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This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infi-
nite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with
convective boundary condition is performed. Moreover effects of Joule heating is observed and mathe-
matical analysis is presented in the presence of viscous dissipation. The suitable transformations are
employed to alter the leading partial differential equations to a set of ordinary differential equations.
The subsequent non-straight common ordinary differential equations are solved numerically by an effec-
tive numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is
found that the higher values of Hartmann number Mð Þ correspond to thickening of the thermal and thin-
ning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is dimin-
ished by increasing the viscosity ratio parameter ðb�Þ and opposite trend is observed for temperature
profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer
thickness is increased with velocity ratio parameter að Þ and opposite is true for thermal boundary layer
thickness.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Now a days flows of non-Newtonian liquids in the presence of
magnetic field have significant role in a number of industrial and
engineering processes. The common examples of such magneto
fluids include plasmas, salt water and electrolytes. The basic
concept behind magnetohydrodynamics is that magnetic fields
can induce currents in a moving conductive fluid, which in turn
polarizes the fluid and reciprocally changes the magnetic field
itself. The pioneer work on MHD flow past a stretching surface
was done by Palov [1]. After that Andersson [2] inspected the
MHD flow of a viscous fluid. Moreover Makinde et al. [3] discov-
ered the MHD variable viscosity flow over a convectively heated
plate in porous medium along thermophoresis and radiative heat
transfer. Few latest studies in this direction can be seen through
the attempts [4–6]. Sakiadis [7] discussed the boundary layer
behavior on a moving surface and he applied similarity transfor-
mations to the boundary layer equations and then numerically
solved. Crane [8] simplified the work of Sakiadis.
Thermal radiation is one of the key components of heat
exchange. It is produced by the thermal motion of charged parti-
cles in matter. All matter with a temperature greater than absolute
zero emits thermal radiation. Heat transfer analysis with radiation
plays an important role in industrial and technological process.
This contains the design of furnace, heat exchangers, safety of
nuclear reactor, power plants and turbid water bodies [9]. Various
discoveries have been accounted on the boundary layer flows in
the stagnation point region. Stagnation points have huge applica-
tions in real world and mechanical procedures. These procedures
incorporate blowing glass, drying and cooling of papers and other
mechanical procedures in designing. The steady two dimensional
flow with stagnation point in an incompressible micro polar fluid
over a stretching sheet has been studied by Nazar et al. [10]. Farooq
et al. [11] studied the stagnation point flow with MHD in a vis-
coelastic nano fluid with non-linear radiation effects. Heat transfer
with porous medium over a stretching sheet with thermal radia-
tion and variable thermal conductivity was discussed by Cortell
[12]. Moreover, a numerical examination of heat transfer and flow
of Carreau fluid in cylindrical coordinates was discovered by
Khellaf and Lauriat [13]. Effect of Carreau fluid flow down an
inclined plane with a free surface was inspected by Tshehla [14].
Abbasi et al. [15] discovered the MHD peristaltic transport of
Carreau fluid in curved channel with Hall effects.
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Fig. 1. Physical model under consideration.
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Further, the impact of thermal radiation is important in space
innovation and high temperature forms. Hossain et al. [16]
explored the thermal radiation’s effects with the Rosseland diffu-
sion approximation on convective flow over a vertical uniformly
heated porous plate. Later on, Hayat et al. [17] inspected the
MHD three dimensional flow of a nano fluid with nonlinear ther-
mal radiation and velocity slip. Also Hayat et al. [18] discussed
the Oldroyd-B nanofluid flow with MHD over a stretching sheet
with heat generation/absorption. Recently Khan and Hashim [19]
explored the MHD flow with stagnation point and heat transfer
in Carreau fluid along with convective boundary conditions. Addi-
tionally, Khan et al. [20] investigated the Carreau fluid with MHD
over a convectively heated surface with nonlinear radiation.
Advancements in the study of non-Newtonian fluids have been
made by different authors [27–31].

