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a b s t r a c t

Given a digraph G = (V , A), the subdigraph of G induced by a subset X of V is denoted by
G[X]. With each digraph G = (V , A) is associated its dual G? = (V , A?) defined as follows:
for any x, y ∈ V , (x, y) ∈ A? if (y, x) ∈ A. Two digraphs G and H are hemimorphic if G is
isomorphic to H or to H?. Given k > 0, the digraphs G = (V , A) and H = (V , B) are k-
hemimorphic if for every X ⊆ V , with |X | ≤ k, G[X] and H[X] are hemimorphic. A class C
of digraphs is k-recognizable if every digraph k-hemimorphic to a digraph of C belongs to
C. In another vein, given a digraph G = (V , A), a subset X of V is an interval of G provided
that for a, b ∈ X and x ∈ V − X , (a, x) ∈ A if and only if (b, x) ∈ A, and similarly for (x, a)
and (x, b). For example, ∅, {x}, where x ∈ V , and V are intervals called trivial. A digraph is
indecomposable if all its intervals are trivial.We characterize the indecomposable digraphs
which are 3-hemimorphic to a non-indecomposable digraph. It follows that the class of
indecomposable digraphs is 4-recognizable.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A directed graphor simply digraphG consists of a finite andnonempty setV of vertices togetherwith a prescribed collection
A of ordered pairs of distinct vertices, called the set of the arcs of G. Such a digraph is denoted by (V , A). For example, given a
set V , (V ,∅) is the empty digraph on V whereas (V , (V ×V )−{(x, x); x ∈ V }) is the complete digraph on V . Given a digraph
G = (V , A), with each nonempty subset X of V associate the subdigraph (X, A∩ (X ×X)) of G induced by X denoted by G[X].
In another respect, given digraphs G = (V , A) and G′ = (V ′, A′), a bijection f from V onto V ′ is an isomorphism from G onto
G′ provided that for any x, y ∈ V , (x, y) ∈ A if and only if (f (x), f (y)) ∈ A′. Two digraphs are then isomorphic if there exists
an isomorphism from one onto the other. Finally, a digraph H embeds into a digraph G if H is isomorphic to a subdigraph of
G.
With each digraph G = (V , A) associate its dual G? = (V , A?) and its complement G = (V , A) defined as follows. Given

x 6= y ∈ V , (x, y) ∈ A? if (y, x) ∈ A, and (x, y) ∈ A if (x, y) 6∈ A. The digraph
−→
G = (V ,

−→
A ) is then defined by

−→
A = A − A?.

Given digraphs G and H , G and H are hemimorphic if G is isomorphic to H or H?. Given an integer k > 0, consider digraphs
G = (V , A) andH = (V , B). The digraphs G andH are k-hemimorphic if for every subset X of V , with |X | ≤ k, the subdigraphs
G[X] and H[X] are hemimorphic. A digraph G is k-forced (up to duality) if G and G? are the only digraphs k-hemimorphic to
G.
We need somenotations. LetG = (V , A) be a digraph. For x 6= y ∈ V , x−→G y or y←−G xmeans (x, y) ∈ A and (y, x) 6∈ A,

x←→G ymeans (x, y), (y, x) ∈ A and x · · ·G ymeans (x, y), (y, x) 6∈ A. For x ∈ V and Y ⊆ V , x−→G Y signifies that for every
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y ∈ Y , x−→G y. For X, Y ⊆ V , X −→G Y signifies that for every x ∈ X , x−→G Y . For x ∈ V and for X, Y ⊆ V , x←−G Y ,
x←→G Y , x · · ·G Y , X←→G Y and X · · ·G Y are defined in the same way. Furthermore, an equivalence relation, denoted by
≡G, between the ordered pairs of distinct vertices of a digraph G = (V , A) is defined in the following way. For x 6= y ∈ V
and for u 6= v ∈ V , (x, y)≡G(u, v) if the function, which attributes u to x and v to y, is an isomorphism from G[{x, y}]
onto G[{u, v}]. Equivalently, (x, y)≡G(u, v) if x−→G y and u−→G v or x←−G y and u←−G v or x←→G y and u←→G v or
x · · ·G y and u · · ·G v. The negation is denoted by (x, y) 6≡G(u, v). Given a subset X of V , an element x of V − X is a separator
of X if there exist u, v ∈ X such that (x, u) 6≡G(x, v). The set of the separators of X is denoted by SG(X).
A digraph G = (V , A) is a poset provided that for x, y, z ∈ V , if x−→G y and y−→G z, then x−→G z. With each poset

