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A short communication is structured to offer a set of scaling group of transformation for Prandtl-Eyring
fluid flow yields by stretching flat porous surface. The fluid flow regime is carried with both heat and
mass transfer characteristics. To seek solution of flow problem a set of scaling group of transformation
is proposed by adopting Lie approach. These transformations are used to step down the partial differen-

tial equations into ordinary differential equations. The reduced system is solved by numerical method
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termed as shooting method. A self-coded algorithm is executed in this regard. The obtain results are elab-
orated by means of figures and tables.
© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The non-Newtonian fluids have non-linear relation between
shear stress and shear rate. Some examples of such fluids are
ketchup, greases, yogurt, mud, shampoo etc. The study of non-
Newtonian fluids is topic of great interest for the past few years.
One can see Refs. [1-6] are the few trustful attempts carried out
in this regard. Moreover, analysis of distinct non-Newtonian flow
models by entertaining various stretching surfaces manifested
with pertinent physical effects can be assessed in Refs. [7-21]. In
short, owing the important of flow regime aspects of non-
Newtonian fluids various fluid models are proposed, namely Max-
well fluid model, Williamson fluid model, Eyring fluid model, Cross
fluid model, Ellis fluid model, Casson fluid model, Prandtl, PrandtI-
Eyring and Powell-Eyring fluid models are to mention just a few. In
2014, Akbar et al. [22] discussed the dual solution of stagnation
point Prantl fluid with magnetic field effects. The solution is
obtained by way of shooting method. They found that the velocity
is decreases function of both Prantl and elastic parameters.
Recently, Khan et al. [23] studied the homogenous-
heterogeneous reactions effects on Prandtl fluid flow towards
stretching flat surface. They found that in the presence of
homogenous-heterogeneous reactions the velocity of Prandtl fluid
increases for positive values of Prantl fluid parameters. Further,
Kumar et al. [24] discussed the three dimensional Prantl fluid flow
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towards flat surface. They conclude that in three dimensional
frame the velocity profile shows decline nature towards elastic
parameter while opposite trend is noticed for Prantl fluid parame-
ter. The physical aspects of nanosized suspended particles in Prantl
fluid were investigated by Bilal et al. [25]. They found that the
velocity distributions reflects inciting nature for higher values of
Prantl parameter. Researchers are still engaged to explore the
Prantl and Prantl-Eyring liquids characteristics by considering var-
ious physical effects. The recent developments in this direction can
be assessed in Ref. [26,27].

In order to solve differential equations, various methods have
been used according to nature of differential equation. Sophus
Lie discovered Lie group analysis to find the solution of differential
equations. This method was consequent from “invariance of differ-
ential equation under continuous group of symmetries”. A few
applications of lie symmetry group are acknowledged in topology,
invariant theory, classical mechanics, relativity, differential geom-
etry and many other. The procedure used in this article is the spe-
cial type of Lie symmetry analysis i.e. scaling group of
transformations in order to find out the similarity transformation
to convert PDE’s into ODE’s like Pakdemirli and Yurusoy [28] found
the similarity transformations for particular problem. Lie group
analysis for flow problem via semi-infinite vertical plate was car-
ried out by Ibrahim et al. [29]. Recently, a detail work is reported
on boundary layer flow through Lie symmetry approach by Reh-
man et al. [30].

The fluid under consideration is non-Newtonian fluid model
that is Prandtl-Eyring fluid model. As yet less attention is paid by
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Nomenclature

(u, ) Velocity components

(u,v) dimensionless velocity components
p fluid density

o thermal diffusivity

Dym mass diffusivity

T stress tensor

Tzy component of stress tensor
a, Cq fluid material parameters
Tw(X) surface temperature

