is optimal and yields $\lambda_{d,1}(P_n^r) = (r+1)d$.

Now let $d > \min\{q, r+1\}$. By inequality (2), $\lambda_{d,1}(P_n^r) \ge q + rd$ for $q \le r+1$ and $\lambda_{d,1}(P_n^r) \ge r+1 + rd$ for q > r+1. For both cases we show that the lower bound is sharp by construction of a proper L(d, 1)-labelling with maximum label q + rdor r + 1 + rd, respectively.

If q < r + 1 we use the following decreasing labelling scheme:

$$\underbrace{q, q+d, \dots, q+rd}_{r+1 \text{ terms}}, \underbrace{q-1, q-1+d, \dots, q-1+rd}_{r+1 \text{ terms}}, \dots, \underbrace{0, d, \dots, (p-1)d}_{p \text{ terms}}$$

So we obtain a proper L(d, 1)-labelling of P_n^r with maximum label $q + rd = \left\lceil \frac{n}{r+1} \right\rceil - 1 + rd$. In the case of q > r + 1 we apply an alternating labelling scheme:

$$\underbrace{\underbrace{0, 1+d, \ldots, r+rd}_{r+1 \text{ terms}}}_{r+1 \text{ terms}}, \underbrace{1, 2+d, \ldots, (r+1)+rd}_{r+1 \text{ terms}}$$

Fig. 1. L(d, 1)-labellings of the graphs P_9^2 and P_{10}^2 .

and repeat it until all vertices have received a label. This provides a proper L(d, 1)-labelling of P_n^r with maximum label r + 1 + rd.

Sorting the values for $\lambda_{d,1}(P_n^r)$ depending on *n* yields the result (1).

Example 8. Let $d \ge 3$. We consider the two graphs P_9^2 and P_{10}^2 . According to the proof of Theorem 1, we label the vertices of P_9^2 using the decreasing labelling scheme and those of P_{10}^2 using an alternating labelling scheme (see Fig. 1).

3. Concluding remarks

Distance constrained labellings can be generalized to an arbitrary number k of distance constraints.

Let $p_1, \ldots, p_k \in \mathbb{N}$. An $L(p_1, \ldots, p_k)$ -labelling of a graph G = (V, E) is a function $f : V \to \{0, 1, \ldots\}$ such that $|f(x) - f(y)| \ge p_i$ for any two vertices $x, y \in V$ with distance $d(x, y) \le i \le r$. $\lambda_{p_1,\ldots,p_k}(G)$ is the smallest number *m* for which an $L(p_1, \ldots, p_k)$ -labelling of *G* with maximum label *m* exists.

Obviously, an L(d, 1)-labelling of a graph power G^r is equivalent to an $L(d, \ldots, d, 1 \ldots, 1)$ -labelling of G (with 2r distance constraints). Hence, the determination of $\lambda_{d,1}$ for a graph power provides several bounds and information for other distance constrained labellings. Since paths and/or cycles occur as subgraphs in any graph G it is advisable to consider L(d, 1)-labellings for powers of paths and cycles. In this paper we established $\lambda_{d,1}(P_n^r)$ for all $d, n, r \in \mathbb{N}_+$.

Let C_n^r be the *r*th power of a cycle with *n* vertices. In [9] we determined $\lambda_{d,1}(C_n^r)$ for all $n, r \in \mathbb{N}$ and $d \ge 3$ as well as bounds for $\lambda_{2,1}(C_n^r)$. The calculation of these values is very extensive and needs a lot of case analysis; therefore we will not present it here.

References

- [1] T. Calamoneri, The *L*(*h*, *k*)-labelling problem: A survey and annotated bibliography, Comput. J. 49 (5) (2006) 585–608.
- [2] T. Calamoneri, A. Pelc, R. Petreschi, Labeling trees with a condition at distance two, Discrete Math. 306 (14) (2006) 1534–1539.
- [3] G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On *L*(*d*, 1)-labelings of graphs, Discrete Math. 220 (2000) 57–66.
- [4] J. Fiala, J. Kratochvíl, On the computational complexity of the L(2, 1)-labeling problem for regular graphs, Lecture Notes Comput. Sci. 3701 (2005) 228–236.
- [5] J.P. Georges, D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congressus Numer. 109 (1995) 141–159.
- [6] J.R. Griggs, X.T. Jin, Real number graph labellings with distance conditions, SIAM J. Discrete Math. 20 (2) (2006) 302–327.
- [7] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497–1514.
- [8] A. Kohl, Bounds for the L(d, 1)-number of diameter 2 graphs, trees and cacti, Int. J. Mobile Netw. Des. Innovation 1 (2) (2006) 124–135.
- [9] A. Kohl, Knotenfärbungen mit Abstandsbedingungen, Dissertation, TU Bergakademie Freiberg, Germany, 2006 (in German).
- [10] W.-F. Wang, The *L*(2, 1)-labelling of trees, Discrete Appl. Math. 154 (3) (2006) 598–603.