Undirected simple connected graphs with minimum number of spanning trees

Zbigniew R. Bogdanowicz
Armament Research, Development and Engineering Center, Picatinny, NJ 07806, USA

ARTICLE INFO

Article history:

Received 19 October 2007
Received in revised form 5 June 2008
Accepted 8 August 2008
Available online 23 September 2008

Keywords:

Undirected simple graph
Spanning tree
Enumeration

Abstract

We show that for positive integers n, m with $n(n-1) / 2 \geq m \geq n-1$, the graph $L_{n, m}$ having n vertices and m edges that consists of an ($n-k$)-clique and $k-1$ vertices of degree 1 has the fewest spanning trees among all connected graphs on n vertices and m edges. This proves Boesch's conjecture [F.T. Boesch, A. Satyanarayana, C.L. Suffel, Least reliable networks and reliability domination, IEEE Trans. Commun. 38 (1990) 2004-2009].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let $t(G)$ denote the number of spanning trees in the connected simple undirected graph G. Given positive integers n and m for which there are connected graphs on n vertices and m edges, it is natural to try to determine which graphs maximize or minimize $t(G)$, when G ranges over all connected graphs on n vertices and m edges.

It turns out the maximization version is more difficult and only special cases have been resolved to date $[2,8,13]$. The minimization problem has been attacked with rather more success [1,4,9]. Boesch conjectured that, for positive integers n and m for which there are connected graphs with n vertices and m edges, a particular graph (described below) minimizes the number of spanning trees [1]. In particular, Kelmans et al. proved the conjecture if $m \geq n(n-1) / 2-n+2$, in which case $L_{n, m}$ consists of an $(n-1)$-clique and one vertex joined to at least one of the vertices of the clique [9].

In this paper we prove Boesch's Conjecture. To obtain the graph $L_{n, m}$, let k be the least integer such that $m \geq(n-k)(n-$ $k-1) / 2+k$. Then $L_{n, m}$ consists of $(n-k)$-clique, joined to $k-1$ vertices of degree 1 , plus one other vertex of degree $m-(n-k)(n-k-1) / 2-k-1$, joined to vertices of the clique. We shall follow the terminology and notation of the book by Harary [6].

2. Shifting transformation

The first step in our proof of Boesch's Conjecture is to employ Kelmans' shifting transformation on undirected graphs [7, 12]. Let $G=(V, E)$ be an undirected simple graph and, for a vertex v of G, let $N(v)$ denote the vertices that are neighbors to v. The graph $\operatorname{shift}(G, v, w)$ is obtained from G by, for all $x \in N(v) \backslash(N(w) \cup\{w\})$ deleting $v x$ and adding $w x$. The following is known [3,4].

Lemma 2.1. For any connected graph G and any vertices v, w of G,

$$
t(\operatorname{shift}(G, v, w)) \leq t(G)
$$

Furthermore, it is known that if $\operatorname{shift}(G, v, w)=G$, then G is a threshold graph [1,3,4,11]. These are the graphs $H=H\left(n ; d_{1}, d_{2}, \ldots, d_{k}\right)$ consisting of $(n-k)$ clique, with vertices $v_{k+1}, v_{k+2}, \ldots, v_{n}$, and an independent set on the remaining k vertices, the i th one of which is joined to $v_{k+1}, v_{k+2}, \ldots, v_{k+d_{i}}$.

It was shown in $[1,3,4]$ that every simple connected graph G can be transformed into a threshold graph H using a series of $\operatorname{shift}(G, v, w)$ transformations. Consequently:

Theorem 2.2. For any connected graph G, there is a threshold graph H, with the same numbers of vertices and edges, such that $t(H) \leq t(G)$.

Thus, the second step in the proof will be to determine the number of spanning trees in $H\left(n ; d_{1}, d_{2}, \ldots, d_{k}\right)$, which is done in the next section. Recall that a vertex v dominates a vertex w if $N(w) \backslash\{v\} \subseteq N(v) \backslash w$. In $H\left(n ; d_{1}, d_{2}, \ldots, d_{k}\right)$, the vertices may be ordered $v_{1}, v_{2}, \ldots, v_{k}$ so that, if $i<j$, then v_{i} dominates v_{j}. This will be useful in determining $t(H)$.

3. The number of spanning trees in H

In this section we prove the following result for $H=H\left(n ; d_{1}, d_{2}, \ldots, d_{k}\right)$.
Theorem 3.1. Suppose $H=H\left(n ; d_{1}, d_{2}, \ldots, d_{k}\right)$ is a connected graph, with $d_{1} \geq d_{2} \cdots \geq d_{k}$. Set $d_{0}=n-k$ and $d_{k+1}=1$.Then

$$
\begin{equation*}
t(H)=(n-k)^{-2} \prod_{i=0}^{k}\left(d_{i}(n-k+i)^{d_{i}-d_{i+1}}\right) . \tag{1}
\end{equation*}
$$

A classic result of Kirchoff also known as Matrix Tree Theorem [5] can be used to calculate $t(G)$ for any graph G. Let A be the adjacency matrix of G and let D be the diagonal matrix whose diagonal entries are the degrees of vertices of G using the same indexing of rows and columns in both A and D. The Matrix Tree Theorem asserts that the number of spanning trees of G is the determinant of any of the principal $(n-1) \times(n-1)$ submatrices of $D-A$.

