Contents lists available at ScienceDirect

Note

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The recognition of the class of indecomposable digraphs under low hemimorphy

A. Boussaïri^a, P. Ille^{b,*}

^a Faculté des Sciences Aïn Chock, Département de Mathématiques et Informatique, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc
^b Institut de Mathématiques de Luminy, CNRS – UMR 6206, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 09, France

ARTICLE INFO

Article history: Received 3 February 2006 Received in revised form 17 April 2008 Accepted 29 August 2008 Available online 24 September 2008

Keywords: Interval Indecomposable digraph Hemimorphy

ABSTRACT

Given a digraph G = (V, A), the subdigraph of G induced by a subset X of V is denoted by G[X]. With each digraph G = (V, A) is associated its dual $G^* = (V, A^*)$ defined as follows: for any $x, y \in V$, $(x, y) \in A^*$ if $(y, x) \in A$. Two digraphs G and H are hemimorphic if G is isomorphic to H or to H^* . Given k > 0, the digraphs G = (V, A) and H = (V, B) are k-hemimorphic if for every $X \subseteq V$, with $|X| \leq k$, G[X] and H[X] are hemimorphic. A class C of digraphs is k-recognizable if every digraph k-hemimorphic to a digraph of C belongs to C. In another vein, given a digraph G = (V, A), a subset X of V is an interval of G provided that for $a, b \in X$ and $x \in V - X$, $(a, x) \in A$ if and only if $(b, x) \in A$, and similarly for (x, a) and (x, b). For example, \emptyset , $\{x\}$, where $x \in V$, and V are intervals called trivial. A digraph is indecomposable if all its intervals are trivial. We characterize the indecomposable digraphs which are 3-hemimorphic to a non-indecomposable digraph. It follows that the class of indecomposable digraphs is 4-recognizable.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A directed graph or simply digraph *G* consists of a finite and nonempty set *V* of vertices together with a prescribed collection *A* of ordered pairs of distinct vertices, called the set of the *arcs* of *G*. Such a digraph is denoted by (V, A). For example, given a set *V*, (V, \emptyset) is the *empty* digraph on *V* whereas $(V, (V \times V) - \{(x, x); x \in V\})$ is the *complete* digraph on *V*. Given a digraph G = (V, A), with each nonempty subset *X* of *V* associate the *subdigraph* $(X, A \cap (X \times X))$ of *G* induced by *X* denoted by *G*[*X*]. In another respect, given digraphs G = (V, A) and G' = (V', A'), a bijection *f* from *V* onto *V'* is an *isomorphism* from *G* onto *G'* provided that for any $x, y \in V$, $(x, y) \in A$ if and only if $(f(x), f(y)) \in A'$. Two digraphs are then *isomorphic* if there exists an isomorphism from one onto the other. Finally, a digraph *H* embeds into a digraph *G* if *H* is isomorphic to a subdigraph of *G*.

With each digraph G = (V, A) associate its dual $G^* = (V, A^*)$ and its complement $\overline{G} = (V, \overline{A})$ defined as follows. Given $x \neq y \in V$, $(x, y) \in A^*$ if $(y, x) \in A$, and $(x, y) \in \overline{A}$ if $(x, y) \notin A$. The digraph $\overrightarrow{G} = (V, \overrightarrow{A})$ is then defined by $\overrightarrow{A} = A - A^*$. Given digraphs G and H, G and H are hemimorphic if G is isomorphic to H or H^* . Given an integer k > 0, consider digraphs G = (V, A) and H = (V, B). The digraphs G and H are k-hemimorphic if for every subset X of V, with $|X| \leq k$, the subdigraphs G[X] and H[X] are hemimorphic. A digraph G is k-forced (up to duality) if G and G^* are the only digraphs k-hemimorphic to G.

