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ABSTRACT

Relationships Among Learning Algorithms and Tasks

Jun won Lee

Department of Computer Science

Doctor of Philosophy

Metalearning aims to obtain knowledge of the relationship between the mechanism
of learning and the concrete contexts in which that mechanisms is applicable. As new
mechanisms of learning are continually added to the pool of learning algorithms, the chances
of encountering behavior similarity among algorithms are increased. Understanding the
relationships among algorithms and the interactions between algorithms and tasks help to
narrow down the space of algorithms to search for a given learning task. In addition, this
process helps to disclose factors contributing to the similar behavior of different algorithms.

We first study general characteristics of learning tasks and their correlation with the
performance of algorithms, isolating two metafeatures whose values are fairly distinguishable
between easy and hard tasks. We then devise a new metafeature that measures the difficulty
of a learning task that is independent of the performance of learning algorithms on it. Build-
ing on these preliminary results, we then investigate more formally how we might measure
the behavior of algorithms at a finer grained level than a simple dichotomy between easy
and hard tasks. We prove that, among all many possible candidates, the Classifier Output
Difference (COD) measure is the only one possessing the properties of a metric necessary
for further use in our proposed behavior-based clustering of learning algorithms. Finally, we
cluster 21 algorithms based on COD and show the value of the clustering in 1) highlighting
interesting behavior similarity among algorithms, which leads us to a thorough comparison
of Naive Bayes and Radial Basis Function Network learning, and 2) designing more accurate
algorithm selection models, by predicting clusters rather than individual algorithms.

Keywords: MetaLearning, Classifier Output Difference, Nav̈ıe Bayes, Radial Basis Function
Network, Clustering, Algorithm Selection Model
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Chapter 1

Introduction

According to the No Free Lunch Theorem [85, 86], it is impossible to build an algo-

rithm that performs optimally for all tasks. As we carry out machine learning experiments,

we find, as expected, that each learning algorithm has its own strengths and weaknesses.1

Single-layer neural networks, for example, are known to be weak on non-linearly-separable

data, while Fisher’s linear discriminants perform poorly on data where target values have

the same mean. Similarly, decision trees require deep trees for non-linearly-separable data,

and they are known to be inferior to multilayer neural networks on continuous data. Over-

all, however, our understanding and interpretation of behaviors on many algorithms remain

limited.

This lack of knowledge of the behavior of algorithms prevents us from the optimal

use among available algorithms. Even though some of the weakness are known, the inter-

action between the algorithms’ mechanisms and the characteristics of learning tasks that

are relevant to learning is not fully understood.2 This is mainly due to the fact that our

efforts tend to focus on designing new algorithms or extensions to existing algorithms that

address known limitations. Yet, understanding algorithms and learning tasks, as well as

similarity among algorithms in terms of behavior, has a profound impact on both experts

and non-experts. Since new algorithms are continually developed and commercialized over

time, the pool of suitable algorithms for any specific task keeps growing. This increases the

1To avoid redundancy and confusion, the term learning algorithm, or simply algorithm, will be understood
to mean classification learning algorithm throughout this document.

2The term learning task, or simply task will be understood to mean the problem to be solve by a learning
algorithm. Data or datasets are physical representations of an associated task.

1



chances of finding good algorithm for learning tasks, but it also requires practitioners to

spend additional time to pinpoint such an optimal algorithm for their tasks. This is known

as the algorithm selection problem.

The metalearning community has made some strides in this area, particularly in at-

tempting to build automatic systems (i.e., algorithm selection models) that predict the best

algorithm for a given task. Despite some progress, much remains to be done. This disserta-

tion is another step in that direction, where we focus on gaining insight into the behavior of

learning algorithms, discovering similarity among them, and leveraging such similarity to im-

prove the accuracy of the resulting algorithm selection model. The dissertation is organized

as follows.

The characterization of the training examples at the metalevel (i.e., base-level

datasets) plays a crucial role in metalearning. In particular, the metafeatures used must

have some predictive power.3 Selecting appropriate features is by no means trivial. As

pointed out by Rice, “The determination of the best (or even good) features is one of the

most important, yet nebulous, aspects of the algorithm selection problem” [63]. Logically, we

began our investigation of metalearning by revisiting most of the metafeatures typically used

in the context of metalearning for model selection. Using visual analysis and computational

complexity considerations, we found four metafeatures whose values are directly relevant

to certain ranges of predictive accuracy for seven learning algorithms on 135 UCI datasets.

The results are presented in Chapter 3 (published in the Proceedings of the International

Conference on Machine Learning and Applications, 2008).

While general conclusions could not be reached, a closer examination between easy

and hard tasks allowed us to isolate two metafeatures whose values are fairly distinguishable.

This, in turn, caused us to devise a new metafeature whose purpose is to measure the

difficulty of a learning task that is independent of the performance of learning algorithms

on it. These results and our new metafeature are presented in Chapter 4 (published in the

3While a feature in a base-level dataset represents some aspect of the associated learning task, a metafea-
ture represents a general characteristic applicable across learning tasks.
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Proceedings of the International Conference on Machine Learning and Applications, 2008).

That study also led us to investigate more formally how we might measure the behavior of

algorithms at a finer grained level than a simple dichotomy between easy and hard tasks.

Rather we wanted a measure of similarity in behavior for learning algorithms. We turned

our attention to the Classifier Output Difference (COD) measure.

Following the very preliminary but promising results of Chapter 4, we performed a

formal review and analysis of most popular measures of diversity for learning algorithms,

and proved that only COD had the properties of a metric. This provided us the necessary

theoretical backing to perform clustering learning algorithm to understand the diversity of

learning algorithms. We thus produced a clustering of 21 learning algorithms, showed how

it differed significantly from a clustering based on accuracy, and how it can be used to

highlight interesting, sometimes unexpected, similarities among learning algorithms. Details

are in Chapter 5 (to appear in Intelligent Data Analysis Journal, 2011).

In Chapter 6 (submitted to Machine Learning Journal, 2011), we illustrate one of

the side-effects of our clustering of learning algorithms by providing a thorough comparison

of two “unexpectedly” close learning algorithms: Naive Bayes and Radial Basis Function

Network. Using both analytical tools and empirical results, we show that there is a significant

amount of similarity between their Weka implementations for a broad range of datasets for

small numbers of kernels. We further show that the Weka’s implementations are reasonable,

and that a larger number of kernels is typically not useful. Hence, the observed similarity,

when applicable, is of practical import. In particular, since radial basis function network

learning is significantly more computationally expensive than Naive Bayes learning, we use

metalearning to build a selection model capable of accurately discriminating between the

two algorithms. By doing this, extra computation is only incurred when it is guaranteed to

produce significant improvement in predictive accuracy.

In Chapter 7 (submitted to International conference on Machine Learning, 2011), we

illustrate another one of the side-effects of our clustering of learning algorithms by showing

3



how traditional algorithm selection can be effectively replaced by cluster selection. Not only

are the results as good as, or better than those obtained by algorithm selection methods,

but the approach lends itself more naturally to the online addition of new algorithms, thus

opening the way for incremental metalearning.

4



Chapter 2

Thesis Statement

In order to gain insight into the behavior of algorithms and their interaction with

tasks, we employed a metalearning technique. This reveals the relationship of different but

behaviorally-similar algorithms and contributes to build an alternative algorithm selection

model.
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Chapter 3

Predicting Algorithm Accuracy with a Small Set of Effective Meta-Features

Abstract

We revisit 26 meta-features typically used in the context of meta-learning for model selection.

Using visual analysis and computational complexity considerations, we find 4 meta-features

whose values are directly relevant to certain ranges of predictive accuracy for 7 learning

algorithms on 135 UCI datasets. Discretization of these 4 meta-features based on thresholds

derived from our analysis significantly boosts the accuracy of the meta-level classification

task.
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3.1 Introduction

The No Free Lunch theorem states that there is no single superior learning algorithm that

performs best across all learning tasks [85, 86]. As a consequence, it becomes important for

researchers and practitioners to discover and implement mechanisms that may determine

which machine learning algorithms perform best on which tasks. For over a decade, meta-

learning researchers have put a significant amount of effort in finding functions mapping

learning tasks to their corresponding optimal machine learning algorithm. In the StatLog

project and its successor, the METAL project, a relatively large number of meta-features

were devised in the hope that they (or at least some of them) might reflect some hidden

learning task properties related to the performance of specific machine learning algorithms.

These projects were successful in that researchers discovered some approximate relationships

between meta-features and which machine learning algorithms were likely to perform best on

the associated learning tasks. However, most meta-features were generated in an ad hoc way,

without any evaluation of their relevance to the performance of individual machine learning

algorithms. The actual properties and usefulness of these features remain largely unknown.

In this paper, we report on our analysis of the usefulness and complexity of 26 of

the most popular meta-features. The result of such an analysis is critical for at least two

important reasons:

1. Generating meta-features is often non-trivial and may be as expensive as just running a

machine learning algorithm, which would clearly defeat the purpose since meta-features

are meant to serve as surrogates for algorithm performance results; and

2. Information on meta-features that are highly relevant to the predictive accuracy of

specific learning algorithms can provide valuable insight into these learning algorithms

and relationships among them.

We examine each meta-feature one by one according to its relevance to the predictive accu-

racy of 7 well-known learning algorithms over 135 UCI datasets. Visual analysis reveals 4

7



meta-features with acceptable computational complexity and strong correlation with learning

algorithm accuracy. We derive simple binary meta-features from these original meta-features

and show that:

1. Random but controlled artificial datasets explicitly designed to satisfy the conditions

embedded in the converted meta-features do indeed give rise to models with the ex-

pected behavior, and

2. When used for algorithm selection at the meta-level, where one learns to predict algo-

rithm accuracy from learning task meta-features, the converted meta-features give rise

to meta-models with significantly higher accuracy.

The remainder of the paper is organized as follows. In Section 2, we briefly review some

related work. In Section 3, we formulate our target meta-learning problem and describe our

experimental procedure. Section 4 shows how we discover our small subset of useful and

efficient meta-features. Section 5 contains experimental results and section 6 concludes the

paper.