The aim of the present study is to address the effects of the
MHD Carreau fluid in stagnation point flow with infinite shear rate
viscosity. Additionally, Joule heating and nonlinear radiative heat
transfer is studied in the presence of convective boundary condi-
tion. It is important to note that Carreau fluid is a distinct class
of generalized Newtonian fluid which classifies shear thinning
and shear thickening nature of fluids. The governing partial differ-
ential equations are converted to a set of non-linear ordinary dif-
ferential equations. Then are solved numerically by applying
Runge-Kutta fourth-fifth order method via shooting technique.
Current research graphically presents the physical importance of
the parameters on the temperature and velocity profiles. The influ-
ences of the pertinent flow variables M, a, b�, NR, hw and c are
described through tables and graphs.

Mathematical formulation

We examine the steady boundary layer flow of an incompress-
ible Carreau viscosity liquid model in the region of stagnation point
near a stretching surface. The flow is initiated by a linear stretching
surface. The coordinate system is designated in such a way that x-
axis is measured alongside the stretching sheet while y-axis is nor-
mal to it and fluid conquers the space y > 0. The magnetic field B0

is uniform and applied in y direction and the induced magnetic
field is neglected under low magnetic Reynolds number assump-
tion. The sheet velocity is assumed to be uwðxÞ ¼ cx with c > 0 is
stretching rate. The velocity of exterior flow is u1 ¼ ax ða > 0Þ,
where a is constant. Moreover, heat transfer analysis is completed
along the nonlinear thermal radiation with convective boundary
condition at the surface. The viscous dissipation and Joul heating
effects are also incorporated (Fig. 1).

The constitutive equations for the generalized Newtonian
Carreau fluid [20,21] are given as

s ¼ �pIþ lð _cÞA1; l ¼ l0 b� þ 1� b�ð Þ½1þ ðC _cÞ2�
n�1
2

� �
: ð1Þ

Here s is the Cauchy stress tensor, p the pressure, A1 the first

Rivlin-Erickson tensor, I the identity tensor, _c ¼
ffiffiffiffiffiffiffi
1
2P

q
with P as

the second invariant strain tensor and defined as P ¼ traceðA2
1Þ;n

the power law index, C a material time constant and
b� ¼ l1=lo

� �
the viscosity ratio parameter with l0 the zero shear

rate viscosity, l1 the infinite shear rate viscosity and taken to be
less than one here.

Under the above assumptions and the usual boundary-layer
approximations, the governing boundary layer equations for
present flow are given by
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In the above equations, a1 ¼ k
qcp

is the thermal diffusivity with cp
the specific heat and k the thermal conductivity, r the electrical
conductivity of the fluid and m ¼ l0

q the kinematic viscosity of the

base fluid.
Note that fluid is portrayed as Newtonian fluid for n ¼ 1 and/or

C ¼ 0, shear thinning for 0 < n < 1 and shear thickening for n > 1.
Radiative heat flux used in Eq. (4) is given by the Roseland

approximation [22]
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where r� and k� are the Stefan-Boltzman constant and the mean
absorption coefficient, respectively. For a planer boundary layer
flow over a heated surface, Eq. (5) can be written as [23]
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Using Eq. (6) the energy Eq. (4) can be composed as
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The boundary conditions of the present problem are

u ¼ uw ¼ cx; v ¼ 0; �k
@T
@y

¼ hf ðTf � TÞ at y ¼ 0; ð8Þ

u ¼ u1 ! ax; T ! T1 as y ! 1: ð9Þ

The following dimensionless quantities are utilized to change
the governing partial differential equations into a scheme of ordi-
nary differential equations

g ¼ y

ffiffiffi
c
m

r
; Wðx; yÞ ¼ x

ffiffiffiffiffi
cm

p
f ðgÞ; h gð Þ ¼ T � T1

Tf � T1
; ð10Þ

whereW denotes the stream function that satisfies equation of con-
tinuity with u ¼ @W

@y and v ¼ � @W
@x . Also T ¼ T1 þ 1þ ðhw � 1Þh½ �

where T1 is the ambient fluid temperature with hw ¼ Tf
T1
. Here

hw > 1ð Þ is the temperature ratio parameter.
Consequently, the momentum and energy equations with the

relevant boundary conditions lessen to the accompanying ordinary
differential equations
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with

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; h0ð0Þ ¼ �c 1� hð0Þ½ �; ð13Þ

f 0ð1Þ ! a; hð1Þ ! 0; ð14Þ

where prime denotes the differentiation with respect to variable g,
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ffiffiffiffiffiffi
rB20
qc

r
is the Hartmann number, a ¼ a=c the velocity ratio

parameter, We ¼
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c3C2x2

m

q
the local Weissenberg number, Pr ¼ lcp

k

the Prandtl number, NR ¼ kk�

4r�T31
the radiation parameter,

Ec ¼ cxð Þ2
cp Tf�T1ð Þ the Eckert number and c ¼ h

k

ffiffiffiv
c

p
the local Biot number.

