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The analysis is made on reflection of waves in thermoelastic micropolar medium. The medium is having
an additional property of viscosity, while studying waves the effect of micro-temperature is also been
considered. It is found that after reflection three longitudinal and three transverse waves propagate
through the medium. Reflected coefficients are calculated for each wave to examine deviation of reflected
waves. Results obtained theoretically are shown graphically against angle of incidence. It is analyzed that
effect of viscosity and micro-temperature reaches to its maximum level during intermediate values of

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Introduction

The linear theory of linear viscoelasticity is considered as very
important branch of Elastodynamics. It was observed by Freuden-
thal [1] that, most of the solids when subjected to dynamic loading
exhibit a viscous effect. Because of this viscous effect internal fric-
tion produces attenuation and dispersion. Initially, Biot [2,3] and
Bland [4] linked the solution of linear viscoelastic problems with
corresponding linear elastic solutions. A notable works in this field
were the work of Gurtin and Sternberg [6], and Ilioushin [ 7] offered
an approximation method for the linear thermal viscoelastic prob-
lems. Problems related with micropolar viscoelastic waves was ini-
tiated by McCarthy and Eringen [5]. They discussed the
propagation conditions and growth equations which govern the
wave propagation of waves in micropolar viscoelasticity. Some
sources are considered on study of viscoelastic materials are, Oth-
man and Fekry [8], they studied the effect of initial stress on gen-
eralized thermo-viscoelastic medium with voids and temperature-
dependent properties under Green-Naghdi theory. Kumar and
Choudhary [9] analyzed different wave problems in micropolar
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visco-elastic thermo elastic solid. Effect of rotation on generalized
thermo-viscoelastic Rayleigh Lamb waves was discussed by
Sharma and Othman [10].

The theory of micro temperatures deals with the propagation of
the temperature wave in a rigid heat conductor which allows the
variation of thermal properties at a microstructure level. The the-
ory of thermodynamics for elastic material with inner structures
was developed by Grot [11] according to which the molecules pos-
sess micro-temperatures along with macro-deformation of the
body the micro temperatures depend homogeneously on the
micro-coordinates of the microelement. The experimental data
for the silicone rubber containing spherical aluminum particles
and for human blood presented by Riha [12] conform closely to
the predicted theoretical model of thermoelasticity for micro-
temperatures. Some authors recently invested some results related
with wave propagation [13-15].

Green and Naghdi developed three models for generalized ther-
moelasticity of homogeneous isotropic materials, which are
labeled as model I, Il and III [16-18]. The nature of these theories
is such that when the respective theories are linearized, model |
[16] reduces to the classical heat conduction based on Fourier’s
law. The linearized versions of model II and III permit propagation
of thermal waves at finite speed. Model II, in particular, exhibits a
feature that is not present in the other established thermoelastic
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models as it does not sustain dissipation of thermal energy [18]. In
this model, the constitutive equations are derived by starting with
the reduced energy equation and by including the thermal dis-
placement gradient among other constitutive variables. Green
and Naghdi’s third model [17] admits the dissipation of energy.
In this model, the constitutive equations are derived by starting
with the reduced energy equation, where the thermal displace-
ment gradient and temperature gradient are among the constitu-
tive variables. The uniqueness of the solution of governing
equations for the GN type Il model was established in [19]. Chan-
dra Sekharaiah [20] studied the one dimensional thermal wave
propagation in a half-plane based on the GN model. Some works
on reflection waves in a half-space is discusser (see, Refs. [21-
25]). Researchers as Othman and Song [26], Gupta and Rani [27]
and Bayones and Abd-Alla [28] studied different type of waves
propagating under different external influences. Kumar et al. [29]
explained plane waves propagation in microstretch thermoelastic
medium with micrtemperature. New features on waves reflection
with an external parameters as magnetic field, initial stress and
rotation has been investigated in (Refs. [30-36]).

In this article the authors are interested in the study of seismic
waves and their reflection from a surface of thermoelastic medium.
It is of great practical importance in geophysical investigations.
Seismic signals carry a lot of information about the internal struc-
ture of the earth and this information is of great help in exploration
of variable materials. We basically study the reflection of plane
waves at the free surface of the micropolar generalized thermoe-
lastic half space solid. The medium is naturally viscoelastic and
the effect of micro temperature is also been considered while ana-
lyzing the amplitude of reflected waves. Green Naghdi theory of
type III is considered to represent the heat waves conducting
through the medium. Reflected coefficients for both transverse
and longitudinal waves are obtained theoretically, analyzed and
finally represented graphically against the incident angle.

