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a b s t r a c t

In this paper, we show that the toroidal crossing number of K4,n, K1,3,n, K2,2,n, K1,1,2,n and
K1,1,1,1,n is b n4 c[2n− 4(1+ b

n
4 c)]. In addition, a new lower bound for the toroidal crossing

number of Km,n has been obtained. We also discuss about the crossing number of K4,n in
the general surfaces.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Guy and Jenkyns [1] showed that the toroidal crossing number of K3,n is b(n− 3)2/12c. Richter and Širáň [5] generalized
their result and obtained that the crossing number of K3,n in a surface with the Euler genus ε is bn/(2ε+2)c(n− (ε+1))1+
bn/(2ε + 2)c. In [2], it is shown that the crossing number of K4,n on the projective plane is b n3c[2n − 3(1 + b

n
3c)]. In this

paper, we prove that:

Theorem 1.1. The toroidal crossing number of K4,n is⌊n
4

⌋ [
2n− 4

(
1+

⌊n
4

⌋)]
.

Moreover, the toroidal crossing numbers of K1,3,n, K2,2,n, K1,1,2,n and K1,1,1,1,n are found to be equal to the toroidal crossing
number of K4,n. In addition we apply arguments similar to those in [1] to obtain a new lower bound for the toroidal crossing
number of Km,n.

2. Definitions

In this paper, we assume that all the drawings of a graph are good, i.e. no two edges havemore than one point in common,
such a common point is either a vertex or is a crossing, and no more than two edges cross at a point.
We will denote ai, aj, ak (bi, bj, bk respectively) to be the vertices on the ‘‘n-side’’ (‘‘4-side’’ respectively) of K4,n. In

a drawing D of K4,n on the torus, denote the drawing of K4,n−1 yielded by deleting the vertex ai in the drawing D by
D − ai. We denote by crD(ai, ak) the number of crossings of edges, one incident to ai, the other to ak, and by crD(ai)
the number of crossings on edges incident to ai, that is, crD(ai) =

∑n
k=1 crD(ai, ak). Since D is good, crD(ai, ai) = 0 for

all i. We define the toroidal crossing number of D, cr1(D), to be: cr1(D) =
∑n
i=1
∑n
k=i+1 crD(ai, ak). From this, we have

cr1(D) = 1
2

∑n
i=1
∑n
k=1 crD(ai, ak). The toroidal crossing number of K4,n, cr1(K4,n), is defined to be the minimum crossing

number among all good drawings of K4,n on the torus. Finally, let f (n)=b n4c[2n− 4(1+ b
n
4c)].
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Fig. 1. Drawing of K4,7 .

Fig. 2. Drawing of K4,n .

Fig. 3. Drawing of K1,1,1,1,n .

3. Some general remarks

We note that in a crossing-free drawing of a (connected) subgraph of K4,n every circuit has an even number of vertices
and in particular every region into which the edges divide the surface is bounded by an even circuit. So if tj is the number of
regions with j bounding edges, F the number of regions, E the number of edges, and V the number of vertices, then tj = 0 if
j is odd, F = t4 + t6 + t8 + · · ·, and 2E = 4t4 + 6t6 + 8t8 + · · ·, and by Euler’s theorem for the torus,

V ≥ E − F , (1)
V ≥ t4 + 2t6 + 3t8 + · · · ≥ F . (2)

Supposewe have a drawing of K4,n on the toruswith cr1(K4,n) crossings, and that by removing cr1(K4,n) edges, a crossing-free
drawing is produced. Then (1) and (2) give E − V = (4n− cr1(K4,n))− (4+ n) ≤ F ≤ V = 4+ n, so

cr1(K4,n) ≥ 2n− 8. (3)

Fig. 1 and (3) show that

cr1(K4,n) = f (n), n ≤ 7. (4)

Fig. 2 is a generalization of Fig. 1. It contains four vertices and n = 4q + r(0 ≤ r ≤ 3) vertices represented by black
dots, in four groups of q + εi, 1 ≤ i ≤ 4, ε1 = ε2 = · · · = εr = 1, εr+1 = · · · = ε4 = 0. From this it follows that
cr1(K4,n) ≤ rq(q+ 1)+ (4− r)q(q− 1). Therefore, we have:

Lemma 3.1. cr1(K4,n) ≤ f (n).

