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This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscos-
ity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suit-
able transformations, nonlinear partial differential equations are transformed into ordinary differential
equations and solved numerically using the Runge–Kutta Fehlberg method coupled with the shooting
technique. The effects of various physical parameters on the velocity and temperature distributions are
displayed graphically and discussed qualitatively. A comparison with the earlier reported results has
been made with an excellent agreement. It is important to note that the increasing values of the wedge
angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field
for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temper-
ature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that
augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness
in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the veloc-
ity in case of moving wedge is higher than static wedge.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Quite recently researchers have shown their keen interest in the
study of fluid flow across the wedge formed figures. It has a vital
importance in the fields of geothermal industries, aerodynamics,
enhanced oil recovery, heat exchangers and geothermal systems,
etc. Historically, a numerous literature on Falkner and Skan flow
over a static wedge can be found in the books of Gersten and Sch-
lichting [1] and Leal [2]. In the last few years, experts have taking
much interest in the Falkner-Skan flow by considering the impacts
of numerous parameters. The solutions and their dependence on b
(the wedge angle) were latterly examined by Hartree [3]. He devel-
oped the solutions and velocity profile for different approximations
of pressure gradient parameter.

The influence of suction/injection on forced convective wedge
flow with uniform heat flux was examined by Yih [4]. His numer-
ical study cast out that the flow separation only happens for the
pressure gradient parameter m ¼ 0. Ishaq et al. [5] discussed the
steady 2D magnetohydrodynamic wedge flow of micropolar fluid
in the presence of variable wall temperature. The boundary layer
flows including variety of non-Newtonian fluids over stretching
surfaces have received extensive attention in the literature. Some
later works on the boundary layer flow of non-Newtonian fluids
are offered in [6–9]. However, many fluids are non-Newtonian in
their flow features and are suggested as rheological fluid models.
Non-Newtonian fluids have a much utilization in engineering than
Newtonian fluids. Examples are crystal growth, pharmaceuticals,
products of everyday sustenance, fiber innovation and so on.

Ellahi et al. [10] examined the Numerical study of magnetohy-
drodynamics generalized Couette flow of Eyring-Powell fluid with
heat transfer and slip condition. The study of Falkner-Skan flow of
Carreau fluid over a wedge in the presence of crossed diffusion and
magnetic field was investigated by Raju and Sandeep [11]. An anal-
ysis on MHD Falkner-Skan flow of Casson fluid past a wedge was
also performed by Raju and Sandeep [12]. Khan and Azam [13] dis-
cussed the unsteady heat and mass transfer mechanisms in MHD
Carreau nanofluid flow. Further, Khan and Azam [14] studied the
unsteady Falkner-Skan flow of MHD Carreau nanofluid past a
static/moving wedge with convective surface condition. Rajagopal
et al. [15] discussed the Falkner-Skan flows of a non-Newtonian
fluid. Kuo [16] discussed the application of the differential trans-
formation method to the solutions of Falkner-Skan wedge flow.
Recently, Khan and Hashim [17] explored the boundary layer flow
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and heat transfer to Carreau fluid over a nonlinear stretching sheet.
Additionally Khan and Hashim [18] investigated the impact of heat
transfer on Carreau fluid flow past a static/moving wedge. Few
studies associated with non-Newtonian model can be seen in
[19–29].

The present study is aimed at analyzing the heat transfer anal-
ysis in Carreau viscosity fluid model past a static/moving wedge
with infinite shear rate viscosity. It is important to note that Car-
reau fluid is a distinct class of generalized Newtonian fluid which
classifies shear thinning and shear thickening nature of fluids.
The governing partial differential equations system is reduced to
a set of non-linear ordinary differential equation by applying suit-
able transformations. Later, they are solved numerically using
Runge–Kutta fourth-fifth order method along with shooting tech-
nique. The influences of the pertinent flow variables are described
through graphs and tables.

Mathematical formulation

Here we have considered the laminar, steady two-dimensional
flow of an incompressible Carreau viscosity fluid model past a
static/moving wedge as shown through Fig. 1. We supposed that
fluid flow is induced by the stretching wedge with velocity
uw xð Þ ¼ bxm while the free stream velocity is ue xð Þ ¼ axm, where
a; b; c and mare positive constants. Further uw xð Þ > 0 shows the
stretching wedge surface velocity and uw xð Þ < 0 compares to con-
tracting wedge surface velocity.

