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In this research, we investigate one of the most popular model in nature and also industrial which is the
pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many
application in nature and engineering. Understanding the physical meaning of exact and solitary travel-
ing wave solutions for this equation gives the researchers in this field a great clear vision of the pressure
waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat
transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our
goal, we apply three different methods which are extended tanh-function method, extended simple
equation method and a new auxiliary equation method on this equation. We obtained exact and solitary
traveling wave solutions and we also discuss the similarity and difference between these three method
and make a comparison between results that we obtained with another results that obtained with the
different researchers using different methods. All of these results and discussion explained the fact that
our new auxiliary equation method is considered to be the most general, powerful and the most result-
oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its
intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The characteristic of bubbles is one of the most important phe-
nomena and characteristics of some fluids, whether they are liquid
fluids or liquid fluids. Due to the Marangoni effect, bubbles may
stand by intact when they reach the surface of the impressive
material. Bubbles form, and coalesce, into globular shapes, because
those forms are at a lower energy state. For the physics and chem-
istry caused it, we can observe the bubbles as it have a various
refractive index (IR) than the surrounding substance. For instance,
the IR of air is approximately 1.0003 and the IR of water is approx-
imately 1.333. Snell’'s Law characterized how electromagnetic
waves shift direction at the interface between two mediums with
various IR; thus bubbles can be specified from the accompanying
refraction and internal reflection even though both the immersed
and immersing mediums are transparent. The fierce collapse of
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bubbles (cavitation) near solid surfaces and the resulting imping-
ing jet shape the mechanism applied in ultrasonic cleaning. The
same influence, but on a larger scale, is used in concentrated
energy weapons such as the bazooka and the torpedo. Pistol
shrimp also use a collapsing cavitation bubble as a weapon. The
same influence is used to treat kidney stones in a lithotripter.
The damage by bubble pointing and growth in body tissues is
the mechanism of decompression sickness, which occurs when
supersaturated dissolved inert gases leave solution as bubbles dur-
ing decompression. The damage can be due to mechanical defor-
mation of tissues due to bubble growth in situ, or by blocking
blood vessels where the bubble has lodged. Injury by bubble for-
mation and growth in body tissues is the mechanism of decom-
pression sickness, which occurs when supersaturated dissolved
inert gases leave solution as bubbles during decompression. The
damage can be due to mechanical deformation of tissues due to
bubble growth in situ, or by blocking blood vessels where the bub-
ble has lodged. Arterial gas embolism can occur when a gas bubble
is introduced to the circulatory system and it lodges in a blood ves-
sel which is too small for it to pass through under the available
pressure difference. This can occur as a result of decompression
after hyperbaric exposure, a lung over expansion injury, during
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intravenous fluid administration, or during surgery. Arterial gas
embolism can occur when a gas bubble is introduced to the circu-
latory system and it lodges in a blood vessel which is too small for
it to pass through under the available pressure difference. This can
occur as a result of decompression after hyperbaric exposure, a
lung over expansion injury, during intravenous fluid administra-
tion, or during surgery.All of what mentioned above gives a great
importance of studying the physical properties of these models like
our model (the Kudryashov Sinelshchikov equation) and for serv-
ing our goal, the mathematician discover, invited and improve
some powerful methods [1-15]. For our model we used three dif-
ferent methods (extended tanh-function method, extended simple
equation method and a new auxiliary equation method (Khater
method) [16-20]). The remnant of this paper is systematized as
follows: In Section ‘Formulation for pressure equation of bubbly
liquids with examination for viscosity and heat transfer’, we use
these methods to get the exact solutions of (NLPDE.) pointed out
above. In Section ‘Discuss the results’, we make the comparison
between the obtained results with each other and that obtained
by using different method. In Section ‘Conclusion’, conclusions
are given. Table 1.

Formulation for pressure equation of bubbly liquids with
examination for viscosity and heat transfer

The volume and mass of the gas in the unit of the mass mixture
can be written as
V:%nR3N,X:Vpg. 2.1)

We consider the long wavelength perturbations in a mixture of
the liquid and the gas bubbles assuming that characteristic length
of waves of perturbation more than distance between bubbles. We
also assume, that distance between bubbles much more than the
averaged radius of a bubble. We describe dynamics of a bubble
using the Rayleigh-Lamb equation. We also take the equation of
energy for a bubble and the state equation for the gas in a bubble
into account. The system of equation for the description of the gas
bubble takes the form [21,22].

p1 <RR”+%R2+£R[) :Qy_Q7

2% Ry 222D (T, — Ty) =0, (2.2)

Qg‘t +
3
_ToQg (R
Tg= Qg.ug (%) )
The expression for the density of a mixture can be presented in
the form [23]

1 _1-y% Pt

—= “+V=p=r—-7Tt—r 2.3
P P P TV 23)
Table 1

Terminology of all characters that used in our research.

1,0,0Arbitrary constant 1,0,0Definition

R = R(x,t) Bubble radius

Pg = Pg(x.1) The gas density

g Gas phase

1 Liquid phase

P(x,t) Gas-liquid mixture

Pg Gas pressure.