Formulation of the problem

Cartesian Coordinates (x,y,z) are being selected to represent
the system of problem. Origin is on surface y = 0 and z-axis direc-
ted along depth of solid. Basic governing equations for the problem
are,

pii = (21 + p)Wji + (W + ki) Ui + Kigiepye; — BT 1)

o+ B +7) VIV.B) =7,V x (V x @) + ki (V x 1) -2k ¢
2 —
— (¥ xw) =jp G, @
2 = ow

keVw + (ks + ks) VI(V.W) + 1, (V x @) — bﬁ —kow —ksVT =0,

3)

K*V?T + KV?T + ky (VW) = pCeT + BToili;, 4)

GN-II can be obtained by adjusting K = 0 in Eq. (4), the consti-
tutive equations are

Ojj = Aewdyj + 2 e + k(uj; — &iey) — BTy (5)

my = 065 + Boij + Vi Gy
= _k4WI,l(Sij — k5W,‘_j — kGWj_’,‘ ] i7 l, k= ],2, 3. (6)
Where oy, B, 7, y, 4, ki(i=1,2,...,6) are constitutive coefficients

u;, 0jj, €5, my are the components of displacement vector, of stress
tensor, strain tensor and couple stress tensor respectively, j is the

micro inertia moment, the mass density is p, the specific heat at
constant strain is Cg, K*, K are the thermal conductivity and the
material characteristic respectively of the theory. T is the reference
temperature, § = (32, + 2u,)o; where o, are the coefficients of linear
thermal expansion for the material.

Assuming the viscoelastic nature of the material [10],

0, 0 0
)»,I:;\-J!’E/Lp, ,LLI—,U<]+&T1/), k[—k(l‘F&Ty),

0 7]
OC]:O(<1+ Tv>$ﬁ1:ﬁ(‘l+afv)v %:V(l"‘&fv),
where, 7, is the sensitive part representing the viscosity.

Displacement and microrotation components are taken as,

U= (u1(x1,%3),0,u3(x1,%3)) and W= (Wq(x1,X3),0,Ws3(X1,X3))

(7)

Following are the non-dimensional parameters introduced for
the problem,

w* N W*ZJ K,
R A P
WHAS c1
M= WispW (8)

The component of displacement functions (u;,0,u3) and micro
temperature (wy,0,ws) are connected with potential functions
R,y and G, H respectively, by the relation [24],

u _R_W u 7%+% and w _96_oH
"“ox oz U T oz x " ox oz’
oG OH
_ v o1 9
W3 6z+8x 9)

Making use of Egs. (7)-(9) in (1)-(4) we obtained the following
set of equations,
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Reflection coefficients

Let us consider a plane harmonic wave solution incident at the
free surface x, = 0, making angle, with normal of the surface.
After reflection six waves are generated as represented in figure
below (See Fig. 1),

In order to solve the system of partial differential equations we
have assumed the solution

(Ra l//7 T7 ¢27 G> H) = (R/a lp/v T’v d)/za G,v H’)ei(l(xl sin 43 cos 0)—(ut)> (16)

where (R, ¢/, T', ¢,,G',H') are the amplitudes of the reflected waves,
w is the angular frequency and [ is the wave number.
Substitute from Eq. (16) into Egs. (10)-(15), we obtain

(@* = (81 + 62)P)R — 64T = 0, (17)
(@* = 5, + d3¢p, = 0, (18)
(0P + 263 + w?)py + Sl + 5,°H = 0, (19)
(Kl + i85 — 310)H + dgp, = 0, (20)
(K4 + Ks + Ke)* — idg + 610)G + 011 T = 0, (21)
(82 — iwes)P + ?)T + 61,PG + e PR = 0. (22)

The above set of equations is basically depending on two sets.
One set is related with longitudinal while the other with transverse
waves propagating through the medium. For non trivial solution of
the set depending on Eqs. (17), (21) and (22) related with the vari-
ables R, T and G is as,

w?— (51 + 52)12 —04 0
0 11 (K4 +Ks +Kg)PP —iwdg + 10| =0,
&1 12 w? (82 — i0)83)12 +w? 51212
(23)
It can also be represented as
Py +1(3) + B(Ty) + T =0 (24)
where,
I'i= ia)553 — 0)45107
I, = —(1)4K4 — CU4K5 — Q)4K6 + iw38253 + (1)483(38 — iCl)35] Og
- iw35253 + ia)381 0408 — (1)282510 + iw383510 + a)251510
— 0?3010 — 2184810 + W* 51112,
» X) —axis

4o v Ay

X3 —axis

Fig. 1. Geometry of the problem.