In addition, Fig. 3 is a drawing of K1,1,1,1,n on the torus. This gives cr1(K1,1,1,1,n) ≤ f (n). It is clear that the toroidal crossing
numbers of K1,3,n, K2,2,n, K1,1,2,n are not greater than that of K1,1,1,1,n. Therefore, we have:

Lemma 3.2. cr1(K1,3,n), cr1(K2,2,n), cr1(K1,1,2,n), cr1(K1,1,1,1,n) ≤ f (n).

It is also obvious that the toroidal crossing numbers of K1,3,n, K2,2,n, K1,1,2,n and K1,1,1,1,n are not less than K4,n. Therefore,
by Theorem 1.1 and Lemma 3.2 we immediately have:
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(i). (ii).

Fig. 4. (i) Drawing of the edges a1b1 , a1b2 , a1b3 and a1b4 . (ii) Non-contractible cycle.

Fig. 5. After cutting along the non-contractible cycle.

Theorem 3.1.

cr1(K1,3,n) = cr1(K2,2,n) = cr1(K1,1,2,n) = cr1(K1,1,1,1,n) = f (n).

To prove Theorem 1.1, we need the following lemma from [5]:

Lemma 3.3. If D is a drawing of Km,n on the torus such that, for some k < n, some Km,k is optimally drawn on the torus, then

cr1(D) ≥ cr1(Km,k)+ (n− k)(cr1(Km,k+1)− cr1(Km,k))+ cr1(Km,n−k).

The proof can be found in [5]. We also need the following:

Lemma 3.4. For any drawing D of K4,n on the torus, let A be the matrix defined by Aij = crD(ai, aj). Then it is impossible for the
following to hold for some distinct ij, 1 ≤ j ≤ 5:

Ai1 i1 Ai1i2 Ai1 i3 Ai1 i4 Ai1i5
Ai2 i1 Ai2i2 Ai2 i3 Ai2 i4 Ai2i5
Ai3 i1 Ai3i2 Ai3 i3 Ai3 i4 Ai3i5
Ai4 i1 Ai4i2 Ai4 i3 Ai4 i4 Ai4i5
Ai5 i1 Ai5i2 Ai5 i3 Ai5 i4 Ai5i5

 =

0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

 . (5)

Proof. To prove Lemma 3.4 by contradiction, we may assume that there exists a drawing D of K4,5 such that (5) holds with
aij = aj for 1 ≤ j ≤ 5.
To consider a drawing of K4,5, we use � and • to denote the vertices in ‘‘4-side’’ and ‘‘5-side’’ respectively. Note that

the torus can be viewed as a square with its opposite sides identified. By deformation of the edges without changing the
crossings, we can assume that the edges a1b1, a1b2, a1b3 and a1b4 are drawn as in Fig. 4(i).
By (5), the K2,4 containing a1 and a2 must have a region whose boundary contains all bi (otherwise, crD(ai, aj) ≥ 1 for

some i = 1, 2 and j = 3, 4, 5). Then there must exist distinct i, j such that the cycle a1bia2bj is not contractible (since there
is no planar drawing of K2,4 such that all bi are lying in one region). Therefore, we may assume that the cycle a1b1a2b2 is not
contractible, which is drawn as in Fig. 4(ii).
In Fig. 4(ii), if we cut the torus along the cycle a1b1a2b2, we can obtain a surface which is isomorphic to the torus with

the inner and outer boundaries being the cycle a1b1a2b2, as shown in Fig. 5.
Since crD(a1, a2) = 0 by (5), the edges a1bi and a2bj do not cross. Therefore, there are 8 ways of drawing the edges a1b3

and a2b3 in Fig. 5 (as shown in Fig. 6(i)–(viii)), depending on which a1 and a2 in Fig. 5 that b3 are connected to.
By exactly the same reason, there are 8 ways of drawing the edges a1b4 and a2b4 in Fig. 5 (as shown in Fig. 6(i)–(viii) by

replacing b3 by b4). Hence, combining these different ways of drawing edges a1b3, a2b3, a1b4 and a2b4, we can obtain all the
possible drawings of the K2,4 containing a1 and a2 which satisfies crD(a1, a2) = 0 (see Appendix of [3] for all the drawings).
However, as we havementioned, the K2,4 containing a1 and a2must have a regionwhose boundary contains all bi. Therefore,
some of the drawings are forbidden (e.g. Fig. 7(ix) and (x)). Up to symmetry, all possible drawings of the K2,4 containing a1
and a2 are shown in Fig. 7(i)–(viii) (One can check that Fig. 7(i)–(vii) exhaust all the cases by looking at the drawings in the
Appendix of [3]).
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(i). (ii). (iii). (iv). (v).

(vi). (vii). (viii).