Tg&T, Temperature of liquid and gas accordingly

Lg A coefficient of the gas thermal conduction
Ny The Nusselt number

n The poly tropic exponent

v The viscosity of a liquid

u = u(x,t) A velocity of a flow of a gas-liquid mixture

o, B, A, 1, 0,C, b, a;, by Arbitrary constants will be evaluated in research

Considering the small deviation of the bubble radius in compar-
ison with the averaged radius of bubble, we have

R(x,t) = Ry +n(x,t), Ry = constant, ||n|| < Ro, R(x,0) =Ro. (2.4)

Assume that the liquid temperature is constant and equal to the
initial value:

T;=T|,_y = To, To = constant. (2.5)
At the initial moment, we also have
t=0,Q =Qg =Qp, Qo = constant, V =V, :gnRgN. (2.6)

Substituting Q; and T, from first and third equations into the
second equation in the system (2.2) and taking relation (2.4) into
account we have the pressure dependence of a mixture on the
radius perturbation in the form:

0. (3R +4vy
Q-0+ Lo+t an + 70+ ]<§RO)mt
pt(6R§—4vx> pt<va(3n—l)+9R§> )
3R M+ 6R: Ur
4 2 3P
n Z)plnt QO’,’_"_ 2O 2:07
RO
2R%Q,

“3yNu(n—-1)T,
(2.7)

From Eq. (2.3) we also have the dependence p on # using for-
mula (2.4)

p = Po— 1N+ i1,
_ P1
Po = T3V
32 Vo (2.8)
K= Ry (1-7+Vo pp?’

6p2Vo(2p1Vo-1+7)
RS (1-x+Vo p)?

W=

Using the system of equations for description of the motion of a
gas-liquid mixture flow in the form

2} opu) _
37‘([)4»(7_07 ) (29)
pGi+udy)+5%=0.

where u = u(x, t) is a velocity of a flow of a gas-liquid mixture. Eq.
(2.7) together with Eqgs. (2.5) and (2.6) can be applied for descrip-
tion of nonlinear waves in a gas-liquid medium. Consider the linear
case of the system of Egs. (2.5)—(2.7). Assuming, that pressure in a
mixture is proportional to perturbation radius, we obtain the linear
wave equation for the radius perturbations

3Q
_ 2 _ 0
nnfcomx&Cofquo. (2.10)
Let us introduce the following dimensionless variables
t:cit’&x:lx’&u:cou/&n:Ron/&Q:QoQ'+Q07 (2.11)
0

where 1 is the characteristic length of wave. Using the dimension-
less variables the system of Eqs. (2.5)-(2.7) can be reduced to the
following (the primes of the variables are omitted)

0 2 1y R
N — L& uy +un, +nux — “ 0

i =0,
3 QX - 07

”” £ (U + Ully) + U —
Q+Z1Qt+77Q+3n)Cl77tQ

_(.Bl +ﬂz)’/ltt - (2.32 —/31)7’1%
=G5 By +3 B)mE —an =30+ 30

where the parameters are determined by formulas

(2.12)
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dvypicd A, RS . 1Go
2 /_ 7%1 - l .
3Q,!

QP
(2.13)

We introduce a scale transformation of independent variables

_4vpco _
4= 3Qol +3nX17/31 -

P

=€e"x—t),T=€"t,m>0 ex1,
0 0 0 0 7]
_:Em ._:6m+1__€m .

7] o0&’ ot ot ¢
Substituting (2.11) into(2.9) and dividing on "m in first two
equations we have the following system of equations

(2.14)

Lo :ulRO 2:“1 0
€Ny —Ne ——p- Us +NU: + U — . =0,
e — 1, LR, n n T nn. + T ny.
(2.15)
e(_uplgo> +/f—lguf+enur—nuc—lf—£uu ——Q¢:0,
(2.16)

Q+6m+]X1Qr*€mX1Q5+”IQ+36m+1”X1771Q*36mnX1ngQ
= =€ (By+ Bo) Moo + 2™ (By + o) Nee — €™ (B + Pa) e
— ™2 (2By — B) NN + 2™ (2B, — Br) N1,

3n-1 3
- am@py - pmn - (T g )

4 e2m (311
1
—62'”(3" ﬁ1+%ﬁz>n§—6m”“n + €N =30+ 30
(2.17)

We now assume that the state variables u, # and Q can be rep-
resented asymptotically as series in powers of € about an equilib-
rium state

1 3
Bi +iﬂz> nn

U=€U+€EU+....,0 =€ + €N, +...,Q

=€Q;+€*Qy+.... (2.18)

Substituting (2.18) into (2.15)-(2.17) and equating expressions
at € and €? to zero, we obtain some equations with respect to
uq, Uz, Ny, My, Qq, Qa. Solving these equations with respect to Q;
we have the equation for pressure Q; in the form:

Q100 Qe fithag,  _an2h Pig g,
_e? <3n 2/)’1-&- /)’2>Q1¢¢:€m7 (é_%>Q1“+€ n_X](Q]Ql)

(2.19)
3 URy 3u1

Po
linear evolution equatlons for description of waves in a mixture lig-
uid and gas bubbles with consideration for the heat transfer and the
viscosity. Assuming

4 B+,
m=1, 6

we have nonlinear evolution equation of the second order in the
form

Q. +QQQ;:+ a1 Q::: —

where Q = Ro +Z. From Eq. (2.19) one can find some non-

=Be, 6>0, f=1, B =2p,, 1=3Y.