The local skin friction coefficient and the local Nusselt number
are the parameters of engineering interest which characterize the
surface drag and wall heat transfer. These parameters are defined
as

Cfx ¼ sw
qu2

wðxÞ
; Nux ¼ xqw

k Tf � T1
� � ; ð15Þ

where sw is the surface shear stress and qw the surface heat flux
given by
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Upon using Eq. (16), the local skin friction coefficient and local
Nusselt number become
Re1=2Cfx ¼ f 00ð0Þ b� þ ð1� b�Þ 1þWe2 f 00ð0Þ� �2n on�1
2

� �
;

Re�1=2Nux ¼ �h0 0ð Þ 1þ 4
3NR

1þ hw � 1ð Þh 0ð Þ½ �3
	 


: ð17Þ

where Rex ¼ xuw
m is the local Reynolds number.

Solution methodology

The governing flow equations (Eqs. (11) and (12)) are highly
nonlinear and partially coupled set of ordinary differential
equations. In order to find solution of these equations along side
boundary conditions (13)–(14), the shooting technique along with
fourth-fifth order Runge-Kutta integration scheme is utilized. Since
Runge-Kutta Fehlberg method solves only initial value problem. So
firstly Eqs. (11) and (12) are converted into set of first order
equations. For this purpose, we rewrite the above set of equations
as given below:
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The new variables defined below are utilized to reduce above

higher order equations into system of first order differential
equations:

f ¼ y1; f 0 ¼ y2; f 00 ¼ y3; f 000 ¼ y03;

h ¼ y4; h0 ¼ y5; h00 ¼ y05: ð20Þ
After inserting Eq. (20) into Eqs. (18) and (19), a new system of

first-order ordinary differential equations is obtained as:
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together with the boundary conditions
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where u1 and u2 are the initial guesses for the f 00ð0Þ and h0 0ð Þ.
The RK-Fehlberg method is an iterative algorithm which tries to

find appropriate initial conditions for related initial value problem.
For our problem, computations are based on the following steps:



Table 1
Contrast values of �f 00 ð0Þ for different a when b� ¼ We ¼ M ¼ 0 and n ¼ 1.

a Mahapatra and Gupta [24] Nazar et al. [25] Ishak et al. [26] Present results

0:01 – – 0:9980 0:998028
0:10 0:9694 0:9694 0:9694 0:969650
0:20 0:9181 0:9181 0:9181 0:918165
0:50 0:6673 0:6673 0:6673 0:667686

Fig. 2. Effects of the velocity ratio parameter a on the velocity and temperature distributions.

Fig. 3. Effects of the Hartmann number M on the velocity and temperature distributions.

Fig. 4. Effects of the viscosity ratio parameter b� on the velocity and temperature distributions.
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Fig. 5. Effects of the power law index n on the velocity and temperature distributions.

Fig. 6. Effects of the Biot number c and Prandtl number Pr on the temperature distribution.

Fig. 7. Effects of the temperature ratio parameter hw and radiation parameter NR on temperature distribution.
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1. Firstly chose the limit of g1 and the best suited limit for g1 is
between 5 to 10.

2. Then select suitable initial guesses for y3 0ð Þ and y4 0ð Þ. Initially
y3 0ð Þ ¼ �1 and y4 0ð Þ ¼ 0:5 are selected.

3. Then set of ODEs are solved with the help of fourth-fifth order
Runge-Kutta integration scheme.

4. Finally, boundary residuals (absolute variations in given and
calculated values of y2 1ð Þ and y4 1ð Þ) is calculated. The solution
will converge if entire values of boundary residuals are less then
tolerance error, which is considered 10�5.
5. If values of boundary residuals are larger than tolerance error,
then values of y3 0ð Þ and y4 0ð Þ will be modified by Newton’s
method.

Result and discussion

In order to examine results of the present study a numerical
computation is performed for MHD stagnation point flow of
Carreau fluid with infinite shear rate viscosity and nonlinear
radiation over a convectively heated surface. The partially coupled



Fig. 8. Effects of the Eckert number Ec on temperature distribution.

