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a b s t r a c t

We show that for positive integers n,mwith n(n−1)/2 ≥ m ≥ n−1, the graph Ln,m having
n vertices andm edges that consists of an (n−k)-clique and k−1 vertices of degree 1 has the
fewest spanning trees among all connected graphs on n vertices and m edges. This proves
Boesch’s conjecture [F.T. Boesch, A. Satyanarayana, C.L. Suffel, Least reliable networks and
reliability domination, IEEE Trans. Commun. 38 (1990) 2004–2009].
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1. Introduction

Let t(G) denote the number of spanning trees in the connected simple undirected graph G. Given positive integers n and
m for which there are connected graphs on n vertices andm edges, it is natural to try to determine which graphs maximize
or minimize t(G), when G ranges over all connected graphs on n vertices andm edges.
It turns out the maximization version is more difficult and only special cases have been resolved to date [2,8,13]. The

minimization problem has been attacked with rather more success [1,4,9]. Boesch conjectured that, for positive integers n
and m for which there are connected graphs with n vertices and m edges, a particular graph (described below) minimizes
the number of spanning trees [1]. In particular, Kelmans et al. proved the conjecture if m ≥ n(n − 1)/2 − n + 2, in which
case Ln,m consists of an (n− 1)−clique and one vertex joined to at least one of the vertices of the clique [9].
In this paper we prove Boesch’s Conjecture. To obtain the graph Ln,m, let k be the least integer such thatm ≥ (n− k)(n−

k − 1)/2 + k. Then Ln,m consists of (n − k)−clique, joined to k − 1 vertices of degree 1, plus one other vertex of degree
m− (n− k)(n− k− 1)/2− k− 1, joined to vertices of the clique. We shall follow the terminology and notation of the book
by Harary [6].

2. Shifting transformation

The first step in our proof of Boesch’s Conjecture is to employ Kelmans’ shifting transformation on undirected graphs [7,
12]. Let G = (V , E) be an undirected simple graph and, for a vertex v of G, let N(v) denote the vertices that are neighbors to
v. The graph shift(G, v, w) is obtained from G by, for all x ∈ N(v) \ (N(w) ∪ {w}) deleting vx and addingwx. The following
is known [3,4].

Lemma 2.1. For any connected graph G and any vertices v,w of G,

t(shift(G, v, w)) ≤ t(G).
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Furthermore, it is known that if shift(G, v, w) = G, then G is a threshold graph [1,3,4,11]. These are the graphs
H = H(n; d1, d2, . . . , dk) consisting of (n − k)−clique, with vertices vk+1, vk+2, . . . , vn, and an independent set on the
remaining k vertices, the ith one of which is joined to vk+1, vk+2, . . . , vk+di .
It was shown in [1,3,4] that every simple connected graph G can be transformed into a threshold graph H using a series

of shift(G, v, w) transformations. Consequently:

Theorem 2.2. For any connected graph G, there is a threshold graph H, with the same numbers of vertices and edges, such that
t(H) ≤ t(G).

Thus, the second step in the proof will be to determine the number of spanning trees in H(n; d1, d2, . . . , dk), which is
done in the next section. Recall that a vertex v dominates a vertex w if N(w) \ {v} ⊆ N(v) \ w. In H(n; d1, d2, . . . , dk), the
vertices may be ordered v1, v2, . . . , vk so that, if i < j, then vi dominates vj. This will be useful in determining t(H).

3. The number of spanning trees in H

In this section we prove the following result for H = H(n; d1, d2, . . . , dk).

Theorem 3.1. SupposeH = H(n; d1, d2, . . . , dk) is a connected graph,with d1 ≥ d2 · · · ≥ dk. Set d0 = n−k and dk+1 = 1.Then

t(H) = (n− k)−2
k∏
i=0

(di(n− k+ i)di−di+1). (1)

A classic result of Kirchoff also known as Matrix Tree Theorem [5] can be used to calculate t(G) for any graph G. Let A be
the adjacency matrix of G and let D be the diagonal matrix whose diagonal entries are the degrees of vertices of G using the
same indexing of rows and columns in both A and D. The Matrix Tree Theorem asserts that the number of spanning trees of
G is the determinant of any of the principal (n− 1)× (n− 1) submatrices of D− A.
To establish the principal (n − 1) × (n − 1) submatrix of D − A for H we use the following labeling of the vertices. For