0Q: Qs — 3 (2.20)

(QQ:). =0

where =(¢-%4),c o3 = €*m

_ 6717 o = (€2m—1 /f1+lfz)
(322 By + % Bo), s = (€™ 74). Using the traveling wave transfor-

mation Q(¢&, ) = U({) where { = ¢+ ct and integrating Eq. (2.20)
with zero constant of integration, we obtain:

CU+9u2+a1U”7—U’zfoc UuU =0.

> > (2.21)

This equation also called the Kudryashov-Sinelshchikov equa-
tion [21-25] which can described in the simplest case by the most
famous model Korteweg-de Vries (KdV) equation [26] when
(0y =03 =0) = (U + duty + Uyxx = 0). Not just that but also it
describe the most famous model Burger Korteweg-de Vries (BKdV)
when (o, = a3 = A = 0). Kudryashov-Sinelshchikov Equation also
is the general form of famous Kawahara equation [27]:

Up + Uly + Uxxx — Uxxxxx = 0.

That describe the motions of plasma waves, capillary-gravity
water waves, water waves with surface tension. Kudryashov-
Sinelshchikov used reductive perturbation method to obtain this
general form of Kawahara equation to be in the form (2.21).

Balancing the the highest order derivative term and nonlinear
term in Eq. (2.21) = (U”&UZ) =
balance into this model and you can check by yourself by using any
methods like modified simple equation method, extended tanh-
function method, modified simple equation method, new auxiliary
equation method,. . .and so on. so that, we will use the transforma-
tion U() = P*(¢), we get:

(N = 2). But we can not use this

P2+%P4+2(x1P’2+2a1PP”—20c2P2P’2 —203PPP' = 0.

(2.22)

Balancing the the highest order derivative term and nonlinear
term in Eq. (2.21) = (PP”&P“) = (N=1).

Now, we will apply three different methods on our model to get
closed form of solutions and solitary traveling wave solutions and
we also represent in details the discussion and comparison
between the three methods and the results that obtained by these
methods and that obtained by another researchers who used a dif-
ferent methods.

The modified extended tanh-function method:

Implement modified extended tanh-function method on the
Pressure equation of bubbly liquids with examination for viscosity
and heat transfer. So that, according the suggested method, we can
presume the solution of Eq. (2.22) in the following form:

LI ap + a1 ().

=D
PO =35 (2:23)

Subrogate Eq. (2.23) and its derivative into Eq. (2.22) and gath-

ering all term with the same power of ¢’ where (i = —6,...,6) we
get suit of algebraic equations. Disbanding this suit by any

computer program (Mathematica, Maple, Matlab,..., etc), we
obtain:
~ —64 agbf +3c . b ca,
Qf—W 7(]_ a070 a]fa] O(] 16b]7
Oy = -2 3.
So that, the exact traveling wave solutions:
PE) = 2+ (). (2.24)
G .
¢O
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therefor, the solitary traveling wave solutions:
Case 1.1f b < 0:

P(0) = b v=b coth(vV=b &) — a; V—=b tanh(vV=b &),

/ (2.25)
2
ue) = (b’ *gjb coth(vV=b &) — a; V—b tanh(v'—b 5)) . (2.26)
Or
P() = b \gjb tanh(v'=b &) — a;v=b coth(v'=b ¢), (2:27)
2
U = (bl \;Tb tanh(V—b &) — a; V-b coth(vV~b 5)) - (228)
Case 2.If b > 0:
P() = bll;/E cot(vb &) + a, Vb tan(Vb &), (2.29)
2
U = (b‘b‘/E cot(vb &) + a, Vb tan(vh é)) . (2.30)
Or
P() = bll;/E tan(vh ¢) + a; Vb cot(Vb &), (2.31)
2
uQ) = (bll;/gtan(\/l; &) + a1 Vb cot(Vb é)) : (2.32)
Case 3.1f b=0:
P(&) = —bi¢ - . (233)
2
v = (-bie-%). (234

Extended simple equation method:

Implement an extended simple equation method on the Pres-
sure equation of bubbly liquids with examination for viscosity
and heat transfer. So that, according the suggested method, we
can presume the solution of Eq. (2.22) in the following form:

P a_q
P({) =—=+ap+a; ¢(0). 2.35
© 30 +ao + a1 ¢(0) (2.35)
Subrogate Eq. (2.35)its derivative into Eq. (2.22)gathering all
term with the same power of ¢’ where (i = —6,...,6) we get suit

of algebraic equations. Disbanding this suit by any computer pro-
gram (Mathematica, Maple, Matlab,. .., etc), we obtain:
Case I.
22 2 2 Adg
Q=470 +4032",00=0,c=—-421"01,0a_4 :T,ao =ap,a; =0.