Q = (V , A) associate its comparability digraph C(Q ) = (V , A ∪ A?). Given a digraph G = (V , A), distinct vertices x and y of
G form a directed pair if either x−→G y or y−→G x. A digraph is a tournament if all its pairs are directed. For example,
({0, 1, 2}, {(0, 1), (1, 2), (2, 0)}) is a tournament, called 3-cycle and denoted by C3. A total order is both a poset and a
tournament. Given a total order O = (V , A), x < ymeans x−→O y for x, y ∈ V .
Given a digraph G = (V , A), a subset X of V is an interval [3,7] (or an autonomous set [5,8,9] or a clan [4] or a homogeneous

set [2,6] or amodule [11]) of G if SG(X) = ∅. For instance, ∅, V and {x}, where x ∈ V , are intervals of G called trivial intervals.
A digraph is indecomposable [3,7,10] (or prime [2] or primitive [4]) if all its intervals are trivial; otherwise, it is decomposable.
The indecomposability bears a certain rigidity. The next result illustrates this fact in the case of the posets.

Theorem 1 ([5,9]). Let Q = (V , A) be an indecomposable poset. For every poset Q ′ = (V , A′), if C(Q ′) = C(Q ), then Q ′ = Q
or Q ′ = Q ?.

Given a poset Q , any digraph G, 3-hemimorphic to Q , is a poset such that C(G) = C(Q ). Therefore, every indecomposable
poset is 3-forced. To obtain an analogue of Theorem 1 for the tournaments, the comparability digraph is replaced by the C3-
structure. Given a tournament T = (V , A), the family of the subsets X of V , such that T [X] is isomorphic to C3, is called the
C3-structure of T and denoted by C3(T ).

Theorem 2 ([1]). Let T = (V , A) be an indecomposable tournament. For every tournament T ′ = (V , A′), if C3(T ′) = C3(T ),
then T ′ = T or T ′ = T ?.

In otherwords, every indecomposable tournament is 3-forced. To generalize the two theorems above,wehave to disallow
the embedding of the following digraph and its dual. The digraph ({0, 1, 2}, {(0, 2), (2, 0), (0, 1)}) is denoted by F . The
digraphs F and F ? are called flags. A digraph G is then said to be without flags when F and F ? do not embed into G.

Theorem 3 ([1]). An indecomposable digraph without flags is 3-forced.
The flags are generalized in the following way. Given an integer n ≥ 4, consider a permutation σ of {0, . . . , n− 2}. The

digraph Fn(σ ) is defined on {0, . . . , n− 1} in the following manner:
(1) Fn(σ )[{0, . . . , n− 2}] is the total order σ(0) < · · · < σ(n− 2);
(2) givenm ∈ {0, . . . , n−2}, eitherm is even and (m, n−1), (n−1,m) are arcs of Fn(σ ) orm is odd and (m, n−1), (n−1,m)
are not.

Given n ≥ 4, Fn(Id{0,...,n−2}) is simply denoted by Fn (see Fig. 1 ). For k ≥ 2, the digraphs F2k and F2k (resp. F2k+1 and
(F2k+1)?) are called generalized flags. By definition, F3(Id{0,1}) = F . We may verify that for a permutation σ of {0, . . . , n− 2},
where n ≥ 3, Fn(σ ) is decomposable if and only if there is i ∈ {0, . . . , n − 3} such that σ(i) and σ(i + 1) share the same
parity. Therefore, the generalized flags are indecomposable. Furthermore, given an indecomposable digraph G, if I is an
interval of

−→
G , then the digraph obtained from G, by reversing all the arcs included in I , is 3-hemimorphic to G. Sometimes,

intervals are created in this way so that the obtained digraph equals neither G nor G?. For instance, given n ≥ 4, consider
the generalized flag Fn and an integer i > 0 such that 2i ≤ n − 2. Clearly, {1, . . . , 2i} is an interval of

−→
Fn . From Fn, we

obtain by reversing the arcs contained in {1, . . . , 2i} the digraph Fn(σi), where σi is the permutation of {0, . . . , n−2}which
interchanges j and 2i − j + 1 for 1 ≤ j ≤ 2i. The pair {0, 2i} forms an interval of Fn(σi). Consequently, the generalized
flags are not 3-forced since Fn and Fn(σi) differ regarding the indecomposability. Incidently, the problem of the recognition
of the class of indecomposable digraphs also occurs. Precisely, given k > 0, a class C of digraphs is k-recognizable if every
digraph k-hemimorphic to a digraph of C belongs to C as well. As showing by Fn and Fn(σi), the class of indecomposable
digraphs is not 3-recognizable. We reconsider these counter-examples with the following observation: {0, . . . , 2i} is an
interval of

−→
Fn and for every x ∈ {0, . . . , n − 1} − {0, 2i}, we have (x, 0) 6≡Fn(x, 2i) if and only if 0 < x < 2i. Generally,

consider an indecomposable digraph G = (V , A). Given vertices α and β of G such that α−→G β , the pair {α, β} is weakly
separated if {α, β}∪SG({α, β}) is an interval of

−→
G and if α−→G SG({α, β})−→G β . Themain result consists of the following

characterization.