1 ≤ i ≤ k, vi has degree di, and vi is adjacent only to vertices vk+1, vk+2, . . . , vk+di . For k < i ≤ k+ dk, vi has degree n− 1,
and vi is adjacent to all vertices. For k + dk < i ≤ k + d1, vi has degree di ≤ di−1, and if di = di−1 then vi is adjacent to
the same vertices as vi−1. Otherwise, vi has degree n − k − 1 + r < di−1 for some integer r ≥ 1, vi is adjacent to vertices
v1, v2, . . . , vr and vi is also adjacent to each vertex vj, where j > k and j 6= i. For i > k+ d1, vi has degree n− k− 1, and vi
is adjacent to each vertex vj, where j > k and j 6= i.
To state the result for t(H) we form the Kirchoff matrix D − A = An based on the above vertex labeling, where

row i corresponds to vertex vn−i+1 and column j corresponds to vertex vn−j+1. We now focus attention on the principal
(n− 1)× (n− 1) submatrix of An, obtained by deleting its row and column corresponding to vertex vk.
The principal submatrix An−1 is shown in Fig. 1. In the following proof of Theorem 3.1 we will evaluate the determinants

in three main steps. First we will reduce the computation to the computation of a determinant D1. Then we will derive the
recursion for Di in terms of Di+1, and finally we will determine Dk. The columns will be denoted by c1, c2, . . . , ci and the
rows will be denoted by r1, r2, . . . , ri.

Proof of Theorem 3.1. For k = 0, H = Kn and (1) is satisfied. For k = 1, H represents a complete graph with removed star.
The formula for t(H) in this case can be found in [9] that also satisfies (1). Hence, without loss of generality we consider H
for k ≥ 2. Clearly, n− d1− k ≥ 0must be satisfied. If n− d1− k > 0, then we first evaluate det(An−1) through the following
steps 1–3. Otherwise we skip these three steps.
1. Subtract last column cn−1 from columns c1, c2, . . . , cn−d1−k.
2. Add rows r1, r2, . . . , rn−d1−k to the last row rn−1.
3. Subtract column cn−d1−k from columns c1, c2, . . . , cn−d1−k−1,
and then add rows r1, r2, . . . , rn−d1−k−1 to row rn−d1−k.
After further factoring out the vertices of degree n− k− 1 we get

t(H) = d1(n− k)n−d1−k−1D1, (2)

where Di for i ≥ 1 is represented in Fig. 2. We can now verify that for case n− d1 − k = 0 we have d1(n− k)n−d1−k−1 = 1
and det(An−1) = D1.
In the following steps 4–9 we derive recursion for Di, for i ≤ k− 2.
4. Subtract the last column cdi+k−i from columns c1, c2, . . . , cdi−di+1 .
5. Add rows r1, r2, . . . , rdi−di+1 to the last row rdi+k−i.
6. Reduce Di by eliminating first di − di+1 rows and columns from Di (Fig. 3).
7. Subtract column cdi+1+k−i−1 from the last column cdi+1+k−i.
8. Add row rdi+1+k−i−1 to the last row rdi+1+k−i.
9. Expand Di with respect to the last column.
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Fig. 1. Matrix An−1 .

Fig. 2. Di for i ≥ 1.

Thus, we obtain the following recursion:

Di = (n− k+ i)di−di+1di+1Di+1. (3)
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Fig. 3. Evaluation of Di after step 6.

Fig. 4. Ek .

Hence, D1 can be expressed by

D1 = Dk−1
k−2∏
i=1

(di+1(n− k+ i)di−di+1). (4)

We evaluate Dk−1 through steps 10–12 as follows:
10. Subtract the last column cdk−1+1 from columns c1, c2, . . . , cdk−1−dk .
11. Add rows r1, r2, . . . , rdk−1−dk to the last row rdk−1+1.
12. Reduce Dk−1 by eliminating first dk−1 − dk rows and columns from Dk−1.
So, Dk−1 can be expressed as

Dk−1 = (n− 1)dk−1−dkEk (5)

where Ek is illustrated in Fig. 4.
Subsequently, we evaluate Ek through steps 13–16 as follows:
13. Subtract the last column cdk+1 from columns c1, c2, . . . , cdk .
14. Add rows r1, r2, . . . , rdk to the last row cdk+1.
15. Factor out 1/n from the last column cdk+1.
16. Add columns c1, c2, . . . , cdk to the last column cdk+1.