T ambient temperature

Cw(x) surface concentration

Coo ambient concentration

Uy, Vo  reference velocities

L characteristic length

To reference temperature

Co reference concentration

A B Prandtl-Eyring fluid parameters
Q velocities ratio

d non-dimensional constant

Pr Prandtl number

Sc Schmidt number

m temperature power law index

n concentration power law index
p,q,1,8,t,t1,t, constants
0] Lie group parameter
B integral constant
v stream function
' Prandtl-Eyring fluid velocity
0(¢) Prandtl-Eyring fluid temperature
d(&) Prandtl-Eyring fluid concentration
fq suction/injection parameter
vRe,C;  skin friction coefficient

Nu
e Nusselt number

Sh
Tres Sherwood number
Rey Reynolds number

q1: 92, 93, 94,95, qs,q; dummy variables

oy, 0, 03 initial guess values
Uy ambient velocity

Ue free stream velocity
Uy stretching velocity

researchers to inspect the flow field characteristics of Prandtl-
Eyring fluid. The reason behind is the arising of non-linear flow
narrating differential equations. The solution of these equations
is one of the difficult task due to complex structured. In this
attempt we have proposed a set of similarity transformation by
way of Lie approach. These transformations are very helpful to seek
out the solution of differential system yielded through Prandtl-
Eyring fluid model especially when both the thermal and concen-
tration individualities are taken into account.

Mathematical modelling

Consider a steady incompressible non-Newtonian Prandtl-
Eyring fluid flow over a two-dimensional semi-infinite stretched
plate having velocity u,,(X). The plate is assumed to be porous with
the velocity vy (X) along y — axis, (See Fig. 1). The reduced continu-
ity, momentum, energy and concentration equations under bound-
ary layer approximation are

ou ov

_ou ,au 1 OTxy
Ua—i— 8_y p 8}7 5 (2)
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Fig. 1. Geometry of flow problem.
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where, i, v are the velocity components taken along X,y direction
respectively, T, p, «rand Dy denotes shear stress, fluid density, ther-
mal diffusivity and mass diffusivity respectively. For Prandtl-Eyring
fluid the stress tensor is given by form

a, arc sinh <Cl—1 Itrace (Af))

: A (5)
1trace (A7)

here, a; and c; refers to material parameters of fluid and A; is first
Rivilin-Erickson tensor.
The required component of Prandtl-Eyring fluid is given by

T aQ arcsinh 1 du
xy - p C] dy bl

through the Taylor series expansion of sinh™' (% (g—;)) we consider

first two terms and  neglect order ie.

- e Ao 3 . . .
sinh™ (% (%;)) = % (?T;) —%(& %;) . Substituting the value in Eq.
(2) along with stagnation point assumption we arrive at

g@+p@_uau9+i 6;1’1 __a @ ? @ (6)
ox oy “ox  pa\oy2)] 2pc\oy) \oy*)’

the boundary conditions of problem are

X X
= TOTW(E) V= VO”W (I)v

higher

T-T.

: [

UOuW (L)

C—C%:COCWG), y=0, (7)

u—U. ue<> T—T.,C—Cyaty— oo,

L

where, T, (x) and T, stands for the surface temperature and ambi-
ent temperature, whereas C,(x) and C, stands for the surface
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concentration and ambient concentration respectively while
Uo,Vo,U, and L stands for reference velocities, ambient velocity
and characteristics length, Ty and Cy denotes reference tempera-
ture and reference concentration respectively. Introducing the fol-
lowing non-dimensional parameters

T-T, C-C,
===
by incorporating these one can obtain
ou ov
a+a—y—0, 9)
ou  ou  du  ,du ou\ % 0*u
8X+Ua—y7ueW+Aa—y2— ﬁ(@) 8__)/27 (10)
ar  aT 1 T
uaJrv@_ﬁa—yz, (11)
2
ug+ va—czla—c (12)

o0x gy Sc oy?’
with reduced conditions
u=U=Qu,x), T=Ty(x), v=d v,(x), C=Cy(x), wheny =0,
Uu=1u, T=0, C=0, wheny — o,
(13)
where A, p denotes fluid parameters and Q, d* denotes velocities
ratio, non-dimensional constant while Prand Sc refers to Prandtl

number and Schmidt number respectively. These quantities are
defined as

1
Ul v v Vo (U,L\?
Pr=—,Sc=—,d" =— | ="} . 14
2c2vL Toag’ D’ Um< v ) (14)
the forms for velocities, surface temperature and concentration are
considered as