Theorem 4. Let G be an indecomposable digraph. There exists a decomposable digraph 3-hemimorphic to G if and only if G admits
a weakly separated pair.

As an immediate consequence, we obtain:

Theorem 5. The class of indecomposable digraphs is 4-recognizable.
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Fig. 1. The generalized flag F2k .

2. The Gallai decomposition theorem

We begin with a well-known property of the intervals. Given a digraph G = (V , A), if X and Y are disjoint intervals of G,
then (x, y)≡G(x′, y′) for any x, x′ ∈ X and y, y′ ∈ Y . This property leads to consider interval partitions of G, that is, partitions
of V , all the elements of which are intervals of G. The elements of such a partition P become the vertices of the quotient
G/P = (P, A/P) of G by P defined as follows: given X 6= Y ∈ P , (X, Y ) ∈ A/P if (x, y) ∈ A for x ∈ X and y ∈ Y . To state
the Gallai decomposition theorem below, we need the following strengthening of the notion of interval. Given a digraph
G = (V , A), a subset X of V is a strong interval [5,9] of G provided that X is an interval of G and for each interval Y of G, we
have: if X ∩ Y 6= ∅, then X ⊆ Y or Y ⊆ X . The family of the maximal strong intervals under inclusion which are distinct
from V is denoted by P(G).

Theorem 6 ([5,9]). Given a digraph G = (V , A), with |V | ≥ 2, the family P(G) constitutes an interval partition of G. Moreover,
the corresponding quotient G/P(G) is a complete digraph or an empty digraph or a total order or an indecomposable digraph.

The next result follows from Theorem 3.

Corollary 7 ([1]). Given digraphs G and H without flags, if G and H are 3-hemimorphic, then P(G) = P(H).

3. Proof of Theorems 4 and 5

Lemma 8. Consider 3-hemimorphic digraphs G = (V , A) and H = (V , B). Given an interval I of G such that |I| ≥ 2, if
−→
G [I]/P(

−→
G [I]) is not a total order, then I is an interval of H.

Proof. Given x ∈ V − I , since I is an interval of G, we have: x←→G I or x · · ·G I or x−→G I or x←−G I . In the first two
instances, it follows from the 2-hemimorphy that x←→H I or x · · ·H I . In the last two ones, since

−→
G [I]/P(

−→
G [I]) is not a

total order, P(
−→
G [I ∪ {x}]) = {I, {x}}. As

−→
G and

−→
H are 3-hemimorphic digraphs without flags, it follows from Corollary 7

that P(
−→
H [I ∪ {x}]) = {I, {x}}. Consequently, either x−→H I or x←−H I . �

Corollary 9. Consider 3-hemimorphic digraphs G and H. If G is indecomposable, then for every interval I of H, H[I] is a total
order.

Proof. Consider an interval I of H . By the previous lemma,
−→
H [I]/P(

−→
H [I]) is a total order. We denote the elements of

P(
−→
H [I]) by X1, . . . , Xq in such a way that

−→
H [I]/P(

−→
H [I]) is the total order X1 < · · · < Xq. For a contradiction, suppose

that there is i ∈ {1, . . . , q} such that |Xi| ≥ 2. Since I is an interval of H , Xi is also. It follows from the preceding lemma that
−→
H [Xi]/P(

−→
H [Xi]) is a total order as well. By interchanging H and H?, we can assume that i < q. By denoting by Y the largest

element of
−→
H [Xi]/P(

−→
H [Xi]), we obtain that Y ∪ Xi+1 would be an interval of

−→
H [I], which contradicts the fact that Xi is a

strong interval of
−→
H [I]. Consequently, for each i ∈ {1, . . . , q}, |Xi| = 1, that is, H[I] is a total order. �

Theorem 10. Consider 3-hemimorphic digraphs G = (V , A) and H = (V , B). If G is indecomposable and if H is decomposable,
then there exist α 6= β ∈ V such that {α, β} is an interval of H which is weakly separated in G.