We obtain

Ek = ndk−1dk. (6)
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Hence, after inserting (6) into (5), then (5) into (4), and finally (4) inserting into (2) we get

t(H) = d1(n− k)n−d1−k−1ndk−1dk(n− 1)dk−1−dk
k−2∏
i=1

(di+1(n− k+ i)di−di+1), (7)

which equals (1) for d0 = n− k and dk+1 = 1. �

4. Main result

In the third step we focus on the threshold family of graphs. We derive properties for H = H(n; n − k, . . . , n −
k, di, 1, . . . , 1) based on the corresponding function f (x1, x2, . . . , xk) in Lemma 4.1 through 4.4 [10].

Lemma 4.1. Let b, c, k, be given positive integers with b ≥ 3 and kb − k ≥ c > k. Let x0 = b, xk+1 = 1, and let
f (x1, x2, . . . , xk) =

∏k
i=0(xi(b+ i)

xi−xi+1). The minimum of f over the region

P :=

{
x ∈ Rk :

k∑
i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1

}
occurs at some point (x1, x2, . . . , xk) that satisfies at most two of the following inequalities strictly:

b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1.

Proof. Since P is a nonempty polytope and f is continuous over P , the desiredminimumexists and is attained in P . f : P → R
takes only positive values. So, F : P → R,

F(x) := ln(f (x))

is well defined. Since ln(.) is strictly monotone, the original optimization problem is equivalent to

min{F(x) : x ∈ P}.

The latter has the same set of optimal solutions as the problem

max{−F(x) : x ∈ P}.

We compute

F(x) =
k∑
i=1

[ln(xi)+ xi ln(1+ 1/(b+ i− 1))] + constant.

The Hessian of−F is the diagonal matrix
x−21

x−22 0
.

0 .

x−2k

 .

Thus, the Hessian is positive definite over P and hence−F is strictly convex over P . Therefore, every optimal solutionmust
be an extreme point of P . Using the linear algebraic characterization of extreme points of polytopes on P , we conclude that
the minimum value of f over P is finite, and every minimizer x satisfies at most two of the following inequalities strictly (all
others are satisfied with equality):

b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1. �

Lemma 4.2. Let b, c, k, be given positive integers with b ≥ 3 and kb − k ≥ c > k ≥ 2. Let u be given nonnegative integer. Let
x0 = b, xk+1 = 1, and let f (x1, x2, . . . , xk) =

∏k
i=0(xi(b+u+i)

xi−xi+1). Let f1 = f (x1, x2, . . . , xk) if x1 = x2 = · · · = xk = c/k,
and let f2 = f (x1, x2, . . . , xk) if x1 = x2 = · · · = xr−1 = b, xr ≥ 1 and xr+1 = xr+2 = · · · = xk = 1, for r ≥ 1. Then f1 > f2 is
satisfied over the region

P :=

{
x ∈ Rk :

k∑
i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1

}
.



Z.R. Bogdanowicz / Discrete Mathematics 309 (2009) 3074–3082 3079

Proof. We define functions g1(b, c, k, u), g2(b, c, k, u, r) corresponding to f1, f2 respectively as follows:

g1(b, c, k, u) = b(c/k)k(b+ u)b−
c
k (b+ u+ k)

c
k−1 (8)

and

g2(b, c, k, u, r) = br(c + 1− (b− 1)(r − 1)− k)(b+ u+ r − 1)b−(c+1−(b−1)(r−1)−k)(b+ u+ r)c−(b−1)(r−1)−k. (9)

For the purpose of this evaluation we assume b, c, k, u, r ∈ R. The proof follows by direct comparison of g1(b, c, k, u)
with g2(b, c, k, u, r).
We first compare g1(b, c, k, u)with g2(b, c, k, u, r) for c = k+ 1 (least possible) and for given b, k, u. Then,

g1(b, k, u) = b((k+ 1)/k)k(b+ u)(kb−k−1)/k(b+ u+ k)1/k (10)

and

g2(b, u) = 2b(b+ u)b−2(b+ u+ 1). (11)

Define g3(b, k, u) = ln(g1(b, k, u)/g2(b, u)). Then

k∂g3(b, k, u)/∂u = (k− 1)/(b+ u)+ 1/(b+ u+ k)− k/(b+ u+ 1)
= (k2 − k)/((b+ u)(b+ u+ 1)(b+ u+ k)) > 0.