So that, the exact traveling wave solutions:

0o
P({) = —F++ ao. 2.36
O=4gt® (2.36)
therefor, the solitary traveling wave solutions:
Case 1. When /. > 0
Adg(1 — pet+0
p = 0l ke ) (2.37)

H (e )

2

_(Aag(1 — pe’=r9)
U = (—#( eoy  t ao) . (2.38)
Case 2. When /. < 0
2ag (1 + pe*<+9)
P(() = ~(Cpeway T (2.39)
(24 (1 + ,ue"‘(“f*C)) 2
uE) = (—M(_ 11 TE) ao) (2.40)
Case II.
8otos (oead — ua?,) —4oz(0?ag —2opa* a3 +at, w?) | 2waap
Q= 3 ,C= > yA=—,
as, as, a1
a.1=40a-1,09 =0p, 1 = 0, o = 0, Oy = —2@3.
So that, the exact traveling wave solutions:
P() =Lt (241)
o0 '
Thus, the solitary traveling wave solutions:
When /1 = 0, we get:
Case 1. When oot > 0
a_i./a
P() = 17“ cot (v/a (¢ + C)) + ao, (2.42)
2
0O = (S (e + O) o) (2.43)
and
a_1./a
P(o) = =2 E tan(y (e + €) + ao, (2.44)
2
a_1./a
U@ = (17“ tan(v/o (¢ +C)) + a0> . (2.45)
Case 2. When oot < 0
p(y) = —4vrH > X coth (m e —I"gc)> +ap, (2.46)
2
uQ) = (—7‘1*1 aV X coth <\/Tu£ T _lnéC)) + ao> ; (2.47)
and
P = = anh( =z = ) + (2.48)
2
uQ) = ("“T amd (1/——oc [ #”(#) + a0> . (2.49)
When o = 0, we get
Case 1. When /. > 0
) a_q (1 _ ‘ue/‘.(':JrC))
P) = ——Gmg— + % (2.50)
aq (1 - pers0 2
v = (SR ) @251)
Case 2. When 7. < 0
a_q (14 uerso
P() = ——— (ﬂe/zéﬂc) )+ a, (2.52)
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2

. a_y (14 pe=o
u@) = <%+ao> : (2.53)
General solutions will be in the follows form:
Case 1. When 4o it > 2> and pt > 0
P() = 201 +a (2.54)
\/4oc,u 27 tan(‘/““ 2 (§+C)> !
2
U 20 fa|. @259
\/4oc,u )ztan<‘/4““ 2 +C)>
and
. 2a.pu
P(0) = = + o, (2.56)
\/4<xlu - A%ot(%(é + C)) .y
2
2a.q.u
u = +a |, (2.57)
\/4oc,u cot(‘/‘”” ’ (i-l—C)) -
Case 2. When 4ot > 2> and pt < 0
P() = a1 _ +ao, (2.58)
%40(/1—1%%(%(54—0) + 2
2
2a.4 [
U _ ta |, (259
\/4oc,u — Ztan (%(é + C)> + 4
and
P() = 2aap +ao, (2.60)
\/4az,u - /lzcot(%(é + C)) +7
2
. 2a.q.pu
U@ = +a | - (2.61)
\/4ocu cot(‘/‘“‘“ 2 +C)> 4
Case III.
4(4aados —3
Q= ( aa‘%z 'M(l)’u7 c=16apum, a =22,
@ H
= O, a, =dap, 0y = —20(3.
So that, the exact traveling wave solutions:
oy .
V() = —~+ a1 ¢(0). 2.62
© 160 19(0) (2.62)
therefor, the solitary traveling wave solutions:
When 2 = 0, we get:
Case 1. When ot > 0
(o) =R corlya(e +O) + o IR ean( om0, (269

U = (%W Cot(y/ER(E + C)) +ay ij—“ tan(aT(E + c>>)27
(2.64)

and

P(() = 1F tan(/aTfi(¢ + C))

+a —VZ” cot(v/aH(E + ), (2.65)
2
0O = (2 an(aie+0) +an i cor(vaiE <)) . (266
Case 2. When ot < 0
p(r) = —BV=EH L coth (\/—c e l"éc >
o V2R u H tanh (\/:rg In(C ))7 (2.67)
U(C) = (w]T coth (\/—OC g 2C)>
2
+ay Lﬂ“l‘ tanh < SaE q:’”(%» , (2.68)
and
P = —hymep ju—oc,u tanh <«/—oc,ug“ F ln(%
fa VAR M H coth <¢—5 :F—l”(zc) (2.69)
ue) = (wlTV tanh («/foc ¢ $ln(TC)>
2
‘a \/ﬂ— coth (Wg ¥ —I";C)D . (2.70)
When o = 0, we get
Case 1. When /. >0
Lo (1 — peHE0) gy )edeto
PO =— LeiE0 T— pere’ (2.71)
. oa (1 — 'uef-((f+c)) a; ie;~(5+c) 2
U@ = ( U eHE0 1= 'uez(:+6)> (2.72)
Case 2. When /. < 0
oay (1+ peds0)  a; ueleto
P(C) = - Mz eiEt0) - 1+ lue;'(@rc) 5 (273)
i} oay (1+ pes9) gy peHeo 2
u) = ( 12 /&0 1+ Mez(<j+C)> (2.74)

General solutions will be in the follows form:
Case 1. When 4ot > 2> and pt > 0
20a,

P() =
\/406/1 —J2tan (\/4o<2;r/‘-2 (& + C)> _
VAo — 72
+2"—L [\/4ac,u—iztan(a'2uA(§+C)) —i], (2.75)
() - 200,