4 op
_luclﬂ :B

Uy(X) = X5, Uy(X) = X3, Tyy(X) = X", Cp(X) = X", (15)

where m,n shows temperature and concentration power index
accordingly.
Scaling transformations

Now the system of Lie group of transformation is entertain to
attain the similarity transformations that is
A: X =xe y
T = Ted)t C* _ Ce(bﬁ

:ye(hq7 ur = ue(?)r’ vt = 1/86)5,
u; = u.e®?, (16)

where p, q,1,s,t,t; and t, are constants which are to be determined
and @ is Lie group parameter. The Eq. (16) will transforms
(x,y,u,v,T,C,u.) into co-ordinates(x*,y*,u*, v*,T",C",u}). By utiliz-
ing Eq. (16) on Egs. (9)-(12), one can obtain

ou* oV
+ e p+q+r S — O, 17
Ox* By* (17)
* * 2 "
u Ou + e(u —p+q+r— s) * al _ eg)(zr 2u (9ue +A€ _p42q+7) o°u
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— Ape™
(18)

E)T* D(—p+q+r— s) 8’1‘* 1 O(—p+2q+T1) 82T*
4 e® — 1
w ox* te oy* Pre a2’ (19)
* QC* D(=p+q+T—5) 4% @C* _ 1 D (—p+2q-+1) 62 C
u e +e v Y Sce yZ (20)
ur (X‘,O) Qem (r-1/3) 1/3 T* _ ew (t— m)xm *(X* 0) _ d°e(I)(s+1 /3)X—1/3*’
C' =ty U (x* 00) =use®™2) T*(x*,00) =0, C"(x*,00) =0,
(21)

with the concern of the group transformationsA, an invariance of
Eqs. (17)-(21) is attained and Eq. (15) must satisfy the following
relations

—-p+q+r—-s=0,r—u=0,

22
-p+2q+r=0, -p+4q-r=0, 22)
evaluating these equation in term of parameter p, we get
q:r:tzzE s:_—p,t:m, t; =n, (23)

3’ 3

the scaling transformation admitted by Eqgs. (9)-(12) reduces to fol-
lowing form

A: x = Xesz7 y* :y(up/37 u = ued)p/37 vt = ve—a)p/3>

. ; (24)
T>.< — '1"e(1)m7 C* — Ceam7 u: —

mp/3
ueewp/ ,

now expanding through Taylor series the exponentials in Eq. (24)
up-to order @,we acquire

N X —x=opx,y —y=2yu —u, =Lu,T" — T = omT,
' w—u=%2u v -v=-%2v,C - C=mnC,
(25)

the characteristic equation as succeeding denotes the differences
between transformed and original variables as a differentials and
equating each term one can obtain

dx_dy _du_ dv :%:d_T:d_C. (26)

_p P
v fu, mT nC

=5 =5 =
px 3y 3U

Assuming p = 1 and solving the equations stated above we obtain

_ daf(é) 13p s
_ ye-1/3 13 41 (¢) — 173
E=yx g v=x""he),

T = x™0(¢),

,u=x
C=x"¢(&), u, = Bx'3, (27)

where B is the integral constant and taken to be unity. Therefore
through the scaling transformation, the free stream velocity is
found to be x'/> which give emphasis to define free stream u,(x)
in terms of surface stretching velocity. Now, h(¢) is to be evaluated
by continuity equation. The stream function (y) in terms of velocity
components cab be written as