So, because ∂g3(b, k, u)/∂u > 0 then without loss of generality we assume u = 0, and we compare

g1(b, k) = ((k+ 1)/k)kb(kb−1)/k(b+ k)1/k

with

g2(b) = 2bb−1(b+ 1).

By direct calculation we have

k∂(ln(g1(b, k)/g2(b)))/∂b = (k− 1)/b+ 1/(b+ k)− k/(b+ 1) = (k2 − k)/(b(b+ k)(b+ 1)) > 0.

So, our examination simplifies to the following

((k+ 1)/k)k
2
3k−1(3+ k) > 8k. (12)

For 26 ≥ k ≥ 2 we numerically verified that (12) holds. For k ≥ 26 we evaluate it as follows:

((k+ 1)/k)k
2
3k−1(3+ k) > ((k+ 1)/k)k

2
3k.

We verify that ((k+ 1)/k)k
2
3k > 8k holds for k = 26. Inequality ((k+ 1)/k)k

2
3k > 8k is equivalent to ((k+ 1)/k)k > 8/3.

Let G(k) = ln(((k+ 1)/k)k/(8/3)). Then,

d(G(k))/dk = ln((k+ 1)/k)− 1/(k+ 1)
= [1/(k+ 1)+ (1/2)(1/(k+ 1))2 + (1/3)(1/(k+ 1))3 + · · ·] − 1/(k+ 1) > 0.

So, ((k + 1)/k)k > 8/3 holds for k ≥ 26, which implies that (12) also holds. Hence, we conclude that g1(b, c, k, u) >
g2(b, c, k, u, r) for c = k+ 1.
We now compare g1(b, c, k, u) with g2(b, c, k, u, r) for c = kb− k (largest possible), and for given b ≥ 3, k ≥ 2, u ≥ 0.

In order to establish r in (9) for comparison, we introduce a substitution k = k′ + (b − 1)w, where b − 1 ≥ k′ ≥ 1 and
w ≥ 0. Then,

g1(b, u, k′, w) = b(b+ u)(b− 1)k
′
+(b−1)w(b+ u+ k′ + (b− 1)w)b−2 (13)

and

g2(b, u, k′, w) = b(k
′
+(b−1)w)−w(b− k′)(b+ u+ (k′ + (b− 1)w)− w − 1)b−(b−k′)

× (b+ u+ (k′ + (b− 1)w)− w)b−k
′
−1

= bk
′
+(b−2)w(b− k′)(b+ u+ k′ + (b− 2)w − 1)k

′

(b+ u+ k′ + (b− 2)w)b−k
′
−1. (14)

Define g3(b, u, k′, w) = ln(g1(b, u, k′, w)/g2(b, u, k′, w)). For b = 3 we evaluate ∂g3(b, u, k′, w)/∂w for the points
where w becomes integer. Based on the straightforward evaluation, which we leave here to the reader, we obtain the
following:

∂g3(b, u, k′, w)/∂w ≥ 2 ln(2)− ln(3)− 2(1/(4+ w − 1)− 1/(4+ 2w)).
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For w ≥ 0 expression 1/(4 + w − 1) − 1/(4 + 2w) has maxima for integers w = 0 and w = 1 with minimum
∂g3(b, u, k′, w)/∂w = 2 ln(2) − ln(3) − 2/3 + 1/2 > 0. For w > 1, ∂g3(b, u, k′, w)/∂w > ∂g3(b, u, k′, w)/∂w|w=1 > 0.
For b ≥ 4we evaluate ∂g3(b, u, k′, w)/∂w in straightforwardway (again we leave it to the reader) and obtain the following:

∂g3(b, u, k′, w)/∂w = (b− 1) ln(b− 1)− (b− 2) ln(b)− (b− 2)/b.