I3 = —w?Ks&y + i’ e3Ks — 0% 6:K5 + i’ e3Ks — ?6,K¢
+im3esKe + 0?Kady + K561 + 0?Kedq + 0 K4dy + 0?Ks04
+ W?Kg01 + 0 K402 + 0?Ks505 + 0 Kgdy — 9?61K404
— 0*&1K504 — 0?61Ks04 — 10828135 — 107638155 — 10€25238
— 0%830205 + £201010 — 1WE351510 + £252010 — 1WE3 52010
- 61(511512 - 526115127

Ty = 6K401 — iCl)831<451 + 821{551 — iw831(5($1 -+ 821(6(51 — ico£31<651
+ & K40, — i(l)831<452 + & K50, — iQ)83K552 + &Kgdo
— iwesKedy.

Similarly Eqs. (18)-(20) for the variables , ¢, and H could be
represented as

w? — (5212 I3 0
Sl 85I + 265 + w? 5,17 =0. (25)
0 ) Kglz + 153(,0 — d10
Can be represented as
Pg) +I'Ty) + P(Tg) +T5 =0 (26)
where,

I's = i(()558 + 2i(()35353 — (,04510 — 2(,0253510,

I'e = (,{)4K6 + 2(021(553 - iu)35253 — 2id,0630g + ia)36558
— 0835605 + W25709 + W? 2810 + 25203010 — W*5510
+ 6366610,

I;= —CL)2K652 — 21{65253 + COZK555 — K55356 — iw525558 — 020709
+ 0205610,

I's = —Kg020s,

Egs. (24) and (26) are cubic in nature and having roots I, 1,5
and ly, Is, Is respectively. Solution of the respective equations can
be represented as follow:

R = A explilp(x sin 0y + zcos Op) — iwt]
+ A; explil;(xsin ; — zcos 0;) — iwt]
+ Az explilz(x sin 0, — zcos 0,) — iwt]
+ As explils(xsin 05 — zcos 03) — iwt] (27)

T = Aon, explilo(x sin 0y + z cos Op) — iwt]
+ Ain, explily (xsin 6y — zcos 01) — iwt]
+ An, explily(xsin 6, — zcos 6,) — i t]
+ Asn, explils;(x sin 3 — zcos 3) — iwt] (28)

G = Ao, explilo(x sin 0y + zcos p) — iw t]
+ A1y explil; (xsin0; — zcos 0y) — iwt]
+ A, @, explil,(xsin 6, — zcos 0;) — iwt]
+ As@s explils (x sin 03 — zcos 03) — iwt] (29)

W = By explilp(x sin Oy + zcos ) — i t]
+ By explils(xsin 64 — zcos 04) — iwt]
+ Bs explils(x sin 65 — zcos 0s5) — iwt]
+ Bg explilg(x sin 0 — z cos 0g) — i t] (30)
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¢, = Bon, explilo(x sin 0y + z cos 0p) — iwt]
+ Byn, explils(xsin 04 — zcos 04) — i t]
+ Bs#5 explils(x sin 05 — zcos 6s) — iw t]
+ Bsng explils(x sin 0g — zcos 0g) — im t] (31)

H = Byw, explilp(x sin 0y + zcos 0p) — iwt]
+ B4y explily(xsin 04 — zcos 04) — i t]
+ Bsws explils(x sin 05 — zcos 0s5) — iwt]

+ Bswe explils(x sin 0 — z cos 0g) — i t] (32)
where
2 _[2 (51 4¢ .
(w l,iowﬁz)) fOT' i— 1,273
_ %
’71 - 2_Ps )
S i) for i=4,5,6
53 5 Py e
511 (2 =2 (51+62)) s
54((Ka+Ks5+Kg)? —idgr+610) fori=1,2,3
@i = dg(2—5,1%) i—4
53 (IPKg+iwdg—819) fori=4,5,6.
Amplitude ratios of reflected and incident waves, f“—é,% for

i=1,2,3 and j =4,5,6, gives the corresponding reflection coeffi-
cient ratio. Also, it may be noted that the angles 0, 6;
(j=1,2,...,6 ), and the corresponding wave numbers, I,
j=1,2,...,6 are to be connected by Snell’s law as

10 sin Oy = 11 sin 0 = lz sin 0, = 13 sin 03 = 14 sin 04 = 15 sin 0s
= le sin 0s.