3.2 Related Work

Much work has been done in designing and evaluating meta-features in meta-learning re-

search, generally focusing on the algorithm selection task. The first such results were gen-

erated as part of the European StatLog project [51], which identified 16 meta-features and

used them in an attempt “to relate performance of algorithms to characteristics or mea-

sures of classification dataset.” [17]. The European METAL project [50] extended StatLog

to cover more learning algorithms and more datasets, and investigated a number of other

meta-features (e.g., [9, 56, 59]). Both projects sought to map meta-features to either a best

performing algorithm or to a ranking of algorithms [18]. Neither StatLog nor METAL spent

much time analyzing the individual relevance of the meta-features they used. A very recent

survey offers both a nice review as well as an unifying framework for meta-learning, as well

8



as an explicit recognition that one must be weary of generating meta-features that are more

costly to compute than it would be to follow a brute force approach wherein one runs the

target learning algorithms and selects the best one [70].

Interestingly, most of the work in meta-learning has focused on algorithm selection or

ranking. Comparatively little has been done in trying to predict algorithm performance, as

we do here. Notable exceptions include the early (somewhat unsuccessful, at least in terms

of performance) attempt of [29], as well as more recent and more successful results in [38, 73].

While their focus was on regression models using raw meta-features, we discretize accuracy

leading to a classification model and spend time analyzing each meta-feature in detail.

One attempt at gaining some insight into the values of meta-features relative to

algorithm performance is in [69]. This paper shows the result of clustering 57 problems

based on 21 meta-features (statistical and information theoretic measures over the datasets)

using self-organizing maps. Overlaid on each cluster is the relative performance of 6 learning

algorithms. The authors then draw simple conclusions such as, cluster Cx contains tasks

that seem to have these characteristics and are best solved by these learning algorithms.

Unfortunately, the performance of the algorithms is averaged over the cluster, yet there is

huge variance in the values. The same is true of the input features. Hence, although this

seems like a good idea, the results are not very reliable and much more data and analysis

would be required to get to something more actionable.

Finally, we mention the recent proposal of the design, implementation and mainte-

nance of experiment databases [14]. Such databases would be public and serve as repository

for machine learning experiments so that a complete account of experimental procedures

and parameters would be available to the community. Although not directly related to the

work here, the existence of such a database would greatly enhance our ability to conduct

meaningful analyses of learning at the meta-level.
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3.3 Problem Formulation

Our main objective is to find important meta-features among candidate meta-features. Here,

important meta-features mean features demonstrating high relevance to predictive accuracy

for some (set of) machine learning algorithm(s). The problem can be formulated as follows.

Given:

a set of datasets D = {d1, . . . , d|D|}

a set of learning algorithms M = {m1, . . . ,m|M |}

a set of meta-features F = {f1, . . . , f|F |}

Find:

F
′ ⊆ F s.t. ∀k ∈M,mk(G(F

′
)) > mk(F )

with G(F
′
) = g1(f

′
1)∪. . .∪g|F ′ |(f

′

|F ′ |)∪(F−F ′), where each gi effects some transformation on

its input, and mk(F ) is the accuracy of mk on the meta-dataset defined by the meta-features

in F .

As we started our investigation, we thought we might be able to find direct linear

relationships between meta-features and accuracy, i.e., the above would hold when gi is the

identity function (i.e., no transformation). However, no such relationship was found. As

we will show in the next section, it is possible to find step-like relationships so that the

gi’s may be viewed as thresholding functions. Hence, for a meta-feature f
′
i , gi(f

′
i ) returns

categorical values, each of which represents some interval of predictive accuracy for some

learning algorithm mk. For example, as we will see in Section 4, the g function for mean

mutual information returns A when its corresponding input is greater than or equal to 0.18

and B otherwise. A and B are the so-called converted meta-features.

For our experimentation, we must decide on the sets D, M , and F . The set M con-

sists of seven well-known learning algorithms, each representing general classes of learning

paradigms (e.g., rule-based learning, neural learning, probabilistic learning, etc.): C4.5 deci-

sion tree (DT), multilayer perceptron (MLP), support vector machine (SVM), naive Bayes
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(NB), K-nearest neighbor (KNN), radial basis function network (RBF), and RIPPER. We

use the default Weka implementation of all of these algorithms. The set F contains 26 meta-

features that are mostly derived from the StatLog project, the METAL project, and [2].

They include simple measures, statistical measures, and information theoretical measures.

Statistical measures are applicable to continuous attributes while information theoretical

measures are suitable for categorical attributes. We do not list all 26 features here as many

will be discussed in the next section. Finally, the set D consists of 135 data sets from the UCI

Machine Learning Repository [3], which cover most of the classification datasets currently

available.

After selecting the 135 UCI datasets, we compute the values of the meta-features in

F , together with the 10-fold cross-validation accuracy of the 7 learning algorithms in M ,

for each dataset. We then construct a meta-dataset where each row i consists of the values

derived for each dataset i. Visual analysis leads to the identification of the subset F
′

of

meta-features and the design of the associated g functions. Finally, we build and compare

the performance of meta-models obtained from the meta-features in F
′

and F , using the

algorithms in M as meta-learners.

3.4 Meta-feature Subset Selection

Upon visual analysis of the scatterplots, we find that a significant number of individual meta-

features are very weakly related to the predictive accuracy of learning algorithm. We are

aware that the combination of meta-features can be correlated with the predictive accuracy

of some learning algorithm even when the individual meta-features do not reveal it. In this

sense, our attempt at looking at individual meta-feature can be limited, but it turns out

that even individual examination is still worthwhile.

Figure 3.1 shows a few representative meta-features that are seemingly unrelated

to accuracy. For the mean class entropy plot on the top left, all points are spread fairly

uniformly across the accuracy of neural network. Even though lots of data points whose
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Figure 3.1: Random Meta-Features

class entropy is between 1 and 3 are clustered in the 50% to 100% accuracy region, there is

no clear boundary to draw to separate them. A similar situation may be observed for the

other plots.

Although most meta-features exhibit patterns similar to the above across most or all

learning algorithms, 4 meta-features stand out and reveal a relatively strong relation with

the predictive accuracy of all learning algorithms. A few representative plots are shown in

Figure 3.2.1

Solid dots indicate datasets whose accuracy is in the range of specific values of as-

sociated meta-feature. Regarding the correlation coefficient plot, located at the top left, it

is the mean correlation coefficient for any two continuous attributes. Datasets whose cor-

relation coefficient is greater than 0.101 tend to have accuracies over 60% with MLP. We

1All 26 meta-features on all algorithms are available at http://dml.cs.byu.edu//wiki//index.php//Jun won lee//icmla08.pdf.
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Figure 3.2: Accuracy-related Meta-Features

obtained very similar patterns across all learning algorithms. On the right hand side is the

mean mutual information meta-feature with C4.5. It is calculated as the mean of the mutual

information for each discrete attribute and target class. Datasets whose mutual information

with target is above 0.18 tend to have accuracies over 61.5% with C4.5. For the median

entropy of attribute at the bottom left, its value is acquired by taking a median of entropies

of all attributes. Datasets whose median entropy is less than or equal to 1.28 tend to have

accuracies above 60% with MLP. Finally, the χ2 meta-feature is shown on the bottom right.

Its value is calculated by averaging across the χ2 of discrete attributes and target class. Data

sets having a value above 52 tend to have accuracies above 84.5% with SVM. This threshold

is valid across all seven learning algorithms.

From each of these four meta-features, we create converted meta-values: the one

above threshold and the one below threshold. Before verifying the effect of these converted

13



meta-features in terms of the improvement in meta-learning, we note that the complexity

of mCC is the same as ID3, while the other meta-features are cheaper. If the choice of

experimental learning algorithm is ID3, then mCC may not be the best choice. However,

the other selected meta-features are effective in terms of time complexity and relevance to

predictive accuracy. As many learning algorithms are also far more costly than ID3, our set

of meta-features, including mCC, remains generally widely applicable.

3.5 Experimental Results

We have identified four meta-features that demonstrate a strong relation with learning al-

gorithms and converted each of them to a corresponding thresholded meta-feature based on

the distribution with accuracy values. In this section, we investigate the impact of each

converted meta-features and how these are related with meta-learning.

3.5.1 Influence of Converted Meta-features

In Section 4, we created fixed thresholds for specific learning algorithms to generate the

converted meta-features. By doing this, we are able to distinguish what may be viewed as

good datasets (i.e., those on which learning algorithms perform well) from bad datasets,

based on the range of meta-feature values. However, as we mentioned earlier, there are still

chances that the derived thresholds may not hold on some unseen datasets. Therefore, it is

necessary to see the degree of robustness of our suggested thresholds.

We build 100 synthetic datasets with converted meta-feature constraints and test

them over diverse learning algorithms. The experiment provides a direct relationship between

converted meta-features and “good” datasets. Our synthetic datasets are generated by a 48-

bit seed random number generator, which uses a linear congruential formula. Initially, we

randomly set the number of attributes, the number of instances, and the number of target

classes. Then, for each attribute, we generate its corresponding data instances randomly.

These random values are repeatedly re-generated until the conditions on the selected meta-
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features are satisfied. Because it is very hard to generate synthetic datasets randomly which

satisfy any condition on mχ2, it was left out of the experiment. Hence, the results are

for datasets that satisfy conditions on only the other three converted meta-features. For

our experiment, the average number of attributes is 7 and the average number of instances

is 53.25. Figure 3.3 shows the box-whisker-plot of the average performances of 8 learning

algorithms on these datasets.2 All predictive accuracies are obtained with 10-fold cross-

validation.

Figure 3.3: Performance of Synthetic Datasets

About 89% predictive accuracy on average is obtained by TREES, NB, and RBF,

while about 86% predictive accuracy is obtained by MLP, SVM, and KNN. As for C4.5

and RIP(PER), their average accuracies are around 75% and their standard deviations are

relatively larger than the other models. However, even the minimum accuracies for C4.5 and

RIP are about 60%, and their first quartiles are 69% and 75%, respectively. This seems to

suggest that datasets near a minimum data point are very rare. Hence, Figure 3.3 demon-

2The added learner TREES is a decision tree learning algorithm with NB classifiers at the leaves.
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strates that our thresholds for converted meta-features are indicative of expected positive

performance, i.e., accuracy above the threshold (here 62%) for the selected algorithms.