_oy oy
U= V= =5 (28)
Eqs. (27) and (28) gives
¥ =x"h(), (29)
then h(¢) will become

o 1 df (&)
e =5 (20 - ¢42), (30

using Eq. (27) along with Eq. (30), one can reduced the Eqgs. (9)-(13)
into
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3 2 2 3 2 2
Adf(é)_Aﬁ<df(é)> ef(e) f(@df@)_%(df(c)) S

de ae as de? dé

(31)
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e se(3r0 % Yo ) —o 33)
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P 0 =5, 09=1, 99 =1, ate=0,
d{ (34)
P 1,009~ 0, ()~ 0, when ¢ - ox,

where m and n are temperature power law index and concentration
power law index respectively. In addition, f, = -3d" is non-
dimensional parameter constant, f, <0 relates to injection and
fq > 0 relates to suction. The skin friction coefficient, Nusselt num-
ber and Sherwood number are the required physical quantities of
the problem which are defined as

Tw XGyy X
C=—2 Nu= ,Sh= ,
= v o (Tw(%) = Too) Dy (Cw(x) —C)’

welem )] oo a ),
w= 1 ay 6C3 ay $QW* T ay yzoa.)w* M ay o
the reduced forms are
/r r/ Nu ,
v/Re,Cr = A —A , —=—0'(0),

Sh , _ Uox
Tex = —¢'(0) where Re, = L

Numerical formulation

To implement shooting method let us introduce dummy vari-
ables for order reduction. The fresh variables are allocated as

ql :f(§)7
df (¢)
qQ; = di
_ a9
3 diz
qq = 0(), (37)
doe
qS - %7
s = ¢(é)7
deé(¢
q7 (Z(f ) )
by incorporating these relations, the Eqs. (30)-(33) takes the form
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the end point conditions in terms of new variable are
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where o4, and oz are the initial guesses
The extreme conditions are

02(¢) = 1, 44(¢) = 0, g5(¢) — 0, as & — oo (40)

Results and discussion

The Prandtl-Eyring fluid flow over a porous stretching sheet in a
parallel free stream is considered. The obtained results are offered
by both graphs and tables. Particularly, Table 1-3 shown the
impact of physical parameters on skin friction coefficient, Nusselt
number, and Sherwood number. Explicitly Table 1 shows the
impact of fluid parameters and suction/injection parameter on skin
friction coefficient. It is observed that the skin friction is increasing
function of fluid parameter A whereas it is decreasing function for
fluid parameter j. For suction/injection parameter, the skin friction
is an increasing function. The skin friction coefficient values
implies the amount of drag force exerted on Prandtl-Eyring fluid
particles in flow regime. Table 2 displays the nature of Prandtl
number, temperature power index and suction /injection parame-
ter and it is notified that the Nusselt number reflects inciting val-
ues for positive values of Prandtl number and suction/injection
parameter but it turns to be a constant for temperature power
index. The influence of Schmidt number, concentration power
index and suction/injection parameter is elaborated through
Table 3. It is observed that the Sherwood number is an increasing
function of all parameters as mention in Table 3. The numerical
values of both Nusselt and Sherwood numbers highlighted the
magnitude of transfer of heat and mass respectively normal to
the flat surface. Figs. 2-7 are design to inspect the impact of fluid
parameters, Prandtl number, temperature power law index, Sch-
midt number, and concentration power law index on dimension-
less velocity, temperature and concentration. To be more specific,
the impact of fluid parameters A and p are examined and offered
through Figs. 2 and 3 respectively. It is observed that the fluid
velocity shows inciting curves for positive values of fluid parame-
ter A but an opposite trend is noticed for large value of fluid param-
eter 8, see Fig. 3. The variations in temperature are tested for
higher values of Prandtl number and temperature power law
index. Figs. 4 and 5 are constructed in this regard. It is seen that
the fluid temperature is decreasing function of Prandtl number.
The Prandtl number admits inverse relation with thermal diffusiv-
ity. Therefore, flow regime with higher values of Prandtl number is
the source of drop of fluid temperature. Similar trend is observed
for higher values of temperature power law index towards fluid
temperature, see Fig. 5. The variations in concentration distribu-
tion are examined for both Schmidt number and concentration
power law index. Figs. 6 and 7 enclosed the obtain observations
in this regard. Fig. 6 is the evident that the concentration profile
is decreasing function of higher values of Schmidt number. This
effect is quite similar with the variations of temperature against
Prandtl number. Here, the rate of mass diffusivity is inversely pro-
portional to large values of Schmidt number. Fig. 7 reports the con-
centration curves for higher values of concentration power law
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Table 1

