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a b s t r a c t

A graph G is said to be determined by its Q-spectrum if with respect to the signless Laplacian
matrix Q , any graph having the same spectrum as G is isomorphic to G. The lollipop graph,
denoted by Hn,p, is obtained by appending a cycle Cp to a pendant vertex of a path Pn−p. In
this paper, it is proved that all lollipop graphs are determined by their Q -spectra.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). All graphs considered here
are simple and undirected. Let matrix A(G) be the (0,1)-adjacency matrix of G and dk the degree of the vertex vk. The matrix
L(G) = D(G) − A(G) (or Q (G) = D(G) + A(G)) is called the Laplacian matrix (or signless Laplacian matrix) of G, where
D(G) is the n × n diagonal matrix with {d1, d2, . . . , dn} as diagonal entries. The polynomial PA(G)(λ) = det(λI − A(G))
(or PL(G)(µ) = det(µI − L(G)); PQ (G)(ν) = det(νI − Q (G))), where I is the identity matrix, is defined as the adjacency
characteristic polynomial (or Laplacian characteristic polynomial; signless Laplacian characteristic polynomial) of the graph G.
Assume that λ1 ≥ λ2 ≥ · · · ≥ λn, µ1 ≥ µ2 ≥ · · · ≥ µn and ν1 ≥ ν2 ≥ · · · ≥ νn are the adjacency eigenvalues, Laplacian
eigenvalues and the signless Laplacian eigenvalues of graph G, respectively. The adjacency spectrum (or Laplacian spectrum;
signless Laplacian spectrum) of the graphG consists of the adjacency eigenvalues (or Laplacian eigenvalues; signless Laplacian
eigenvalues). In the following, the signless Laplacian matrix, the signless Laplacian characteristic polynomial, the signless
Laplacian eigenvalues and the signless Laplacian spectrum are abbreviated to Q-matrix, Q-polynomial, Q-eigenvalues and
Q-spectrum, respectively.
Graphs with the same spectrum of an associated matrix M are called cospectral graphs with respect to M . A graph H

cospectral with a graph G, but not isomorphic to G, is called a cospectral mate of G. Two graphs are said to be Q-cospectral
if they have the same Q -polynomial. In [10,17], the graphs K1,3 and K3 ∪ K1, the smallest Q -cospectral mates are given.
Other Q -cospectral mates are shown in Fig. 1, which implies that the T-shape trees (see [18,19]) are not determined by their
Q -spectra.
Which graphs are determined by their spectra seems to be a difficult problem in the theory of graph spectra. Up to now,

only a few graphs with very special structures have been proved to be determined by their spectra (adjacency spectra or
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Fig. 1. The Q -cospectral graphs G and G′ .

Fig. 2. The lollipop graph Hn,p .

Laplacian spectra) [4,6,9,11,13,15,17–19]. However, less graphs have been proved to be determined by their Q -spectra. The
question ‘‘Which graphs are determined by their Q -spectra?’’ is proposed in [17]: Which linear combination of D, A, and J
(the all-ones matrix) gives the most graphs determined by the spectrum?We still do not know the answer. However, there
is some evidence that the Q -matrix is a good candidate, see Table 1 in [17].
For the Laplacian spectrum, it is known that the multiplicity of the eigenvalue 0 is equal to the number of components

[17]. For the Q -spectrum the multiplicity of 0 gives the number of bipartite components [3]. In fact, if graph G is bipartite,
its Q -spectrum equals its Laplacian spectrum (see Lemma 2.3).
In [17], the path with n vertices Pn and the disjoint union of k disjoint paths Pn1 + Pn2 + · · · + Pnk are proved to be

determined by their Q -spectra, respectively. Since such graphs are bipartite, the first step, it is proved that graph G′ which
is Q -cospectral with Pn (or Pn1 + Pn2 + · · · + Pnk ) is also bipartite. Then, their Q -spectra and Laplacian spectra are the same
(see Lemma 2.3). Finally, it is proved that G′ and Pn (or Pn1 + Pn2 + · · · + Pnk ) are isomorphic.
Also, in [17], the complete graph Kn, the regular complete bipartite graph Km,m, the cycle Cn and the disjoint union of k