Proof. Given a non-trivial interval I of H , by the preceding corollary, H[I] is a total order. Denote by α and β the first
two elements of this total order, with α−→G β . Clearly, {α, β} is an interval of H . Consider the smallest interval

−→
J of
−→
G

containing α and β . We use Theorem 6. Firstly, suppose that
−→
G [
−→
J ]/P(

−→
G [
−→
J ]) is empty. Since {α, β} is directed, there is an

element of P(
−→
G [
−→
J ]) containingα andβ , which contradicts theminimality of

−→
J . Secondly, assume that

−→
G [
−→
J ]/P(

−→
G [
−→
J ])

is indecomposable. As
−→
G [
−→
J ] and

−→
H [
−→
J ] are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that

P(
−→
G [
−→
J ]) = P(

−→
H [
−→
J ]). Since {α, β} is an interval of H , {α, β} is an interval of

−→
H [
−→
J ]. We obtain the same contradiction
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because
−→
H [
−→
J ]/P(

−→
H [
−→
J ]) is indecomposable by Theorem 3. Therefore,

−→
G [
−→
J ]/P(

−→
G [
−→
J ]) is a total order. We denote the

elements of P(
−→
G [
−→
J ])byX1, . . . , Xq in such away that the corresponding quotient isX1 < · · · < Xq. By theminimality of

−→
J ,

α ∈ X1 and β ∈ Xq. As previously noticed, P(
−→
H [
−→
J ]) = {X1, . . . , Xq} and hence

−→
H [
−→
J ]/P(

−→
H [
−→
J ]) is a total order as well.

Since {α, β} is an interval of H , {α, β} is an interval of
−→
H [
−→
J ]. As X1 and Xq are strong intervals of

−→
H [
−→
J ], {α, β} = X1 ∪ Xq

or, equivalently, X1 = {α} and Xq = {β}. To conclude, we verify that {α, β} is weakly separated in G. It suffices to show that
for every x ∈ V − {α, β}, (x, α) 6≡G(x, β) if and only if x ∈

−→
J − {α, β}. Clearly, if x ∈

−→
J − {α, β}, then α−→G x−→G β

and hence (x, α) 6≡G(x, β). Conversely, consider an element u of V −
−→
J . If {u, α} is directed, then (u, α)≡G(u, β) because

−→
J is an interval of

−→
G . Otherwise, (u, α)≡G(u, β) because {α, β} is an interval of H . �

The proof of the main result follows.

Proof of Theorem 4. Consider an indecomposable digraph G = (V , A). If there is a decomposable digraph 3-hemimorphic
to G, then, by Theorem 10, G possesses a weakly separated pair. Conversely, consider α 6= β ∈ V such that {α, β} is a weakly
separated pair of G. Since {α, β} ∪ SG({α, β}) is an interval of

−→
G , {β} ∪ SG({α, β}) is also. Consequently, by reversing all the

arcs contained in {β} ∪ SG({α, β}), we obtain a digraph H which is 3-hemimorphic to G. The pair {α, β} is then an interval
of H and thus H is decomposable. �

The next result follows from Theorem 10.

Corollary 11. Consider 3-hemimorphic digraphs G = (V , A) and H = (V , B) such that G is indecomposable and H is
decomposable. There exists a subset X of V , with |X | = 4, such that G[X] is indecomposable and H[X] is decomposable. More
precisely, G[X] is isomorphic to F4 (resp. F4) and H[X] is isomorphic to F4(σ ) (resp. F4(σ )), where σ is the permutation of {0, 1, 2}
which interchanges either 0 and 1 or 1 and 2.

Proof. By Theorem 10, there are α 6= β ∈ V such that {α, β} is an interval of H which is weakly separated in G. If
{α, β} ∪ SG({α, β}) = V , then {β} ∪ SG({α, β}) would be an interval of G. Consequently, {α, β} ∪ SG({α, β}) 6= V and
hence {α, β} ∪ SG({α, β}) is an interval of

−→
G and not of G. Therefore, there exist s ∈ SG({α, β}) and u 6∈ {α, β} ∪ SG({α, β}),

such that {α, β, s} is an interval of
−→
G [{α, β, s, u}] and not of G[{α, β, s, u}]. It follows that {α, u}, {s, u} and {β, u} are

not directed. For example, assume that α←→G u. Since u 6∈ SG({α, β}), β←→G u and, necessarily, s · · ·G u. Furthermore,
G[{α, β, s}] is the total order α < s < β or β < s < α because s ∈ SG({α, β}). In both cases, G[{α, β, s, u}] is isomorphic
to F4. As G and H are 3-hemimorphic, we have α←→H u, s · · ·H u, β←→H u and H[{α, β, s}] is a total order. To end, it is
sufficient to recall that {α, β} is an interval H[{α, β, s}]. �

Theorem 5 is directly deduced. Finally, Corollary 11 leads to the following.

Remark 12. To obtain Theorem 5, it is not necessary to assume that the considered digraphs G = (V , A) and H = (V , B) to
be 4-hemimorphic. It suffices to require that G and H are 2-hemimorphic and that for every subset X of V , with |X | = 3 or
4, the subdigraphs G[X] and H[X] are both indecomposable or not.
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