For 7 ≥ b ≥ 4 by direct calculation (b− 1) ln(b− 1)− (b− 2) ln(b)− (b− 2)/b > 0. In addition,

(b− 1) ln(b− 1)− (b− 2) ln(b) > 1

is satisfied for b ≥ 7. Note, (b− 1) ln(b− 1)− (b− 2) ln(b) = 0 for b = 2 and increases for b ≥ 2.
So, for c = kb− kwe can assume thatw = 0, which corresponds to b > k′ = k. Consequently, g1, g2 become

g1(b, u, k) = b(b+ u)(b− 1)k(b+ u+ k)b−2 (15)

and

g2(b, u, k) = bk(b− k)(b+ u+ k− 1)k(b+ u+ k)b−k−1. (16)

Define g4(b, k, u) = ln(g1(b, k, u)/g2(b, k, u)). Then

∂g4(b, u, k)/∂u = 1/(b+ u)+ (k− 1)/(b+ u+ k)− k/(b+ u+ k− 1)
= (k2 − k)/((b+ u)(b+ u+ k)(b+ u+ k− 1)) > 0.

So, we can assume u = 0 and focus on the proof of the following:

(b+ k)k−1(b− 1)k > (b+ k− 1)kbk−2(b− k). (17)

Let g4(b, k) = ln((b+ k)k−1(b− 1)k/((b+ k− 1)kbk−2(b− k))). Then

∂g4(b, k)/∂k = ln(b+ k)+ ln(b− 1)− ln(b+ k− 1)− ln(b)+ (k− 1)/(b+ k)+ 1/(b− k)− k/(b+ k− 1).

For k = 2, (b+ k)k−1(b− 1)k = (b+ k− 1)kbk−2(b− k)+ 4. We verify that ∂g4(b, k)/∂k > 0 for k = 2, b = 3. We also
verify that

∂2g4(b, k)/(∂k∂b) = (−24b5 + 8b4 + 60b3 − 28b2 − 16)/(b(b2 − 4)2(b2 − 1)2) < 0

for k = 2 and b ≥ 3 based on the standard evaluation (left to the reader), and that ∂g4(b, k)/∂k asymptotically converges
to 0 as b approaches infinity for k = 2. This implies that ∂g4(b, k)/∂k > 0 for k = 2. Furthermore, by straightforward
evaluation (we leave it here to the reader) we obtain

∂2g4(b, k)/∂k2 =
((6b3k+ 6b2k2 + 2b2 + 2bk3 + 2k2 + 2k4)− (2b3 + 7b2k+ 4bk2 + 3k3))/((b2 − k2)2(b+ k− 1)2) > 0

for b > k ≥ 2. Hence, (b + k)k−1(b − 1)k > (b + k − 1)kbk−2(b − k) for k ≥ 2. Consequently, we obtain g1(b, c, k, u) >
g2(b, c, k, u, r) for c = bk− k.
We now assume that k ≤ c ≤ bk. Let g5(b, c, k, u, r) = ln(g1(b, c, k, u)/g2(b, c, k, u, r)) — based on (8) and (9). So,

g5(b, c, k, u, r) > 0 for c = k + 1 and for c = kb − k. By examining ∂g5(b, c, k, u, r)/∂c = 0 we conclude that there
are at most two extreme points between c = k and c = bk. For given b, k, u we have g1(b, k, k, u) = g2(b, k, k, u, r) and
g1(b, bk, k, u) = g2(b, bk, k, u, r). Thismeans that g5(b, c, k, u, r) = 0 for c = k and for c = bk. So, theremust be exactly one
extreme point (maximum) for k+1 ≤ c ≤ kb− k, which means that g1(b, c, k, u) > g2(b, c, k, u, r) for k+1 ≤ c ≤ kb− k.