Fig. 6. Possible drawings of the edges a1b3 and a2b3 .

(i). (ii). (iii). (iv). (v).

(vi). (vii). (viii). (ix). (x).

Fig. 7. Drawings of K2,4 .

By (5), crD(a1, a3) = crD(a2, a3) = 0. This implies that a3 must be drawn in a region of Fig. 7(i)–(viii) such as the region
whose boundary contains all bi. By checking Fig. 7(i)–(viii), it can be checked that the region whose boundary contains all bi
must be in the form of Fig. 8(i)–(iii), which is unique up to renaming the vertices bi (see the following table).

7(i) 7(ii) 7(iii) 7(iv) 7(v) 7(vi) 7(vii) 7(viii)
8(ii) 8(iii) 8(iii) 8(i) 8(i) 8(iii) 8(i) 8(ii)

Note that the thick lines in Fig. 8(i)–(iii) denote the boundary of that region which is formed by some edges in the form
of aibj, 1 ≤ i ≤ 2, 1 ≤ j ≤ 4.
First, we consider Fig. 8(i). If a3 lies in the region in the form of Fig. 8(i), by (5), crD(a1, a3) = crD(a2, a3) = 0. This implies

that the edges a3bi cannot cross the thick lines. (Remember the thick lines represent the edges formed by a1bj and a2bi for
some 1 ≤ i, j ≤ 4.) Therefore the edges a3bi where 1 ≤ i ≤ 4must be drawn as in Fig. 9(i), (ii) or (iii), where • represents a3.
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(i). (ii). (iii).

Fig. 8. The region whose boundary contains all bi .

(i). (ii). (iii).

Fig. 9. Drawing the edges a3bi in Fig. 8(i).

(i). (ii).

Fig. 10. Drawing the edges a3bi and a4bi in Fig. 8(i).

Note that Fig. 7(iv), 7(v) and 7(vii), which contains a region as in Fig. 8(i), has only one region whose boundary contains
all bi. Therefore a4, a5 must lie in a region in Fig. 9(i), 9(ii) or 9(iii) (otherwise, crD(ai, aj) ≥ 1 for some i = 1, 2, j = 3, 4, 5
which contradicts (5)).
By (5), crD(ai, a4) = 0 for i = 1, 2. This implies that the edges a4bi where 1 ≤ i ≤ 4 cannot cross the thick lines in

Fig. 9(i), (ii) and (iii). Moreover, crD(a3, a4) = 1 by (5). One can check that 1 ≤ i ≤ 4 must be drawn as in Fig. 10(i) or (ii)
where a3 and a4 are represented by •.
However, in Fig. 10(i) and (ii), no matter which region a5 lies in, one of the following happens: (1) crD(ai, a5) ≥ 1 for

some i = 1, 2, (2) crD(ai, a5) ≥ 2 for some i = 3, 4. This contradicts (5).
Next, we consider Fig. 8(ii). Note that Fig. 7(i) and (viii), which contains a region as in Fig. 8(ii), has exactly two regions

whose boundary contains all bi, and these regions are in the form of Fig. 8(ii). By (5), a3, a4, a5 must lie in one of these two
regions (otherwise, crD(ai, aj) ≥ 1 for some i = 1, 2, j = 3, 4, 5). Therefore, we may assume that a3 and a4 lie in the same
region in the form of Fig. 8(ii).
Since crD(a1, a3) = crD(a2, a3) = 0 by (5), the edges a3bj where 1 ≤ j ≤ 4 cannot cross the thick lines in Fig. 8(ii). (Re-

member the thick lines represent the edges formed by a1bj and a2bi for some 1 ≤ i, j ≤ 4.) Therefore, a3bj where 1 ≤ j ≤ 4
must be drawn as in Fig. 11 where • represents a3.
However, if a4 lies in Fig. 11, then one of the following happens: (1) crD(ai, a5) ≥ 1 for some i = 1, 2, (2) crD(a3, a4) ≥ 2

for some i = 1, 2. This contradicts (5).
Finally we consider Fig. 8(iii). If a3 lies in the region in the form of Fig. 8(iii), then by the fact that crD(a1, a3) =

crD(a2, a3) = 0, a3bj cannot cross the thick lines. Therefore, a3bi where 1 ≤ i ≤ 4 must be drawn as in Fig. 12(i) and
(ii) where • represents a3.
Note that Fig. 7(ii), (iii) and (vi), which contains a region as in Fig. 8(iii), has only one region whose boundary contains all

bi. Therefore, by (5), a4, a5 must lie in a region of Fig. 12(i) or (ii) (otherwise, crD(ai, aj) ≥ 1 for some i = 1, 2, j = 4, 5).
By (5), crD(a1, a4) = crD(a2, a4) = 0, crD(a3, a4) = 1. Therefore, if a4 is drawn in Fig. 12(i) or (ii), a4bi where 1 ≤ i ≤ 4

must be drawn as in Fig. 13 where a3 and a4 are represented by •.
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Fig. 11. Drawing the edges a3bi in Fig. 8(ii).