3.5.2 Meta-learning

We here turn to the performance of our converted meta-features at the meta-level. In

particular, we test the effect of the converted meta-features by comparing the performance

of predicting accuracy for each meta-learning algorithm from a meta-dataset represented

with and without the converted meta-features (see Section 3). In addition, to create a meta-

level classification problem, we discretize the target class, i.e., the predictive accuracy of base

learners, into either 2 values (above 80%, below 80%) or 3 values (above 80%, between 60%

and 80%, below 60%). The results are in Figure 3.4.

Figure 3.4: Meta-Model Accuracy Improvement

(a) in 3 classes (b) in 2 classes

The x-axis corresponds to each of the seven learning algorithms. The y-axis indicates

the average improvement in accuracy from a meta-feature set including no converted meta-

features to a meta-feature set including the corresponding converted meta-feature. It seems

that all converted meta-features induce some improvement across most learning algorithms,

with only small losses for MLP, SVM and RBF. The mCC meta-feature shows relatively
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weak improvement (up to only about 1.1%) compared to the other meta-features. The best

result are obtained with DT for two-class discretization, where the accuracy is improved

by about 9%. These results strongly suggest that the use of our 4 converted meta-features

generally improves the ability to predict (at the meta-level) the predictive accuracy of diverse

learning algorithms.

3.6 Conclusion and Future Work

In this paper, we evaluate well known meta-features mainly derived from the METAL project

and [2]. By examining a list of meta-features, we distinguished four that are most relevant in

terms of the relation with the predictive accuracy of various learning algorithms. According

to the experimental results, mean correlation coefficient of attributes, median entropy of

attributes, mean χ2 of attributes, and mutual information between attributes and target

class turn out to be meta-features that are directly relevant with high performance of our

seven test-bed learning algorithms. With those meta-features, we are able to formulate

converted meta-features to boost meta-learning performance.

Clearly, the combination of several meta-features can be highly relevant to the pre-

dictive accuracy even when single meta-features do not reveal any relevancy, but identifying

these meta-features (especially, when the number of meta-features is large) is costly. Finding

a way to do this to see the impact of several combinations of meta-features is left as future

work. Additionally, there are more meta-features than those studied here. We will further

investigate the relevance of those other meta-features.
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Chapter 4

New Insights Into Learning Algorithms and Datasets

Abstract

We report on three distinct experiments that provide new valuable insights into learning

algorithms and datasets. We first describe two effective meta-features that significantly

impact the predictive accuracy of a broad range of learning algorithms. We then introduce

a new efficient meta-feature that measures the degree of hardness (or difficulty) of datasets

and show that it is highly linearly correlated with predictive accuracy. Finally, we use the

notion of COD[58] that measures the (dis)similarity of behaviors between algorithms to

cluster learning algorithms and show that learning algorithms from the same model class do

not necessarily exhibit similar behaviors.
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4.1 Introduction

At the base level, (supervised) machine learning is concerned with approximating a function

between input and output from a set of training examples. It is well known that each learning

algorithm produces a hypothesis based on its underlying structural and algorithmic biases.

For example, a decision tree learning algorithm adopts some variant of information gain and

a tree structure to build a hypothesis, while a neural network learning algorithm constructs

hypotheses based on non-linear relationships among inputs and a network-like structure.

According to the No Free Lunch Theorems, each learning algorithm can learn effectively

over only a limited number of tasks [66, 86, 85]. In other words, each learning algorithm is

inherently “optimized” for a specific subset of learning tasks.

While the machine learning community has put significant efforts into building ef-

fective learning algorithms tailored to their specific problems, our understanding and inter-

pretation of behaviors among these learning algorithms are still very limited. To address

this shortcoming, several researchers have focused their attention on metalearning, where

they study “methods that exploit metaknowledge to obtain efficient models and solutions by

adapting machine learning and data mining processes” [16]. In other words, they seek con-

nections between learning tasks and learning algorithms, e.g., which learning algorithms are

superior on which learning tasks (algorithm selection problem), how to learn a new problem

using prior knowledge of similar tasks (transfer learning), etc. This meta-level knowledge

increases our understanding of the nature of base-level learning algorithms and in turn our

ability to apply machine learning more effectively and extensively.

In this paper, we add to the existing body of metaknowledge by answering the fol-

lowing three questions:

• What typical properties of datasets have the strongest impact on learning?

• What effective measurement on data can capture the difficulty of learning?

19



• Which learning algorithms behave the same or differently, and how similar (or dissim-

ilar) are they?

We focus our attention on those datasets that correspond to classification tasks in the UCI

repository [3]. The remainder of the paper is organized as follows. In Section 2, we briefly

review some related work. In Section 3, we highlight metafeatures that are significantly

correlated to the accuracy of learning algorithms. Section 4 describes one specific metafeature

we call hardness, which measures the degree of difficulty of learning. In section 5, we use

clustering to group a large number of learning algorithms based on COD in two ways, which

capture the degree of behavioral similarity and dissimilarity, respectively. Finally, section 6

concludes the paper and provides directions for future work.

4.2 Related Work

This section briefly reviews the related work on meta-learning that focused on understanding

algorithm and data, and differentiates this work from others studying related concepts.

A significant amount of work has been done in designing and evaluating meta-features

in meta-learning research, generally focusing on the algorithm selection task. The first such

results were generated as part of the European StatLog project [51], which identified 16 meta-

features and used them in an attempt “to relate performance of algorithms to characteristics

or measures of classification dataset.” [17]. The European METAL project [50] extended

StatLog to cover more learning algorithms and more datasets, and investigated a number of

other meta-features (e.g., [9, 56, 59]). Both projects sought to map meta-features to either a

best performing algorithm or to a ranking of algorithms [18]. Neither StatLog nor METAL

spent much time analyzing the individual relevance of the meta-features they used.

One attempt at gaining some insight into the values of meta-features relative to

algorithm performance is in [69]. This paper shows the result of clustering 57 problems

based on 21 meta-features (statistical and information theoretic measures over the datasets)

using self-organizing maps. Overlaid on each cluster is the relative performance of 6 learning
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algorithms. The authors then draw simple conclusions such as, cluster Cx contains tasks

that seem to have these characteristics and are best solved by these learning algorithms.

Unfortunately, the performance of the algorithms is averaged over the cluster, yet there is

huge variance in the values. The same is true of the input features. Hence, although this

seems like a good idea, the results are not very reliable and much more data and analysis

would be required to get to something more actionable.

More recently, results were reported on clustering algorithms based on the similarity of

correlation distributions of pairs of algorithms across many datasets [39]. A characterization

of each cluster is derived from meta-features obtained from the datasets. This approach

is somewhat similar to ours. It does differ, however, in that the clustered algorithms are

homogeneous, i.e., they come from the same model class (e.g., they generate a list of six

neural-based algorithms that have different input parameters, number of hidden nodes and

internal layers). The clustering presented here covers 26 heterogeneous learning algorithms,

which reveals unexpected results about behavioral similarity and dissimilarity across model

classes.

4.3 A Pair of Dataset Properties That Strongly Impact Learning

Among the UCI classification tasks, there are some tasks that appear relatively easy to

learn, in the sense that most learning algorithms produce high predictive accuracies (above

90%) on them. These easy datasets include the well-known Lenses, Congressional Voting

Records, Zoo and Iris classification tasks. On the other hand, there also appear to be tasks

on which most learning algorithms suffer from poor predictive performance (below 50%).

These hard datasets include the Contraceptive Method Choice, Abalone and Teaching

Assistant Evaluation classification tasks. We suspect that this bi-modality is due to

some hidden properties or internal structures of the data.

In an earlier set of experiments, we considered 26 of the most popular statistical and

information-theoretic metafeatures and examined them in turn to see whether any of them
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exhibited significant differences between easy and hard tasks. Although no obvious pattern

could be found for most of these, we were able to isolate two metafeatures whose values are

fairly distinguishable between easy and hard groups.1 These metafeatures are mean mutual

information of attributes and target (mMI) and mean attribute entropy (maEnt).

Table 4.1 shows the values of mMI and maEnt on some of the easy and hard tasks listed

above.

Table 4.1: Value of mMI and maEnt for Some Typical Easy and Hard Learning Tasks

Task mMI maEnt

Easy
Lenses 0.36 0.98
Congress. Voting Records 0.34 0.72
Zoo 0.45 1.14

Hard
Contra. Method Choice 0.03 1.51
Teaching Assist. Evaluation 0.06 1.53

The values in Table 4.1 suggest that easy tasks have relatively low maEnt and rela-

tively high mMI. Intuitively, this makes sense. Low maEnt indicates that associated values

are relatively well discerned and high mMI shows that the attributes are highly dependent

with on the target class. Datasets that satisfy these conditions can indeed be be expected

to be easier to learn. The opposite is true of hard tasks. If maEnt is high, then attribute

values are not well discerned, and low mMI indicates that attributes and target class are

fairly independent, making learning relatively harder then the previous case.

To confirm further the real effect of these two metafeatures, we built 20 random

synthetic datasets satisfying low maEnt (i.e., less than 1.0) and high mMI (i.e., greater than

0.18), which we expect to be easy to learn, and 20 random synthetic datasets satisfying high

maEnt (i.e., greater than 1.5) and low mMi (i.e., less than 0.06), which we expect to be

1We actually isolated a third discriminatory metafeature, the mean correlation coefficient between

attribute and target class. However, the cost of computing this feature is as high as that of running
many learning algorithms (e.g., decision tree), which defeats the purpose. Indeed, it has been argued, rightly
so, that one should consider only efficient metafeatures, i.e., the time complexity of computing a metafeature
should not exceed that of running any learning algorithm [59, 70]. Otherwise, one would be better off simply
running the learning algorithms with no value added in examining metafeatures. Accordingly, we select only
the two efficient metafeatures from our set of three candidates.
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harder to learn. Due to the high computational cost associated with randomly generating

datasets that meet such stringent requirements, we limited the size of the datasets to 70

examples.

Figure 4.1 shows the box-and-whisker plot of the performance of six well-known learn-

ing algorithms over the 20 (expected to be) easy synthetic datasets, while Figure 4.2 shows

the same kind of plot over the 20 (expected to be) hard synthetic datasets. The results are

as anticipated and confirm the strong impact of mMI and maEnt on learning. The average

accuracy for the easy datasets is above 85%, and only between 40% and 45% for the hard

datasets.