To establish the principal $(n-1) \times(n-1)$ submatrix of $D-A$ for H we use the following labeling of the vertices. For $1 \leq i \leq k, v_{i}$ has degree d_{i}, and v_{i} is adjacent only to vertices $v_{k+1}, v_{k+2}, \ldots, v_{k+d_{i}}$. For $k<i \leq k+d_{k}$, v_{i} has degree $n-1$, and v_{i} is adjacent to all vertices. For $k+d_{k}<i \leq k+d_{1}, v_{i}$ has degree $d_{i} \leq d_{i-1}$, and if $d_{i}=d_{i-1}$ then v_{i} is adjacent to the same vertices as v_{i-1}. Otherwise, v_{i} has degree $n-k-1+r<d_{i-1}$ for some integer $r \geq 1, v_{i}$ is adjacent to vertices $v_{1}, v_{2}, \ldots, v_{r}$ and v_{i} is also adjacent to each vertex v_{j}, where $j>k$ and $j \neq i$. For $i>k+d_{1}, v_{i}$ has degree $n-k-1$, and v_{i} is adjacent to each vertex v_{j}, where $j>k$ and $j \neq i$.

To state the result for $t(H)$ we form the Kirchoff matrix $D-A=A_{n}$ based on the above vertex labeling, where row i corresponds to vertex v_{n-i+1} and column j corresponds to vertex v_{n-j+1}. We now focus attention on the principal $(n-1) \times(n-1)$ submatrix of A_{n}, obtained by deleting its row and column corresponding to vertex v_{k}.

The principal submatrix A_{n-1} is shown in Fig. 1. In the following proof of Theorem 3.1 we will evaluate the determinants in three main steps. First we will reduce the computation to the computation of a determinant D_{1}. Then we will derive the recursion for D_{i} in terms of D_{i+1}, and finally we will determine D_{k}. The columns will be denoted by $c_{1}, c_{2}, \ldots, c_{i}$ and the rows will be denoted by $r_{1}, r_{2}, \ldots, r_{i}$.

Proof of Theorem 3.1. For $k=0, H=K_{n}$ and (1) is satisfied. For $k=1, H$ represents a complete graph with removed star. The formula for $t(H)$ in this case can be found in [9] that also satisfies (1). Hence, without loss of generality we consider H for $k \geq 2$. Clearly, $n-d_{1}-k \geq 0$ must be satisfied. If $n-d_{1}-k>0$, then we first evaluate $\operatorname{det}\left(A_{n-1}\right)$ through the following steps 1-3. Otherwise we skip these three steps.

1. Subtract last column c_{n-1} from columns $c_{1}, c_{2}, \ldots, c_{n-d_{1}-k}$.
2. Add rows $r_{1}, r_{2}, \ldots, r_{n-d_{1}-k}$ to the last row r_{n-1}.
3. Subtract column $c_{n-d_{1}-k}$ from columns $c_{1}, c_{2}, \ldots, c_{n-d_{1}-k-1}$,
and then add rows $r_{1}, r_{2}, \ldots, r_{n-d_{1}-k-1}$ to row $r_{n-d_{1}-k}$.
After further factoring out the vertices of degree $n-k-1$ we get

$$
\begin{equation*}
t(H)=d_{1}(n-k)^{n-d_{1}-k-1} D_{1}, \tag{2}
\end{equation*}
$$

where D_{i} for $i \geq 1$ is represented in Fig. 2. We can now verify that for case $n-d_{1}-k=0$ we have $d_{1}(n-k)^{n-d_{1}-k-1}=1$ and $\operatorname{det}\left(A_{n-1}\right)=D_{1}$.

In the following steps 4-9 we derive recursion for D_{i}, for $i \leq k-2$.
4. Subtract the last column $c_{d_{i}+k-i}$ from columns $c_{1}, c_{2}, \ldots, c_{d_{i}-d_{i+1}}$.
5. Add rows $r_{1}, r_{2}, \ldots, r_{d_{i}-d_{i+1}}$ to the last row $r_{d_{i}+k-i}$.
6. Reduce D_{i} by eliminating first $d_{i}-d_{i+1}$ rows and columns from D_{i} (Fig. 3).
7. Subtract column $c_{d_{i+1}+k-i-1}$ from the last column $c_{d_{i+1}+k-i}$.
8. Add row $r_{d_{i+1}+k-i-1}$ to the last row $r_{d_{i+1}+k-i}$.
9. Expand D_{i} with respect to the last column.

Fig. 1. Matrix A_{n-1}.

Fig. 2. D_{i} for $i \geq 1$.