We need some notations. Let G = (V, A) be a digraph. For $x \neq y \in V, x \longrightarrow_G y$ or $y \leftarrow_G x$ means $(x, y) \in A$ and $(y, x) \notin A$, $x \leftarrow_G y$ means $(x, y), (y, x) \in A$ and $x \cdots_G y$ means $(x, y), (y, x) \notin A$. For $x \in V$ and $Y \subseteq V, x \longrightarrow_G Y$ signifies that for every

* Corresponding author. E-mail addresses: aboussairi@hotmail.com (A. Boussaïri), ille@iml.univ-mrs.fr (P. Ille).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.08.023

 $y \in Y, x \longrightarrow_G y$. For $X, Y \subseteq V, X \longrightarrow_G Y$ signifies that for every $x \in X, x \longrightarrow_G Y$. For $x \in V$ and for $X, Y \subseteq V, x \longleftarrow_G Y$, $x \longleftrightarrow_G Y, x \longleftrightarrow_G Y, x \longleftrightarrow_G Y$ are defined in the same way. Furthermore, an equivalence relation, denoted by \equiv_G , between the ordered pairs of distinct vertices of a digraph G = (V, A) is defined in the following way. For $x \neq y \in V$ and for $u \neq v \in V$, $(x, y) \equiv_G (u, v)$ if the function, which attributes u to x and v to y, is an isomorphism from $G[\{x, y\}]$ onto $G[\{u, v\}]$. Equivalently, $(x, y) \equiv_G (u, v)$ if $x \longrightarrow_G y$ and $u \longrightarrow_G v$ or $x \longleftarrow_G y$ and $u \longleftrightarrow_G v$ or $x \longleftrightarrow_G y$ and $u \longleftrightarrow_G v$ or $x \longleftrightarrow_G y$ and $u \longleftrightarrow_G v$ or $x \longleftrightarrow_G y$ and $u \longleftrightarrow_G v$ or $x \mapsto_G y$. The negation is denoted by $(x, y) \not\equiv_G (u, v)$. Given a subset X of V, an element x of V - X is a separator of X if there exist $u, v \in X$ such that $(x, u) \not\equiv_G (x, v)$. The set of the separators of X is denoted by $S_G(X)$.

A digraph G = (V, A) is a poset provided that for $x, y, z \in V$, if $x \longrightarrow_G y$ and $y \longrightarrow_G z$, then $x \longrightarrow_G z$. With each poset Q = (V, A) associate its *comparability digraph* $C(Q) = (V, A \cup A^*)$. Given a digraph G = (V, A), distinct vertices x and y of G form a *directed* pair if either $x \longrightarrow_G y$ or $y \longrightarrow_G x$. A digraph is a *tournament* if all its pairs are directed. For example, $(\{0, 1, 2\}, \{(0, 1), (1, 2), (2, 0)\})$ is a tournament, called 3-*cycle* and denoted by C_3 . A *total order* is both a poset and a tournament. Given a total order O = (V, A), x < y means $x \longrightarrow_O y$ for $x, y \in V$.

Given a digraph G = (V, A), a subset X of V is an *interval* [3,7] (or an *autonomous* set [5,8,9] or a *clan* [4] or a *homogeneous* set [2,6] or a *module* [11]) of G if $S_G(X) = \emptyset$. For instance, \emptyset , V and $\{x\}$, where $x \in V$, are intervals of G called *trivial* intervals. A digraph is *indecomposable* [3,7,10] (or *prime* [2] or *primitive* [4]) if all its intervals are trivial; otherwise, it is *decomposable*. The indecomposability bears a certain rigidity. The next result illustrates this fact in the case of the posets.

Theorem 1 ([5,9]). Let Q = (V, A) be an indecomposable poset. For every poset Q' = (V, A'), if C(Q') = C(Q), then Q' = Q or $Q' = Q^*$.

Given a poset Q, any digraph G, 3-hemimorphic to Q, is a poset such that C(G) = C(Q). Therefore, every indecomposable poset is 3-forced. To obtain an analogue of Theorem 1 for the tournaments, the comparability digraph is replaced by the C_3 -structure. Given a tournament T = (V, A), the family of the subsets X of V, such that T[X] is isomorphic to C_3 , is called the C_3 -structure of T and denoted by $C_3(T)$.

Theorem 2 ([1]). Let T = (V, A) be an indecomposable tournament. For every tournament T' = (V, A'), if $C_3(T') = C_3(T)$, then T' = T or $T' = T^*$.

In other words, every indecomposable tournament is 3-forced. To generalize the two theorems above, we have to disallow the embedding of the following digraph and its dual. The digraph $(\{0, 1, 2\}, \{(0, 2), (2, 0), (0, 1)\})$ is denoted by *F*. The digraphs *F* and *F*^{*} are called *flags*. A digraph *G* is then said to be without flags when *F* and *F*^{*} do not embed into *G*.

Theorem 3 ([1]). An indecomposable digraph without flags is 3-forced.