Figure 4.1: Accuracy of 6 Algorithms on 20 Datasets of mMI (≥ 0.18) and maEnt (≤ 1.0)

4.4 An Effective Measure of Hardness for Learning

Viewing each attribute as a dimension, the set of attributes of a dataset defines a hyperspace

and each example in the dataset corresponds to a labeled (with its target classification) point

in that space. For simplicity, let us restrict our attention to two dimensions and two target
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Figure 4.2: Accuracy of 6 Algorithms on 20 Datasets of mMI (≤ 0.06) and maEnt (> 1.5)

classes. Figure 4.3 shows two datasets, where the target classes are represented by a solid

circle and an empty square square, respectively. For both datasets, a rectangular box has

been drawn around each pair of data points that are nearest neighbors but have different

target class values.

In Figure 4.3(a), the two target classes are rather mixed, which may indicate that

learning this concept would be complex, since when differently labeled data points are closely

mixed together, it is generally hard to draw a decision boundary. On the other hand, in

Figure 4.3(b), the two classes of data points are rather well clustered and well separated,

which suggests that learning the concept of this dataset would be much easier, since when

data points with the same labels are relatively clustered together, a decision boundary can

be drawn easily. This rather intuitive consideration provides the motivation for our hardness

measure.

We define a dataset’s hardness as the ratio of the number of examples whose nearest

neighbor has a different target class value to the total number of examples. The hardness
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Figure 4.3: Distribution of Examples for Two Illustrative Datasets

(a) Relatively hard to classify (b) Relatively easy to classify

value of the dataset depicted in Figure 4.3(a) is 10/20=0.5, while the hardness value of the

dataset depicted in Figure 4.3(b) is only 4/20=0.2.

Note that hardness is essentially the complement of the predictive accuracy of the

1-nearest neighbor algorithm (1-NN) on the dataset. In that sense, our use of hardness as a

discriminatory metafeature shares the same motivation as the use of 1-NN as a landmark in

landmarking metalearning [8]. Unlike landmarking where the performance of 1-NN is used

as one of the metafeatures in building a model for algorithm selection, hardness is used here

to understand the nature of datasets.

To ascertain the discriminatory power of hardness, we study the relationship between

accuracy and hardness for several learning algorithms over a large number of UCI datasets.

Figure 4.4 shows graphs of accuracy versus hardness for four learning algorithms. Similar

graphs are obtained with other learning algorithms.

In all cases, there is a strong correlation between hardness and predictive accuracy. In

addition, hardness can be implemented efficiently [78], making it an attractive measurement

of the difficulty of learning prior to running typically more expensive learning algorithms.
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Figure 4.4: Accuracy vs. Hardness for Several Learning Algorithms

4.5 An COD-Based Clustering of Algorithms

The COD (Classifier Output Difference) [58] is a distance tool for measuring the degree

of similarity between two hypothesis generated from two algorithms. Formally, the COD

between two learning algorithms A and B, denoted CODA,B, is given by:

CODA,B = P (f̂A(x) 6= f̂B(x))
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where f̂A (resp. f̂B) is the hypothesis or model induced by algorithm A (resp. B) from the

training data. By definition, if the behaviors of two algorithms are opposite, then COD = 0.

On the other extreme, if the behaviors of two algorithms are exactly the same, then COD

= 1.

Here, we focus on clustering learning algorithms using COD. One of our contributions

is in the wide range of algorithms and datasets under consideration. For our experiment, we

included 26 classification learning algorithms from Weka [83] and 135 datasets from the UCI

repository [3], yielding a total of 325 (= 26*25/2) error correlations of pairs of algorithms.

Table 4.2 shows those algorithms that exhibited either the smallest (≤ 0.2) or largest (≥ 0.8)

amount of COD among them, along with their model class, as per the Weka hierarchy.2

Table 4.2: Algorithms Exhibiting the Highest (or Lowest) Error Correlations

Algorithm Model Class
NaiveBayes (NB) bayes
NiaveBayes with ES (NB-ES) bayes
RandomForest (RF) trees
RandomTree (RT) trees
DecisionStump (DS) trees
KStar lazy
LWL lazy
IBk lazy
OneR rules
ConjunctiveRule (CR) rules
ZeroR rules
HyperPipes (HP) misc
VFI misc

Figure 4.5 provides a graph-like representation of the algorithms in Table 4.2 for high

and low COD. An edge between two algorithms indicates that COD is above (resp. below)

the specified threshold, and the thickness of the edge is proportional to the strength (resp.

weakness) of the COD. Actual values of the pairwise COD are found in Table 4.3.

2We obviously get diverse sets of algorithms depending on the threshold values we select for error corre-
lation. The values 0.8 and 0.2 were chosen as they produce simple and distinguishable sets of algorithms.
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Figure 4.5: Algorithm Clustering Based on Behavior Similarity and Dissimilarity

(a) COD ≤ 0.2 (Algorithms showing high similarity)

(b) COD ≥ 0.8 (Algorithms showing high dissimilar-
ity)

Figure 4.5 reveals some unexpected patterns. Whereas one would probably expect

that algorithms belonging to the same model class should exhibit higher COD, i.e., behave

rather similarly, and that algorithms belonging to different model classes should exhibit lower

COD, the data seems to suggest otherwise, at least in part.

Figure 4.5(a) shows two disconnected sets of most similar groups. The first group

consists of NB and NB-ES, a small variation on NB. No surprise here. The second group,

however, consists of a fully connected subgraph involving four learning algorithms, RF, RT,

KStar, and IBk. Interestingly, two of these algorithms belong to the trees model class while

the other two belong to the lazy model class (see Table 4.2). It is notable that RF and RT

are not as similar to other well-known tree-based algorithms such as J48 and ID3 (according

to our threshold) as they are to the two instance-based algorithms.
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Table 4.3: Normalized Pairwise Error Correlation (EC) Scores

Algorithm Pair EC Score

Most Similar

NB NB-ES 1
RT K-NN 0.989581
KStar K-NN 0.985074
KStar RT 0.975032
RF K-NN 0.974697
RF RT 0.954655
KStar RF 0.92151

Least Similar

HP ZeroR 0
ZeroR VFI 0.101897
HP CR 0.125333
HP DS 0.129127
HP LWL 0.184132
HP OneR 0.173588
ZeroR NB 0.194024
ZeroR NB-ES 0.194024

Figure 4.5(b) shows a single, loosely connected graph of 9 learning algorithms. The

graph does not show any strong dissimilarities within model classes, as expected. It turns

out that HP and ZeroR are the most dissimilar algorithms. Apart from ZeroR, HP is also

fairly different from two other rule-based learning algorithms (OneR and CR), one tree-

based algorithm (DS), and one instance-based algorithm (LWL). On the other hand, ZeroR

is different from NB, NB-ES and VFI.

We note in passing that, although Figure 4.5(a) is transitive, this is mostly an artifact

of the high threshold value we selected. As the threshold is lowered, it becomes increasingly

likely to find situations where algorithms A and B are similar, algorithms B and C are

similar, but algorithms A and C are not (at that threshold level).

4.6 Conclusion

In this paper, we report on three experiments that help our understanding of the nature

of datasets and learning algorithms. First, we highlighted a pair of meta features, mean
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mutual information of attributes and target class and mean attribute entropy,

that have a strong impact on learning performance. When the former is high and the latter

is low, then one can expect that most learning algorithms (that we have considered here)

would perform rather well; and when the conditions are reversed, most learning algorithms

would perform poorly. We also introduced a novel measure, called hardness, that is basically

the complement of the accuracy of 1-NN, to capture the difficulty of learning. Experiments

do indeed suggest that hardness is highly linearly correlated with the predictive accuracy of

many learning algorithms. Finally, we clustered diverse learning algorithms based on COD.

Our experiments reveal a few interesting patterns. In particular, there are algorithms whose

model classes are different yet they are more similar to each other than to their own variants.

As future work, we would like to analyze more theoretically the reasons why some

heterogeneous learning algorithms behave similarly. In addition, we would like to probe

the degree of robustness of COD-based clustering as we collect more datasets from diverse

channels. As far as our hardness measure, we are conscious that it is subject to the curse

of dimensionality since potentially non-relevant attributes may make two truly similar data

points appear distant. A method to eliminate the least relevant attributes is discussed in

[53], but it does run some risk of overfitting. Since this measure is not designed for improving

classification accuracy, we search for an alternative way to improve current correlation with

learning algorithms.
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Chapter 5

A Metric for Unsupervised Metalearning

Abstract

We argue the value of unsupervised metalearning and discuss the attendant necessity of

suitable similarity, or distance, functions. We leverage the notion of diversity among learn-

ers used in ensemble learning to design a distance function for the clustering of learning

algorithms. We revisit the most popular measures of diversity and show that only one of

them, Classifier Output Difference (COD) is a metric. We then use COD to produce a

clustering of 21 learning algorithms, and show how this clustering differs from a clustering

based on accuracy, and how it can be used to highlight interesting, sometimes unexpected,

similarities among learning algorithms.
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5.1 Introduction

Two main forms of learning are generally considered: supervised and unsupervised. In

supervised learning, the task consists in discovering a mapping from a set of features, or in-

dependent variables, representing data items, to some target outcome, or dependent variable.

The task is deemed supervised because the training data available to the learner includes

both the data items and their associated, teacher-given target values. Classification and

regression are typical examples of supervised learning. In unsupervised learning, the tasks

consists in discovering a grouping of data items based on the set of features used to represent

them. The task is deemed unsupervised because the training data available to the learner

is restricted to the data items themselves. No outcome is specified; the learner must rely

on some notion of similarity among data items to induce a meaningful grouping thereof.

Clustering and segmentation are typical examples of unsupervised learning.

A mapping, in the supervised sense, can easily be viewed as a grouping of data items

based on the values of the target outcome, i.e., one group per target value. Because a

teacher provides the value of the outcome for each training data item, supervised learning

may thus theoretically be used to induce arbitrary groupings. On the other hand, given a

similarity measure, unsupervised learning can only induce a single grouping. In practice,

however, supervised learning also induces a single grouping, namely that specified by the

teacher-labeled training data items. The main difference is that, whereas supervised learning

requires, and is constrained by, something external to the training data items, unsupervised

learning relies solely on the information available in the description of the training data

items. Unsupervised learning has proven useful in a wide variety of applications, either as

the technique of choice or as a complement to supervised learning.

