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isomorphic to H or to H*. Given k > 0, the digraphs G = (V,A) and H = (V, B) are k-
hemimorphic if for every X C V, with |X| < k, G[X] and H[X] are hemimorphic. A class C
of digraphs is k-recognizable if every digraph k-hemimorphic to a digraph of € belongs to
Interval C. In another vein, given a digraph G = (V, A), a subset X of V is an interval of G provided
Indecomposable digraph thatfora,b € X andx € V — X, (a,x) € Aifand only if (b, x) € A, and similarly for (x, a)
Hemimorphy and (x, b). For example, §, {x}, where x € V, and V are intervals called trivial. A digraph is
indecomposable if all its intervals are trivial. We characterize the indecomposable digraphs
which are 3-hemimorphic to a non-indecomposable digraph. It follows that the class of
indecomposable digraphs is 4-recognizable.
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1. Introduction

Adirected graph or simply digraph G consists of a finite and nonempty set V of vertices together with a prescribed collection
A of ordered pairs of distinct vertices, called the set of the arcs of G. Such a digraph is denoted by (V, A). For example, given a
setV, (V, @) is the empty digraph on V whereas (V, (V x V) — {(x, x); x € V}) is the complete digraph on V. Given a digraph
G = (V, A), with each nonempty subset X of V associate the subdigraph (X, AN (X x X)) of G induced by X denoted by G[X].
In another respect, given digraphs G = (V, A) and G’ = (V’, A"), a bijection f from V onto V' is an isomorphism from G onto
G’ provided that for any x, y € V, (x, y) € Aif and only if (f(x), f(y¥)) € A". Two digraphs are then isomorphic if there exists
an isomorphism from one onto the other. Finally, a digraph H embeds into a digraph G if H is isomorphic to a subdigraph of
G.

With each digraph G = (V, A) associate its dual G* = (V, A*) and its complement G = (V, A) defined as follows. Given
x£yeV, (x,y) € Aif(y,x) € A and (x,y) € Aif (x,y) & A. The digraph _G) = (V, 7) is then defined by 7 =A— A
Given digraphs G and H, G and H are hemimorphic if G is isomorphic to H or H*. Given an integer k > 0, consider digraphs
G = (V,A)andH = (V, B). The digraphs G and H are k-hemimorphic if for every subset X of V, with |X| < k, the subdigraphs
G[X] and H[X] are hemimorphic. A digraph G is k-forced (up to duality) if G and G* are the only digraphs k-hemimorphic to
G.

We need some notations. Let G = (V, A) beadigraph.Forx #y € V,x —cyory <—cxmeans (x,y) € Aand (y, x) € A,
X <—cymeans (x,y), (y,x) € Aandx---cymeans (x,y), (y,x) € A.Forx € VandY C V,x —> Y signifies that for every

* Corresponding author.
E-mail addresses: aboussairi@hotmail.com (A. Boussairi), ille@iml.univ-mrs.fr (P. Ille).

0012-365X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.08.023


http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:aboussairi@hotmail.com
mailto:ille@iml.univ-mrs.fr
http://dx.doi.org/10.1016/j.disc.2008.08.023

A. Boussairi, P. Ille / Discrete Mathematics 309 (2009) 3404-3407 3405

yeY,x—cy ForX,Y C V,X—>¢Y signifies that for everyx € X,x —>¢Y.Forx € VandforX,Y C V,x<«—¢Y,
x<—cYV,x--cY,X<—>cYand X---¢Y are defined in the same way. Furthermore, an equivalence relation, denoted by
=, between the ordered pairs of distinct vertices of a digraph G = (V, A) is defined in the following way. Forx #y € V
and foru # v € V, (x,y) =c(u, v) if the function, which attributes u to x and v to y, is an isomorphism from G[{x, y}]
onto G[{u, v}]. Equivalently, (x, y) =¢(u, v) ifx —cyandu —gvorx<«—gyandu <—svorx <—gyand u <—gvor
Xx---cyandu-- ¢ v.The negation is denoted by (x, y) #.(u, v). Given a subset X of V, an element x of V — X is a separator
of X if there exist u, v € X such that (x, u) #Z.(x, v). The set of the separators of X is denoted by S¢(X).