(i). (ii).

Fig. 12. Drawing the edges a3bi in Fig. 8(iii).

Fig. 13. Drawing the edges a3bi and a4bi in Fig. 8(iii).

However, in Fig. 13, no matter which region a5 lies in, one of the following happens: (1) crD(ai, a5) ≥ 1 for some i = 1, 2
(2) crD(ai, a5) ≥ 2 for some i = 3, 4. This contradicts (5). �

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is by induction on n. The base of the induction is n ≤ 7 and has been obtained in (4).
Now, consider n ≥ 8. Let n = 4q + r , 0 ≤ r ≤ 3. By Lemma 3.1, we only need to show cr1(K4,n) ≥ f (n). Let D be any

good drawing of K4,n on the torus. We will show that cr1(D) ≥ f (n) by considering two cases. The two cases will depend on
whether there is a K4,4 in D drawn without crossings.
In the first case, suppose that there is a K4,4 in D drawn without crossings. From (4), we have cr1(K4,5) = 2 and by the

inductive assumption, cr1(K4,n−4) ≥ f (n− 4). Thus, by applying Lemma 3.3 withm = 4 and k = 4, the number of crossings
in D is at least 2(n− 4)+ f (n− 4) = f (n).
In the second case, suppose that D is a drawing of K4,n in the torus such that no K4,4 is drawnwithout crossings. Note that

K4,n contains n subgraphs K4,n−1, each of which contains at least f (n− 1) crossings by the induction hypothesis. A crossing
arises from two of the n vertices, so a crossing will have been counted n− 2 times. Hence

cr1(D) ≥
n
n− 2

f (n− 1). (6)

From (6), we have

cr1(D) ≥


q(4q− 2)−

3
2
−

3
2(4q− 1)

if n− 1 = 4q,

q(4q)− 1 if n− 1 = 4q+ 1,

q(4q+ 2)−
1
2
+

1
2(4q+ 1)

if n− 1 = 4q+ 2,

q(4q+ 4) if n− 1 = 4q+ 3.

(7)
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Since the crossing number is an integer, if n− 1 = 4q+ 2 or 4q+ 3, cr1(D) ≥ f (n). Therefore we only need to deal with the
following cases:
Case 1. n− 1 = 4q;
Case 2. n− 1 = 4q+ 1.

4.1. Case 1. n− 1 = 4q

Since n ≥ 8, q ≥ 2 and the crossing number is an integer, by (7), cr1(K4,n) = f (n) or f (n) − 1. By way of contradiction,
we suppose that cr1(K4,n) = f (n) − 1 and D is the drawing of K4,n on the torus such that cr1(D) = f (n) − 1. Then by the
induction assumption, cr1(D− ai) ≥ f (n− 1) for all i. Therefore, crD(ai)+ cr1(D− ai) = cr1(D) implies that

crD(ai) ≤ f (n)− 1− f (n− 1) = 2q− 1. (8)

By the same argument which yields (6), we have

cr1(K4,n+1) ≥
n+ 1
n− 1

cr1(K4,n) =
n+ 1
n− 1

(f (n)− 1),

which gives cr1(K4,n+1) ≥ q(4q)− 2− 1
2q . Since the crossing number is an integer, we have

cr1(K4,n+1) ≥ f (n+ 1)− 2. (9)

Now, draw a new vertex an+1 near the vertex ai0 where crD(ai0) = min1≤i≤n crD(ai). Then by connecting the vertices of
‘‘4-side’’ with an+1 in the same way as ai0 connects the vertices of ‘‘4-side’’, we obtain a drawing of K4,n+1. Then we have
crD(aj, an+1) = crD(aj, ai0) for j 6= i0 and crD(ai0 , an+1) ≤ 2. Therefore we obtain a drawing of K4,n+1 on the torus whose
crossing number is at most cr1(D)+ 2+ crD(ai0) = (f (n)− 1)+ 2+ crD(ai0) = q(4q− 2)+ 1+min1≤i≤n crD(ai)which is
at least f (n+ 1)− 2 by (9). This gives

min
1≤i≤n

crD(ai) ≥ 2q− 3. (10)