Thus, we obtain the following recursion:

$$
\begin{equation*}
D_{i}=(n-k+i)^{d_{i}-d_{i+1}} d_{i+1} D_{i+1} . \tag{3}
\end{equation*}
$$

Fig. 3. Evaluation of D_{i} after step 6.

Fig. 4. E_{k}.

Hence, D_{1} can be expressed by

$$
\begin{equation*}
D_{1}=D_{k-1} \prod_{i=1}^{k-2}\left(d_{i+1}(n-k+i)^{d_{i}-d_{i+1}}\right) \tag{4}
\end{equation*}
$$

We evaluate D_{k-1} through steps $10-12$ as follows:
10. Subtract the last column $c_{d_{k-1}+1}$ from columns $c_{1}, c_{2}, \ldots, c_{d_{k-1}-d_{k}}$.
11. Add rows $r_{1}, r_{2}, \ldots, r_{d_{k-1}-d_{k}}$ to the last row $r_{d_{k-1}+1}$.
12. Reduce D_{k-1} by eliminating first $d_{k-1}-d_{k}$ rows and columns from D_{k-1}.

So, D_{k-1} can be expressed as

$$
\begin{equation*}
D_{k-1}=(n-1)^{d_{k-1}-d_{k}} E_{k} \tag{5}
\end{equation*}
$$

where E_{k} is illustrated in Fig. 4.
Subsequently, we evaluate E_{k} through steps $13-16$ as follows:
13. Subtract the last column $c_{d_{k}+1}$ from columns $c_{1}, c_{2}, \ldots, c_{d_{k}}$.
14. Add rows $r_{1}, r_{2}, \ldots, r_{d_{k}}$ to the last row $c_{d_{k}+1}$.
15. Factor out $1 / n$ from the last column $c_{d_{k}+1}$.
16. Add columns $c_{1}, c_{2}, \ldots, c_{d_{k}}$ to the last column $c_{d_{k}+1}$.

We obtain

$$
\begin{equation*}
E_{k}=n^{d_{k}-1} d_{k} \tag{6}
\end{equation*}
$$

Hence, after inserting (6) into (5), then (5) into (4), and finally (4) inserting into (2) we get

$$
\begin{equation*}
t(H)=d_{1}(n-k)^{n-d_{1}-k-1} n^{d_{k}-1} d_{k}(n-1)^{d_{k-1}-d_{k}} \prod_{i=1}^{k-2}\left(d_{i+1}(n-k+i)^{d_{i}-d_{i+1}}\right), \tag{7}
\end{equation*}
$$

which equals (1) for $d_{0}=n-k$ and $d_{k+1}=1$.

4. Main result

In the third step we focus on the threshold family of graphs. We derive properties for $H=H(n ; n-k, \ldots, n-$ $\left.k, d_{i}, 1, \ldots, 1\right)$ based on the corresponding function $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ in Lemma 4.1 through 4.4 [10].

Lemma 4.1. Let b, c, k, be given positive integers with $b \geq 3$ and $k b-k \geq c>k$. Let $x_{0}=b, x_{k+1}=1$, and let $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=0}^{k}\left(x_{i}(b+i)^{x_{i}-x_{i+1}}\right)$. The minimum of f over the region

$$
P:=\left\{x \in \mathbb{R}^{k}: \sum_{i=1}^{k} x_{i}=c, b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1\right\}
$$

occurs at some point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ that satisfies at most two of the following inequalities strictly:

$$
b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1
$$

Proof. Since P is a nonempty polytope and f is continuous over P, the desired minimum exists and is attained in $P . f: P \rightarrow \mathbb{R}$ takes only positive values. So, $F: P \rightarrow \mathbb{R}$,

$$
F(x):=\ln (f(x))
$$

is well defined. Since $\ln ($.$) is strictly monotone, the original optimization problem is equivalent to$

$$
\min \{F(x): x \in P\}
$$

The latter has the same set of optimal solutions as the problem

$$
\max \{-F(x): x \in P\}
$$

We compute

$$
F(x)=\sum_{i=1}^{k}\left[\ln \left(x_{i}\right)+x_{i} \ln (1+1 /(b+i-1))\right]+\text { constant } .
$$

The Hessian of $-F$ is the diagonal matrix

$$
\left(\begin{array}{ccccc}
x_{1}^{-2} & & & \\
& x_{2}^{-2} & & & \mathbf{0} \\
\mathbf{0} & & & & \\
& & & & x_{k}^{-2}
\end{array}\right)
$$