\/4acu—iztan<w(é+®> .y

2
\Jaou— 22
+2"—L {\/4au—xztan (#(HC)) —/1]) . (2.76)
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and
20aq
\/4oc,u cot<\/4““ 4 (f—&-C)) -
a - Vaop—2>
+ﬁ [\/4oc,u—/?cot(f(g+€)) —}v], (2.77)
U= el
\/4oc,u—).2cot(w(g’+C)> -
2
a; 3 40(/.1—/12
+ﬂ {\/40(11—/1 cot(z(éJrC)) —/1]) . (2.78)
Case 2. When 4o i > 2> and pt < 0
P(O) = 20a;
\/4oc,u yi tan<\/4“” ’ *+C)>+A
; VAo -2 A
+2% l\/4auﬁtan(2(§+C)> H]. (2.79)
u() = 2o
\/4oc,u—},2tan<w(§+0)+i
3 2
a | / dop =2 .
+ﬁ{ 4au—/12tan<f(g+C)) +A}) ,  (2.80)
and
P(O) = 20aq
\/4oc,u P cot<\/4”“ (e >+)
41\ Jaop— J2 cot V4M_}2 2.81
+ﬁ op—A°co , (2.81)
() = 2oa,
\/4oc,u cot<‘/4““ 4 (E+C)) + 2
2
a dop— 72 :
+2# \ Ao — cot<f(é+0)+ﬂ]> . (2.82)

New auxiliary equation method:

Implement new auxiliary equation method on the Pressure
equation of bubbly liquids with examination for viscosity and heat
transfer. So that, according the suggested method, we can presume
the solution of Eq. (2.22) in the following form:

P() = a0 +a d®. (2.83)
Subrogate Eq. (2.83)its derivative into Eq. (2.22) and gathering
all term with the same power of ¢' where (i = —6,...,6) we get

suit of algebraic equations. Disbanding this suit by any computer
program (Mathematica, Maple, matlab,...,etc), we obtain:

Case I.
oa
Q=-480,,0=0,a :Tl’ 4G =ap, 0 = e 03 = —20.
So that, the exact traveling wave solution:
P(C):%Mla“ (2.84)
Therefor, the solitary traveling wave solutions:
When (o =0 =0).
%ay —(1+e) £ \/2(e* 5+ 1)
PO ==~ T : (2.85)
. 2
~ foa —(1+e29) £ /2(e* ¢ +1)
u@) = (T T , (2.86)
or
xa —(1+e*F) + VelFe 4 6e2/ 41
P(0) = 5 ta TSIE (2.87)
oa —(1+e2F5) £ v/etFC + 625 +
u) = <ﬁ 1 TSLE (2.88)
When (B =k, =2k, 0 =0).
oa
PO =5t ai [ 1), (2.89)
oa 2
ue) = 7+a1[ t-1]) . (2.90)
When (g = 0).
by = 2 pe %
P({) = 5 @ {e 25}’ (2.91)
o o 1)\?
0 (22 v o 2]V, 202
©=( 25 (2.92)
Case I
Q=4p0, + 4 ,a:&,azo.a =G, @y =0y, 0 -
Broa Bros a » do 0, 1 1, 01 4p
So that, the exact traveling wave solution:
P(0) =ap+ad®. (2.93)
Therefor, the solitary traveling wave solutions:
When (o = 0 =0).
—(1+eP)+./2(e*s 11
PO — o+ ar |- e) V2 D) (2.94)
2
—(1+e2$8) £ \/2(e*Ps + 1
U = <a0+a1 ( el,%_l( ) ) : (2.95)
or
—(1+e2Fe) £ vethc + 662 + 1
P(O)=a0+a ToE (2.96)
2
—(1+e2F¢) £ Veths + 6e2ft + 1
u@) = <a0+a1 (1+e) TSLE s b ) : (2.97)

When (B =k, a =2k, 6 =0).
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P(() = ap +a; [¢° — 1], (2.98)
U@ = (ao +a [e¢ = 1)) (2.99)

When (¢ = 0).
P() = a0 +a {e"‘f fzﬂ} (2.100)

2
UQ = (ao+a s =) . (2.101)
2B
Case 3.
2 p%c 204,
=——————— 4y =40y, 0 = ,o =0,
@auo— ) 0 g

v 2¢p?

> 2(160202 — 8uflo + )’
o3 = — ik

P @3(16020% —8a o+ )

So that, the exact traveling wave solution:
P(0) = ao+2('l;a° d©. (2.102)

therefor, the solitary traveling wave solutions:
When (f* — 06 < 0&0 #0).

- 2 —
P({) = —ao +2_go —(f* — «o)tan (M §>7 (2.103)
>~ a0) ’
uE) = (ao 2% —(f* — ao)tan <(ﬂ é)) ;
B 2
(2.104)
or
— 2 —
P({) = —ao +2—go —(B* - a0)cot ((/Szom) é>7 (2.105)
(B — oo ’
UG = (ao+2”° (5 - ow)cot(ﬁ)i)) -
B 2
(2.106)

When (f* — 006 > 0&a #0).