By (8) and (10), for 1 ≤ i ≤ n, we have crD(ai) = 2q − 3, 2q − 2 or 2q − 1. Let t and s be the numbers of ai such that
crD(ai) = 2q−1 and crD(ai) = 2q−2 respectively. Thus the number of ai such that crD(ai) = 2q−3 is n−t−s. By definition,
1
2

∑n
i=1 crD(ai) = cr1(D) = q(4q − 2) − 1 which implies (2q − 1)t + (2q − 2)s + (2q − 3)(n − t − s) = 2q(4q − 2) − 2,

which gives

2t + s = 6q+ 1. (11)

Since t + s ≤ n = 4q+ 1, from (11),

t ≥ 2q. (12)

Claim 1. If i 6= j and crD(ai) = crD(aj) = 2q− 1, then crD(ai, aj) > 0.
To prove Claim 1, suppose that there exists i0 6= j0 such that crD(ai0) = crD(aj0) = 2q − 1 and crD(ai0 , aj0) = 0.

Denote the drawing of K4,n−2 by deleting the vertices ai and aj by D − {ai, aj}, then we have cr1(D − {ai0 , aj0}) =
cr1(D) − crD(ai0) − crD(aj0) + crD(ai0 , aj0) = q(4q − 2) − 1 − 2(2q − 1) = 4q

2
− 6q + 1. But this is a contradiction

since by the induction assumption, the number of crossings of D− {ai, aj} is at least cr1(K4,n−2) = f (n− 2) = 4q2− 6q+ 2.
This proves Claim 1.
Then we must have

t = 2q. (13)

(Otherwise, if t 6= 2q, then by (12), we have t > 2q. Thus there must exist i 6= j such that crD(ai, aj) = 0 and
crD(ai) = crD(aj) = 2q− 1, which contradicts Claim 1.) By Claim 1, we also have

crD(ai, aj) = 1 for crD(ai) = crD(aj) = 2q− 1. (14)

By (11) and (13), we have

s = 2q+ 1. (15)

Therefore, by renaming the vertices, wemay assume that crD(ai) = 2q−1 for i ≤ 2q and crD(ai) ≤ 2q−2 for i ≥ 2q+1. By
Claim 1, we also have crD(ai, aj) = 0 if 1 ≤ i ≤ 2q and 2q+1 ≤ j ≤ n. Now consider thematrix A defined by Aij = crD(ai, aj).
By our assumption, A is of the form:(

J2q − I2q O(2q)×(2q+1)

OT(2q)×(2q+1) Ã

)
, (16)
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where J2q is the square matrix of size 2qwith all entries equaling 1; I2q is the identity matrix of size of 2q; O(2q)×(2q+1) is the
zero matrix of size (2q)× (2q+ 1); and Ã is the square matrix of size 2q+ 1 and the sum of each column of Ã is 2q− 2.
Now, consider the first two columns of Ã. Let Ãij be the (i, j)-entry of Ã. Therefore Ãij = A2q+i 2q+j. Since all entries of Ã

are non-negative integers and 2q+ 1 = (2q− 2)+ 3, there should be at least two distinct i such that Ãi1 = 0. By renaming
the vertices if necessary, we can assume that

Ãij = 0 for 1 ≤ i, j ≤ 2. (17)

Then by (16) and (17), considering the drawing of K4,5 in D which contains a1, a2, a3, a2q+1, a2q+2, (5) must hold for A,
which contradicts Lemma 3.4.

4.2. Case 2. n− 1 = 4q+ 1

By (7), cr1(K4,n) = f (n) or f (n)− 1. By way of contradiction, suppose that cr1(K4,n) = f (n)− 1 and D is a drawing of K4,n
on the torus such that cr1(D) = f (n)− 1.

Claim 1. cr1(D− ai) = f (n− 1) for all i, or equivalently, crD(ai) = cr1(D)− cr1(D− ai) = f (n)− 1− f (n− 1) = 2q− 1 for
all i.

To prove Claim 1, suppose on the contrary, there exists i0 such that cr1(D−ai0) > f (n−1). By the same argument which
yields (6), we have (n− 2)cr1(D) ≥

∑n
i=1 cr1(D− ai). Moreover, by induction assumption, we have cr1(D− ai) ≥ f (n− 1)

for all i. Hence, we have (n − 2)cr1(D) ≥
∑n
i6=i0
cr1(D − ai) + cr1(D − ai0) > nf (n − 1), which implies that cr1(D) >

nf (n− 1)/(n− 2) = f (n)− 1. This contradicts our assumption that cr1(D) = f (n)− 1 and this proves Claim 1.