Thus, the Hessian is positive definite over P and hence $-F$ is strictly convex over P. Therefore, every optimal solution must be an extreme point of P. Using the linear algebraic characterization of extreme points of polytopes on P, we conclude that the minimum value of f over P is finite, and every minimizer x satisfies at most two of the following inequalities strictly (all others are satisfied with equality):

$$
b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1
$$

Lemma 4.2. Let b, c, k, be given positive integers with $b \geq 3$ and $k b-k \geq c>k \geq 2$. Let u be given nonnegative integer. Let $x_{0}=b, x_{k+1}=1$, and let $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=0}^{k}\left(x_{i}(b+u+i)^{x_{i}-x_{i+1}}\right)$. Let $f_{1}=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ if $x_{1}=x_{2}=\cdots=x_{k}=c / k$, and let $f_{2}=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ if $x_{1}=x_{2}=\cdots=x_{r-1}=b, x_{r} \geq 1$ and $x_{r+1}=x_{r+2}=\cdots=x_{k}=1$, for $r \geq 1$. Then $f_{1}>f_{2}$ is satisfied over the region

$$
P:=\left\{x \in \mathbb{R}^{k}: \sum_{i=1}^{k} x_{i}=c, b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1\right\}
$$

Proof. We define functions $g_{1}(b, c, k, u), g_{2}(b, c, k, u, r)$ corresponding to f_{1}, f_{2} respectively as follows:

$$
\begin{equation*}
g_{1}(b, c, k, u)=b(c / k)^{k}(b+u)^{b-\frac{c}{k}}(b+u+k)^{\frac{c}{k}-1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(b, c, k, u, r)=b^{r}(c+1-(b-1)(r-1)-k)(b+u+r-1)^{b-(c+1-(b-1)(r-1)-k)}(b+u+r)^{c-(b-1)(r-1)-k} \tag{9}
\end{equation*}
$$

For the purpose of this evaluation we assume $b, c, k, u, r \in R$. The proof follows by direct comparison of $g_{1}(b, c, k, u)$ with $g_{2}(b, c, k, u, r)$.

We first compare $g_{1}(b, c, k, u)$ with $g_{2}(b, c, k, u, r)$ for $c=k+1$ (least possible) and for given b, k, u. Then,

$$
\begin{equation*}
g_{1}(b, k, u)=b((k+1) / k)^{k}(b+u)^{(k b-k-1) / k}(b+u+k)^{1 / k} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(b, u)=2 b(b+u)^{b-2}(b+u+1) \tag{11}
\end{equation*}
$$

Define $g_{3}(b, k, u)=\ln \left(g_{1}(b, k, u) / g_{2}(b, u)\right)$. Then

$$
\begin{aligned}
k \partial g_{3}(b, k, u) / \partial u & =(k-1) /(b+u)+1 /(b+u+k)-k /(b+u+1) \\
& =\left(k^{2}-k\right) /((b+u)(b+u+1)(b+u+k))>0 .
\end{aligned}
$$

So, because $\partial g_{3}(b, k, u) / \partial u>0$ then without loss of generality we assume $u=0$, and we compare

$$
g_{1}(b, k)=((k+1) / k)^{k} b^{(k b-1) / k}(b+k)^{1 / k}
$$

with

$$
g_{2}(b)=2 b^{b-1}(b+1)
$$

By direct calculation we have
$k \partial\left(\ln \left(g_{1}(b, k) / g_{2}(b)\right)\right) / \partial b=(k-1) / b+1 /(b+k)-k /(b+1)=\left(k^{2}-k\right) /(b(b+k)(b+1))>0$.
So, our examination simplifies to the following

$$
\begin{equation*}
((k+1) / k)^{k^{2}} 3^{k-1}(3+k)>8^{k} \tag{12}
\end{equation*}
$$

For $26 \geq k \geq 2$ we numerically verified that (12) holds. For $k \geq 26$ we evaluate it as follows:

$$
((k+1) / k)^{k^{2}} 3^{k-1}(3+k)>((k+1) / k)^{k^{2}} 3^{k} .
$$

We verify that $((k+1) / k)^{k^{2}} 3^{k}>8^{k}$ holds for $k=26$. Inequality $((k+1) / k)^{k^{2}} 3^{k}>8^{k}$ is equivalent to $((k+1) / k)^{k}>8 / 3$. Let $G(k)=\ln \left(((k+1) / k)^{k} /(8 / 3)\right)$. Then,

$$
\begin{aligned}
\mathrm{d}(G(k)) / \mathrm{d} k & =\ln ((k+1) / k)-1 /(k+1) \\
& =\left[1 /(k+1)+(1 / 2)(1 /(k+1))^{2}+(1 / 3)(1 /(k+1))^{3}+\cdots\right]-1 /(k+1)>0 .
\end{aligned}
$$

So, $((k+1) / k)^{k}>8 / 3$ holds for $k \geq 26$, which implies that (12) also holds. Hence, we conclude that $g_{1}(b, c, k, u)>$ $g_{2}(b, c, k, u, r)$ for $c=k+1$.