2 —
P({) = —ao 72—;;0 (B* - oo) tanh (([fzom) é) , (2.107)
>~ o0) ’
uQ) = (ao +% (B* — oo) tanh ((/32 5)) 7
(2.108)
or
2 —
P({) = —ao - 2—[‘;0 (B* — ouo) coth ((ﬁzm) 5) ) (2.109)

2
2_

uE) = (ao —s—% \/ (B* — oa) coth <7”(ﬁzom) 6)) .

When (f + o > 0&0 # 0& 0 = — ).

/2 2 / p2 2
P(C):*ao*% fee tanh( Fre 6)7

2

p 2
or
2 2 2 )
P) =~ -2 VT orh(vﬁ;“ g>

B 2
2
/(B2 2
U(()—(ao-%%\/Mtan( <ﬁ2+u)é>) :
or
2
P({) = —ao —% (B + ocz)cot( (ﬁz %) 5)7

(B2 _ o2
U(C)(—mﬁ% (ﬁz—ocz)tan< (2 “«:))
or
(B2 _ o2
P(C):—ao+2—§° (ﬂz—ocz)cot< <ﬁ2 a)c>,

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)
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When (f?

2 2
P(() = a0+2ﬁ°\/ﬁzocztanh( ﬂz x é),
2
/(2 _ 2
up = (ao+2ﬂ()\//32a2tanh( ﬁz . é)) ;

or

2 a2
P(C)—aﬁ%\/ﬁz—azmth( /32 . é),

— 02> 0&0 =a).

2 _ o2
up = (—ao—%%\/ﬁz—cxzcoth( /32 * E)) :

When (% = 0.0).

20a900(BE+2
P(C)=ao*¢7
B &
2aaoa(ﬁé+2)>2
U =(a———"—=) .
© (“ [
When (f =k, 0 =2k, o0 =0).
_ 20agek¢
P(C)—ao+m7
o 20apek \?
0 = (57 %)
When 28 =0+ 7).
204ay |1 — et
U(C)iaO—F ﬁ 1—0'8%(“70)5 ’
200, |1 — oes®-0% 2
U(g) =10 + ﬁ 1 — O’e%<a70)€ )
or
2009 | o€ > %< 1
P(0) = ag +
© = B |:0€2““ ¢t
204a | oed=9¢ 11 ?
Ul =|ao+
© 0 B |-ceo¢_1

When (-2 = o + 0).

I/(C) =dp +

204 ez“‘ D¢ 4o
B |ede9¢ 1 g

2
U = (‘10 + ) .

204a |29 4 g
B |et-9i g

When (o = 0).

20ayef

P(C):ao+m7

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

o 20apef4\?
U = (ao+—1 +%e,,,5) (2.138)
When (f=a =0 #0).
20a9(0é+2)
P(0) = ag — , 2.139
(0) = a0~ =77 (2139)
20'a0(oc£+2)>2
U = kA Sk a4 2.140
© = (20— 27205 (2140)
Case IV.
_ 20c 726aoaia 0 — i o — 0
—aa%_aagv - a; , Up = Up, U1 = Uy, 41 = U,
ca;2 ca;>
L= o BT T o
2(xa? —oal) 4(xa? —oal)
So that, the exact traveling wave solution:
P() =ao + a4 a0, (2.141)
Thus, the solitary traveling wave solutions:
When (f* — 0.6 < 0&a # 0).
2 2
P(()=ap+a _—ﬁ+ 7<ﬁ 70(6) tan 7(ﬁ 70(0)5 (2.142)
AR o 2 '
(7~ 0) #—29) \T\
o IRV Va1 —(p*— oo
U(g) = (ao +a, |:?+ o tan ) 14 s
(2.143)
or
2 2
o —B \/—(ﬂ —00) \/—(ﬁ - 00)
P(() = a0+ a I:?-‘r 5 cot 5 e,
(2.144)
(F—20) (29 \]\
B —B —(p°— a0 —(p°— oo §
ue = (ao + a4y I:?-l- 5 cot 5 13 .
(2.145)

When (f* — 06 > 0&a # 0).

2 2
P(Q)=ao+a lﬂ(ﬁaw)tanh ((ﬁzw)éﬂ . (2.146)

g

2 2
ue = <a0+a1 I:aﬂ— (5 . %) tanh( (8 5 *) f)]) )
(2.147)
or
P({) = ao
— 2 _
+ay {%ﬁ— (F ~20) coth( ( 3 *0) q)] (2.148)
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ui@) = (ao +a; I:%ﬁ-ﬁ- \/_(B;_ 012) C0t<\/_(ﬁ;_ EXZ) é)]) .

uE) = (ao+a1 {_ﬂ_ (B* - ao) (mg)bz.

o 2
(2.149)
When (f + o2 > 0&0 # 0& 0 = —a).
2 2 / 2 2
P({) = ao + a {g-&- ﬁ(; * tanh (% g)] , (2.150)

2
2 /2
Ui = (ao+a1 |:g+ ﬁa+ i tanh( ﬁ2+ i é)j|) , (2.151)

or
2 2 / 2 2
P()=ao+a, {§+ ﬂ;_a COth( ﬁ;—a i)], (2.152)

2

2
/2 /2
U = (ao-i-lh {5-&- '8;_ ” COth( Fra E)]) . (2.153)

When (2 + 02 < 0&0 # 0& 0 = —a).