Claim 2. For all i, j, we have crD(ai, aj) ≤ 2.

To prove Claim 2, suppose there exists i0 6= j0 such that crD(ai0 , aj0) ≥ 3. Then removing the vertex ai0 from D, we obtain
a drawing of K4,n−1. Note that

crD−ai0 (aj0) = crD(aj0)− crD(ai0 , aj0) ≤ 2q− 1− 3 = 2q− 4

cr1(D− ai0) = cr1(D)− crD(ai0) = f (n)− 1− (2q− 1) = q(4q− 2).
(18)

Now, we add a vertex a near aj0 and connecting the vertices of ‘‘4-side’’ with a in the same way as aj0 connects the vertices
of ‘‘4-side’’, we obtain a new drawing of K4,n and denote it by D′. Note that

crD′(ai, aj) = crD(ai, aj) for i, j 6= i0, j0;
crD′(ai, a) = crD(aj0 , aj) for i, j 6= i0, j0;
crD′(aj0 , a) ≤ 2.

(19)

Hence, (18) and (19) give cr1(D′) ≤ cr1(D − ai0) + 2 +
∑
k6=i0
crD−ai0 (ak, aj0) = cr1(D − ai0) + 2 + crD−ai0 (aj0) ≤

q(4q − 2) + 2 + 2q − 4 = 4q2 − 2, which is impossible since we have assumed that cr1(K4,n) = f (n) − 1 = 4q2 − 1.
This proves Claim 2.

Claim 3. If crD(ai, aj) = 2, then crD(ai, ak) = crD(aj, ak) for all k 6= i, j.

To prove Claim 3, we suppose that crD(ai, aj) = 2 and crD(ai, ak) 6= crD(aj, ak) for some k 6= i, j. We may suppose that
crD(ai, ak) > crD(aj, ak). Now delete the vertex ai, we obtain a drawing of K4,n−1, denote it by D− ai. Then, we have

crD−ai(ak) = crD(ak)− crD(ai, ak) < 2q− 1− crD(aj, ak);
crD−ai(aj) = crD(ai)− crD(ai, aj) = 2q− 1− 2 = 2q− 3;
cr1(D− ai) = cr1(D)− crD(ai) = f (n)− 1− (2q− 1) = q(4q− 2).

(20)

By adding a vertex a near aj, and connecting the vertices of ‘‘4-side’’ with a in the same way as aj connects the vertices of
‘‘4-side’’, we obtain a new drawing of K4,n and denote the drawing by D′. Note that

crD′(aj, a) ≤ 2
crD′(al, a) = crD−ai(al, aj) for l 6= j.

(21)

From (20) and (21), cr1(D′) ≤ cr1(D − ai) + 2 + crD−ai(aj) = q(4q − 2) + 2 + 2q − 3 = f (n) − 1. On the other hand,
crD′(ak) = crD−ai(ak)+ crD(aj, ak) < crD−ai(ak)+ crD(ai, ak) = crD(ak) = 2q− 1. By the argument in Claim 1, the crossing
number of D′ must be at least f (n). This proves Claim 3.
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Now consider the matrix A defined by Aij = crD(ai, aj). By the property of crD(ai, aj) and the assumption on D, A is an
n × n symmetric matrix such that the diagonal elements are zero. By Claim 1, the sum of each column of A is 2q − 1. By
Claim 2, Aij is 0, 1 or 2. Moreover, A has no zero 4× 4 submatrix in the form:Ai1 i1 Ai1i2 Ai1 i3 Ai1 i4

Ai2 i1 Ai2i2 Ai2 i3 Ai2 i4
Ai3 i1 Ai3i2 Ai3 i3 Ai3 i4
Ai4 i1 Ai4i2 Ai4 i3 Ai4 i4

 . (22)

Otherwise D has a K4,4 drawn without crossings.
Now, consider the first two columns of A. Since all entries are non-negative integers and n = 4q + 2 = 2(2q − 1) + 4,

there should be at least four i such that Ai1 = Ai2 = 0. By renaming the vertices if necessary, we can assume that Aij = 0 for
1 ≤ i, j ≤ 2. By the same reason, there must exist i > 2 such that Ai1 = Ai2 = 0. By renaming the vertices if necessary, we
may assume that(A11 A12 A13

A21 A22 A23
A31 A32 A33

)
(23)

is zero.
Since D has no K4,4 drawn without crossings, the submatrixA11 A12 A13 A1i