Our goal here is to raise unsupervised learning to the metalevel, i.e., unsupervised

metalearning. Metalearning has been defined as the study of “methods that exploit meta-

knowledge to obtain efficient models and solutions by adapting machine learning and data

mining processes” [16]. Metalearning differs from base-level learning in the scope of adap-
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tation. Whereas learning at the base level focuses on accumulating experience on a specific

learning task (e.g., credit rating, medical diagnosis, mine-rock discrimination, customer seg-

mentation, etc.), learning at the metalevel seeks connections among learning algorithms

and/or tasks. In other words, at the metalevel, the data items of interests, i.e., those to

learn from, are learning algorithms and tasks. Metalearning increases our understanding of

the nature of base-level learning algorithms and in turn our ability to apply machine learning

more effectively and extensively.

While a significant amount of work has been done in supervised metalearning, espe-

cially mapping tasks to learning algorithms (e.g., see [2, 18, 59, 60, 71]), little, if any, has

been done in unsupervised metalearning. Yet, we argue that, as is the case at the base level,

unsupervised learning may prove useful as a complement to supervised learning at the met-

alevel. For example, clustering tasks could facilitate transfer learning, and clustering learning

algorithms based on their behavior may reveal interesting similarities, which could be further

exploited to improve algorithm selection. One of the prerequisites for unsupervised learning,

however, is the existence of suitable similarity measures, or reciprocally, distance functions.

In this paper, we focus our attention on measures of similarity for algorithm behavior,

as a precursor to clustering learning algorithms. Over the years, through theoretical advances

and experience with increasingly many applications across a wide range of domains, we have

gained some valuable insights about the relative performance of a number of algorithms over

certain types of tasks. For example, Naive Bayes is known to be optimal if the features are

conditionally independent given the class, and backpropagation often outperforms decision

tree learning if the features are continuous. Yet, our understanding and interpretation of

behaviors among these learning algorithms remain rather limited. This is mainly due to

the fact that our efforts tend to focus on designing new algorithms or extensions to existing

algorithms that address known limitations. Relatively few researchers have attempted to

generalize across algorithms and tasks to capture knowledge about the interaction between

the mechanism of learning and the concrete contexts in which that mechanism is applicable.
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And when they have, the focus has been on comparing behavior based on global measures

of performance such as predictive accuracy or area under the ROC curve.

Here, we propose a finer-grained approach where behavior is analyzed at the data

item-level using diversity measures. Unlike global measures, which provide only an idea of

average performance over all data items, diversity measures capture local variations among

data items. Historically, these measures have been almost exclusively studied in the context

of ensemble learning, where one seeks to maximize diversity. Interestingly, though, a small

change of perspective, specifically equating diversity to a distance measure, would seem

sufficient to allow behavior-based clustering of learning algorithms. However, in order for

clustering to be well-defined, such distance measures should actually be distance functions,

or metrics. We revisit the most popular diversity measures and show that only one of them

gives rise to a distance function. We subsequently contrast it to a global measure based on

accuracy by clustering 21 learning algorithms and highlighting significant differences.

The paper is organized as follows. In section 5.2, we review previous work relevant to

our analysis. In section 5.3, we present an overview of the most popular pairwise measures

of diversity, analyze them in terms of their suitability as distance functions, and show that

only one of them satisfies all of the requirements for a metric. We use the selected metric

in section 5.4 to cluster a number of well-established learning algorithms, and contrast it to

the clustering obtained by a global distance measure. Section 5.5 concludes the paper and

points to further possibilities for unsupervised metalearning.

5.2 Related Work

One attempt at unsupervised metalearning, focused on tasks rather than algorithms, is de-

scribed in [69]. There, the authors show the result of clustering 57 learning tasks based on

21 (meta)features, i.e., statistical and information theoretic measures over the correspond-

ing datasets, using Kohonen self-organizing maps. Overlaid on each cluster is the relative

performance of 6 learning algorithms (IBk, C4.5, PART, NB, OneR and KD). Simple con-
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clusions such as, cluster C contains tasks that seem to have these characteristics and are

best solved by these learning algorithms, can then be drawn. Similarly, the work in [81]

describes a method for clustering time series based on extracted characteristics from these

series. Essentially, instead of clustering the raw time series, it replaces them by a set of 13

characteristics, or metafeatures, and clusters this transformed data. The results show that

higher quality clusters may be obtained this way than with the raw data.

Perhaps closest to ours is the work of [38], where results on clustering 45 pairs of

algorithms based on their error correlation distributions are reported. As in [69], and al-

though it applies to pairs of algorithms, the characterization of each cluster is derived from

metafeatures obtained from the tasks to which the learning algorithms were applied. In par-

ticular, the authors identify metafeatures predictive of whether learning algorithms are likely

to exhibit very high or very low error correlation. However, the metafeature values are not

clearly distinguishable across clusters, and 2 of the 4 clusters look rather mixed according to

their error correlation distributions. Furthermore, the 10 algorithms under study represent

only 3 model classes. The analysis presented here complements and significantly extends

these, as well as others (e.g., see [44, 58]).

There has been long-standing interest in the notion of diversity in machine learning,

mostly due to work in ensemble learning and multiple classifier systems, where it has long

been known that diversity is essential to improving accuracy (e.g., see [19, 20, 21, 24, 31,

42, 43, 54]). Over the years, a number of measures of algorithm diversity have thus been

proposed, for both pairwise comparisons and non-pairwise comparisons. Interestingly, several

of the same measures of diversity used in machine learning, or their reciprocal known as

measures of association, have also been used extensively in the social sciences, where one

often seeks to characterize the degree of agreement among, for example, expert labelers or

survey respondents (e.g., see [5, 67]). Since we will use diversity for clustering, and thus

as a measure of distance, we focus exclusively on pairwise measures here. Whereas others

have often focused on comparing and analyzing relationships among various measures (e.g.,
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see [22, 76]), we analyze them individually with respect to their suitability for clustering,

i.e., whether they induce metrics.

5.3 A Metric for the Space of Learning Algorithms

The most obvious, and often used, distance measure between two learning algorithms consists

of the absolute value of their difference in (predictive) accuracy (e.g., see [84]). Let A1 and A2

be two learning algorithms and accA1 , respectively accA2 , be the accuracy of A1, respectively

A2, averaged over some number of learning tasks. We would define their accuracy distance

AD by:

AD(A1, A2) = |accA1 − accA2|

There are some issues with AD that suggest that an alternative distance measure may be

preferable. Consider, for example, a situation in which both A1 and A2 come out with an

accuracy of 50%, i.e., accA1 = accA2 = 0.5. In this case, AD(A1, A2) = 0 and one would thus

be tempted to conclude that A1 and A2 are similar. Yet, they may actually have drastically

different behaviors, as A1 could be correct on all of the instances that A2 misclassifies, and

vice-versa. This mismatch between AD and its intended interpretation is due, of course, to

the fact that accuracy is a global measure of performance. Similar discrepancies would arise

with any other global measure, such as area under the ROC curve.

Hence, we seek to find a distance function based on more local measures of perfor-

mance, which take into account differences at the instance level rather than across whole

datasets. While these measures have often been used in work on ensemble learning, where

diversity is intended to be maximized, they have not, to the best of our knowledge, been

used in clustering, where diversity is intended to be minimized, or conversely, similarity

maximized. Table 5.1 summarizes the most popular diversity measures as reported in recent

studies. We will show that all but one of these measures, although useful for diversity, fail

to qualify as distance functions.
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Table 5.1: Measures of Diversity

Q ρ DF κ DM H EC COD

Dietterich (2000) X
Kuncheva and Whitaker (2001, 2003) X X X Xa X
Ali and Pazzani (1996) X
Kalousis et al (2004)
Narasimhamurthy (2005) X X X X
Brodley (1996) X
Peterson and Martinez (2005)
Gatnar (2005) X X X X X X
Tang et al (2006) X Xa X
Chung et al (2008) X X Xa X
aNon-pairwise version.

We dismiss the κ statistic, or measure of interrater agreement, at the onset. Indeed,

while it has been used in a few instances as a pairwise measure, it is more often considered

a non-pairwise similarity measure in machine learning. Furthermore, there is not a single

definition of κ, even though the probably most reported one originated in [27], which was de-

signed specifically as a non-pairwise measure. Some versions also lead to unexpected answers

(e.g., smaller values for seemingly stronger agreement) while others produce indeterminate

forms (i.e., 0
0
) when the learners have diametrically opposed behaviors (e.g., one is always

correct and the other is always wrong). We likewise dismiss Pearson’s correlation coefficient,

ρ, since one can show that for any two learners, |ρ| ≤ |Q| [31, 43], and hence ρ is in some

sense subsumed by Q. Finally, the Q statistic, originally defined in [87] as a means to cap-

ture the degree of association between two induced hypotheses with respect to the target

hypothesis, cannot distinguish among different output distributions. For this reason, H was

suggested in [31] as an alternative to Q. Hence, we also ignore Q in what follows.

We now turn to a brief description and discussion of the remaining measures. Since we

do not typically have access to actual probabilities, we use frequency-estimates to compute

diversity values. As above, let A1 and A2 be the two learning algorithms under study. Let

h be the target classification hypothesis. Let h1 and h2 be the hypotheses induced by A1,
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respectively A2, on some training set derived from h. We adopt the notation of Table 5.2,

adapted from [42].

Table 5.2: Notation for Similarity Measures

Variable Description

N11 number of instances on which both h1 and h2 are correct
N11 = |{x : h1(x) = h2(x) = h(x)}|

N10 number of instances on which h1 is correct, but h2 is incorrect
N10 = |{x : h1(x) = h(x) ∧ h2(x) 6= h(x)}|

N01 number of instances on which h2 is correct, but h1 is incorrect
N01 = |{x : h1(x) 6= h(x) ∧ h2(x) = h(x)}|

N00 number of instances on which both h1 and h2 are incorrect
N00 = |{x : h1(x) 6= h(x) ∧ h2(x) 6= h(x)}|

N00
S number of instances on which both h1 and h2 are incorrect,

but they make the same prediction
N00
S = |{x : h1(x) = h2(x) ∧ h1(x) 6= h(x)}|

N00
D number of instances on which both h1 and h2 are incorrect,

and they make different predictions
N00
D = |{x : h1(x) 6= h(x) ∧ h2(x) 6= h(x) ∧ h1(x) 6= h2(x)}|

N total number of instances
N = N11 +N10 +N01 +N00

Note that N00 = N00
S +N00

D . The measures of Table 5.1 are defined as follows.

