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Elastic analysis is analytically presented to predict the behaviors of the stress and displacement compo-
nents in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex
plane using cubic polynomials. This analysis is based on the complex computation of the stress functions
in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and
assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has
some important applications in many fields of engineering such as mechanical, civil and material engi-
neering generally. One of the applications of this research work is in composite design and designing
the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy
of the results are suitable and acceptable through comparing the results.
� 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In the engineering and scientific problems, complex variable
method presents an influential approach for solution of many sci-
entific problems in applied mechanics such as plasticity and elas-
ticity problems theoretically. The approach may be used in the
anisotropic, thermo-plastic, visco-plastic, plasticity and creep
problems or other mathematical aspects like computation of inap-
propriate integrals analytically. The complex variable method
enables the numerous problems to be analyzed and solved that
are inflexible and intractable by other schemes like usual and clas-
sic methods. The elastic deformation of the fibrous composites is
an extremely important characteristic of materials which are
under the mechanical loadings.

Widespread and extended studies were previously conducted
to make use of the complex variables in elasticity and mathemat-
ical problems analytically [1–22]. The complex variable theory was
initially applied and formulated in the elasticity problems by
Kolosov in 1909 [1].

General and widespread texts on complex variable method
were developed by Muskhelishvili [2], Milne-Thomson [3], Green
and Zerna [4] and England [5]. Also, extra concise references of
information can be found in Sokolnikoff and Little [6,7].
Supplementary information on complex variables can be found in
the mathematical texts by Churchill and Kreyszig [8,9].

Some classes of bounded mappings and pure mathematics the-
orems were investigated using theory of applied complex functions
[10–13]. For example, Gao [11] discussed both the displacement
function and the Airy stress function methods which are based
on an extended version of Green’s theory. Obtaining the stress
and displacement fields in arbitrary bounded or unbounded areas
under to a given surface tractions is one of the most noteworthy
problems in theory of plane elasticity. As an interesting and impor-
tant research work, a study has been done on several properties of
strongly starlike mappings of order a (0 < a < 1) and bounded con-
vex mappings on domain Bn [12]. Also, a researcher determined the
form of polynomially bounded solutions to the Loewner differen-
tial equation that was satisfied by univalent subordination chains
of the form of exponential function [13].

The analysis of the stresses and the displacements in the annu-
lar domains such as a elastic cylindrical ring is essential in design-
ing, manufacturing, and optimizing industrial tools and devices.
For instance, in the cold rolling process of thin strips, observed that
the rollers are under elastic deformations in the roll-bite zone.
Computing these elastic deformations (or all displacement compo-
nents) precisely in the roll-bite zone affects the final anticipated
values of the total rolling load [23–25] and qualities of productions.
Additionally, recently, an investigator studied the topic of energy
and transmissibility in nonlinear viscous base isolators considering
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creeping phenomenon [26]. In addition, recently, two applied and
important research works have been done about the improvement
of the mechanical properties of the reduced graphene oxide (RGO)/
Cu composites [28], and broadband dielectric/electric properties of
multiwalled carbon nanotubes (MWCNT) polymethylmetacrylate
composites [29]. Also, newly two applied and important research
works have been carried out on the subject of composites experi-
mentally [30,31].

In this present paper, the elastic analysis of a cylindrical ring as
a unit cell of a complete composite under applied stress in the
complex plane is done utilizing cubic polynomials theoretically.
An important aspect of the research is in application of it in the
pure and applied sciences and engineering problems for calculat-
ing and predicting the stress and displacement behaviors elasti-
cally. The significant aspects and advantages of the method are
totally explained and emphasized in [2] in order for clarifying
the application of the method for engineering and scientific
problems.

Material and method

To solve and analyze the mentioned problem, a cylindrical ring
shown in Fig. 1 is considered and assumed as the following. That is,
a cylindrical ring is supposed as a unit cell, representative of a com-
plete composite, under applied stress in the complex plane
schematically.