P() =ao+a F + \/_ (F + o) tan (\/_ (F + ) q)] :

o 2
(2.154)
2
_ (B2 2 _(R? 2
U(C)-(aoer {£+ (ﬁaJra)tan( (ﬁ2+0€)<>D ;
(2.155)
or
P({)=a

o

u) = <a0+a1 {54— —(ﬁ;+oc2) cot( —(ﬁ;+o<2) é)D .

When (§2

_(R? 2 _(p?
+a; |:§+ (ﬂ +OC>COt“(

—o? <0&0 =0).

—(B%* - o2 —(B% — o2
P(() = ao + a; |:_7ﬂ+ (ﬁa a)tan< (ﬁz a)f)]v

U = (ao +a hﬁ+

or

When (> — o2 > 0&0 = o).

B VB2 o2
- F 5 tanh( 3 e,

P({) = ao +a

2
B — o2 [p2 _ A2
U(C)(ao+a1 {%ﬁﬁ— ﬁa > tanh( /32 x g)j|) ,

or

P({) = ao + a;

2 _ o2 2 _ 2
%ﬁ—k\/ﬁa > coth(\/ﬁ2 z é)}

2

2 a2 2 2
U(C)<a0+a1 |:_T“ﬁ+ ﬁa x coth( ﬁz * fﬂ) )

When (60 < 0&0 # 0& = 0).

(9]
@tanh(“? é)D27
ot (Y2 f)]
a7 )

When (=0, &o = —0).

P(() = ap + a;

u@ = (ao + a

or

P(C) =dop +

ug = <ao +

—(1+e*) £ /2(e*C + 1)

P(() = ao + a; SEE

~(14 %) £ /2@ 1 1)

u) = (ao + aq

il

e2xd — 1
or
14 e%%¢ im
R

(14 €2%) & VAT T 6eE 1 T

2e2u¢

U(E) = <ao + a4,

)

When (o = 0 = 0).

—(1+e2¢) £ \/2(e*PE 1+ 1)

P(() = ap + a; o]

(2.161)

(2.162)

(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)

(2.173)

(2.174)



M.M.A. Khater et al./Results in Physics 8 (2018) 292-303 301

& Z 2 - 2)
—(1 424 £ /2(e*PE 1) P(O) = an +a { (& + ] 2.192
u(e) = (awal e 7 @175 PO=@ra =27 (2:192)
2
. Q) = <ao +a {77“‘5; Z)D . (2.193)
; —(1+e2F8) £ VetFt+ 6626 +1
P(0) =ao+a XA ; (2.176) When (8= ¢ = 0).
) P(O) = a0+ [5 &, (2.194)
_ 2p¢ NI 2p¢E
ui@ = <a0+a1 (1+e )iZeze/ré roenl > : (2.177) 2
U© = (a0+a [5¢]) (2.195)
When (f* = 0.0)
s When (=o =0)
P(0) = a0+ a [M} : (2.178) 9
Be P({) =ap +a; —J, (2.196)
2 2
uE) = (ao+a1 {w}) : (2.179) o\ 2
B¢ ue) = <ao +a; [G§D . (2.197)
When (f =k, o0 =2k, 0 =0). When (§ =0 )
en (f=0,a=0).
P({) = ap +ay [eF° - 1], (2.180) e C
P(0) =ap + a4 {tan( ’2 )} (2.198)
U@ = (a0 + ar [e¢ —1])*. (2.181)
2
When (§ =k, 0 =2k, o =0). uQ) = (ao +a {tan <a£2+ C)D . (2.199)
eke
P(0) = a0+ {] _ eki}’ (2.182) When (¢ = 0).
) 7 — pe_ % 2200
25a ok 2 P({) = a0+ a; {e o) } (2.200)
uE) = <a0+ 7 0 L —e"‘fD (2.183) B
2
When (26 = o + o). U = (ao +a {eﬁf 7%}) , (2.201)
) 1 — oexx0)
P({) = ao + a m} (2.184)
X o Note that:
1 — gehxo)k All the obtained results have been checked with Maple 2017 by
U() = (o +ai 1 _ geba—o) ) (2.185) putting them back into the original equation and found correct.
or Discuss the results
ae*0t 1
P() =ao +a TR , (2.186) In our discussion, we will concentrate on three items which are:
0—0)¢ 1
1. Methods (extended tanh-function method, extended simple
| 2 equation method and new auxiliary equation method).
=0+ |—F—7 - . 2. Results that obtained by the methods that pointed above.
u@ o 1 (2.187) Its that obtained by th hods that pointed ab
—oe T 3. Our results and an other results that obtained by different
When (=28 = o+ o). researchers who apply different methods on this model.
lo—0)¢ . . . . . . .
P() = ao + ay Ej v +a 7 (2.188) NOYV, we explain and discuss previous items in details in the
ei-0)¢ | g following steps:
) 2 1. Methods (extended tanh-function method, extended simple
Lomo)e hods ( ded h-fi i hod ded simpl
U =(ap+a |52 (2.189) equation method and new auxiliary equation method). we can
e 9+ g see each of these methods assumed the exact solution form
When (o = 0) for each model
m
il i i
P(C) =ay+ ﬁe 1, (2190) aO"FZ (ax ¢(C)+bl d’ (O)v
T+ger P() = Ny (3.1)
i i naid'(0),
20a ef¢ N aif o
ui@ = (ao + B ‘ {1 f%e/;;}> : (2.191) Zx:—N i

where ¢({), f({) satisfy the following second order non linear
When (=0 =0 #0). ordinary differential equation(LODE) in the following order:
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¢'(0) = b+ ¢*(0),
¢'(0) = o+ 20(0) + e (0), (3.2)
f’(C) :%(O{Gfﬂ‘:) +p+ aaf(’;)).