disjoint cycles Cm1+Cm2+ · · ·+ Cmk are proved to be determined by theirQ -spectra, respectively. Such graphs are all regular.
If a regular graph G is determined by its spectrum with respect to one of the matrices A(G); A(G) (G is the complement of
graph G); L(G) or Q (G), it is determined by its spectrum with respect to any one of the other matrices [17]. It is proved that
all the above graphs are determined by their adjacency spectra, respectively. So, the graphs are also determined by their
Q -spectra.
In this paper, we consider the above problem for the lollipop graph, denoted by Hn,p (shown in Fig. 2), which is obtained

by appending a cycle Cp to a pendant vertex of a path Pn−p (see [5]). In [9], the lollipop graph Hn,p for p odd is proved to be
determined by its adjacency spectrum, and all the lollipop graphs are proved to be determined by their Laplacian spectra.
Also the lollipop graphs with an even cycle are proved to be determined by their adjacency spectra (Tayfeh-Rezaie [private
communication] did the lollipop graphs with a cycle of length at least 6, and Boulet and Jouve [1] did the general case). In
the following, it will be proved that the lollipop graphs are determined by their Q -spectra. Since the lollipop graph Hn,p is
bipartite when p is even and not when p is odd, and it is not regular, the methods used in [17] can not be helpful. In the
proof, the degree sequence of graph G which is Q -cospectral to Hn,p is determined first. Since the connectivity of G can not
be obtained from its Q -spectrum, discussions are done when we suppose G is connected or not. In conclusion, G is proved
to be isomorphic to Hn,p.
For the Q -spectrum of graph G and the adjacency spectrum of its line graphL(G), the following relations are well known

(see, for example, [3]):

PA(L(G))(λ) = (λ+ 2)m−nPQ (G)(λ+ 2). (1.1)

From the relation (1.1), it is known that if two graphs are Q -cospectral, then their line graphs are cospectral with respect to
the adjacencymatrix (Lemma 2.10). Since the lollipop graph is proved to be determined by itsQ -spectrum, another question
‘‘Are line graphs of lollipop graphs determined by their adjacency spectra?’’ should also be answered. Unfortunately, the
answer is negative. Fig. 3 gives a counter example (see Section 3 for details).

2. Preliminaries

Some valuable established results about the spectrum are summarized in this section. They will play an important role
throughout this paper.

Lemma 2.1 ([8]). Let A, B be two irreducible nonnegative n× n matrices. Then ρ(A+ B) ≥ ρ(A), and equality holds if and only
if B = 0, where ρ(A) is the largest eigenvalue of A.

Since the Q -matrix of a simple and connected graph G and the Q -matrix of any spanning subgraph of G are both
irreducible nonnegative matrices, Lemma 2.1 implies the following corollary.
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Fig. 3. The cospectral graphsL(H8,6) and G′ .

Corollary 2.2. Let G be a simple and connected graph with n vertices. If G′ is a spanning subgraph of G, then ν1(G′) ≤ ν1(G),
and equality holds if and only if G′ is isomorphic to G.

Lemma 2.3 ([3]). For any bipartite graph the Q -polynomial is equal to the characteristic polynomial of the Laplacian.

Lemma 2.4 ([12]). If G has at least one edge, thenµ1(G) ≥ ∆(G)+ 1. For a connected graph G on n > 1 vertices, equality holds
if and only if ∆(G) = n− 1, where∆(G) denotes the maximum vertex degree of G.

Lemma 2.5. Let G be a simple and connected graph with n > 1 vertices, then ν1(G) ≥ ∆(G)+ 1, equality holds if and only if G
is a star with n vertices.