Analysis and solution of the various problems of the plane stress
and plane strain in absence of body forces resulted to solution of
the biharmonic equation. Consequently, the below equation is
clearly resulted [1–10],

r4u ¼ 0 ð1Þ
In which, ‘‘u” and ‘‘r4” are stress function and biharmonic oper-

ator respectively. Moreover, the stress components in the Cartesian
coordinates are defined as below,

rxx ¼ @2u
@y2

ð2Þ

ryy ¼ @2u
@x2

ð3Þ
Fig. 1. Cylindrical ring as a unit cell representative with general loadings on
boundaries.
sxy ¼ rxy
� � ¼ � @2u

@x@y
ð4Þ

Also, the stress components in the polar coordinates are defined
by the following relations,

rrr ¼ 1
r
@u
@r

þ 1
r2

@2u
@h2

ð5Þ

srhð¼ rrhÞ ¼ @

@r
�1

r
@u
@h

� �
ð6Þ

rhh ¼ @2u
@r2

ð7Þ

Eq. (1) may be expressed employing the complex variables as the
following [1–10],

@4u
@2z@2�z

¼ 0 ð8Þ

Here z indicates the complex variable on the plane z ¼ xþ iy,
z ffi r 1þ hi� h2=2� ih3=6

� �
and h ¼ tan�1ðy=xÞ and �z is conjugate

of z (�z ¼ x� iy, �z ffi r 1� hi� h2=2þ ih3=6
� �

). Integrating the above
equation, stress function in the terms of the complex variable
can be expressed as the below form,

u z;�zð Þ ¼ Re vðzÞ þ �zcðzÞð Þ ð9Þ

where c and v are random functions of the indicated variables, and
Re indicates the real part of the complex functions. Therefore, u
must be a real function. So, these demonstrations explain that Airy
function can be formulated in the terms of two functions of the
complex variable. The solution of all problems consists of the eval-
uation of the complex potential functions cðzÞ and vðzÞ, in the terms
of rxx, ryy and rxy ðsxyÞ, which are obtained as the complex series by
the following well-known expressions [1–5],

rxx þ ryy ¼ 2 c0ðzÞ þ c0ðzÞ
� 	

ð10Þ

ryy � rxx þ 2isxy ¼ 2 vðzÞ þ zc00ðzÞð Þ ð11Þ
And, also with combinations of the mentioned equations have

the below formulation in the polar coordinates,

rrr þ rhh ¼ rxx þ ryy ð12aÞ

rhh � rrr þ 2isrh ¼ 1þ 2hi� 2h2 � 4i
3


 �
ryy � rxx þ 2isxy
� � ð12bÞ

By some operations have the below formulation,

rrr � isrh ¼ c0ðzÞ þ c0ðzÞ � 1þ 2hi� 2h2 � 4i
3


 �
vðzÞ þ zc00ðzÞð Þ ð13Þ

The complex displacement defined by U ¼ ur þ iuh. To compute
and determine displacements from the stress function, the below
equations are used [2–6],

ur þ iuhð Þ ¼ 1
2l

1� hi� h2

2
þ ih3

6

" #
juðzÞ � zu0ðzÞ � c0ðzÞ
� 	

ð14Þ

Here j is the Kolosov coefficient [1] which is 3� 4m for the
plane strain and for the plane stress is ð3� mÞ=ð1þ mÞ. Also, m
and l are respectively Poisson ratio and shear modulus. For sim-
plicity of the formulations, it is assumed that c0ðzÞ ¼ wðzÞ. The
center of the ring is considered to be coincident with the origin
of the coordinates. Using complex Fourier transformation, the
boundary conditions may be expressed in the following form
[2,3],



Fig. 2. Tangential displacement versus h (theta). (See above-mentioned references
for further information.)

Fig. 3. Radial displacement versus h (theta). (See above-mentioned references for
further information.)
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rrr � isrh ¼
Xþ1

�1
A0
k 1þ khi� k2h2

2
� k3h3i

6

" #
; ðr ¼ R1Þ ð15Þ

rrr � isrh ¼
Xþ1

�1
A00
k 1þ khi� k2h2

2
� k3h3i

6

" #
; ðr ¼ R2Þ ð16Þ

In above equations, A0
k and A00

k are unknown coefficients which
are determined by the Fourier transformation along the rollers’
boundaries. With combinations of the mentioned equations have
the below formulation,

wðzÞ þ w0ðzÞ � �zw0ðzÞ þ vðzÞð Þ 1þ 2hi� 2h2 � 4i
3


 �

¼
Xþ1

�1
A0
k 1þ khi� k2h2

2
� k3h3i

6

" #
; r ¼ R1 ð17aÞ

wðzÞ þ w0ðzÞ � �zw0ðzÞ þ vðzÞð Þ 1þ 2hi� 2h2 � 4i
3


 �

¼
Xþ1

�1
A00
k 1þ khi� k2h2

2
� k3h3i

6

" #
; r ¼ R2 ð17bÞ

To predict the stress function in the terms of the complex func-
tions cðzÞ and vðzÞ, they are defined as follows by a new function
with order of three wðzÞ,