The wedge angle is assumed to be X ¼ bp, where b ¼ 2m
mþ1 is

related to the pressure gradient. It is anticipated that the surface
temperature TwðxÞ at the sheet considered to be higher than the
ambient fluid temperature T1 ðTw > T1Þ. The constitutive equa-
tions for the generalized Newtonian Carreau viscosity model
[14,17] are given as

s ¼� pIþ lð _cÞA1; l ¼ l1 þ ðl0 � l1Þ 1þ ðC _cÞ2
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The apparent viscosity l of Carreau model can also be
expressed as

l ¼ l0 b� þ 1� b�ð Þ½1þ ðC _cÞ2�
n�1
2

� �
: ð3Þ
Fig. 1. Geometry of the problem.
In the above equations, I the identity tensor, p is the pressure,

A1 ¼ gradVð Þ þ gradVð ÞT is the first Rivlin-Erickson tensor, n the

power law index, C a material time constant and b� ¼ l1
l0

� �
the vis-

cosity ratio parameter with l0 the zero shear rate viscosity and l1
the infinite shear rate viscosity and chosen to be less than one in
present study.

For the steady two-dimensional flow, the velocity and temper-
ature fields are supposed to be of the form

V ¼ ½uðx; yÞ; vðx; yÞ;0�; T ¼ Tðx; yÞ; ð4Þ
where u and v represent the velocity components in the x- and y-
directions, respectively.

On the basis of above assumptions and usual boundary layer
approximations, the convective transport model for the Carreau
fluid is governed by the equations of mass, momentum and energy
as:
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where m is the kinematic viscosity, a ¼ k
qcp

the thermal diffusivity

with cp the specific heat, k the thermal conductivity and T the tem-
perature of the fluid.

The related boundary conditions for the present problem are:

(1) static wedge
u ¼0;v ¼ 0; T ¼ Tw at y ¼ 0; ð8Þ
u ¼ue xð Þ ¼ cxm; T ! T1 as y ! 1; ð9Þ
(2) moving wedge
u ¼uw xð Þ ¼ bxm; v ¼ 0; T ¼ Tw at y ¼ 0; ð10Þ
u ¼ue xð Þ ¼ cxm; T ! T1 as y ! 1: ð11Þ
Now we introduced the following suitable transformations:

g¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðmþ1Þ

2m

r
x
m�1
2 ; Wðx;yÞ¼
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2mc
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Tw�T1
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whereW denotes stream function that satisfies equation of continu-
ity with u ¼ @W

@y and v ¼ � @W
@x :

Thus the transformed non-linear momentum and energy equa-
tions can be described as:

b� þ 1� b�ð Þ 1þWe2 f 00
	 
2n on�3

2
1þ nWe2 f 00

	 
2n o� �
f 000

þ ff 00þb 1� f 0
	 
2h i

¼ 0; ð13Þ

h00 þ Pr fh0 ¼ 0; ð14Þ
with BC,s

f ð0Þ ¼ 0; f 0ð0Þ ¼ k; hð0Þ ¼ 1; ð15Þ
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f 0ð1Þ ! 1; hð1Þ ! 0: ð16Þ
In the above equations, prime denotes the differentiation with

respect to variable g;We the local Weissenberg number, b the
wedge angle parameter, k the velocity ratio parameter and Pr the
Prandtl number. These quantities are defined as follows:
We2 ¼ c3C2x3m�1

2m

 !
; Pr ¼ lcp

k
; k ¼ b

c
: ð17Þ

Here positive values of b show the favorable pressure gradient
and negative values of b reveal an opposing pressure gradient.
Additionally, m ¼ 0 b ¼ 0ð Þ implies the fluid flow past a flat plate
and m ¼ 1 b ¼ 1ð Þ means the stagnation point flow. Moreover the
constant velocity ratio parameter k > 0 and k < 0 classify with a
moving wedge in the same and opposite directions to the free
stream, respectively, however, k ¼ 0 is related to a static wedge.

