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In this paper, we demonstrated passively Q-switched wavelength-tunable 1-lmfiber lasers utilizing few-
layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an
optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a
piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations
were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW.
Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445
mW.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Passively Q-switched fiber lasers based on saturable absorbers
(SAs) have attracted substantial research attention for applications
in material processing, spectroscopy, medical diagnoses, and fiber
telecommunications. Semiconductor saturable absorber mirrors
(SESAMs) have been adopted for most commercial applications
owing to their mature manufacturing processes [1]. However, dis-
advantages of SESAMs such as complicated fabrication process,
high cost, and narrow bandwidth prompt researchers to explore
alternative SAs with novel materials [2]. Single-wall carbon nan-
otubes (CNTs) and two-dimensional (2D) layered materials includ-
ing graphene and transition metal dichalcogenides (TMDCs) have
been developed as SA candidates because of their ease of fabrica-
tion and much lower cost comparing with SESAMs [3–9]. 2D mate-
rials, in particular, are considered as potent prospects for the next-
generation photonics technology because of their wideband
responses and ultrafast carrier dynamics. However, graphene typ-
ically has a weak optical absorption (2.3% per layer) and TMDCs are
more suitable in the visible due to their large bandgaps [10,11].

Quite recently, black phosphorus (BP), which is the most ther-
modynamically stable allotrope of phosphorus, has been re-
discovered as a 2D material for optoelectronic applications [12].
Layered BP has a direct bandgap depending on the number of lay-
ers, 0.3 eV for bulk BP and 2 eV for monolayer BP. It thus has lar-
gely adjustable bandgaps and nonlinear absorption over a wide
bandwidth [12]. Layered BP becomes a promising prospect in
pulsed lasers in the infrared and mid-infrared region [13]. Q-
switched and mode-locked pulsed fiber lasers triggered by BP-
SAs have been presented in wavelengths ranging from 1 to 3 lm
[14–20]. However, the conventional method of fixating BP-SA in
between the fiber end facets is far from an ideal approach
[16,17]. Such-fabricated BP-SAs are easily exposed to a combina-
tion of oxygen and moisture in most environments. They are also
vulnerable to optical damage when strong laser pulses are trans-
mitting through. Therefore, it prompts an urgent study for an opti-
mal BP-SA incorporation process for fiber lasers to assure better
long-term stability and higher optical damage threshold.

Tapered fibers and side-polished D-shaped fibers have been
developed for evanescent coupling between the light and 2D mate-
rials for passive Q-switching and mode-locking lasers [20–24]. The
fiber taper approach is particularly promising for BP-SA incorpora-
tion for several reasons. First, when BP is deposited onto the side of
the fiber tapers, it interacts with the evanescent field with a much
larger active area. Compared with the conventional method of
sandwiching BP between a pair of fiber facets [16,17], the material
utilization efficiency is largely improved. Second, the optical dam-
age threshold can be significantly enhanced due to the substan-
tially reduced light intensity. Third, as the evanescent field and
BP mostly interacts inside the innermost layers, it can effectively
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mitigate the environmental oxygen and moisture invasion. Eventu-
ally, it provides the possibility to completely isolate BP from the
outer environment by depositing outer buffer layers.

In this paper, we report a passively Q-switched ytterbium-
doped fiber laser (YDFL) employing a tapered-fiber-based BP-SA
scheme with wavelength tunability, which has not been reported
to date to the best of our knowledge. Few-layer BP was transferred
onto the tapered fibers by an optically driven process. Utilizing an
ytterbium-doped all-fiber ring cavity, passively Q-switched tun-
able laser emission was achieved. A Sagnac fiber loop [25,26]
was used to provide the wavelength tuning ranging from 1040.5
to 1044.6 nm. The maximal average output power was 8.9 mw at
a 63-kHz repetition rate and the maximal pulse energy was
141.27 nJ. The shortest pulse duration was 2.5 ls under 445-mW
pump power. With BP-SA integrated onto the fiber tapers, these
passively Q-switched fiber lasers can hold the benefits of enhanc-
ing laser-induced damage threshold and mitigating BP oxidation
process to a large extent.
Fig. 2. (a) The transmission spectrum; (b) the saturable absorption of fabricated BP-
SAs.
Fabrication and optimization of tapered-fiber-based BP-SAs

To prompt efficient interaction between the BP material and
evanescent wave along the fiber tapers, a few critical challenges
remain to be solved that include achieving optimal taper dimen-
sions and high surface quality.