We now compare $g_{1}(b, c, k, u)$ with $g_{2}(b, c, k, u, r)$ for $c=k b-k$ (largest possible), and for given $b \geq 3, k \geq 2, u \geq 0$. In order to establish r in (9) for comparison, we introduce a substitution $k=k^{\prime}+(b-1) w$, where $b-1 \geq k^{\prime} \geq 1$ and $w \geq 0$. Then,

$$
\begin{equation*}
g_{1}\left(b, u, k^{\prime}, w\right)=b(b+u)(b-1)^{k^{\prime}+(b-1) w}\left(b+u+k^{\prime}+(b-1) w\right)^{b-2} \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
g_{2}\left(b, u, k^{\prime}, w\right)= & b^{\left(k^{\prime}+(b-1) w\right)-w}\left(b-k^{\prime}\right)\left(b+u+\left(k^{\prime}+(b-1) w\right)-w-1\right)^{b-\left(b-k^{\prime}\right)} \\
& \times\left(b+u+\left(k^{\prime}+(b-1) w\right)-w\right)^{b-k^{\prime}-1} \\
= & b^{k^{\prime}+(b-2) w}\left(b-k^{\prime}\right)\left(b+u+k^{\prime}+(b-2) w-1\right)^{k^{\prime}}\left(b+u+k^{\prime}+(b-2) w\right)^{b-k^{\prime}-1} . \tag{14}
\end{align*}
$$

Define $g_{3}\left(b, u, k^{\prime}, w\right)=\ln \left(g_{1}\left(b, u, k^{\prime}, w\right) / g_{2}\left(b, u, k^{\prime}, w\right)\right)$. For $b=3$ we evaluate $\partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w$ for the points where w becomes integer. Based on the straightforward evaluation, which we leave here to the reader, we obtain the following:

$$
\partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w \geq 2 \ln (2)-\ln (3)-2(1 /(4+w-1)-1 /(4+2 w))
$$

For $w \geq 0$ expression $1 /(4+w-1)-1 /(4+2 w)$ has maxima for integers $w=0$ and $w=1$ with minimum $\partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w=2 \ln (2)-\ln (3)-2 / 3+1 / 2>0$. For $w>1, \partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w>\partial g_{3}\left(b, u, k^{\prime}, w\right) /\left.\partial w\right|_{w=1}>0$. For $b \geq 4$ we evaluate $\partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w$ in straightforward way (again we leave it to the reader) and obtain the following:

$$
\partial g_{3}\left(b, u, k^{\prime}, w\right) / \partial w=(b-1) \ln (b-1)-(b-2) \ln (b)-(b-2) / b
$$

For $7 \geq b \geq 4$ by direct calculation $(b-1) \ln (b-1)-(b-2) \ln (b)-(b-2) / b>0$. In addition,

$$
(b-1) \ln (b-1)-(b-2) \ln (b)>1
$$

is satisfied for $b \geq 7$. Note, $(b-1) \ln (b-1)-(b-2) \ln (b)=0$ for $b=2$ and increases for $b \geq 2$.
So, for $c=k b-k$ we can assume that $w=0$, which corresponds to $b>k^{\prime}=k$. Consequently, g_{1}, g_{2} become

$$
\begin{equation*}
g_{1}(b, u, k)=b(b+u)(b-1)^{k}(b+u+k)^{b-2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(b, u, k)=b^{k}(b-k)(b+u+k-1)^{k}(b+u+k)^{b-k-1} \tag{16}
\end{equation*}
$$

Define $g_{4}(b, k, u)=\ln \left(g_{1}(b, k, u) / g_{2}(b, k, u)\right)$. Then

$$
\begin{aligned}
\partial g_{4}(b, u, k) / \partial u & =1 /(b+u)+(k-1) /(b+u+k)-k /(b+u+k-1) \\
& =\left(k^{2}-k\right) /((b+u)(b+u+k)(b+u+k-1))>0
\end{aligned}
$$

So, we can assume $u=0$ and focus on the proof of the following:

$$
\begin{equation*}
(b+k)^{k-1}(b-1)^{k}>(b+k-1)^{k} b^{k-2}(b-k) . \tag{17}
\end{equation*}
$$

Let $g_{4}(b, k)=\ln \left((b+k)^{k-1}(b-1)^{k} /\left((b+k-1)^{k} b^{k-2}(b-k)\right)\right)$. Then

$$
\partial g_{4}(b, k) / \partial k=\ln (b+k)+\ln (b-1)-\ln (b+k-1)-\ln (b)+(k-1) /(b+k)+1 /(b-k)-k /(b+k-1)
$$

For $k=2,(b+k)^{k-1}(b-1)^{k}=(b+k-1)^{k} b^{k-2}(b-k)+4$. We verify that $\partial g_{4}(b, k) / \partial k>0$ for $k=2, b=3$. We also verify that

$$
\partial^{2} g_{4}(b, k) /(\partial k \partial b)=\left(-24 b^{5}+8 b^{4}+60 b^{3}-28 b^{2}-16\right) /\left(b\left(b^{2}-4\right)^{2}\left(b^{2}-1\right)^{2}\right)<0
$$

for $k=2$ and $b \geq 3$ based on the standard evaluation (left to the reader), and that $\partial g_{4}(b, k) / \partial k$ asymptotically converges to 0 as b approaches infinity for $k=2$. This implies that $\partial g_{4}(b, k) / \partial k>0$ for $k=2$. Furthermore, by straightforward evaluation (we leave it here to the reader) we obtain