Boundary conditions
The boundary conditions are
(1) The mechanical boundary condition
0(%,0,t) =0=0x(x,0,t) (33)

0x(x,0,t)=0, my, =0 (34)
(2) The thermal boundary condition

oT

&(X, 01 t) - 07 (35)

(3) Heat flux moment
q.(x,0,t) =0, (36)

using Egs. (4)-(7) and (21)-(26), in non dimensional boundary
condition, algebraic equation for the incident waves becomes as
follows:

6
> TyZi=bi, ij=12,...6, Aj=Bo. (37)
j=1
where

. {nllf+n3nj+nzlfcoszej i=1,2,3
1j=

T} sin 0 cos ; j=4,56

{1} ~Brg—mm j=1,2,3
sz:

T4l sinf;cos6;  j=4,5,6

o (n5+n6)lj2 sin 6; cos 0; j=1,2,3
N (15 — 7tf;)l]-z(sin2 0; — cos? 0;) + Tel; j=4,5,6

o {injljcosﬁj j=1,2,3
Yo j=4,56

0 j=1,2.3
st—{

inlicos6; j=4,5,6

- FKaw; — (Ks + Ks) oyl sintjcos 0 j=1,2,3
77 | = (Ks + Ke)a? sin ; cos 6 j=4.56

b = -m l(z) — nzlé €0S 0g Sin Oy — lénz cos? 0y — 31,

b, = lg + n4l§ sin? Op — mlﬁ sin 0y cos Og + T34,

b; = lé(ns + Tg) sin 0y cos Op + (T — 77:5)13(sin2 0o — cos? 0p)
- n6n4~,
bs = ilyn, cos 0y,

b5 = iloi’[4 cos O,

bs = K41 — (Ks + Ke) 5wy sin 0 cos 0g — (Ks + Ke )l sin 0y

X €0S b
_a+2p ko pTo k2 k+p
M=) M=o, My="r, My=—, M5 =",
2
o _ —kcy
7'56*}'7 7 = W2

The relevant parameters following Kumar and Sing [37] are repre-
sented as, N; = N(1 — iQ,f) where X = 2, u, 8, k, o and 7.

Numerical results and discussion

In this section, let us consider the numerical example. For this
purpose, Crust is taken as the thermoelastic material for which
we take the following values of the different physical constants:

i=u=3x10"Nm=2, (K,K*)=(3,01)wm k',
To=300K, y=16x10" k', p=2900kg.m?3,
w* =0.02s", j=0.1m? Cp=1100]kg "k

The values of micro temperature constants are as

K1 =035Ns™", K,=045Ns"', K;=0.55Ns"'k"
Ks=0.65Ns"'m? Ks=075Ns"'m? Kg=096Ns"'m?

In the theoretical presentation it was observed that there exist
six reflected waves propagating through the medium three for lon-
gitudinal and three for transverse waves. For graphical representa-
tion of solution a particular medium is selected and Matlab-16
software has been used. Graphically we are focused on amplitude
ratios of reflected waves against the incident angle for different
conditions of angular velocity w and viscosity factor 7,. The figures
are depending on two sets named as Fig. 2 and 3, each set is
explained in the following paragraphs.

Fig. 2, represents the amplitude ratios of six waves propagating
in the medium against incident angle for different values of angu-
lar velocity. The range of incident angle is taken as 0° < 6 < 90°,
while in this set of figures, viscosity of the medium is constant
T, = 0.02. First three figures are for the longitudinal waves while
the last three are representing the transverse waves. It can be seen
that the amplitude of longitudinal waves reaches the maximum
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value for w = 0.4 which shows that greater the value of angular
frequency of the medium greater will be the amplitude of longitu-
dinal waves, but for the case of transverse waves the maximum
amplitude is obtained for « = 0.2. Angle of incidence is also play-
ing very important role in the propagation of these waves. Graph-
ically it is observed that greater the angle of incidence the
longitudinal waves decreases but the transverse waves have higher
amplitude for large values of incident angle.

Fig. 3, depicts the six waves for different value of viscosity factor
constant 7, =0.01,0.02,0.03,0.04 while the angular velocity
remains fix w = 0.1. It is observed that viscosity factor is having
a strong influence on propagation of reflected wave through the
medium. Maximum amplitude for longitudinal wave is obtained
for 7, = 0.02 and all the three curves have same kind of response
to viscosity factor. All curves converge toward small values of
reflected coefficients by increasing the angle from principal nor-
mal. Transverse waves are having complex oscillating response
for the case of small viscosity factor and large angle of incidence.

Conclusions

By flowing through Theoretical and graphical representation we
came across the following major points.

1. It is observed from Egs. (17)-(22) that the total six reflected
waves propagating through the medium. Three of them are lon-
gitudinal and three are transverse in nature.

2. Amplitude of longitudinal waves reduces by increasing the
angle of incidence, while the amplitude of transverse waves
increases by increasing the angle of incidence. Amplitude of
reflected longitudinal wave is having highest curve for angle
approximately equals 0 = 15° while the transverse waves have
the maximum response at 0 = 60°. Greater the value of angular
frequency of the medium greater will be the amplitude of lon-
gitudinal waves but this behavior is not found in the case of
transverse waves.

3. The viscosity factor is having a strong influence on the waves.
Transverse waves have complex behavior for small value of vis-
cosity and large value of angle of incidence. This indicates that
viscosity makes the curves move in a smooth harmonic
behavior.
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