Table 2
Surface drag force Re1=2Cfx and heat transfer rate Re�1=2Nux for different values of b� , M, W

M We a b� Re1=2Cfx

n ¼ 0:75

0 3 0:3 0:001 �0:784
0:3 �0:806
0:6 �0:867
0:8 �0:926
0:3 2 �0:831

3 �0:806
3:5 �0:795
4 �0:786

0:3 3 0:3 �0:806
0:7 �0:427
1:3 0:50523
1:7 1:19772

0:3 3 0:3 0:0 �0:806
0:2 �0:821
0:4 �0:836
0:6 �0:849

Table 3
Heat transfer rate Re�1=2Nux for different values of b� , Pr, hw , NR and c when M ¼ 0:3, a ¼

Pr hw NR c

2 1:5 0:7 0:2
4
6
8
2 1

1:2
1:4
1:6
1:5 1:7

2:7
3:7
0:7 0:4

0:6
0:8
0:2
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set of Eqs. (11)–(12) with boundary conditions (13) and (14) are
tackled numerically using Runge-Kutta fourth-fifth order method
along with shooting technique. Moreover, representative outcomes
about the skin friction and local Nusselt number are recorded
through tables. The influence of non-dimensional parameters like
a, M, b�, n, c, Pr, Ec, hw and NR on dimensionless fluid velocity and
temperature distributions are determined and presented through
graphs. Additionally the accuracy of our numerical results is veri-
fied with earlier published results by Mahapatra and Gupta [24],
Nazar et al. [25] and Ishak et al. [26] for particular cases through
Table 1. A good agreement is reported between these results.

Fig. 2 represents a considerable variation in the velocity f 0 gð Þ
and the corresponding boundary layer thickness at points where
free stream velocity is different from sheet velocity. It is noted that
the velocity increases and the boundary layer thickness decreases
with an increase in a for both shear thinning and thickening cases.
Additionally increasing value of a depicts a significantly decrement
in temperature hðgÞ. Fig. 3 is plotted to inspect the impact of
Hartmann number M on temperature hðgÞ and velocity f 0 gð Þ
e and a when Pr ¼ 1:5, c ¼ 0:3, hw ¼ 1:5, Ec ¼ 0:1 and NR ¼ 1.

Re�1=2Nux

n ¼ 1:75 n ¼ 0:75 n ¼ 1:75

896 �1:053800 0:500565 0:502467
517 �1:090060 0:500368 0:502376
699 �1:194930 0:499803 0:502112
226 �1:298290 0:499255 0:501852
271 �1:012570 0:500599 0:501957
517 �1:090060 0:500368 0:502376
918 �1:125350 0:500266 0:502540
367 �1:158540 0:500172 0:502682
517 �1:090060 0:500368 0:502370
685 �0:490977 0:504149 0:504164
0 0:598867 0:501464 0:501690
0 1:827620 0:497663 0:499169
437 �1:090210 0:500367 0:502377
804 �1:059190 0:500513 0:502218
166 �1:024390 0:500645 0:502024
679 �1:007155 0:500765 0:366731

0:3, Ec ¼ 0:1 and We ¼ 3.

b� Re�1=2Nux

n ¼ 0:75 n ¼ 1:75

0:001 0:273236 0:272824
0:266097 0:264471
0:258931 0:257190
0:253453 0:251803
0:181550 0:182882
0:207981 0:208794
0:247517 0:247571
0:303518 0:302598
0:435903 0:429010
0:576677 0:564581
0:711888 0:694991
0:503225 0:511048
0:645731 0:663615
0:734863 0:760775