�

Lemma 4.3. Let b, c, k, be given positive integers with b ≥ 3, k ≥ 3, and kb − k ≥ c ≥ 2k − 1. Let u be given nonnegative
integer. Let x0 = b, xk+1 = 1, and let f (x1, x2, . . . , xk) =

∏k
i=0(xi(b + u + i)

xi−xi+1). Let f3 = f (x1, x2, . . . , xk) if
b − 1 ≥ x1 = x2 = · · · = xk−1 = (c − xk)/(k − 1), and let f2 = f (x1, x2, . . . , xk) if x1 = x2 = · · · = xr−1 = b,
xr ≥ 1 and xr+1 = xr+2 = · · · = xk = 1, for r ≥ 1. Then f3 > f2 is satisfied over the region

P :=

{
x ∈ Rk :

k∑
i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1

}
.

Proof. We define functions g3(b, c, k, u, xk), g2(b, c, k, u, r) corresponding to f3, f2 respectively as follows:

g3(b, c, k, u, xk) = bxr((c − xk)/(k− 1))k−1(b+ u)b−
c−xk
k−1 (b+ u+ k− 1)

c−xk
k−1 −xk(b+ u+ k)xk−1 (18)

and g2(b, c, k, u, r) defined by (9) from Lemma 4.2.
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For the purpose of this evaluation we assume b, c, k, u, r ∈ R. The proof follows by direct comparison of g3(b, c, k, u, xk)
with g2(b, c, k, u, r).
Define h3(b, c, k, u, xk) = ln(g3(b, c, k, u, xk)/g3(b, c, k, u, 1)). Then

∂h3(b, c, k, u, xk)/∂xk =
1/xk − (k− 1)/(c − xk)+ ln(b+ u+ k)+ (ln(b+ u))/(k− 1)− (k/(k− 1)) ln(b+ u+ k− 1).

We note that 1xk −
k−1
c−xk
≥ 0, because by definition xk ≤ xk−1 =

c−xk
k−1 . Then we verify that ln(b+u+k)+ (ln(b+u))/(k−

1) − (k/(k − 1)) ln(b + u + k − 1) > 0, for b ≥ 3, u ≥ 0 and k ≥ 3. So, if xk = 1 is feasible for given b, c, k then we can
assume xk = 1 for comparison of g3(b, c, k, u, xk)with g2(b, c, k, u, r) (the worst case).
We first compare g3(b, c, k, u, xk) with g2(b, c, k, u, r) for c = 2k − 1 (least possible) and for given b, k, u. Clearly,

xk = 1 is feasible in this case. So we assume xk = 1. Suppose g3(b, c, k, u, xk = 1) ≤ g2(b, c, k, u, r). Then, by Lemma 4.2
f1 = f (x1, x2, . . . , xk−1) > f (x1, x2, . . . , xk−1) = f2. This in turn implies f3 = f (x1, x2, . . . , xk) > f (x1, x2, . . . , xk) = f2
— a contradiction. So, g3(b, c, k, u, xk = 1) > g2(b, c, k, u, r) for c = 2k − 1. For c = kb − k (largest possible),
g3(b, c, k, u, xk) > g2(b, c, k, u, r) is directly implied by Lemma 4.2 because f1 from Lemma 4.2 equals f3.
We now assume that k ≤ c ≤ bk, and that b ≥ x1 = x2 = · · · = xk−1 = (c − xk)/k for c > bk − k. Let

g5(b, c, k, u, xk, r) = ln(g3(b, c, k, u, xk)/g2(b, c, k, u, r))— based on (18) and (9). So, g5(b, c, k, u, xk, r) > 0 for c = 2k− 1
and for c = kb−k. By examining ∂g5(b, c, k, u, xk, r)/∂c = 0we conclude that there are atmost twoextremepoints between
c = k and c = bk. For given b, k, uwe have g3(b, k, k, u, 1) = g2(b, k, k, u, r) and g3(b, bk, k, u, k) = g2(b, bk, k, u, r). This
means that g5(b, c, k, u, xk, r) = 0 for c = k and for c = bk. So, there must be exactly one extreme point (maximum) for
2k− 1 ≤ c ≤ kb− k, which means that g3(b, c, k, u, xk) > g2(b, c, k, u, r) for 2k− 1 ≤ c ≤ kb− k. �

Lemma 4.4. Let b, c, k, be given positive integers with b ≥ 3 and kb − k ≥ c > k. Let x0 = b, xk+1 = 1, and let
g(x1, x2, . . . , xk) =