The flags are generalized in the following way. Given an integer $n \ge 4$, consider a permutation σ of $\{0, ..., n-2\}$. The digraph $F_n(\sigma)$ is defined on $\{0, ..., n-1\}$ in the following manner:

- (1) $F_n(\sigma)[\{0, ..., n-2\}]$ is the total order $\sigma(0) < \cdots < \sigma(n-2);$
- (2) given $m \in \{0, ..., n-2\}$, either *m* is even and (m, n-1), (n-1, m) are arcs of $F_n(\sigma)$ or *m* is odd and (m, n-1), (n-1, m) are not.

Given $n \ge 4$, $F_n(Id_{\{0,\dots,n-2\}})$ is simply denoted by F_n (see Fig. 1). For $k \ge 2$, the digraphs F_{2k} and $\overline{F_{2k}}$ (resp. F_{2k+1} and $(F_{2k+1})^*$) are called generalized flags. By definition, $F_3(Id_{\{0,1\}}) = F$. We may verify that for a permutation σ of $\{0, \ldots, n-2\}$, where $n \ge 3$, $F_n(\sigma)$ is decomposable if and only if there is $i \in \{0, \ldots, n-3\}$ such that $\sigma(i)$ and $\sigma(i+1)$ share the same parity. Therefore, the generalized flags are indecomposable. Furthermore, given an indecomposable digraph G, if I is an interval of \vec{G} , then the digraph obtained from G, by reversing all the arcs included in I, is 3-hemimorphic to G. Sometimes, intervals are created in this way so that the obtained digraph equals neither G nor G^* . For instance, given $n \ge 4$, consider the generalized flag F_n and an integer i > 0 such that $2i \le n - 2$. Clearly, $\{1, \ldots, 2i\}$ is an interval of $\overrightarrow{F_n}$. From F_n , we obtain by reversing the arcs contained in $\{1, \ldots, 2i\}$ the digraph $F_n(\sigma_i)$, where σ_i is the permutation of $\{0, \ldots, n-2\}$ which interchanges j and 2i - j + 1 for $1 \le j \le 2i$. The pair $\{0, 2i\}$ forms an interval of $F_n(\sigma_i)$. Consequently, the generalized flags are not 3-forced since F_n and $F_n(\sigma_i)$ differ regarding the indecomposability. Incidently, the problem of the recognition of the class of indecomposable digraphs also occurs. Precisely, given k > 0, a class C of digraphs is k-recognizable if every digraph k-hemimorphic to a digraph of C belongs to C as well. As showing by F_n and $F_n(\sigma_i)$, the class of indecomposable digraphs is not 3-recognizable. We reconsider these counter-examples with the following observation: $\{0, \ldots, 2i\}$ is an interval of $\overrightarrow{F_n}$ and for every $x \in \{0, ..., n-1\} - \{0, 2i\}$, we have $(x, 0) \not\equiv_{F_n} (x, 2i)$ if and only if 0 < x < 2i. Generally, consider an indecomposable digraph G = (V, A). Given vertices α and β of G such that $\alpha \longrightarrow_G \beta$, the pair $\{\alpha, \beta\}$ is weakly separated if $\{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$ is an interval of \overrightarrow{G} and if $\alpha \longrightarrow_G S_G(\{\alpha, \beta\}) \longrightarrow_G \beta$. The main result consists of the following characterization.

Theorem 4. Let *G* be an indecomposable digraph. There exists a decomposable digraph 3-hemimorphic to G if and only if *G* admits a weakly separated pair.

As an immediate consequence, we obtain:

Theorem 5. The class of indecomposable digraphs is 4-recognizable.

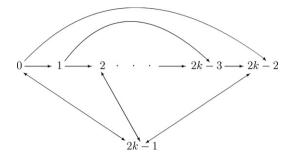


Fig. 1. The generalized flag F_{2k} .