• Double Fault (DF ). DF , also known as compound diversity [32], is the probability

that both h1 and h2 are incorrect.

DF =
N00

N

• Disagreement Measure (DM). DM , introduced in [68], is the probability that

either h1 or h2 is correct but not both, i.e., h1 and h2 are complementary.

DM =
N01 +N10

N
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• Hamann’s coefficient (H). H, suggested in [31] as an alternative to Q, captures the

degree of association between h1 and h2 with respect to h. H ranges over [−1,+1].

H =
(N11 +N00)− (N10 +N01)

N

• Error Correlation (EC). To the best of our knowledge, EC has been proposed and

used only twice as a measure of diversity, once in [1], and later in [38]. Unfortunately,

while the second paper cites the first as its source, the definitions of EC in those papers

are slightly different. In the former, EC is defined as P (h1 = h2, h1 6= h). We refer to

this version of EC as ECa. In the latter, EC is defined as P (h1 = h2|h1 6= h∨h2 6= h).

We refer to this version of EC as ECk. It is clear that unless N11 = 0, ECa(X, Y ) 6=

ECk(X, Y ).

ECa =
N00
S

N

ECk =
N00
S

N01 +N10 +N00

• Classifier Output Difference (COD). COD, introduced in [58], is the probability

that h1 and h2 make different predictions, i.e., P (h1 6= h2).
1

COD =
N10 +N01 +N00

D

N

In practice, of course, the above measures are computed by running each algorithm on a

number of datasets and averaging the results.

Now, recall that a distance measure, d, is a metric (or distance function) if and only

if it satisfies the following four properties (here X and Y are algorithms):

1. Non-negativity: d(X, Y ) ≥ 0

1Note that while we use COD here, we must point out that earlier work on diversity in [19] had defined
the classification overlap among a set of learning algorithms as the number of instances that are classified
the same by multiple classifiers, which for two classifiers can easily be shown to be equivalent to 1− COD.
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2. Identity of indiscernibles: d(X, Y ) = 0 ⇐⇒ X = Y 2

3. Symmetry: d(X, Y ) = d(Y,X)

4. Triangle inequality: d(X, Y ) ≤ d(X,Z) + d(Z, Y )

These properties, especially the second one, bring out a critical distinction between measuring

distance as is typically done in ensemble learning and measuring distance as we intend to

do in clustering algorithms. In ensemble learning, the focus is on diversity, where one tries

to maximize the distance between algorithms, thus focusing on the high-end of the distance

spectrum (i.e., away from 0). In clustering, the focus is on similarity, where one tries to

minimize the distance between algorithms, thus focusing on the low-end of the distance

spectrum (i.e., close to 0). As a result, the identity of indiscernibles, which has to do with

close points, may easily be relaxed —and often is— in the context of diversity, but is critical

in the context of clustering.

It is easy to show that DF does not satisfy the identity of indiscernibles, and thus is

not a metric. The same is true of H as shown in Theorem 5.3.1.

Theorem 5.3.1. H does not give rise to a distance function.

Proof. We use 1−H
2

rather than H because H ranges over [-1,1], with -1 meaning complete

disagreement, 0 meaning an equal number of agreements and disagreements, and +1 meaning

complete agreement. The transformed quantity ranges over [0,1] and behaves more like a

2Note that here X = Y means that X and Y have indistinguishable behaviors, not necessarily that X
and Y are the same algorithm, which is consistent with the idea of identify of indiscernibles.
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distance. We show that 1−H
2

does not satisfy the identity of indiscernibles in general.

1−H(X, Y )

2
= 0 ⇐⇒ 1−H(X, Y ) = 0

⇐⇒ H(X, Y ) = 1

⇐⇒ (N11 +N00)− (N10 +N01)

N
= 1

⇐⇒ (N11 +N00)− (N10 +N01) = N

⇐⇒ N11 +N00 −N10 −N01 = N11 +N00 +N10 +N01

⇐⇒ 2(N10 +N01) = 0

⇐⇒ N10 +N01 = 0

⇐⇒ N10 = 0 and N01 = 0

⇐⇒ N = N11 +N00

which, for binary classification is equivalent to X = Y since N00 = N00
S . However, this is not

true in the general case as demonstrated in the following table, where both the predictions

of X and Y , and the target value are shown.

X Y Target

1 0 0 0

2 1 0 2

3 1 1 1

4 0 1 2

5 0 2 1

Then 1−H(X,Y )
2

=
1− (2+3)−(0+0)

5

2
= 1−1

2
= 0. Yet X and Y act rather differently on each of the

instances, i.e., they do not have the same behavior.

It is easy to show that ECk may give rise to an indeterminate form, for example when

X and Y are 100% accurate, which makes it undesirable. On the other hand, ECa does not
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give rise to a distance function since it does not satisfy the identity of indiscernibles as shown

in Theorem 5.3.2.

Theorem 5.3.2. ECa does not give rise to a distance function.

Proof. We use 1 − ECa rather than ECa since ECa is essentially a measure of similarity

rather than distance. We show that 1− ECa does not satisfy the identity of indiscernibles.

We need only find a counterexample. Consider a simple dataset consisting of 5 instances,

each labeled as demonstrated in the following table, where both the predictions of X and Y ,

and the target value are shown.

X Y Target

1 0 0 0

2 1 1 1

3 1 1 1

4 0 0 1

5 1 1 0

It is clear that X and Y act exactly identically on each of the instances, i.e., they have the

same behavior (X = Y ). Yet, 1− ECa(X, Y ) = 1− 2/5 = 3/5 6= 0.

For binary classification, COD(X, Y ) = DM(X, Y ), since in that case N00
D = 0, i.e.,

it is impossible for both algorithms to be wrong and have different predicted values. In the

general case, however, when N00
D 6= 0, DM(X, Y ) < COD(X, Y ) and one can easily show

that DM does not satisfy the identity of indiscernibles.

This leaves us with only COD. We now show that COD is a distance function.3

Theorem 5.3.3. COD is a distance function.

We need to show that COD satisfies the four properties of metrics.

3Note that COD was originally claimed to be a metric in [58]; however, it was never proven.
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1. COD(X, Y ) ≥ 0

Follows directly from the definition of COD as the sum and ratio of only positive

quantities.

2. COD(X, Y ) = 0 ⇐⇒ X = Y

COD(X, Y ) = 0 ⇐⇒ N10 +N01 +N00
D

N
= 0

⇐⇒ N10 +N01 +N00
D = 0

⇐⇒ N − (N11 +N00
S ) = 0

⇐⇒ N = N11 +N00
S

⇐⇒ X = Y

3. COD(X, Y ) = COD(Y,X)

Follows directly from the definition of COD.

4. COD(X, Y ) ≤ COD(X,Z) + COD(Z, Y )

Given any instance, there are 5 possible outcomes for the predictions of X, Y and Z,

namely

(a) X, Y and Z all predict the same target value

(b) X predicts the same target value as Y , which is different from the value predicted

by Z

(c) X predicts the same target value as Z, which is different from the value predicted

by Y

(d) Y predicts the same target value as Z, which is different from the value predicted

by X

(e) X, Y and Z all predict different target values
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Let na, . . . , ne denote the number of instances corresponding to each of the above cases

(na+. . .+ne = N). It follows that COD(X, Y ) = nc+nd+ne, COD(X,Z) = nb+nd+ne

and COD(Z, Y ) = nb + nc + ne. Hence,

COD(X,Z) + COD(Z, Y ) = 2nb + nc + nd + 2ne

= COD(X, Y ) + 2nb + ne

≥ COD(X, Y )

We thus propose to use COD as an effective distance function for algorithm behavior.

In addition to being a metric, COD has the following intuitively appealing characteristics.

• It generalizes DM .

• It is independent of the target, inasmuch as its computation relies only on the predic-

tions of the two algorithms under consideration.4

• It is rather intuitive as a notion of distance, with some analogy to the classical Hamming

distance.

• Whereas EC, and other measures, are restricted to errors only, COD captures a more

complete picture of behavior differences.

Finally, Theorem 5.3.4 establishes that COD is strictly stronger than AD in the sense

that if two algorithms are similar according to COD, then they also have similar predictive

performance. The converse is clearly not true as shown by the counterexample discussed

earlier in this section to highlight the problem with AD.

Theorem 5.3.4. COD(X, Y ) ≤ ε⇒ AD(X, Y ) ≤ ε

4There is some dependency on the target, of course, in the sense that both predictive models are learned
from data that include the target values. However, unlike measures like EC, this dependency is indirect.

44



Using our notation, we can write AD = |N10−N01|
N

. Now,

COD(X, Y ) ≤ ε ⇐⇒ N10 +N01 +N00
D

N
≤ ε

⇒ N10

N
≤ ε and

N01

N
≤ ε

⇒ −ε ≤ N10 −N01

N
≤ ε

⇒ |N10 −N01|
N

≤ ε

⇒ AD(X, Y ) ≤ ε

5.4 Clustering Learning Algorithms

Equipped with a distance metric, we can now apply clustering techniques over a set of

learning algorithms. Since the data being clustered is the result of learning at the base level,

our clustering is a form of unsupervised metalearning. Given a resulting clustering, we will

be particularly interested in algorithms that are grouped together into tight clusters, as these

will highlight algorithms whose behaviors are very close to each other.

We consider 21 learning algorithms from Weka [83], selected to be representative of

various model classes. In all cases, the algorithms are considered with their default settings.

The algorithms and their grouping into model classes based on Weka’s internal taxonomy

are shown in Table 5.3.

For our distance-based clustering method, we use hierarchical agglomerative cluster-

ing (HAC), as it produces a complete sequence of nested clusterings, as follows. HAC starts

by assigning each learning algorithm to its own cluster. Then, the two closest clusters are

merged into a single new cluster. This pairwise merging process is repeated until a single

cluster containing all of the learning algorithms is obtained.