$$
\begin{aligned}
& \partial^{2} g_{4}(b, k) / \partial k^{2}= \\
& \quad\left(\left(6 b^{3} k+6 b^{2} k^{2}+2 b^{2}+2 b k^{3}+2 k^{2}+2 k^{4}\right)-\left(2 b^{3}+7 b^{2} k+4 b k^{2}+3 k^{3}\right)\right) /\left(\left(b^{2}-k^{2}\right)^{2}(b+k-1)^{2}\right)>0
\end{aligned}
$$

for $b>k \geq 2$. Hence, $(b+k)^{k-1}(b-1)^{k}>(b+k-1)^{k} b^{k-2}(b-k)$ for $k \geq 2$. Consequently, we obtain $g_{1}(b, c, k, u)>$ $g_{2}(b, c, k, u, r)$ for $c=b k-k$.

We now assume that $k \leq c \leq b k$. Let $g_{5}(b, c, k, u, r)=\ln \left(g_{1}(b, c, k, u) / g_{2}(b, c, k, u, r)\right)-$ based on (8) and (9). So, $g_{5}(b, c, k, u, r)>0$ for $c=k+1$ and for $c=k b-k$. By examining $\partial g_{5}(b, c, k, u, r) / \partial c=0$ we conclude that there are at most two extreme points between $c=k$ and $c=b k$. For given b, k, u we have $g_{1}(b, k, k, u)=g_{2}(b, k, k, u, r)$ and $g_{1}(b, b k, k, u)=g_{2}(b, b k, k, u, r)$. This means that $g_{5}(b, c, k, u, r)=0$ for $c=k$ and for $c=b k$. So, there must be exactly one extreme point (maximum) for $k+1 \leq c \leq k b-k$, which means that $g_{1}(b, c, k, u)>g_{2}(b, c, k, u, r)$ for $k+1 \leq c \leq k b-k$.

Lemma 4.3. Let b, c, k, be given positive integers with $b \geq 3, k \geq 3$, and $k b-k \geq c \geq 2 k-1$. Let u be given nonnegative integer. Let $x_{0}=b, x_{k+1}=1$, and let $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=0}^{k}\left(x_{i}(b+u+i)^{x_{i}-x_{i+1}}\right)$. Let $f_{3}=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ if $b-1 \geq x_{1}=x_{2}=\cdots=x_{k-1}=\left(c-x_{k}\right) /(k-1)$, and let $f_{2}=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ if $x_{1}=x_{2}=\cdots=x_{r-1}=b$, $x_{r} \geq 1$ and $x_{r+1}=x_{r+2}=\cdots=x_{k}=1$, for $r \geq 1$. Then $f_{3}>f_{2}$ is satisfied over the region

$$
P:=\left\{x \in \mathbb{R}^{k}: \sum_{i=1}^{k} x_{i}=c, b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1\right\}
$$

Proof. We define functions $g_{3}\left(b, c, k, u, x_{k}\right), g_{2}(b, c, k, u, r)$ corresponding to f_{3}, f_{2} respectively as follows:

$$
\begin{equation*}
g_{3}\left(b, c, k, u, x_{k}\right)=b x_{r}\left(\left(c-x_{k}\right) /(k-1)\right)^{k-1}(b+u)^{b-\frac{c-x_{k}}{k-1}}(b+u+k-1)^{\frac{c-x_{k}}{k-1}-x_{k}}(b+u+k)^{x_{k}-1} \tag{18}
\end{equation*}
$$

and $g_{2}(b, c, k, u, r)$ defined by (9) from Lemma 4.2.

For the purpose of this evaluation we assume $b, c, k, u, r \in R$. The proof follows by direct comparison of $g_{3}\left(b, c, k, u, x_{k}\right)$ with $g_{2}(b, c, k, u, r)$.

Define $h_{3}\left(b, c, k, u, x_{k}\right)=\ln \left(g_{3}\left(b, c, k, u, x_{k}\right) / g_{3}(b, c, k, u, 1)\right)$. Then

$$
\begin{aligned}
& \partial h_{3}\left(b, c, k, u, x_{k}\right) / \partial x_{k}= \\
& \quad 1 / x_{k}-(k-1) /\left(c-x_{k}\right)+\ln (b+u+k)+(\ln (b+u)) /(k-1)-(k /(k-1)) \ln (b+u+k-1)
\end{aligned}
$$

We note that $\frac{1}{x_{k}}-\frac{k-1}{c-x_{k}} \geq 0$, because by definition $x_{k} \leq x_{k-1}=\frac{c-x_{k}}{k-1}$. Then we verify that $\ln (b+u+k)+(\ln (b+u)) /(k-$ 1) $-(k /(k-1)) \ln (b+u+k-1)>0$, for $b \geq 3, u \geq 0$ and $k \geq 3$. So, if $x_{k}=1$ is feasible for given b, c, k then we can assume $x_{k}=1$ for comparison of $g_{3}\left(b, c, k, u, x_{k}\right)$ with $g_{2}(b, c, k, u, r)$ (the worst case).