In our experiments, single-mode fibers (NUFERN, HI1060) were
tapered down to a minimum of �15 lm in diameter, as shown in
Fig. 1(a). By shrinking the diameter, more evanescent wave couples
with the surrounding materials; however, it also costs higher
transmission loss and weaker mechanical strength. Tradeoff there-
fore has to be made regarding the optimal microfiber diameter and
its length. In our experiments, we identified the best geometry to
be a microfiber 15-lm in diameter and 1-mm in length by try
and error with simulations.

Few-layer BP ethyl alcohol (EA) solution of a concentration of
0.5 mg/ml was utilized for BP-SA preparation. In the BP-EA solu-
tion, BP flakes were �2 to 10 layers with lateral thickness of
�0.5 to 5 lm. To transfer BP flakes onto the fiber tapers, we
adopted an optically driven (OD) method. With the tapered fibers
fixed on top of a glass slide, we applied a few drops of solution onto
the taper waists. At the same time, a continuous-wave laser power
at 975 nm was transmitting through the fiber tapers for a few min-
utes. BP flakes could be deposited onto the taper side due to the
combined effect of optical trapping force and heat convention. Dur-
ing this OD process, the enabling laser power level was also criti-
cal; otherwise, BP flakes would not be appropriately trapped
onto the taper. The optimal laser power was found to be �100
Fig. 1. (a) Tapered fiber illustration; (b) tapered fiber with BP deposited onto.
mW and the duration was �15 min. Afterwards, the tapered fibers
were air dried for about an hour. Compared with other methods of
continuously dripping and air drying [14–17], the OD method pos-
sesses advantages of better repeatability and reliability. Fig. 1(a)
illustrates the tapered microfiber and the BP deposition region;
Fig. 1(b) is the microscopic image showing the micro-
morphology of deposited BP.

To study transmission properties of the fabricated BP-SAs, we
utilized a wideband 1-lm ASE light source (CONNET, VASS-Yb-B:
Fig. 3. The scheme of passively Q-switched BP-SA-based tunable all-fiber ring laser.



Fig. 4. (a) Q-switched laser pulse trains under 445 mW pump power; (b) single pulse envelope; (c) the RF spectrum.

Fig. 5. Optical spectra of the tunable Q-switched fiber laser emissions.
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SM) an optical spectrum analyzer (OSA, Anritsu, MS9710C) for
spectrum analysis. Fig. 2(a) shows the transmission spectra of
the tapered-fiber-based BP-SAs. The transmission is peaked at
�1035 nm and decreasing at longer wavelength up to 1100 nm.
The transmission data is �51% at the wavelength of 1040 nm.

We also used a homemade mode-locked fiber laser, which had a
central wavelength of 1030 nm and a pulse duration of 6 ps at 52-
MHz repetition rate, to measure the nonlinear absorption proper-
ties of the fabricated BP-SAs. The measurements are the dots
shown in Fig. 2(b) and the solid curve is the fitted saturable absorp-
tion equation:

TðIÞ ¼ 1� DT exp � 1
Isat

� �
� Tns ð1Þ

where DT is the modulation depth, Isat represents the saturable
intensity, and Tns is the non-saturable loss. From data fitting, the
saturable intensity was 6.65 MW/cm2, the non-saturable absorption
was 52.4%, and the modulation depth of the fabricated BP-SAs was
�2.5%.

Construction of the passively Q-switched wavelength-tunable
fiber laser

The tunable Yb-doped fiber (YDF) ring laser based on BP-SA is
schematically shown in Fig. 3. A piece of 0.9-m-long YDF (NUFERN,
SM-YSF-HI), whose absorption coefficient was 250 dB/m at 975
nm, was employed as the gain fiber. The YDF was pumped by a
laser diode at 975 nm and the pump power was combined by a
975/1064 nm wavelength division multiplexer (WDM). A second
WDM was inserted following the gain fiber to dump the residual
pump. The BP-SA was spliced to the 1064-nm port of the second
WDM. A Sagnac loop filter comprised of a 5-meter-long polariza-
tion maintaining fiber (PMF) and a polarization controller (PC)
was incorporated into the cavity for wavelength tuning [25,26]. A
30/70 single-mode output couple (OC) was used for output power
collection. A polarization-independent isolator (PI-ISO) was uti-
lized to assure unidirectional propagation.