Proof. Let T be a spanning tree of G with ∆(G) = ∆(T ). By Corollary 2.2, ν1(G) ≥ ν1(T ). Lemmas 2.3 and 2.4 imply that
ν1(T ) = µ1(T ) ≥ ∆(G)+ 1. Then ν1(G) ≥ ∆(G)+ 1.
If G is a star with n vertices, i.e.,∆(G) = n− 1, by Lemmas 2.3 and 2.4, ν1(G) = µ1(K1,n−1) = n = ∆(G)+ 1.
If ν1(G) = ∆(G)+ 1. Let T ′ be a spanning tree of Gwith∆(T ′) = ∆(G). If T ′ is not isomorphic to G, by Corollary 2.2 and

Lemmas 2.3 and 2.4, ν1(G) > ν1(T ′) = µ1(T ′) ≥ ∆(G)+ 1, a contradiction. Therefore, G is a tree. Lemmas 2.3 and 2.4 imply
that∆(G) = n− 1. Then G is a star with n vertices. �

Lemma 2.6 ([3]). Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn and largest Q-eigenvalue ν1. Then

2min{d1, d2, . . . , dn} ≤ ν1 ≤ 2max{d1, d2, . . . , dn}.

For a connected graph G, equality holds in either of these inequalities if and only if G is regular.

Lemma 2.7 ([14]). Let the graph G have at least 2 vertices. Then

ν1(G′) ≥ ν1(G) ≥ ν2(G′) ≥ ν2(G) ≥ · · · ≥ νn(G′) ≥ νn(G)

where G′ = G+ e is the graph obtained from G by inserting a new edge e into G, n is the order of G.

Lemma 2.8. ν2(Hn,p) < 4 for any lollipop graph Hn,p.

Proof. If we delete the edge v′1v
′

2 from Hn,p (see Fig. 2), we obtain an induced subgraph Pn. Since the Laplacian spectrum
of the path Pn is 2 + 2 cos iπn (i = 1, 2, . . . , n), Lemma 2.3 implies that the Q -spectrum of path Pn is also 2 + 2 cos

iπ
n (i =

1, 2, . . . ,m). By Lemma 2.7, ν2(Hn,p) ≤ ν1(Pn) < 4. �

Lemma 2.9 ([3,16]). Let G be a graph with n vertices, m edges, t triangles and vertex degrees d1, d2, . . . , dn. Let Tk =∑n
i=1 ν

k
i , (k = 0, 1, . . .) be the kth spectral moment for the Q -spectrum. Then

T0 = n, T1 =
n∑
i=1

di = 2m, T2 = 2m+
n∑
i=1

d2i , T3 = 6t + 3
n∑
i=1

d2i +
n∑
i=1

d3i .

Lemma 2.10 ([3]). If two graphs are Q -cospectral, then their line graphs are cospectral with respect to the adjacency matrix.

Lemma 2.11 ([2]). Let Cn and Pn denote the cycle and the path on n vertices, respectively. Then

PA(Cn)(λ) =
n∏
j=1

(
λ− 2 cos

2π j
n

)
= 2 cos

(
n arccos

λ

2

)
− 2,

PA(Pn)(λ) =
n∏
j=1

(
λ− 2 cos

π j
n+ 1

)
=
sin
(
(n+ 1) arccos λ2

)
sin
(
arccos λ2

) .
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Let λ = 2 cos θ , set t1/2 = eiθ , then it is useful to write the adjacency characteristic polynomial of Cn and Pn in the
following form:

PA(Cn)(t
1/2
+ t−1/2) = tn/2 + t−n/2 − 2, (2.1)

PA(Pn)(t
1/2
+ t−1/2) = t−n/2(tn+1 − 1)/(t − 1). (2.2)

Lemma 2.12 ([2]). Let u be a vertex of G, N(u) be the set of all vertices adjacent to u and C(u) be the set of all cycles containing
u. The characteristic polynomial of G satisfies

PA(G)(λ) = λPA(G−u)(λ)−
∑
v∈N(u)

PA(G−u−v)(λ)− 2
∑
Z∈C(u)

PA(G\V (Z))(λ).