We first compare $g_{3}\left(b, c, k, u, x_{k}\right)$ with $g_{2}(b, c, k, u, r)$ for $c=2 k-1$ (least possible) and for given b, k, u. Clearly, $x_{k}=1$ is feasible in this case. So we assume $x_{k}=1$. Suppose $g_{3}\left(b, c, k, u, x_{k}=1\right) \leq g_{2}(b, c, k, u, r)$. Then, by Lemma 4.2 $f_{1}=f\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)>f\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=f_{2}$. This in turn implies $f_{3}=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)>f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f_{2}$ - a contradiction. So, $g_{3}\left(b, c, k, u, x_{k}=1\right)>g_{2}(b, c, k, u, r)$ for $c=2 k-1$. For $c=k b-k$ (largest possible), $g_{3}\left(b, c, k, u, x_{k}\right)>g_{2}(b, c, k, u, r)$ is directly implied by Lemma 4.2 because f_{1} from Lemma 4.2 equals f_{3}.

We now assume that $k \leq c \leq b k$, and that $b \geq x_{1}=x_{2}=\cdots=x_{k-1}=\left(c-x_{k}\right) / k$ for $c>b k-k$. Let $g_{5}\left(b, c, k, u, x_{k}, r\right)=\ln \left(g_{3}\left(b, c, k, u, x_{k}\right) / g_{2}(b, c, k, u, r)\right)-\operatorname{based}$ on (18) and (9). So, $g_{5}\left(b, c, k, u, x_{k}, r\right)>0$ for $c=2 k-1$ and for $c=k b-k$. By examining $\partial g_{5}\left(b, c, k, u, x_{k}, r\right) / \partial c=0$ we conclude that there are at most two extreme points between $c=k$ and $c=b k$. For given b, k, u we have $g_{3}(b, k, k, u, 1)=g_{2}(b, k, k, u, r)$ and $g_{3}(b, b k, k, u, k)=g_{2}(b, b k, k, u, r)$. This means that $g_{5}\left(b, c, k, u, x_{k}, r\right)=0$ for $c=k$ and for $c=b k$. So, there must be exactly one extreme point (maximum) for $2 k-1 \leq c \leq k b-k$, which means that $g_{3}\left(b, c, k, u, x_{k}\right)>g_{2}(b, c, k, u, r)$ for $2 k-1 \leq c \leq k b-k$.

Lemma 4.4. Let b, c, k, be given positive integers with $b \geq 3$ and $k b-k \geq c>k$. Let $x_{0}=b, x_{k+1}=1$, and let $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=0}^{k}\left(x_{i}(b+i)^{x_{i}-x_{i+1}}\right)$. The minimum of g over the region

$$
P:=\left\{x \in \mathbb{N}^{k}: \sum_{i=1}^{k} x_{i}=c, b \geq x_{1} \geq x_{2} \cdots \geq x_{k} \geq 1\right\}
$$

occurs at some point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ if and only if $x_{1}=x_{2}=\cdots=x_{r-1}=b, x_{r}>1$ and $x_{r+1}=x_{r+2}=\cdots=x_{k}=1$, for some $r \geq 1$.
Proof. Suppose a minimum of g occurs at some point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ where $b>x_{i} \geq x_{i+1}>1$ is satisfied. Let r be the largest index for which $x_{r}>1$. Then we have three cases to consider.
Case 1: $x_{r-1}=x_{r}$ is satisfied.
Let p be an index such that $x_{p-1}>x_{p}=x_{p+1}=\cdots=x_{r}$. Consider corresponding function $f_{1}=f\left(x_{p}, x_{p+1}, \ldots, x_{r}\right)$ from Lemma 4.2, where $b=x_{p-1}, x \in R^{r-p+1}$. By Lemma 4.2, $f_{1}>f_{2}$ - a contradiction.
Case 2: $x_{r-2}>x_{r-1}>x_{r}$ is satisfied.
Consider corresponding function $f\left(x_{r-1}, x_{r}\right)$ from Lemma 4.1, where $b=x_{r-2}, x \in R^{2}$. By Lemma 4.1, f is not a minimizer. By Lemma $4.2 x_{r-1}=x_{r}$ is not minimizer either. So, either $x_{r-2}=x_{r-1}$ or $x_{r}=1$ must be satisfied - a contradiction.
Case 3: $x_{r-2}=x_{r-1}>x_{r}$ is satisfied.
Let p be an index such that $x_{p-1}>x_{p}=x_{p+1}=\cdots=x_{r-1}$. Consider corresponding function $f_{3}=f\left(x_{p}, x_{p+1}, \ldots, x_{r}\right)$ from Lemma 4.3, where $b=x_{p-1}, x \in R^{r-p+1}$. By Lemma 4.3, $f_{3}>f_{2}$ - a contradiction.