2. The Gallai decomposition theorem

We begin with a well-known property of the intervals. Given a digraph G = (V, A), if X and Y are disjoint intervals of G, then $(x, y) \equiv_G (x', y')$ for any $x, x' \in X$ and $y, y' \in Y$. This property leads to consider *interval partitions* of G, that is, partitions of V, all the elements of which are intervals of G. The elements of such a partition P become the vertices of the *quotient* G/P = (P, A/P) of G by P defined as follows: given $X \neq Y \in P$, $(X, Y) \in A/P$ if $(x, y) \in A$ for $x \in X$ and $y \in Y$. To state the Gallai decomposition theorem below, we need the following strengthening of the notion of interval. Given a digraph G = (V, A), a subset X of V is a *strong interval* [5,9] of G provided that X is an interval of G and for each interval Y of G, we have: if $X \cap Y \neq \emptyset$, then $X \subseteq Y$ or $Y \subseteq X$. The family of the maximal strong intervals under inclusion which are distinct from V is denoted by P(G).

Theorem 6 ([5,9]). Given a digraph G = (V, A), with $|V| \ge 2$, the family P(G) constitutes an interval partition of G. Moreover, the corresponding quotient G/P(G) is a complete digraph or an empty digraph or a total order or an indecomposable digraph.

The next result follows from Theorem 3.

Corollary 7 ([1]). Given digraphs G and H without flags, if G and H are 3-hemimorphic, then P(G) = P(H).

3. Proof of Theorems 4 and 5

Lemma 8. Consider 3-hemimorphic digraphs G = (V, A) and H = (V, B). Given an interval I of G such that $|I| \ge 2$, if $\overrightarrow{G}[I]/P(\overrightarrow{G}[I])$ is not a total order, then I is an interval of H.

Proof. Given $x \in V - I$, since *I* is an interval of *G*, we have: $x \leftrightarrow_G I$ or $x \cdots_G I$ or $x \leftarrow_G I$ or $x \leftarrow_G I$. In the first two instances, it follows from the 2-hemimorphy that $x \leftarrow_H I$ or $x \cdots_H I$. In the last two ones, since $\overrightarrow{G}[I]/P(\overrightarrow{G}[I])$ is not a total order, $P(\overrightarrow{G}[I \cup \{x\}]) = \{I, \{x\}\}$. As \overrightarrow{G} and \overrightarrow{H} are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that $P(\overrightarrow{H}[I \cup \{x\}]) = \{I, \{x\}\}$. Consequently, either $x \rightarrow_H I$ or $x \leftarrow_H I$.

Corollary 9. Consider 3-hemimorphic digraphs G and H. If G is indecomposable, then for every interval I of H, H[I] is a total order.

Proof. Consider an interval *I* of *H*. By the previous lemma, $\overrightarrow{H}[I]/P(\overrightarrow{H}[I])$ is a total order. We denote the elements of $P(\overrightarrow{H}[I])$ by X_1, \ldots, X_q in such a way that $\overrightarrow{H}[I]/P(\overrightarrow{H}[I])$ is the total order $X_1 < \cdots < X_q$. For a contradiction, suppose that there is $i \in \{1, \ldots, q\}$ such that $|X_i| \ge 2$. Since *I* is an interval of *H*, X_i is also. It follows from the preceding lemma that $\overrightarrow{H}[X_i]/P(\overrightarrow{H}[X_i])$ is a total order as well. By interchanging *H* and H^* , we can assume that i < q. By denoting by *Y* the largest element of $\overrightarrow{H}[X_i]/P(\overrightarrow{H}[X_i])$, we obtain that $Y \cup X_{i+1}$ would be an interval of $\overrightarrow{H}[I]$, which contradicts the fact that X_i is a strong interval of $\overrightarrow{H}[I]$. Consequently, for each $i \in \{1, \ldots, q\}$, $|X_i| = 1$, that is, H[I] is a total order.

Theorem 10. Consider 3-hemimorphic digraphs G = (V, A) and H = (V, B). If G is indecomposable and if H is decomposable, then there exist $\alpha \neq \beta \in V$ such that $\{\alpha, \beta\}$ is an interval of H which is weakly separated in G.

Proof. Given a non-trivial interval *I* of *H*, by the preceding corollary, *H*[*I*] is a total order. Denote by α and β the first two elements of this total order, with $\alpha \longrightarrow_G \beta$. Clearly, $\{\alpha, \beta\}$ is an interval of *H*. Consider the smallest interval \vec{J} of \vec{G} containing α and β . We use Theorem 6. Firstly, suppose that $\vec{G} [\vec{J}]/P(\vec{G} [\vec{J}])$ is empty. Since $\{\alpha, \beta\}$ is directed, there is an element of $P(\vec{G} [\vec{J}])$ containing α and β , which contradicts the minimality of \vec{J} . Secondly, assume that $\vec{G} [\vec{J}]/P(\vec{G} [\vec{J}])$ is indecomposable. As $\vec{G} [\vec{J}]$ and $\vec{H} [\vec{J}]$ are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that $P(\vec{G} [\vec{J}]) = P(\vec{H} [\vec{J}])$. Since $\{\alpha, \beta\}$ is an interval of $H, \{\alpha, \beta\}$ is an interval of $\vec{H} [\vec{J}]$. We obtain the same contradiction