3. Main results

First, we will prove that the two graphs in Fig. 3 and their complements are cospectral with respect to the adjacency
matrix, respectively.

Theorem 3.1. The graph L(H8,6) and the graph G′ given in Fig. 3 are cospectral with respect to the adjacency matrix and the
same is true for their complements.

Proof. Consider the four white verticesL(H8,6) in Fig. 3. For each white vertex v, delete the edges between v and the black
neighbors, and insert edges between v and the other black vertices. It is easily checked that this operation transformsL(H8,6)
into G′. Godsil and McKay (see [7], this operation is called Godsil–McKay switching) have shown that this operation leaves
the adjacency spectrum of the graph and its complement unchanged. �

It is clear that L(H8,6) and G′ are non-isomorphic. So L(H8,6) is not determined by its adjacency spectrum. Since also
the complements of L(H8,6) and G′ are cospectral with respect to the adjacency matrix, it also follows that L(H8,6) is not
determined by the spectra of all its generalized adjacency matrices (see [7]).

Corollary 3.2. GraphL(H8,6) is not determined by the spectra of all its generalized adjacency matrices.

For the line graph of lollipop graph Hn,p, there exist a counterexample H8,6, its line graph L(H8,6) is not determined by
its adjacency spectrum. So, a graph is determined by its Q -spectrum, its line graph may be not determined by its adjacency
spectrum. For all line graphs of lollipop graphs, we have the following theorem.

Theorem 3.3. For no two non-isomorphic lollipop graphs, their corresponding line graphs have the same adjacency spectrum.

Proof. LetL(G) be the line graph of graph G (recall, vertices ofL(G) are in one-to-one correspondence with edges of G, and
two vertices inL(G) are adjacent if and only if the corresponding edges of G are adjacent). In view of that, if two graphs are
cospectral, they must possess equal number of vertices. Suppose that graph G1 = L(Hn,p1) and graph G2 = L(Hn,p2) have
the same adjacency spectrum, we show that Hn,p1 and Hn,p2 are isomorphic.
By Lemma 2.12, PA(G1)(λ) can be computed recursively as follows:

PA(G1)(λ) = λ(PA(Pn−p1−1)(λ)+ PA(Cp1 )(λ))− (PA(Cp1 )(λ)+ PA(Pn−p1−2)(λ)+ 2PA(Pn−p1−1)(λ)+ 2PA(Pp1−1)(λ))

− 2(2PA(Pn−p1−1)(λ)+ PA(Pp1−2)(λ)).

According to Eqs. (2.1) and (2.2), it can be computed by Maple that

PA(G1)(t
1/2
+ t−1/2) =

1
√
t(t − 1)

(ψ1(t)+ ψ2(t)+ ψ3(t)+ ψ4(t)+ ψ5(t)), (3.1)

where

ψ1(t) = 2− 2t
1
2 + 2t

3
2 − 2t2,

ψ2(t) = −t−
p1
2 + t−

p1
2 +

1
2 + 2t−

p1
2 +1 + t−

p1
2 +

3
2 + t−

p1
2 +2,

ψ3(t) = −t
p1
2 − t

p1
2 +

1
2 − 2t

p1
2 +1 − t

p1
2 +

3
2 + t

p1
2 +2,

ψ4(t) = 6t−
n
2+

p1
2 +1 − t−

n
2+

p1
2 +

1
2 ,

ψ5(t) = t
n
2−

p1
2 +

3
2 − 6t

n
2−

p1
2 +1.



3368 Y. Zhang et al. / Discrete Mathematics 309 (2009) 3364–3369

Similarly, we obtain

PA(G2)(t
1/2
+ t−1/2) =

1
√
t(t − 1)

(ψ1(t)+ ϕ2(t)+ ϕ3(t)+ ϕ4(t)+ ϕ5(t)), (3.2)

where ϕ2(t), ϕ3(t), ϕ4(t) and ϕ5(t) are obtained from ψ2(t), ψ3(t), ψ4(t) and ψ5(t) by replacing the parameter p1 with p2.
Comparing Eqs. (3.1) and (3.2) generates

ψ2(t)+ ψ3(t)+ ψ4(t)+ ψ5(t) = ϕ2(t)+ ϕ3(t)+ ϕ4(t)+ ϕ5(t). (3.3)

Eq. (3.3) implies that

Case 1. p1 > n−1
2 , p2 >

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

p1
2 +2 and t

p2
2 +2,

respectively. Then, p1 = p2.