A21 A22 A23 A2i
A31 A32 A33 A3i
Ai1 Ai2 Ai3 Aii

 (24)

must be non-zero for all i ≥ 4. That is to say.
∑3
k=1 Aik ≥ 1 for each i > 3. On the other hand, there exists i > 3 such that

the sum of
∑3
k=1 Aik ≤ 1 (otherwise the sum of first three columns is at least 2(n − 3) = 2(4q − 1) > 3(2q − 1)). These

imply that there exists i > 3 such that
∑3
k=1 Aik = 1. By renaming the vertices, we may assume thatA11 A12 A13 A14

A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

 =
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (25)

Note that it is also impossible for
∑4
k=1 Aik ≥ 2 for each i ≥ 5 (otherwise, the sum of first four columns is at least

2+ 2(n− 4) = 8q− 2 > 4(2q− 1)). Therefore, there exists i0 such that
∑4
k=1 Ai0k ≤ 1, by renaming the vertices, we can

assume i0 = 5. Moreover, it is impossible for
∑4
k=1 A5k = 0, otherwise, A has a zero matrix in the form of (22). Therefore∑4

k=1 A5k = 1which implies that exactly one of the A5k, 1 ≤ k ≤ 4, is 1. Note also that it is impossible for A53 = 1 or A54 = 1,
otherwise, A has a zero matrix in the form of (22). Therefore A51 = 1 or A52 = 1. By renaming the vertices if necessary, we
may assume that

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25
A31 A32 A33 A34 A35
A41 A42 A43 A44 A45
A51 A52 A53 A54 A55

 =

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 . (26)

Since cr1(K4,6) = 4 by (4), we have
∑5
k=1 Aik ≥ 2 for each i > 5. Since the sum of the first column of A is 2q − 1, the

number of i > 5 such that Ai1 is non-zero is at most 2q − 1. Therefore the number of i > 5 such that Ai1 = 0 is at least
n− 5− (2q− 1) = 2q− 2. We summarize all of these by stating the following:

Fact 1. For each i > 5, we have
∑5
k=1 Aik ≥ 2. The number of i > 5 such that Ai1 6= 0 is at most 2q − 1; and the number of

i > 5 such that Ai1 = 0 is at least 2q− 2.

We have the following:

Claim 4. If i > 5 and Ai1 = 0, it is impossible for Aik ≤ 1 for all 2 ≤ k ≤ 5 and
∑5
k=2 Aik ≤ 2.

We prove Claim 4 by contradiction. We assume that Aik ≤ 1 for all 2 ≤ k ≤ 5 and
∑5
k=2 Aik ≤ 2 for some

i > 5 with Ai1 = 0. Then by Fact 1, we have
∑5
k=2 Aik = 2. Since Aik ≤ 1 for all 2 ≤ k ≤ 5, we must have

(Ai1, Ai2, Ai3, Ai4, Ai5) = (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1) or (0, 0, 0, 1, 1). Note that it
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is impossible for (Ai1, Ai2, Ai3, Ai4, Ai5) = (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1) or (0, 0, 0, 1, 1), otherwise A has a zero
4× 4 submatrix of the form (22).
Therefore, (Ai1, Ai2, Ai3, Ai4, Ai5) = (0, 1, 0, 0, 1) or (0, 0, 1, 1, 0). Then, if (Ai1, Ai2, Ai3, Ai4, Ai5) = (0, 1, 0, 0, 1), then

by considering the drawing of K4,5 in D which contains a1, a2, a3, a5, ai, (5) holds which contradicts Lemma 3.4. Similarly,
if (Ai1, Ai2, Ai3, Ai4, Ai5) = (0, 0, 1, 1, 0), then by considering the drawing of K4,5 in D which contains a1, a2, a3, a4, ai, (5)
holds which contradicts Lemma 3.4. This proves Claim 4.
By Claim 4, for all i > 5 such that Ai1 = 0, we must have

∑5
k=2 Aik ≥ 3 or Aik = 2 for some k, 2 ≤ k ≤ 5. From Claim 3,

we have

(Ai1, Ai2, Ai3, Ai4, Ai5) =


(0, 2, 0, 0, 1) if Ai2 = 2,
(0, 0, 2, 1, 0) if Ai3 = 2,
(0, 0, 1, 2, 0) if Ai4 = 2,
(0, 1, 0, 0, 2) if Ai5 = 2.