The output characteristics of the laser emissions were moni-
tored by an OSA for spectral analysis, and an InGaAs photodetector
(EOT et3000A, 2 GHz) with an oscilloscope (LeCroy Waverunner
625Zi, 2.5 GHz) for temporal measurement. The experimental
results are presented in the next section.
Wavelength-tunable pulsed laser performance and discussions

In the fiber laser experiments, stable Q-switched pulses were
observed at a threshold pump power of �220 mW. The initial rep-



Fig. 6. (a) Repetition rate and pulse width vs. pump power. (b) Average output
power vs. pump power.
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etition rate was 40.4 kHz and pulse duration was 4.7 ls. Robust
laser pulses maintained up to 445 mW pump power and the repe-
tition rate increased from 40.4 to 63 kHz. The Q-switched pulse
trains at pump power of 445 mW are shown in Fig. 4(a). An
enlarged pulse envelope indicating a 2.5-ls pulse duration is
shown in Fig. 4(b). Fig. 4(c) shows the radio-frequency (RF) spec-
trum of the Q-switched laser pulses, confirming the repetition rate
of 63 kHz and a signal-to-noise ratio (SNR) of beyond 30 dB for the
fundamental peak.

The wavelengths of the pulsed laser emission could be tuned
from 1040.5 to 1044.6 nm by adjusting the PC in the Sagnac loop
filter to change the polarization states. During the process of wave-
length tuning, the variation of output power was less than 10%. The
tuning spectra of laser emissions are presented in Fig. 5. The
observed comb-like spectra are typical with high birefringence
Sagnac fiber loops [25], and the primary emission peak is well over
30 dB in side-mode suppression ratio.

During the experiments, it was observed that the repetition rate
of the laser pulses increased from 40.4 to 63 kHz and the pulse
duration decreased from 4.7 to 2.5 ls, when pump power
increased from 220 to 445 mW, as shown in Fig. 6(a). Such obser-
vations agreed well with typical characteristics of passively Q-
switched fiber lasers. Fig. 6(b) depicts the average output power
versus pump power. The maximal average output power was 8.9
mW at 445 mW pump, and the pulse energy was 141.27 nJ, corre-
spondingly. The relatively low slope efficiency of 3.2% was mainly
caused by high cavity losses such as the insertion losses of BP-SA
(�3 dB), the Sagnac fiber loop, and the 30/70 output coupler.
To note, the Q-switched laser operation maintained robust
under all pump power levels with no obvious pulse jitter or splitter
observed. Regarding the stability of this tapered-fiber-based BP-SA
all-fiber ring laser, we had activated and maintained non-stop laser
emission for more than 6 h with no noticeable power variation and
measurable spectrum shift. For its long-term stability and repeata-
bility, this fiber laser had been running for an accumulated total of
more than 100 h in a three-month span without any noticeable
performance deterioration. Comparing with the previous pulsed
1-lm fiber lasers utilizing BP-SA deposited onto fiber facets [14],
the current approach was demonstrated to uphold better stability
and repeatability for its inherently hermetic ability against envi-
ronmental influence.
Conclusion

To conclude, passively Q-switched wavelength-tunable 1-lm
all-fiber ring lasers utilizing tapered-fiber-based BP-SAs were
demonstrated for the first time. The few-layer BP was deposited
onto optimized fiber tapers with an OD process. The pump thresh-
old of the Q-switched fiber lasers was �220 mW and stable laser
pulses maintained up to 445 mW pump power. The emission spec-
tra were tunable from 1040.5 to 1044.6 nm by controlling the
polarization states with a Sagnac fiber loop. Our experimental
results suggested such tapered-fiber-based BP-SAs possessed bet-
ter stability against the thermally prompted oxidation from the
environment. Therefore, this approach could hold great prospects
for BP-based pulsed fiber lasers in the near-infrared region.
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