The parameters of engineering interest in the flow and heat
transfer problem are the local skin friction coefficient Cfx and the
Table 1
Contrast values of �f 00 ð0Þ for different b when b� ¼ We ¼ 0 and n ¼ 1.

b Rajagopal et al. [16] Kuo [17] Present study

0 – 0.469600 0.469600
0.3 0.474755 0.775524 0.474755
0.6 0.995836 0.995757 0.995836
1.2 1.335722 1.333833 1.335722

Fig. 2. Effects of the velocity ratio parameter k on
local Nusselt number Nux, characterizing the surface drag and wall
heat transfer rate, can be defined as:

Cfx ¼ sw
qU2

wðxÞ=2
; Nux ¼ xqw

k Tw � T1ð Þ ; ð18Þ

where sw is the surface shear stress and qw the surface heat flux
given by
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Upon using Eq. (12), the local skin friction coefficient and local

Nusselt number become

Re1=2Cfx ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
2� b

p f 00ð0Þ b� þ ð1� b�Þ 1þWe2 f 00ð0Þ	 
2n on�1
2

� �
;

Re�1=2Nux ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffi
2� b

p h0 0ð Þ: ð20Þ

where Rex ¼ xue
m is the local Reynolds number.

Solution methodology

The system of governing equations (Eqs. (13) and (14)) is highly
nonlinear and partially set of coupled ordinary differential
equations. To discover the solution of this system along with
the velocity and temperature distributions.
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boundary conditions (15) and (16), the shooting technique along
with fourth-fifth order Runge–Kutta integration scheme is devel-
oped. Since Runge–Kutta Fehlberg method solves only initial value
problem, and so Eqs. (13) and (14) are converted into set of first
order equations. For this purpose, we rewrite the above set of
equations as given below:

f 000 ¼
�b 1� f 0

	 
2� �
� ff 00

b� þ 1� b�ð Þ 1þ nWe2ðf 00Þ2
n o

1þWe2ðf 00Þ2
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2

� � ; ð21Þ

h00 ¼ �Pr fh0: ð22Þ
The new variables defined below are employed to reduce above

higher order equations into system of first order differential
equations:

f ¼y1; f 0 ¼ y2; f 00 ¼ y3; f 000 ¼ y03;

h ¼y4; h0 ¼ y5; h00 ¼ y05: ð23Þ
After inserting Eq. (23) into Eqs. (13) and (14), a new system of

ordinary differential equations is obtained as:
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Fig. 3. Effects of the wedge angle parameter b on
together with the boundary conditions
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Here u1 and u2 are the initial guesses for the values of f 00ð0Þ and
h0ð0Þ.

Above system of equations is solved with shooting method, the
following procedure is utilized:

1. Firstly chose the limit of g1 the best suited limit for g1 is
between 5 and 10.

2. Then select suitable initial guesses for y3 0ð Þ and y5 0ð Þ. Initially
y3 0ð Þ ¼ �1 and y5 0ð Þ ¼ 0:5 are selected.

3. Then set of ODEs are solved with the fourth-fifth order Runge–
Kutta Fehlberg scheme.

4. Finally, boundary residuals (absolute variations in given and
calculated values of y2 1ð Þ and y5 1ð Þ is calculated. The solution
will converge if entire values of boundary residuals are less then
tolerance error, which is considered 10�5.

5. If values of boundary residuals are larger than tolerance error,
then values of y3 0ð Þ and y5 0ð Þ will be modified by Newton’s
method.
the velocity and temperature distributions.
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Result and discussion

In order to examine results of the present problem a numerical
computation is performed for steady two dimensional flow of Car-
reau viscosity model generated by a static/moving wedge. The par-
tially coupled set of Eqs. (13) and (14) with boundary conditions
(15) and (16) are solved numerically using Runge–Kutta fourth-
fifth order method along with shooting technique. Moreover, rep-
resentative results for the skin friction and local Nusselt number
are recorded through tables. The influence of non-dimensional
parameters likeWe; k;n; b; b� and Pr on dimensionless fluid velocity
and temperature distribution are determined and presented
through graphs. Additionally the accuracy of our numerical results
is verified with earlier published results by Rajgopal et al. [16] and
Kuo [17] for particular cases presented in Table 1. The good agree-
ment is reported between these results.