Although we have a distance defined over algorithms, HAC also needs a distance over

clusters. Several distance measures may be considered. The most popular ones are complete

linkage, which uses the maximum distance between all pairs of objects across clusters, single
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Table 5.3: Selected Learning Algorithms

Weka’s Class Algorithm

Bayes (2) BayesNet
NaiveBayes (NB)

Functions (4) Logistic Regression (Logistic)
RBFNetwork (RBFN)
MultilayerPerceptron (MLP)
SMO

Lazy (3) 1 Nearest Neighbor (IB1)
3 Nearest Neighbor (IB3)
LWL

Trees (6) SimpleCart
LADTree
FTree (FT)
J48
NBTree
RandomForest (RandForest)

Rules (6) DecisionTable (DecTable)
JRip
NNge
PART
Ridor
ZeroR

linkage, which takes the minimum distance, and average linkage, which computes the average

of all inter-cluster distances. We choose complete linkage here as it tends to create more

compact, clique-like clusters.5

To compute the distance between pairs of algorithms, we use 129 datasets from several

popular sources:

• 72 data sets from the UCI Machine Learning Repository [4]

• 45 data sets from the Gene Expression Machine Learning Repository [75]

• 12 data sets from ASU’s Multi-class Protein Fold Recognition data6

5Complete linkage is also known to be more sensitive to outliers. But there are no outliers in our set of
21 learning algorithms.

6See http://www.public.asu.edu/∼sji03/resources/data/protein-data.zip
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For each dataset, the predictions of all instances are obtained by 10-fold cross-validation.

The COD value for every pair of algorithms is then obtained by averaging the COD values

obtained on all of the datasets.

For our implementation of HAC, we use the agnes function from the cluster package of

R [61]. Figure 5.1 shows the dendrogram resulting from clustering our 21 learning algorithms.

Figure 5.1: Clustering Based on COD
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The agglomerative coefficient value (0.61) suggests that COD is able to extract a

significant amount of structure in the data. While a detailed analysis is beyond the scope of

this paper, we do make a few observations about the clustering, to illustrate how it may be

used to confirm, complement and/or extend our knowledge about learning algorithms,

As one might expect, much of Weka’s taxonomy (see Table 6.1) is found in the natural

clustering. For example, three of the four function-based learning algorithms (i.e., Logistic,

MLP and SMO) land in the same cluster relatively low in the dendrogram, with the fourth

one, RBFN, joining a little higher. Similarly, most decision tree learning algorithms tend to

cluster together first, as do both nearest-neighbor algorithms (i.e., IB1 and IB3). On the

other hand, other clusters do not match the taxonomy so well. For example,

• The rule-based learning algorithm PART clusters first with the decision tree learner

J48,

• The decision tree learning algorithm FT clusters first with the group of three function-

based learners,

• The rule-based learning algorithm ZeroR is clustered last high in the dendrogram, and

• The function-based learner RBFN clusters first with the Bayes learner NB.

Despite being in different classes, PART and J48 do share significant similarity since PART

also uses a divide-and-conquer approach in which, at each iteration, it builds a partial tree

and extracts a rule from it. Similarly, FT bears resemblance to Logistic as it induces classi-

fication trees with logistic regression functions at the inner nodes and leaves. Also, ZeroR,

despite being labeled as rule-based, simply extracts the majority class and uses it as its

prediction on all new instances. Such simplistic behavior is unlikely to match any of the

more sophisticated learning algorithms considered. The last grouping seems less obvious

at first sight. Upon further examination of their inner workings and specific Weka default
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implementations, one may better appreciate the similarities and differences between these

two learning algorithms. This is the subject of a separate analysis [45].7

To make the value of our COD metric for unsupervised metalearning clearer, we

contrast the COD-based clustering with the clustering obtained by AD, the difference in

predictive accuracy. The setting is the same as above. The resulting clustering is in Fig-

ure 5.2.

Again, the agglomerative coefficient value (0.79) suggests that AD is able to extract

a significant amount of structure in the data. Note, though, that the dendrogram tends

to be rather flat (except for ZeroR, which, as expected, clusters last and higher up in the

dendrogram). This confirms the findings of others that most learning algorithms, including

simple ones, perform rather similarly in terms of accuracy across a wide variety of datasets

(e.g., see [37]).

Beyond this general observation, it is clear that the picture provided by AD is different

from that provided by COD, and that variations in algorithm behavior are not captured in

the aggregate by AD. For example, the following pairs of algorithms, RandForest and MLP,

Ridor and SimpleCart, and JRip and Ridor, are close together in the AD clustering, while

the COD clustering makes clear that their behavior is not that similar. Clearly, according

to Theorem 5.3.4, algorithms close to each other according to COD are also close together

according to AD (e.g., see NB and RBFN).

5.5 Conclusion

In this paper, we have argued the value of unsupervised metalearning and discussed the

attendant necessity of suitable similarity, or distance, functions. We have capitalized on

the well-known notion of diversity among learners used in ensemble learning, and proposed

to use them as distance measures to cluster learning algorithms. We have revisited the

7Note that such an analysis is prompted by the results of our clustering. In addition to NB being
probability-based and RBFN being function-based, NB is a generative model while RBFN is a discriminative
one. Yet, overall, RBFN behaves more like NB than any other algorithms. It is rather unlikely that traditional
perceptions about NB and RBFN would have led to such a discovery and subsequent analysis.
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most popular measures of diversity and showed that only one of them, Classifier Output

Difference (COD), qualifies as a metric. We have then used COD to produce a clustering

of 21 learning algorithms, based on results from 129 datasets. We have shown how this

clustering differs from a clustering based on accuracy, and how it can be used to highlight

interesting, sometimes unexpected, similarities among algorithms.

Unsupervised metalearning, as described here, contributes to increasing our under-

standing of how learning algorithms behave. By focusing its attention on similarity, rather

than diversity, it might also prove useful in reducing the complexity of the corresponding

supervised metalearning task of algorithm selection. Indeed, rather than attempting to build

a system that maps a dataset to one of N algorithms, where N is relatively large, the met-

alearner could induce a mapping from a dataset to one of C clusters of similar algorithms,

where C is much smaller than N . We intend to pursue work in this area.
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Figure 5.2: Clustering Based on AD
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Chapter 6

A Comparison of Näıve Bayes and Radial Basis Function Networks in Weka

Abstract

We compare näıve Bayes and radial basis function networks. We show, using both analyt-

ical tools and empirical results, that for Gaussian kernels, there is a significant amount of

similarity between them across a broad range of datasets for small numbers of kernels. We

further show that larger number of kernels are typically not useful and thus the observed

similarity, when applicable, is of practical import. In particular, since radial basis function

network learning is significantly more computationally expensive than näıve Bayes learning,

we use metalearning to build a selection model capable of accurately discriminating between

the two algorithms, so that extra computation is only incurred when it is guaranteed to

produce significant improvement in predictive accuracy.
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6.1 Introduction

In recent work on unsupervised metalearning, we showed how Classifier Output Difference

(COD) [58], one of the diversity measures typically used in ensemble learning, has the prop-

erties of a metric, and can thus be used as a distance function to cluster learning algo-

rithms [47]. COD estimates the probability that two classification learning algorithms make

different predictions. Unlike global measures, such as accuracy, which provide only an idea

of average performance over all instances, COD captures local variations among instances.

Furthermore, COD is strictly stronger than accuracy, in the sense that if two algorithms are

close based on COD, they must also have similar accuracy.

We clustered 21 well-established learning algorithms from Weka [83] (with their de-

fault settings) using COD distance information averaged over 129 datasets from various

sources including the UCI Machine Learning Repository [4] and the Gene Expression Ma-

chine Learning Repository [75]. The learning algorithms were selected to represent differ-

ent model classes, including tree-based, rule-based, instance-based, probability-based and

function-based approaches. The algorithms and their grouping into model classes based on

Weka’s internal taxonomy are listed in Table 6.1. The result of complete-linkage, hierarchical

agglomerative clustering is shown in Figure 6.1.

In that study, we were, in part, interested in seeing whether our clustering would

induce clusters that were consistent with the de facto taxonomy defined by Weka’s model

classes. We expected that to be the case, with algorithms from the same model classes

finding their way to the same cluster and algorithms from different model classes being

grouped separately. While this is true for many algorithms (e.g., Logistic, MLP and SMO;

J48, LADTree, NBTree and RandForest), there are some notable exceptions, one of which,

the focus of this paper, is highlighted in Figure 6.1.

The grouping of NB and RBFN does not appear as an obvious one at first sight. In

addition to NB being probability-based and RBFN being function-based, NB is a generative
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Table 6.1: Selected Learning Algorithms

Weka’s Class Algorithm

Bayes (2) BayesNet
NaiveBayes (NB)

Functions (4) Logistic Regression (Logistic)
RBFNetwork (RBFN)
MultilayerPerceptron (MLP)
SMO

Lazy (3) 1 Nearest Neighbor (IB1)
3 Nearest Neighbor (IB3)
LWL

Trees (6) SimpleCart
LADTree
FTree (FT)
J48
NBTree
RandomForest (RandForest)

Rules (6) DecisionTable (DecTable)
JRip
NNge
PART
Ridor
ZeroR

model while RBFN is a discriminative one.1 Yet, overall, RBFN behaves more like NB than

any other algorithms. Before proceeding any further, we wish to make a couple of things

clear.

1. While based on COD values averaged across all of our 129 datasets, NB and RBFN

cluster together, closer examination revealed that that relationship actually holds only

for datasets whose attributes are continuous. It so happens that a majority of our

datasets (85) have that property, which biases the average. We will restrict our com-

parison of NB and RBFN to the case of continuous-only attributes.