A digraph G = (V, A) is a poset provided that for x,y,z € V, if x — ¢y and y — z, then x —> z. With each poset
Q = (V, A) associate its comparability digraph C(Q) = (V, AU A*). Given a digraph G = (V, A), distinct vertices x and y of
G form a directed pair if either x —> ¢y or y —> x. A digraph is a tournament if all its pairs are directed. For example,
({0, 1, 2}, {(0, 1), (1, 2), (2,0)}) is a tournament, called 3-cycle and denoted by Cs. A total order is both a poset and a
tournament. Given a total order 0 = (V,A),x < y meansx —>oyforx,y e V.

Given adigraph G = (V, A), a subset X of V is an interval [3,7] (or an autonomous set [5,8,9] or a clan [4] or a homogeneous
set [2,6] or amodule [11]) of G if Sg(X) = . For instance, ¥, V and {x}, where x € V, are intervals of G called trivial intervals.
A digraph is indecomposable [3,7,10] (or prime [2] or primitive [4]) if all its intervals are trivial; otherwise, it is decomposable.
The indecomposability bears a certain rigidity. The next result illustrates this fact in the case of the posets.

Theorem 1 ([5,9]). Let Q = (V, A) be an indecomposable poset. For every poset Q' = (V,A’), if C(Q") = C(Q), thenQ' = Q
orQ' =Q*.

Given a poset Q, any digraph G, 3-hemimorphic to Q, is a poset such that C(G) = C(Q). Therefore, every indecomposable
poset is 3-forced. To obtain an analogue of Theorem 1 for the tournaments, the comparability digraph is replaced by the Cs3-
structure. Given a tournament T = (V, A), the family of the subsets X of V, such that T[X] is isomorphic to Cs, is called the
Cs-structure of T and denoted by C5(T).

Theorem 2 ([1]). Let T = (V, A) be an indecomposable tournament. For every tournament T' = (V, A), if C3(T") = C3(T),
thenT' =Tor T =T*

In other words, every indecomposable tournament is 3-forced. To generalize the two theorems above, we have to disallow
the embedding of the following digraph and its dual. The digraph ({0, 1, 2}, {(0, 2), (2, 0), (0, 1)}) is denoted by F. The
digraphs F and F* are called flags. A digraph G is then said to be without flags when F and F* do not embed into G.

Theorem 3 ([1]). An indecomposable digraph without flags is 3-forced.

The flags are generalized in the following way. Given an integer n > 4, consider a permutation o of {0, ..., n — 2}. The
digraph F,, (o) is defined on {0, ..., n — 1} in the following manner:
(1) Fa(o)[{0, ..., n — 2}]is the total order o (0) < --- < o(n — 2);
(2) givenm € {0, ..., n—2},eithermisevenand (m, n—1), (n—1, m) arearcs of F,(¢) ormisodd and (m, n—1), (n—1, m)
are not.
Given n > 4, F,(Id,.. n—2)) is simply denoted by F, (see Fig. 1 ). For k > 2, the digraphs F,, and Foi (resp. Faxyq and
(Fak41)™) are called generalized flags. By definition, F3(Id( 1;) = F. We may verify that for a permutation o of {0, ..., n— 2},
where n > 3, F,(0) is decomposable if and only if there isi € {0, ..., n — 3} such that o (i) and o (i + 1) share the same

parity. Therefore, the generalized flags are indecomposable. Furthermore, given an indecomposable digraph G, if I is an

interval of G, then the digraph obtained from G, by reversing all the arcs included in I, is 3-hemimorphic to G. Sometimes,
intervals are created in this way so that the obtained digraph equals neither G nor G*. For instance, given n > 4, consider

the generalized flag F,, and an integer i > 0 such that 2i < n — 2. Clearly, {1, ..., 2i} is an interval of Fn) From F,, we
obtain by reversing the arcs contained in {1, .. ., 2i} the digraph F,(o;), where o; is the permutation of {0, ..., n — 2} which
interchanges jand 2i — j + 1for 1 < j < 2i. The pair {0, 2i} forms an interval of F,(o;). Consequently, the generalized
flags are not 3-forced since F, and F,(o;) differ regarding the indecomposability. Incidently, the problem of the recognition
of the class of indecomposable digraphs also occurs. Precisely, given k > 0, a class € of digraphs is k-recognizable if every
digraph k-hemimorphic to a digraph of € belongs to € as well. As showing by F,, and F,(o;), the class of indecomposable
digraphs is not 3-recognizable. We reconsider these counter-examples with the following observation: {0, ..., 2i} is an

interval of F; and for every x € {0,...,n — 1} — {0, 2i}, we have (x, 0) #, (x, 2i) if and only if 0 < x < 2i. Generally,
consider an indecomposable digraph G = (V, A). Given vertices « and 8 of G such that « — ¢ 8, the pair {«, 8} is weakly
9

separated if {«, B}USc({«, B}) is aninterval of G andif &« —> ¢ Sc({«, B}) —> ¢ B. The main result consists of the following
characterization.