Fig. 2 are plotted to examine the influence of velocity ratio
parameter k on temperature h gð Þ and velocity f 0 gð Þ profiles, for
both shear thickening n > 1ð Þ and shear thinning n < 1ð Þ fluids.
Here temperature and velocity profiles are presented for two dif-
ferent values of b, in detail, b ¼ 0 means wedge angle of zero
degree relates to the flow over a flat plate and b ¼ 1 relates the
wedge point of 90�, i.e, stagnation point flow. From Fig. 2(a, b),
we observed that the fluid velocity is enhanced by uplifting values
of the velocity ratio parameter for both cases. Also it is observed
Fig. 4. Effects of the viscosity ratio parameter b� on the velocity and
that when flow is near the stagnation-point, the velocity profiles
are closer to each other. However, these Figs. show that the thick-
ness of the momentum boundary layer for shear thickening fluid is
higher as compared with shear thinning fluid. Fig. 2(c, d) depict
that by increasing values of the velocity ratio parameter, tempera-
ture profile decreases in both cases, i.e., for shear thinning as well
as shear thickening fluids. The thermal boundary layer thickness
reduces for both the flow over flat plate and near the stagnation-
point. However, the temperature profiles are closer to each other
if flow is near to the stagnation-point and the thermal boundary
layer thickness is higher for shear thickening fluid.

Fig. 3 are designed to observe the effects of the wedge angle
parameter b on the velocity f 0 gð Þ and temperature h gð Þ profiles in
shear thinning and shear thickening fluids. From Fig. 3(a, b) we
observed that the fluid velocity is enhanced by increasing wedge
angle parameter in both cases. Physically it is due to the wedge
angle parameter that is related with pressure gradient. Thus, pos-
itive values of the wedge angle parameter indicate a favorable
pressure gradient which enhance the flow. Further for positive
values of b the velocity profile goes nearer to the surface of the
wedge, and opposite flow does not occur. Moreover, the momen-
tum boundary layer thickness reduces by increasing wedge angle
parameter and then again it is higher in case of shear thickening
fluid. Fig. 3(c, d) describe the impact of the wedge angle parameter
on thermal boundary layer. We observed that the fluid
temperature distribution for different wedge angle parameter.



Fig. 5. Effects of the viscosity ratio parameter b� on the velocity and temperature distributions.

Fig. 6. Effects of the Weissenberg number We on the temperature distribution.
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temperature is diminished with increasing the wedge angle
parameter. Moreover, the maximum temperature of the fluid occur
for the flow over flat plate b ¼ 0ð Þ. Physically, it is due to the fluid
motion i.e., pressure gradient is zero and due to that fluid temper-
ature increases at the surface of wedge. In the case of static wedge
the thermal boundary layer thickness is higher.
Fig. 4 describe the impact of viscosity ratio parameter b� on
velocity and temperature profiles for both shear thinning and
thickening cases. Here profiles are presented for two different val-
ues of wedge angle parameter. Here b ¼ 0 (wedge of zero degree)
and b ¼ 1 (wedge point of 90�). We observe a minor dependence
of velocity and temperature distributions on b�. However, it is



Table 3
Numerical values of the local Nusselt number Re�1=2Nux for different b�; b and k when
Pr ¼ 1 and We ¼ 3.

b� b k Re�1=2Nux

n ¼ 0:75 n ¼ 1:75

0 0.3 0.2 0.916605 0.860677
0.2 0.912067 0.865626
0.4 0.90800 0.871354
0.8 0.900932 0.886604
0.001 0 0.2 0.795146 0.758852

0.3 0.916581 0.860700
0.6 1.04584 0.973570
1.2 1.44201 1.33020

0.001 0.3 �0.3 0.664451 0.529774
�0.2 0.722834 0.605179
0 0.825856 0.740896
0.2 0.916581 0.860700
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interesting to note that graph of velocity and temperature disclose
quite the opposite trends with uplifting b� for the shear thinning
and shear thickening fluids. Additionally, these Figs. portray that
the momentum and thermal layers thickness become thick in
shear thinning fluid as we increase the viscosity ratio parameter
and quite the opposite is true for shear thickening fluid. Fig. 5 show
the impact of viscosity ratio parameter b� on the velocity and tem-
perature profiles for both shear thinning and thickening cases with
two different values of k. Here k ¼ 0 (static wedge) and k > 0 and
k < 0 show the moving wedge in same and inverse directions,
respectively. We observe again a little dependence of the velocity
and temperature distributions on b�. Qualitatively, the effects of
b� on the velocity and temperature distributions are same as that
of Fig. 4.