wðzÞ ¼ A ðz� 1Þ � ðz� 1Þ2
2

þ ðz� 1Þ3
3

" #
þ
Xþ1

�1
akzk ð18aÞ

vðzÞ ¼
Xþ1

�1
a0kz

k ð18bÞ

In Eqs. (18a, b), A is a real constant which appears to generalize
the stress function in different zones [2,5]. Now, by combination of
the mentioned equations have,

ur þ iuhð Þ ¼ 1
2l

1� ih� h2

2
þ ih3

6

" #
2pi ðjþ 1ÞAzþ ja�1 þ a0

�1

� �� �
ð19Þ

where the right side of above equation indicates the enhancing by
the expression in parenthesis for the anti-clockwise boundary of
the inner contour (inner surface of the hollow cylinder). Therefore,
for the condition of single-value of the displacement, the left side of
the above equation should be zero. All above functions are
analytical.

Consequently, the stress and displacement components for
cylinder rollers can be obtained by an analytical solution. It is to
be noted that if the region had another shape it should be trans-
formed to a circular one by mapping functions and then solving
them for the new region.

Results and discussions

Here, the formulations obtained from previous section are used
and applied to calculate the stress and displacement components
in the cylindrical ring. It is recommendable to be noticed that the
method can be used for many other engineering problems. The
pressure distribution on the rings is a second order function given
by the mentioned equations, according to many numerical and
analytical results as below,

rrr � irrh ¼ P1 1� h
a

� �2
 !

� iP2
h
a

� �2

ð20Þ
The radial displacement has the maximum value in h ¼ 0 for
any A. However, its maximum is reduced with increasing A.

In neighborhood of h ¼ a and A = 0, the radial displacement is
negative and it has different attitude versus h. For A = 0 to A = 0.2,
the variation of radial displacement with respect to r is much
higher than that of A = 0.2 to A = 1. The following results and dia-
grams (Figs. 2 and 3) are the average value of the displacements.
Also, the behavior of the displacement is stable nearing h ¼ 4.

In Fig. 2 and according to the obtained results, it can be seen
that with the increase of a, the tangential displacement ðuhÞ
increases.

That is, the gradient and behavior are positive and ascending
respectively. According to the results have,

uh ¼ �0:0013h6 þ 0:0179h5 � 0:0914h4 þ 0:2218h3

� 0:2524h2 þ 0:1059hþ 0:0001 ð21Þ
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In this paper, by the method of try and error, sinusoidal,
trigonometric and cubic functions are considered and assumed
for analytical functions of cðzÞ, vðzÞ and wðzÞ for some calculations.
In which, they are compatible and suitable with the problem con-
ditions. The radial displacement ðurÞ has the maximum value in
h ¼ 0 for any A.

However, its maximum is reduced with increasing A. In neigh-
borhood of h ¼ a and A = 0, the radial displacement is negative
and it has different attitude versus h. For A = 0 to A = 0.2, the vari-
ation of radial displacement with respect to r is much higher than
that of A = 0.2 to A = 1. In Fig. 3, as we increase the loading angle ðhÞ
it leads to an increase in the maximum radial displacement ðurÞ.
According to the results have,

ur ¼ 0:0003h6 � 0:004h5 þ 0:018h4 � 0:0354h3 þ 0:028h2

� 0:0086hþ 0:0055 ð22Þ
Conclusion

According to this research and based on the determined results
of the displacement and stress behaviors, it is concluded that they
are drastically functions of the loading angle and location in the
radial direction interestingly. With an increase of the loading angle,
the maximum amounts of the stresses and displacements increase.

In the neighborhood of the inner edge, all components of the
stress and displacement are very sensitive to variations of the
radius. However, away from inner edge to outer edge, its variations
are decreased rapidly. Furthermore, none of the stress and dis-
placement components in the neighbor of the end points of the
loading angle have precise enough results because of existing of
the singular points. Hence, it is very obvious, especially for tangen-
tial stress and displacement for those regions, calculated results
are a little higher than they could be. Nevertheless, this results very
reliable and acceptable or their deviations are little and ignorable,
because of satisfying the conditions of the equilibrium and com-
patibility which are the bases of this method.

So, the prediction of the elastic behavior of a cylindrical ring as a
unit cell of a composite under applied stress in the complex plane
was performed using complex variable method analytically.
Finally, one of the significant applications of the present research
is in the pure and applied sciences such as prediction of the elastic
behavior of the fibrous composites by a cylindrical ring as a unit
cell. Also, we can approximately control the elastic behavior of a
cylindrical ring, representative of a complete composite, in order
for preventing undesired and dangerous events by cubic polynomi-
als appropriately.
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