Theorem 4. Let G be an indecomposable digraph. There exists a decomposable digraph 3-hemimorphic to G if and only if G admits
a weakly separated pair.

As an immediate consequence, we obtain:

Theorem 5. The class of indecomposable digraphs is 4-recognizable.
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Fig. 1. The generalized flag Fy.
2. The Gallai decomposition theorem

We begin with a well-known property of the intervals. Given a digraph G = (V, A), if X and Y are disjoint intervals of G,
then (x, y) =¢(x', y’) forany x, X' € X and y, y’ € Y. This property leads to consider interval partitions of G, that is, partitions
of V, all the elements of which are intervals of G. The elements of such a partition P become the vertices of the quotient
G/P = (P, A/P) of G by P defined as follows: given X # Y € P, (X,Y) € A/Pif (x,y) € Aforx € Xandy € Y. To state
the Gallai decomposition theorem below, we need the following strengthening of the notion of interval. Given a digraph
G = (V,A), asubset X of V is a strong interval [5,9] of G provided that X is an interval of G and for each interval Y of G, we
have: if XNY # @, then X C Y or Y C X. The family of the maximal strong intervals under inclusion which are distinct
from V is denoted by P(G).

Theorem 6 ([5,9]). Given a digraph G = (V, A), with |V| > 2, the family P(G) constitutes an interval partition of G. Moreover,
the corresponding quotient G/P(G) is a complete digraph or an empty digraph or a total order or an indecomposable digraph.

The next result follows from Theorem 3.

Corollary 7 ([1]). Given digraphs G and H without flags, if G and H are 3-hemimorphic, then P(G) = P(H).
3. Proof of Theorems 4 and 5

Lemma 8. Consider 3-hemimorphic digraphs G = (V,A) and H = (V, B). Given an interval I of G such that |I| > 2, if
.
[I1/P( G [I]) is not a total order, then I is an interval of H.

Proof. Given x € V — [, since I is an interval of G, we have: x «—glorx---gl orx—>gl or x _)<—G I. ln_ghe first two
instances, it follows from the 2-hemimorphy that x <—py I or x- - - I. In the last two ones, since G [I]/P( G [I]) is not a
total order, P(E)[I U {x}]) = {I, {x}}. As E) and ﬁ are 3-hemimorphic digraphs without flags, it follows from Corollary 7
that P(FI) [ U {x}]) = {I, {x}}. Consequently, either x —y lorx «<—pyI. O

Corollary 9. Consider 3-hemimorphic digraphs G and H. If G is indecomposable, then for every interval I of H, H[I] is a total
order.
Proof. Consider an interval I of H. By the previous lemma, ﬁ[[] /P(ﬁ[]]) is a total order. We denote the elements of

P(ﬁ [I1) by X1, ..., Xy in such a way that ﬁ[!]/P(ﬁ [I1) is the total order X; < --- < X,. For a contradiction, suppose
that thereisi € {1, ..., q} such that |X;| > 2. Since I is an interval of H, X; is also. It follows from the preceding lemma that

H [X;]/P (TI) [Xi]) is a total order as well. By interchanging H and H*, we can assume thati < q. By denoting by Y the largest
— —
element of H [X;]/P(H [X;]), we obtain that Y U X;;; would be an interval of H [I], which contradicts the fact that X; is a
ﬁ
strong interval of H [I]. Consequently, for eachi € {1, ..., g}, |Xj| = 1, thatis, H[I] is a total order. O

Theorem 10. Consider 3-hemimorphic digraphs G = (V,A) and H = (V, B). If G is indecomposable and if H is decomposable,
then there exist « # B € V such that {«, B} is an interval of H which is weakly separated in G.