Distinction in SFC values for A, and f,.
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A 4 fq I'0) Gy vRey = Af"(0) — AR (O))
0.2 0.1 0.1 1.1458 0.1991
0.3 0.1 0.1 0.9076 0.2498
04 0.1 0.1 0.7734 0.2908
0.1 -0.3 0.1 1.4194 0.2277
0.1 -0.2 0.1 1.4705 0.2106
0.1 -0.1 0.1 1.5358 0.1898
0.1 0.1 -03 0.9401 0.0857
0.1 0.1 -0.2 1.0994 0.0966
0.1 0.1 -0.1 1.2875 0.1074

Table 2

Distinction in Nusselt number for Pr,m and f,.
Pr m fq Ju=—0(0)
11 0.1 0.1 1.0613
1.2 0.1 0.1 1.1065
13 0.1 0.1 1.1498
0.1 0.2 0.1 0.9642
0.1 0.3 0.1 0.9642
0.1 0.4 0.1 0.9642
0.1 0.1 0.2 0.3500
0.1 0.1 03 0.3543
0.1 0.1 0.4 0.3586

Table 3

Distinction in Sherwood number for Sc,n and f,.
Sc n fq \/5‘% =—¢'(0)
0.7 0.1 0.1 0.5516
0.8 0.1 0.1 0.5891
0.9 0.1 0.1 0.6245
0.6 0.2 0.1 0.6711
0.6 0.3 0.1 0.7147
0.6 0.4 0.1 0.7558
0.6 0.1 0.2 0.6615
0.6 0.1 03 0.6993
0.6 0.1 0.4 0.7377

A=102

fr(¢)

—-——= A= 0.5
—-——— 4= 0.8
- == A= 1]

Fig.2. Influence of fluid parameter A on velocity profile.

— B=-3.0
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———= B=-10

———- = 0.0

(&)

Fig.3. Influence of fluid parameter f on velocity profile.
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Fig. 4. Influence of Prandtl number Pr on temperature profile.

index. It is observed that the concentration profile is diminishing
function of concentration power law index.

Closing remarks

The prime objective of present attempt is to provide the scaling
group of transformation for Prandtl-Eyring fluid model by way of
Lie group approach especially when thermal and concentration
individualities are considered at a time. A numerical solution is
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Fig. 6. Influence of Schmidt number Sc on concentration profile.

provided by self-coded computational algorithm. The key observa-
tions are itemized as follows

1. Set of scaling group of transformation is proposed for Prandtl-
Eyring fluid when both temperature and concentration effects
are taken into account.

2. The Prandtl-Eyring fluid velocity is decreasing function of
fluid parameters p, but opposite trend is noticed via fluid
parameter A.

3. Temperature shows decline curves for both Prandtl and temper-
ature power law index.

4. Concentration is diminishing function of both Schmidt number
and concentration power law index

5. The SFC is an increasing function of suction/injection parameter
and fluid parameter A but it shows opposite trend for fluid
parameter f.

0.9

—— 1 = (), 5

o
o

———- p= 15

<)
~
| )

<
o

e "HlHHTHH?HHTHHT‘leHlHle

o
o

Fig. 7. Influence of concentration power index n on concentration profile.

6. Nusselt number shows inciting values for both Prandtl number
and suction/injection parameter while it shows constant nature
for the temperature power law index.

7. Sherwood number surprisingly found to be increasing function
of Schmidt number, concentration power index and suction/
injection parameter.
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