So, by contradiction of Cases $1-3$, the minimum of g must occur at some point ($x_{1}, x_{2}, \ldots, x_{k}$), where $x_{1}=x_{2}=\cdots=$ $x_{r-1}=b, x_{r}>1$ and $x_{r+1}=x_{r+2}=\cdots=x_{k}=1$, for some $r \geq 1$.
Let $L_{n, m}$ be a special case of H such that $L_{n, m}=H\left(n ; d_{1}, 1,1, \ldots, 1\right)$. In the final fourth step we now state the following result.
Theorem 4.5. Let n and m be positive integers so that there is a connected simple graph on n vertices and m edges. Then, for any connected graph G with n vertices and m edges, $t(G) \geq t\left(L_{n, m}\right)$.
Proof. Suppose $t(G)$ is minimum. Then, by Theorem $2.2 G$ can be transformed to H with $t(H)$ minimum too. If $m=n-1$ then H is a tree and the case is trivial. Hence, without loss of generality consider only case for $m>n-1$. If $H=H(n ; 1, \ldots, 1)$ then $H=L_{n, m}$. Otherwise, $\sum_{i=1}^{k} d_{i}>k$. So, by Theorem 3.1 and Lemma $4.4 H$ must be of the form $H\left(n ; d_{1}, d_{2}, \ldots, d_{i}, \ldots, d_{k}\right)=$ $H\left(n ; n-k, \ldots, n-k, \bar{d}_{i}, 1, \ldots, 1\right)$, where $k, i \geq 1$, and $n-k \geq d_{i}>1$. If $i=1$ then $H=L_{n, m}$. If $i=2$ then $H=H\left(n ; n-k, d_{2}, 1, \ldots, 1\right)$ is isomorphic to $H\left(n ; d_{1}^{1}, 1, \ldots, 1\right)=L_{n, m}$, where $d_{1}^{1}=d_{2}$. Suppose $i>2$. In this case $H=H\left(n ; n-k, \ldots, n-k, d_{i}, 1, \ldots, 1\right)$ and it is isomorphic to $H\left(n ; n-k, \ldots, n-k, d_{i-1}^{1}, 1, \ldots, 1\right)$, where $d_{i-1}^{1}=d_{i}$. Furthermore, $H\left(n ; n-k, \ldots, n-k, d_{i-1}^{1}, 1, \ldots, 1\right)$ can be transformed to $H^{\prime}\left(n ; n-k+1, \ldots, n-k+1, d_{j}^{2}, 1, \ldots, 1\right)$ for some $j \leq i$, which is not isomorphic to $H\left(n ; n-k, \ldots, n-k, d_{i-1}^{1}, 1, \ldots, 1\right)$, i.e., $H\left(n ; n-k, \ldots, n-k, d_{i-1}^{1}, 1, \ldots, 1\right) \neq$ $H^{\prime}\left(n ; n-k+1, \ldots, n-k+1, d_{j}^{2}, 1, \ldots, 1\right)$. So, by Lemma 4.4

$$
t\left(H^{\prime}\left(n ; n-k+1, \ldots, n-k+1, d_{j}^{2}, 1, \ldots, 1\right)\right)<t\left(H\left(n ; n-k, \ldots, n-k, d_{i-1}^{1}, 1, \ldots, 1\right)\right)
$$

a contradiction.

Acknowledgements

I would like to extend my gratitude to the referees whose comments and suggestions have been an important input to this work.

References

[1] F.T. Boesch, A. Satyanarayana, C.L. Suffel, Least reliable networks and reliability domination, IEEE Trans. Commun. 38 (1990) $2004-2009$.
[2] F.T. Boesch, L. Pentingi, C.L. Suffel, On the characterization of graphs with maximum number of spanning trees, Discrete Math. 179 (1998) $155-166$.
[3] Z.R. Bogdanowicz, Spanning trees in undirected simple graphs, Ph.D. Dissertation, Stevens Institute of Technology (1985), UMI MAX-85-22780.
[4] J. Brown, C. Colbourn, J. Devitt, Network transformations and bounding network reliability, Networks 23 (1993) 1-17.
[5] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, Reading, 2001.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[7] A.K. Kelmans, On graphs with randomly deleted edges, Acta Math. Acad. Sci. Hung. 37 (1981) 77-88.
[8] A.K. Kelmans, On graphs with the maximum number of spanning trees, Random Structures Algorithms 9 (1996) 177-192.
[9] A.K. Kelmans, V.M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combin. Theory Ser. B 16 (1974) 197-214.
[10] D.G. Luenberg, Linear and Nonlinear Programming, 2nd ed., Kluwer Academic, Reading, 2003.
[11] N. Mahadev, V. Peled, Threshold graphs and related topics, Ann. Discrete Math. 56 (1995).
[12] A. Satyanarayana, L. Schoppmann, C.L. Suffel, A reliability-improving graph transformation with applications to network reliability, Networks 22 (1992) 209-216.
[13] L. Petingi, J. Rodriguez, A new technique for the characterization of graphs with a maximum number of spanning trees, Discrete Math. 244 (2002) 351-373.