Case 2. p1 < n−1
2 , p2 <

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

n
2−

p1
2 +

3
2 and t

n
2−

p2
2 +

3
2 ,

respectively. Then, p1 = p2.

Case 3. p1 = n−1
2 , p2 >

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are 2t

p1
2 +2 and t

p2
2 +2,

respectively. A contradiction.

Case 4. p1 = n−1
2 , p2 <

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are 2t

p1
2 +2 and t

p2
2 +2,

respectively. A contradiction.

Case 5. p1 < n−1
2 , p2 =

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

p1
2 +2 and 2t

p2
2 +2,

respectively. A contradiction.

Case 6. p1 > n−1
2 , p2 =

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

p1
2 +2 and 2t

p2
2 +2,

respectively. A contradiction.
Case 7. p1 = n−1

2 , p2 =
n−1
2 . Clearly, p1 = p2.

Case 8. p1 > n−1
2 , p2 <

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

p1
2 +2 and t

n
2−

p2
2 +

3
2 ,

respectively. But, the second largest termof the left side and that of the right side of Eq. (3.3) can not be equal, a contradiction.

Case 9. p1 < n−1
2 , p2 >

n−1
2 . The largest term of the left side and that of the right side of Eq. (3.3) are t

n
2−

p1
2 +

3
2 and t

p2
2 +2,

respectively. But, the second largest termof the left side and that of the right side of Eq. (3.3) can not be equal, a contradiction.
Therefore, p1 = p2, i.e. Hn,p1 and Hn,p2 are isomorphic. �

Theorem 3.4. Every lollipop graph Hn,p is determined by its Q -spectrum.

Proof. Suppose that graphs G and Hn,p are cospectral with respect to the Q -spectrum, by Lemmas 2.5 and 2.6, 4 < ν1(G) =
ν1(Hn,p) ≤ 6. Lemma 2.9 implies that G has n vertices, n edges and

∑n
i=1 d

2
i =

∑n
i=1 d

′2
i , where di, d

′

i are degrees of vertex vi
in G and Hn,p, respectively. Suppose that G has ni vertices of degree i, for i = 0, 1, . . . ,∆′, where∆′ is the maximum degree
of G. Then

∆′∑
i=0

ni = n, (3.4)

∆′∑
i=0

ini = 2n, (3.5)

∆′∑
i=0

i2ni = 9+ 4(n− 2)+ 1. (3.6)

Then

∆′∑
i=0

(i2 − 3i+ 2)ni = 2, (3.7)

i.e.,

2n0 + 2n3 + 6n4 +
∆′∑
i=5

(i2 − 3i+ 2)ni = 2. (3.8)

Eq. (3.8) implies that
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Case 1. n0 = 1, n3 = n4 = · · · = n∆′ = 0. By (3.4) and (3.5), we have n1 = −2 < 0, n2 = n+ 1, a contradiction.
Case 2. n3 = 1, n0 = n4 = · · · = n∆′ = 0. By (3.4) and (3.5), we have n1 = 1, n2 = n − 2. Suppose G is not connected,
then graph G consists of a lollipop graph and at least one another circuit. Lemma 2.6 implies that ν2(G) = 4, a contradiction
to Lemma 2.8. So, G is connected, and therefore G is a lollipop graph. Suppose G = Hn,p1 , Lemma 2.10 implies thatL(Hn,p1)
andL(Hn,p) are cospectral with respect to the adjacency matrix. By Theorem 3.3, p1 = p.
Then, G is isomorphic to Hn,p. �
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