Proof. Given a non-trivial interval I of H, by the preceding corollary, H[I] is a total order. Denote by « and B the first
two elements of this total order, with « — ¢ B. Clearly, {«, B} is an interval of H. Consider the smallest interval 7) of E)
containing o and 8. We use Theorem 6. Firstly, suppose that _G) [?]/P (_G> [T]) is empty. Since {«, B} is directed, there is an
element ofP(_G) [7]) containing « and #, which contradicts the minimality ofT. Secondly, assume that _G) [T]/P(_G) [7])
is indecomposable. As E)[T] and ﬁ[T] are 3-hemimorphic digraphs without flags, it follows from Corollary 7 that
P(_G) [7]) = P(ﬁ[?]). Since {«, B} is an interval of H, {«, B} is an interval of1_~1>[7]. We obtain the same contradiction
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because H [ J ]/P(H [ ] ]) isindecomposable by Theorem 3. Therefore, G [ J ]/P( G [ ] ]) is a total order. We denote the

- — —
elementsof P(G [ J 1) byXj, ..., Xqinsuchaway that the corresponding quotientis X; < - -- < X,. By the minimality of | ,
a € Xy and B € X,. As previously noticed, P(ﬁ[T]) = {Xi, ..., X;} and hence ?I)[j)]/P(ﬁ[T]) is a total order as well.

Since {«, B} is an interval of H, {«, B} is an interval ofﬁ[ J 1. As X; and X, are strong intervals ofﬁ [T], {a, B} =X1UX,
or, equivalently, X; = {«} and X; = {B}. To conclude, we verify that {«, 8} is weakly separated in G. It suffices to show that

foreveryx € V — {«, B}, (x, o) Z(x, B) ifand only if x € 7 — {a, B}. Clearly, if x € T —{a, B}, thena —>cx —>¢ B
and hence (x, o) #.(x, B). Conversely, consider an element u of V — 7 If {u, o} is directed, then (u, &) =¢(u, B) because
— —

J isaninterval of G .Otherwise, (u, ) =¢(u, B) because {«, } is aninterval of H. O

The proof of the main result follows.

Proof of Theorem 4. Consider an indecomposable digraph G = (V, A). If there is a decomposable digraph 3-hemimorphic

to G, then, by Theorem 10, G possesses a weakly separated pair. Conversely, consider « # 8 € V such that {«, 8} is a weakly
—

separated pair of G. Since {«, 8} USc({e, B}) is aninterval of G, {8} U Sc({«, B}) is also. Consequently, by reversing all the

arcs contained in {8} U Sc({«, B}), we obtain a digraph H which is 3-hemimorphic to G. The pair {«, 8} is then an interval

of H and thus H is decomposable. O

The next result follows from Theorem 10.

Corollary 11. Consider 3-hemimorphic digraphs G = (V,A) and H = (V, B) such that G is indecomposable and H is
decomposable. There exists a subset X of V, with |X| = 4, such that G[X] is indecomposable and H[X] is decomposable. More
precisely, G[X] is isomorphic to F4 (resp. F4) and H[X] is isomorphic to F4(c') (resp. Fs(0) ), where o is the permutation of {0, 1, 2}
which interchanges either 0 and 1 or 1 and 2.

Proof. By Theorem 10, there are « # B € V such that {«, 8} is an interval of H which is weakly separated in G. If
{o, B} U Sc({er, B}) = V, then {8} U Sc({r, B}) would be an interval of G. Consequently, {«, 8} U Sc({«, B}) # V and

hence {«, B} USc({«, B}) is an interval of G and not of G. Therefore, there exist s € Sc({«, 8}) and u ¢ {«, B} USc({, B}),
—

such that {«, 8, s} is an interval of G [{«, B, s, u}] and not of G[{«, 8, s, u}]. It follows that {«, u}, {s, u} and {8, u} are
not directed. For example, assume that « <— ¢ u. Since u ¢ Sc({«, B}), B <—> ¢ u and, necessarily, s - - -¢ u. Furthermore,
G[{«a, B, s}]is the total ordero < s < Bor 8 < s < « because s € Sc({«, 8}). In both cases, G[{«, 8, s, u}] is isomorphic
to F4. As G and H are 3-hemimorphic, we have @ <—p u,s---yu, B <—pyuand H[{«, B, s}] is a total order. To end, it is
sufficient to recall that {«, B} is an interval H[{«, 8,s}]. O

Theorem 5 is directly deduced. Finally, Corollary 11 leads to the following.

Remark 12. To obtain Theorem 5, it is not necessary to assume that the considered digraphs G = (V,A) and H = (V, B) to
be 4-hemimorphic. It suffices to require that G and H are 2-hemimorphic and that for every subset X of V, with |[X| = 3 or
4, the subdigraphs G[X] and H[X] are both indecomposable or not.
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