With simple precision, we can conclude that each of three meth-
ods is based on Riccati equation and also we can get equivalent
of three methods and that happened when:

e [p(0)=dV,p=0,6=1,b=0a], so that extended tanh-
function method is equal to new auxiliary equation method.

e [¢(0)=dV, p=1, 0 =y, so that extended simple equation
method is equal to new auxiliary equation method.

However, this equivalent between three methods but we can say
that both of extended tanh-function method and extended simple
equation method are special cases of our new auxiliary equation
method and that’s because of the results that obtained by new aux-
iliary equation method can cover all results obtained by these two
methods and not just like that but it gives also the other form of
solutions such that it is one of the few methods that obtained a
very large number of solutions for every model.
We can also see the superiority of our new auxiliary equation
method on Riccati method itself and many of methods such that:
We obtain (6) exact and solitary traveling wave solutions by
applying (extended tanh-function method), (25) exact and soli-
tary traveling wave solutions by applying (extended simple equa-
tion method), (61) exact and solitary traveling wave solutions by
our new auxiliary equation (Khater method). By applying these
methods on pressure equation of bubbly liquids with examination
for viscosity and heat transfer that makes the study of the
physical properties of this model is very comfortable, easy and
interesting.
2. Results that obtained by the methods that pointed above.

In this part of our research, we will show some of equivalent

between our solutions in the following steps:

e Eqgs. (2.25), (2.27) are equal to Egs. (2.67), (2.69) when:
(b1 =—-a1,a=C=1, u=-b).

e Egs. (2.29), (2.31) are equal to Egs. (2.63), (2.65) when:
(@ =by,b=p,aa=1,C=0).

e Egs. (2.42), (2.44) are equal to Egs. (2.103), (2.105) when:
(C=0,p=+/a(dpn—o0)=4a).

e Eqgs. (2.46), (2.48) are equal to Egs. (2.107), (2.109) when:
(C=1,a=p,a; =2ap).

We showed some few of equivalence between our solutions and

you can complete it by the same manner. Using this manner helps

us to see how our new auxiliary equation method covered both of

extended tanh-function method and extended simple equation

method.

3. Our results and an other results that obtained by different
researchers who apply different methods on this model:

o Firstly: we Will compare our solutions with that obtained by

Yun-Mei Zhao who used the F-expansion method, and the
extended version of F-expansion method [27]:
In this research the author try to find the balance of Eq. (11,
[27]) and he obtained it (n =2), however the probability of
finding the balance of this equation is impossible such that
the mathematical formula of the balance is:

du d'u\’
— 14 —
D(dg") _m+q,D<u (dg’q> ) =mp+s(m+q).

That thing make us think again how the author get the balance
between ¢¢"&¢?> = n+n+2=2n. So that, this relation is
wrong. and even if he take the balance between ¢ ¢" & ¢ =
n+n-+2=2(n+1). So that, this relation is wrong too. For this
reason, we strongly recommend the author have to think again
of this research.

e Secondly: We will compare our solutions with that obtained

by Yinghui He, Shaolin Li, and Yao Long who used the Mul-
tiple (G'/G)-Expansion Method [28]:
In this research the author try to find the balance of Eq. (14,
[28]) which is equal to Eq. (11, [24]) and they obtained the
value of the balance (n=1). So that, for the same equation
two different balance once equal one and another one equal
one. As we show that is the mistake in calculating the value
of the balance that make all of these papers are wrong. For
this reason, we strongly recommend the author have to
think again of this research.

e Thirdly: We will compare our solutions with that obtained
by Bin He, Qing Meng, Yao Long who used the bifurcation
method of dynamical systems and the method of phase por-
traits analysis [31] in the following steps:(a) Eq. (2.49) is
equal to Eq. (16, [31]) when:

w=/—0l,a=—-2a00a_1wtanh(w{), a_
_ a(%lu_d)M)ﬂO:\/Tﬁvr

(b) Eq. (2.167) is equal to Eq. (18, [31]) when:
20 =+v-00,0=-4ddotanhw?{), a;

_ O (1 — dm) Clo:\/:¢~~

o

Conclusion

In this research, we succeed in apply three different methods on
one of the most important model in fluid mechanic which is pres-
sure equation of bubbly liquids with examination for viscosity and
heat transfer which also has the name the Kudryashov-
Sinelshchikov equation. That equation which describe the pressure
waves in the liquid with gas bubbles taking into account the heat
transfer and viscosity. We get many forms of exact and solitary
traveling wave solutions. we present a good comparison between
the methods and results. All of these improve, how our new auxil-
iary equation method is one of the most powerful, direct, accuracy,
efficiency, versatility method in the field of nonlinear partial differ-
ential equation.
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