because $\overrightarrow{H}[\overrightarrow{J}]/P(\overrightarrow{H}[\overrightarrow{J}])$ is indecomposable by Theorem 3. Therefore, $\overrightarrow{G}[\overrightarrow{J}]/P(\overrightarrow{G}[\overrightarrow{J}])$ is a total order. We denote the elements of $P(\overrightarrow{G}[\overrightarrow{J}])$ by X_1, \ldots, X_q in such a way that the corresponding quotient is $X_1 < \cdots < X_q$. By the minimality of \overrightarrow{J} , $\alpha \in X_1$ and $\beta \in X_q$. As previously noticed, $P(\overrightarrow{H}[\overrightarrow{J}]) = \{X_1, \ldots, X_q\}$ and hence $\overrightarrow{H}[\overrightarrow{J}]/P(\overrightarrow{H}[\overrightarrow{J}])$ is a total order as well. Since $\{\alpha, \beta\}$ is an interval of $H, \{\alpha, \beta\}$ is an interval of $\overrightarrow{H}[\overrightarrow{J}]$. As X_1 and X_q are strong intervals of $\overrightarrow{H}[\overrightarrow{J}], \{\alpha, \beta\} = X_1 \cup X_q$ or, equivalently, $X_1 = \{\alpha\}$ and $X_q = \{\beta\}$. To conclude, we verify that $\{\alpha, \beta\}$ is weakly separated in G. It suffices to show that for every $x \in V - \{\alpha, \beta\}, (x, \alpha) \neq_G (x, \beta)$ if and only if $x \in \overrightarrow{J} - \{\alpha, \beta\}$. Clearly, if $x \in \overrightarrow{J} - \{\alpha, \beta\}$, then $\alpha \longrightarrow_G x \longrightarrow_G \beta$ and hence $(x, \alpha) \neq_G (x, \beta)$. Conversely, consider an element u of $V - \overrightarrow{J}$. If $\{u, \alpha\}$ is directed, then $(u, \alpha) \equiv_G (u, \beta)$ because \overrightarrow{I} is an interval of \overrightarrow{G} . Otherwise, $(u, \alpha) \equiv_G (u, \beta)$ because $\{\alpha, \beta\}$ is an interval of H.

The proof of the main result follows.

Proof of Theorem 4. Consider an indecomposable digraph G = (V, A). If there is a decomposable digraph 3-hemimorphic to *G*, then, by Theorem 10, *G* possesses a weakly separated pair. Conversely, consider $\alpha \neq \beta \in V$ such that $\{\alpha, \beta\}$ is a weakly separated pair of *G*. Since $\{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$ is an interval of \overrightarrow{G} , $\{\beta\} \cup S_G(\{\alpha, \beta\})$ is also. Consequently, by reversing all the arcs contained in $\{\beta\} \cup S_G(\{\alpha, \beta\})$, we obtain a digraph *H* which is 3-hemimorphic to *G*. The pair $\{\alpha, \beta\}$ is then an interval of *H* and thus *H* is decomposable. \Box

The next result follows from Theorem 10.

Corollary 11. Consider 3-hemimorphic digraphs G = (V, A) and H = (V, B) such that G is indecomposable and H is decomposable. There exists a subset X of V, with |X| = 4, such that G[X] is indecomposable and H[X] is decomposable. More precisely, G[X] is isomorphic to F_4 (resp. $\overline{F_4}$) and H[X] is isomorphic to $F_4(\sigma)$ (resp. $\overline{F_4(\sigma)}$), where σ is the permutation of $\{0, 1, 2\}$ which interchanges either 0 and 1 or 1 and 2.