0:0 0:273236 0:272824
0:2 0:273218 0:272874
0:4 0:273201 0:272930
0:6 0:273184 0:224812
0:8 0:273168 0:236665
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profiles, for both shear thickening ðn > 1Þ and shear thinning
ðn < 1Þ fluids. It is observed from these Figs. that increasing the
Hartmann number results in diminishing the velocity field and
enhancement in temperature field. Physically M shows the ratio
of electromagnetic force to the viscous force and strong values of
M represents the increase in the Lorentz force. This is drag-like
force that creates more resistance to transport phenomenon and
fluid velocity as well as boundary layer thickness diminish. Fig. 4
describes the impact of viscosity ratio parameter b� on velocity
f 0 gð Þ and temperature hðgÞ profiles for both hydromagnetic and
hydrodynamic cases. It is adequate to note that plots of velocity
and temperature uncover inverse pattern with increasing b�. It is
noted that velocity profile depicts a considerable decrease with
the higher values of b� and opposite trend was observed for tem-
perature profile. From Fig. 5, it is seen that increasing values of
the n (power law index) expand the fluid velocity for a < 1 and
opposite trend is observed for a > 1. Moreover by increasing the
values of power law index n from 0:8 to 1:6 temperature profile
decreases, when stretching velocity is greater than the free stream
velocity. In addition when a < 1 temperature profile decreases.

Fig. 6 is designed to observe the effects of the local Biot number
c and Prandtl number Pr on the temperature profile hðgÞ for both
the hydrodynamic and hydro magnetic flows. From these Figs, it
is observed that stronger values of the Biot number result in higher
convection at the stretching sheet which increases the temperature
of the fluid. It is also observed that in hydrodynamic flow thermal
boundary layer is thicker as compared to hydromagnetic flows.
Additionally increasing values of Pr decreases the temperature pro-
file. since the low Prandtl number depicts fluids with high thermal
conductivity and this creates thicker thermal boundary layer struc-
tures than that for the large Prandtl number. Fig. 7 is a plot of the
variation in the temperature distribution for various values of the
temperature ratio parameter hw and the radiation parameter NR

for both hydrodynamic and hydromagnetic flows. These results
reveal that temperature distribution decreases by increasing the
values of radiation parameter. The thermal boundary layer thick-
ness contracts for the greater radiation parameter. And the results
are totally opposite for the temperature ratio parameter hw. The
temperature ratio parameter relates to higher wall temperature
as compared to ambient fluid and as a result temperature of the
fluid increases. Additionally thermal boundary layer thickness rises
for higher values of the temperature ratio parameter. Fig. 8
describes the effects of Eckert number Ec on temperature profile
hðgÞ. It is noted that the increasing values of Eckert number flour-
ishes the temperature profile.

Table 2 shows the joint effects of the Hartmann number M and
the velocity ratio parameter b� on the wall shear stress Re1=2Cfx.
Both parameters increase the magnitude of the wall shear stress
Re1=2Cfx for both shear thinning and thickening fluids. The local skin
friction is reduced for the higher values of the Weissenberg num-
ber We in the shear thinning fluid and is increased in the shear
thickening fluid. Moreover, it is seen that the local Nusselt number
Re�1=2Nux is decreased with M as the strong magnetic field reduce
the extent of heat transfer rate. Table 3 describes the effect of radi-
ation parameter NR on the local Nusselt number Re�1=2Nux. The
amount of heat transfer rate decreases with the increasing values
of NR. In addition the local Nusselt number increases with strong
values of Prandtl number. It is because of the fact that the Prandtl
number controls the relative thickness of the thermal boundary
layer.

Conclusions

In this article numerical computations for MHD Carreau fluid
flow with stagnation point and non-linear radiation over a
convectively heated surface have been performed. Numerical
results were acquired using RK- Fhelberg method for a number
of parameters: the velocity ratio parameter a, Hartmann number
M, viscosity ratio parameter b�, Prandtl number Pr, Biot number
c, temperature ratio parameter hw and radiation parameter NR.
The current numerical results were also contrasted and the acces-
sible outcomes were stated with remarkable understanding. The
following outcomes can be concluded from the above numerical
calculations.

� It was observed that the velocity profile diminished for a < 1
and opposite was true for a > 1. Moreover temperature profile
was decreased for both cases.

� This investigation has explored that an increase in the Hart-
mann number showed an expansion in temperature of the fluid
while an opposite behavior was observed for the fluid velocity.

� The velocity distribution was decreased by increasing viscosity
ratio parameter for both hydromagnetic and hydrodynamic
flows and quite the opposite was true for temperature
distribution.

� Strong Biot number raised the thermal boundary layer
thickness.

� Increasing values of Prandtl number decreased the temperature
field while temperature flourished for higher values of Eckert
number.

� It is important to state that the radiation parameter and tem-
perature ratio parameter predicted the opposite effects on the
fluid temperature.
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