∏k
i=0(xi(b+ i)

xi−xi+1). The minimum of g over the region

P :=

{
x ∈ Nk :

k∑
i=1

xi = c, b ≥ x1 ≥ x2 · · · ≥ xk ≥ 1

}
occurs at some point (x1, x2, . . . , xk) if and only if x1 = x2 = · · · = xr−1 = b, xr > 1 and xr+1 = xr+2 = · · · = xk = 1, for
some r ≥ 1.
Proof. Suppose a minimum of g occurs at some point (x1, x2, . . . , xk) where b > xi ≥ xi+1 > 1 is satisfied. Let r be the
largest index for which xr > 1. Then we have three cases to consider.
Case 1: xr−1 = xr is satisfied.
Let p be an index such that xp−1 > xp = xp+1 = · · · = xr . Consider corresponding function f1 = f (xp, xp+1, . . . , xr) from

Lemma 4.2, where b = xp−1, x ∈ Rr−p+1. By Lemma 4.2, f1 > f2 — a contradiction.
Case 2: xr−2 > xr−1 > xr is satisfied.
Consider corresponding function f (xr−1, xr) from Lemma 4.1, where b = xr−2, x ∈ R2. By Lemma 4.1, f is not aminimizer.

By Lemma 4.2 xr−1 = xr is not minimizer either. So, either xr−2 = xr−1 or xr = 1 must be satisfied — a contradiction.
Case 3: xr−2 = xr−1 > xr is satisfied.
Let p be an index such that xp−1 > xp = xp+1 = · · · = xr−1. Consider corresponding function f3 = f (xp, xp+1, . . . , xr)

from Lemma 4.3, where b = xp−1, x ∈ Rr−p+1. By Lemma 4.3, f3 > f2 — a contradiction.
So, by contradiction of Cases 1–3, the minimum of g must occur at some point (x1, x2, . . . , xk), where x1 = x2 = · · · =

xr−1 = b, xr > 1 and xr+1 = xr+2 = · · · = xk = 1, for some r ≥ 1. �

Let Ln,m be a special case of H such that Ln,m = H(n; d1, 1, 1, . . . , 1). In the final fourth step we now state the following
result.

Theorem 4.5. Let n and m be positive integers so that there is a connected simple graph on n vertices and m edges. Then, for any
connected graph G with n vertices and m edges, t(G) ≥ t(Ln,m).
Proof. Suppose t(G) isminimum. Then, by Theorem2.2G can be transformed toH with t(H)minimum too. Ifm = n−1 then
H is a tree and the case is trivial. Hence,without loss of generality consider only case form > n−1. IfH = H(n; 1, . . . , 1) then
H = Ln,m. Otherwise,

∑k
i=1 di > k. So, by Theorem 3.1 and Lemma 4.4 H must be of the form H(n; d1, d2, . . . , di, . . . , dk) =

H(n; n − k, . . . , n − k, di, 1, . . . , 1), where k, i ≥ 1, and n − k ≥ di > 1. If i = 1 then H = Ln,m. If i = 2 then
H = H(n; n − k, d2, 1, . . . , 1) is isomorphic to H(n; d11, 1, . . . , 1) = Ln,m, where d

1
1 = d2. Suppose i > 2. In this case

H = H(n; n − k, . . . , n − k, di, 1, . . . , 1) and it is isomorphic to H(n; n − k, . . . , n − k, d1i−1, 1, . . . , 1), where d
1
i−1 = di.

Furthermore, H(n; n− k, . . . , n− k, d1i−1, 1, . . . , 1) can be transformed to H
′(n; n− k+ 1, . . . , n− k+ 1, d2j , 1, . . . , 1) for

some j ≤ i, which is not isomorphic to H(n; n− k, . . . , n− k, d1i−1, 1, . . . , 1), i.e., H(n; n− k, . . . , n− k, d1i−1, 1, . . . , 1) 6=
H ′(n; n− k+ 1, . . . , n− k+ 1, d2j , 1, . . . , 1). So, by Lemma 4.4

t(H ′(n; n− k+ 1, . . . , n− k+ 1, d2j , 1, . . . , 1)) < t(H(n; n− k, . . . , n− k, d1i−1, 1, . . . , 1)),

a contradiction. �
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