Proof. By Theorem 10, there are $\alpha \neq \beta \in V$ such that $\{\alpha, \beta\}$ is an interval of H which is weakly separated in G. If $\{\alpha, \beta\} \cup S_G(\{\alpha, \beta\}) = V$, then $\{\beta\} \cup S_G(\{\alpha, \beta\})$ would be an interval of G. Consequently, $\{\alpha, \beta\} \cup S_G(\{\alpha, \beta\}) \neq V$ and hence $\{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$ is an interval of G and not of G. Therefore, there exist $s \in S_G(\{\alpha, \beta\})$ and $u \notin \{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$, such that $\{\alpha, \beta, s\}$ is an interval of G [$\{\alpha, \beta, s, u\}$] and not of G. Therefore, there exist $s \in S_G(\{\alpha, \beta\})$ and $u \notin \{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$, such that $\{\alpha, \beta, s\}$ is an interval of G [$\{\alpha, \beta, s, u\}$] and not of G. Therefore, there exist $s \in S_G(\{\alpha, \beta\})$ and $u \notin \{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$, such that $\{\alpha, \beta, s\}$ is an interval of G [$\{\alpha, \beta, s, u\}$] and not of G. Therefore, there exist $s \in S_G(\{\alpha, \beta\})$ and $u \notin \{\alpha, \beta\} \cup S_G(\{\alpha, \beta\})$, such that $\{\alpha, \beta, s\}$ is an interval of G [$\{\alpha, \beta, s, u\}$] and not of G. Therefore, there exist $s \in S_G(\{\alpha, \beta\})$ and $u \notin \{\alpha, \beta, s, u\}$ and $\{\beta, u\}$ are not directed. For example, assume that $\alpha \longleftrightarrow_G u$. Since $u \notin S_G(\{\alpha, \beta\})$, $\beta \longleftrightarrow_G u$ and, necessarily, $s \cdots_G u$. Furthermore, G[$\{\alpha, \beta, s\}$] is the total order $\alpha < s < \beta$ or $\beta < s < \alpha$ because $s \in S_G(\{\alpha, \beta\})$. In both cases, G[$\{\alpha, \beta, s, u\}$] is isomorphic to F_4 . As G and H are 3-hemimorphic, we have $\alpha \longleftrightarrow_H u$, $s \cdots_H u$, $\beta \longleftrightarrow_H u$ and H[$\{\alpha, \beta, s\}$] is a total order. To end, it is sufficient to recall that $\{\alpha, \beta\}$ is an interval H[$\{\alpha, \beta, s\}$]. \Box

Theorem 5 is directly deduced. Finally, Corollary 11 leads to the following.

Remark 12. To obtain Theorem 5, it is not necessary to assume that the considered digraphs G = (V, A) and H = (V, B) to be 4-hemimorphic. It suffices to require that *G* and *H* are 2-hemimorphic and that for every subset *X* of *V*, with |X| = 3 or 4, the subdigraphs G[X] and H[X] are both indecomposable or not.

Acknowledgement

The authors were supported by the France-Morocco cooperation CNRS/CNRST 2005.

References

- [1] A. Boussaïri, P. Ille, G. Lopez, S. Thomassé, The C3-structure of the tournaments, Discrete Math. 277 (2004) 29–43.
- [2] A. Cournier, M. Habib, An efficient algorithm to recognize prime undirected graphs, in: Graph-theoretic Concepts in Computer Science, Proceedings of the 18th Internat. Workshop, WG'92, Wiesbaden-Naurod, Germany, June 1992, in: E.W. Mayr (Ed.), Lecture Notes in Computer Science, vol. 657, Springer, Berlin, 1993, pp. 212–224.
- [3] A. Cournier, P. Ille, Minimal indecomposable graphs, Discrete Math. 183 (1998) 61-80.
- [4] A. Ehrenfeucht, G. Rozenberg, Primitivity is hereditary for 2-structures, fundamental study, Theoret. Comput. Sci. 3 (70) (1990) 343–358.
- [5] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66.
- [6] M. Habib, Substitution des structures combinatoires, théorie et algorithmes, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, 1981.
- [7] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71-78.
- [8] D. Kelly, Comparability graphs, in: I. Rival (Ed.), Graphs and Orders, Reidel, Drodrecht, 1985, pp. 3–40.
- [9] F. Maffray, M. Preissmann, A translation of Tibor Gallai's paper: Transitiv orientierbare Graphen, in: J.L. Ramirez-Alfonsin, B.A. Reed (Eds.), Perfect Graphs, Wiley, New York, 2001, pp. 25–66.
- [10] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191–205.
- [11] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263–291.