Fig. 6 is a plot of the variation in the temperature distribution
for various values of the Weissenberg number We and Prandtl
number Pr for both shear thinning and shear thickening fluids.
These Figs. exhibit that the temperature and thermal boundary
layer thickness reduce by uplifting the values of We and Pr in both
shear thinning and shear thickening fluids. Moreover, it can be
observed that the maximum difference between the temperature
profiles occurs at smaller values of Pr and it reduces as Pr increases.

Table 1 is created to prove the authenticity of the given numer-
ical results with the previous published data for shear thinning
n < 1ð Þ and shear thickening n > 1ð Þ fluids and found to be in out-
standing agreement. Table 2 provides numerical results of the local
Nusselt number Re�1=2 Nux for selected values of viscosity ratio
parameter b�ð Þ, wedge angle parameter bð Þ and velocity ratio
parameter kð Þ for both shear thinning n < 1ð Þ and shear thickening
n > 1ð Þ cases.

Table 2 is created to exhibit the influence of the viscosity ratio
parameter b�, velocity ratio parameter k and wedge angle parame-
ter b on the local skin friction coefficient for both shear thinning
and thickening cases. On the basis of this table it is noticed that
the local skin friction coefficient is decreasing function for the
wedge angle parameter and velocity ratio parameter in both cases.
It is also observed that the local skin friction coefficient is a
decreasing function for the viscosity ratio parameter in shear thin-
ning case and reverse is true for shear thickening case.

Table 3 is constructed to depict the impact of the viscosity ratio
parameter b�, velocity ratio parameter k and wedge angle parame-
ter b on the local Nusselt number for both cases when Pr ¼ 1 and
We ¼ 3. It is observed that the local Nusselt number is a decreasing
function for velocity ratio parameter and viscosity ratio parameter
in both shear thinning and shear thickening cases. It is further dis-
covered that the local Nusselt number increasing function for the
viscosity ratio parameter in shear thinning case and reverse is true
for shear thickening case.
Table 2
Numerical values of the skin friction coefficient Re1=2Cfx for different b

�; b and k when
Pr ¼ 1 and We ¼ 3.

b� b k Re1=2Cfx

n ¼ 0:75 n ¼ 1:75

0 0.3 0.2 0.961012 1.22977
0.2 0.979278 1.20104
0.4 0.996203 1.16925
0.8 1.026900 1.09174
0.001 0 0.2 0.594385 0.706434

0.3 0.961107 1.22963
0.6 1.310680 1.77143
1.2 2.23300 3.26384

0.001 0.3 �0.3 1.170530 1.56324
�0.2 1.157030 1.54768
0 1.084620 1.43226
0.2 0.961107 1.22963
Conclusions

In this article numerical computations for steady 2D Carreau
fluidflowover a static/movingwedgewith infinite shear rate viscos-
ity have been performed. Boundary layer equations for steady 2D
Carreau fluid flowwere derived in the presence of infinite shear rate
viscosity. For numerical calculations we have utilized R-K Fhelberg
fourth-fifth order method alongside with shooting technique. The
current numerical calculations were compared with the available
results in the literature with outstanding agreement. The following
decision can be drawn from the above numerical calculations.

� By increasing the wedge angle parameter b, a reduction was
observed in the momentum and thermal boundary layer
thicknesses.

� Increasing the velocity ratio parameter k, velocity profile was
increased and opposite trend was observed in temperature
profile.

� The velocity distribution was decreased for shear thinning fluid
and increased for shear thickening fluid by increasing viscosity
ratio parameter for both static/moving wedge and quite the
opposite was true for temperature distribution.

� The momentum and thermal boundary layers thicknesses were
higher for shear thickening fluid when compared with shear
thinning fluid.
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