(27)

From (27) and Claim 4, we have:

Fact 2. If i > 5 such that Ai1 = 0, then
∑5
k=2 Aik ≥ 3.

Combining (26), Fact 1 and Fact 2, we have that the sumof first five columns is at least 4+2(2q−1)+3(2q−2) = 10q−4,
but this is a contradiction since the sum of first five columns is exactly 5(2q− 1) = 10q− 5.

5. Lower bound for cr1(Km,n)

In this section, we apply a similar argument in [1] to obtain a new lower bound for the toroidal crossing number of Km,n.

If p ≤ m, q ≤ n, then Km,n contains
(
m
p

) (
n
q

)
subgraphs Kp,q. If we count the minimum number of crossings in these,

noting that each crossing arises from just two vertices among the m and just two among the n, so that it is counted(
m−2
p−2

) (
n−2
q−2

)
times,

cr1(Km,n) ≥
(
m
p

)(
n
q

)
cr1(Kp,q)

/(
m− 2
p− 2

)(
n− 2
q− 2

)
, or

cr1(Km,n) ≥
mn(m− 1)(n− 1)
pq(p− 1)(q− 1)

cr1(Kp,q). (28)

Hence, we have the following

Theorem 5.1. cr1(Km,n) ≥ 1
6

(m
2

)
b
n
4c[2n− 4(1+ b

n
4c)] for m ≥ 4.

Proof. By taking p = 4 and q = n in (28) and applying Theorem 1.1, the result follows. �

In [1], it has been shown that the toroidal crossing number of Km,n lies between 1
15

(m
2

) ( n
2

)
and 1

6

(
m−1
2

) (
n−1
2

)
for

sufficiently largem and n. Therefore Theorem 5.1 improved this lower bound for the toroidal crossing number of Km,n.

6. Concluding remark

We conclude this paper by posing the following:

Conjecture 6.1. The crossing number of K4,n onΣε is given by⌊
n

ε + 2

⌋[
2n− (ε + 2)

(
1+

⌊
n

ε + 2

⌋)]
,

whereΣε denotes the surface with the Euler genus ε. (The Euler genus of a surfaceΣ is 2h if Σ is the sphere with h handles and
k if Σ is the sphere with k crosscaps.)

From [4,2] and Theorem 1.1, we know that Conjecture 6.1 is true for a sphere, projective plane and torus. We believe that
one can use a similar technique in this paper to prove that these conjectures are true. Actually it is expected that the same
technique in this paper can be used to show that the crossing number of K4,n on the Klein bottle is f (n) by replacing some
lemmas carefully. However, the corresponding Lemma 3.4 for the Klein bottle is not true:
There exists a drawing D of K4,n on the Klein bottle such that if A is the matrix defined by Aij = c̃rD(ai, aj), then (5) holds for

some distinct ij, 1 ≤ j ≤ 5.
To see this, one can refer to Fig. 14, the drawing of K4,5 on the Klein bottle with aj = aij where N represents the vertices

a3, a4 and a5. Therefore one may need some new techniques to prove that Conjecture 6.1 is true for the Klein bottle.
Moreover, we have:
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Fig. 14. Drawing of K4,5 on the Klein bottle.

Proposition 6.1. Denote the crossing number of K4,n inΣε by crΣε (K4,n). We have

crΣε (K4,n) ≤
⌊
n

ε + 2

⌋[
2n− (ε + 2)

(
1+

⌊
n

ε + 2

⌋)]
.

To prove this, we need the following lemma from [5] and its proof can be found in [5]:

Lemma 6.1. If D is a drawing of Km,n inΣε such that, for some k < n, some Km,k is optimally drawn inΣε , then

crΣε (D) ≥ crΣε (Km,k)+ (n− k)(crΣε (Km,k+1)− crΣε (Km,k))+ crΣε (Km,n−k).

Proof of Proposition 6.1. By [6,7], we know that K4,ε+2 can be embedded in Σε . Proposition 6.1 follows from Lemma 6.1
by takingm = 4 and h = ε + 2. �

Moreover, by the same technique to obtain (1)–(3), one can show that, by using Euler’s theorem forΣε instead,

crΣε (K4,n) ≥ 2n− 4− 2ε. (29)

Combining Proposition 6.1 and (29), we know that Conjecture 6.1 is true for n ≤ 2ε + 4, that is,

Corollary 6.1. For n ≤ 2ε + 4, the crossing number of K4,n onΣε is given by

crΣε (K4,n) =
⌊
n

ε + 2

⌋[
2n− (ε + 2)

(
1+

⌊
n

ε + 2

⌋)]
.
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