2. It is well-known that the result of hierarchical clustering may be data dependent.

In other words, it is possible that we obtain a different hierarchical structure when

1Interestingly, the root of the classification method subtree in the newly developed DMOP ontology [36]
splits on generative vs. discriminative methods, which would send NB down one branch and RBFN down
the other.
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Figure 6.1: COD-based Clustering of Learning Algorithms

different datasets are used to construct it. We checked the robustness of our finding

with respect to NB and RBFN by sampling 60 datasets (out of 85) at random, and

computing the corresponding COD matrix. We then produced a ranking of the 5

algorithms most similar to NB, in decreasing value of COD. Since we use complete

linkage, this ranking also represents the clustering order for NB. We repeated the

sampling 10 times with different random seeds. In every case, NB did cluster first with

RBFN, followed by MLP.
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While the observed high degree of similarity between NB and RBFN may not be as

unexpected upon further examination of Weka’s implementations and default parameters,

a detailed comparison is instructive, especially as it is rather unlikely that traditional per-

ceptions about NB and RBFN would have led to such a discovery and subsequent analysis.

It is also instructive in terms of the risks faced by practitioners who, lacking the necessary

expertise, tend to confine themselves to the use of default implementations.

The paper is organized as follows. In section 6.2, we briefly highlight previous work

relevant to our analysis. Section 6.3 reviews the way NB and RBFN learn in general, and

how they are implemented in Weka. In section 6.4, we present an analysis of the similarity

between NB and RBFN. We draw on both analytical arguments, where applicable, and em-

pirical results, when analytical forms are not readily available. We show that under Weka’s

assumptions, and in the aggregate, RBFN and NB are indeed rather similar in terms of

predictive accuracy while widely different in terms of training time. Hence, in section 6.5,

we look at specific situations in which the similarity between NB and RBFN clearly does

not hold, and use metalearning to build a selection metamodel capable of accuractely dis-

criminating when RBFN should be used for prediction and when the same result may be

obtained by NB at a fraction of the computational cost. Section 6.6 discusses the scope

of applicability of the observed similarity, and its consequences on the practice of machine

learning. Finally, section 6.7 concludes the paper.

6.2 Related Work

There are, of course, a large number of empirical studies comparing the performance of

learning algorithms. It has long been a tacit requirement for publication in our community

that anyone wishing to introduce a novel algorithm should compare it against at least a

few others on some reasonable set of learning tasks. Less common are targeted comparisons

involving a couple of algorithms and leveraging both empirical and analytical results, as
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we present here.2 Notable exceptions focus on broad classes of algorithms, such as the

relationships between neural networks and statistical models (e.g., see [65]), and between

generative (or informative) and discriminative models (e.g., see [55, 64]). Another interesting

exception is the use of learning curves as an analytical tool in the comparison of logistic

regression and decision tree learning [57].

Most closely related to the analytical part of our study is the recent work on näıve

Bayes and logistic regression. Elkan [25] shows that, for discrete inputs, näıve Bayes is a

generalization of logistic regression. Mitchell [52] shows that, for continuous inputs, the form

of P (Y |X) entailed by the assumptions of Gaussian näıve Bayes with binary classification

tasks is exactly the form used by logistic regression. Ng and Jordan [55] explain that näıve

Bayes and logistic regression form what they call a generative/discriminative pair. They go

on to demonstrate that the generative approach has higher asymptotic error, but that two

regimes of performance seem to be present. The generative approach reaches its asymptote

faster than the discriminative approach, suggesting that the generative approach may be

preferable for small number of examples and the discriminative approach for larger num-

bers. Likewise, we show that, given some restrictive assumptions on the learning tasks and

parameters of RBFN, the decision boundaries used by NB and RBFN are of the same form.

For more general, and realistic, settings an analytical approach proves challenging, so that

we move to an empirical study.

6.3 Preliminaries

Prior to our detailed analysis, we give a brief overview of näıve Bayes and radial basis

function network learning.

2This may be due to the fact that we are limited by our imagination or what we can think about at a
particular time, while with the type of clustering presented here, new avenues open up automatically.
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6.3.1 Näıve Bayes

The näıve Bayes learning algorithm (NB) is a highly practical and efficient probability-

based learning algorithm built upon the assumption that the task’s features are conditionally

independent given the target value. That is, given the set of features X = {X1, X2, . . . , Xn}

and discrete set of target, or class, values C:

P (X1, X2, . . . , Xn|C) =
∏
i

P (Xi|C)

For every new query instance x = 〈x1, x2, . . . , xn〉, NB returns the class value with maximum

posterior probability:

cNBq (x) = argmaxcjP (C = cj|X1 = x1, X2 = x2, . . . , Xn = xn)

= argmaxcj
P (X1 = x1, X2 = x2, . . . , Xn = xn|C = cj)P (C = cj)

P (X1 = x1, X2 = x2, . . . , Xn = xn)

= argmaxcjP (X1 = x1, X2 = x2, . . . , Xn = xn|C = cj)P (C = cj)

= argmaxcjP (C = cj)
∏
i

P (Xi = xi|C = cj)

The second line is the result of applying Bayes’ theorem. The denominator is dropped in the

third line since it does not depend on cj. Finally, the last line follows from the conditional

independence assumption.

Let D be a set of training examples for NB. Two different cases must be considered

to compute P (Xi = xi|C = cj).

1. When Xi is discrete, P (Xi = xi|C = cj) is typically estimated with a smooth approxi-

mation:

]D{Xi = xi ∩ C = cj}+ l

]D{C = cj}+ l | Xi |

where ]D{cond} is the number of examples in D that satisfy cond, and l is the strength

of the smoothing.
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2. When Xi is continuous, P (Xi = xi|C = cj) is assumed to follow some probability

distribution.

As we restrict our attention to learning tasks with continuous attributes, the second

case is the only one of interest to us here. The most common approach, and that used in

Weka, is to consider that P (Xi = xi|C = cj) is a Gaussian, with mean µi and standard

deviation σi:

PNB(Xi = xi|C = cj) =
1√

2πσi
e
− (xi−µi)

2

2σ2
i

Note that σi depends on Xi only, not on the target cj. Since the product of Gaussian

functions is also Gaussian, we can write

∏
i

P (Xi = xi|C = cj) =
∏
i

PNB(Xi = xi|C = cj)

=
∏
i

Gj(µi, σi)(x)

= GNB
j (x)

and it follows that

cNBq (x) = argmaxcjP (C = cj)G
NB
j (x)

6.3.2 Radial Basis Function Network

The Radial Basis Function Network learning algorithm (RBFN) is typically described in

terms of a three layer feed-forward network architecture. However, RBFN differs from clas-

sical multi-layer perceptrons in three significant ways: 1) there is only one set of trainable

weights, from the hidden layer to the output layer; 2) the nodes’ activation functions are

non-standard (i.e., neither sign nor sigmoid); and 3) learning is effected by a combination of

supervised and unsupervised techniques.3

3Note that it is possible to train RBFN in a fully supervised manner. Because it is much more computa-
tionally efficient, the hybrid learning procedure is generally preferred.

59



In RBFN, the nodes of the hidden layer are local attractors that encode a set of well

positioned centroids together with a “sphere” of influence. Each attractor is such that its

influence over points in the input space decreases as the distance from its centroid increases.

Each hidden node, h, thus encodes a function Kh(d(µh, x)), sometimes called a kernel func-

tion, where µh is a centroid, d(µh, x) is the distance from µh to x, and Kh is such that

it reaches its maximum at µh and decreases smoothly as d(µh, x) increases. Following the

transformation of the input space by the hidden layer, linear combinations of the Kh’s are

learned to produce the final network’s outputs. Let H be the number of hidden nodes or

kernel functions, and m be the number of output nodes. For regression, the value computed

by output node j (1 ≤ j ≤ m) is given by:

fj(x) = w0,j +
H∑
h=1

wh,jKu(d(µh, x))

where w0,j is a bias weight. For classification, on the other hand, RBFN is typically set up

in such a way that, if there are m target classes, the network has m− 1 output nodes, each

computing fj(x). The predicted class for query instance x is then given by cRBFNq (x) =

argmaxcjP
RBFN(C = cj|x), with the probability P (C = cj|x) of each target class defined

by:

PRBFN(C = cj|x) =



efj(x)

1 +
∑m−1

i=1 efi(x)
if 1 ≤ j ≤ m− 1

1

1 +
∑m−1

i=1 efi(x)
if j = m

In the case of regression, the output weights (wh,j) may be obtained analytically, but

for classification an iterative method is usually necessary. The exact behavior of RBFN

depends on two major design decisions: 1) the choice of the functional form of the Kh’s, and

2) the value of H, i.e., the number of radial basis functions.

The type of function used for the Kh’s depends on the kind of tasks RBFN is to solve.

For example, in time series modeling, thin plate spline functions are often used, while for
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classification and pattern recognition, Gaussian kernel functions are generally preferred. As

far as the number of basis functions is concerned, there are no known theoretical results for

selecting the optimal number of hidden nodes for a given task in RBFN. Hence, the value

of H is typically chosen by experimentation, augmented by any prior knowledge about the

task and its structure. Related to the number of radial basis functions is their locations, i.e,

the positions of the µh’s, in the input space. One solution consists in having each training

instance act as a centroid. While this works well in the context of function approximation, it

leads to overfitting and excessive computational time in classification. What one wishes to

achieve is good coverage of the input space with relatively few basis functions. Unsupervised

learning, or clustering, provides a natural solution. Herein lies the hybrid nature of RBFN

learning: the training data is first clustered to obtain the µh’s; appropriate Kh’s are then

chosen; finally the wh,j’s are computed via supervised learning.

Weka’s RBFN is a standard implementation based on the use of “a separate mixture

model to represent each of the [class-]conditional densities,” as discussed in [13]. It works as

follows.

1. Construct mk clusters by applying k-means clustering to each class independently, and

fit a Gaussian to each cluster.

2. For each cluster, create a hidden node and set its radial basis function to the Gaussian

weighted by the corresponding class prior and normalized, i.e.,

Kh(d(µh, x)) =
GRBFN
h (x)P (ccl(h))∑H

i=1G
RBFN
i (x)P (ccl(i))

where Gh is the Gaussian for node h, cl(h) is the class to which cluster h belongs, and

P (ccl(h)) is the prior class probability.

3. Run logistic regression on the outputs of the hidden nodes to obtain the weights.

We note that, by default, Weka’s RBFN sets k = 2. Also, we call the reader’s attention

to the fact that, while valid and natural, Weka’s choice to use class-dependent basis functions
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rather than to share basis functions across classes has significant implications. We return to

this point later.

6.4 Analysis of Algorithms

In this section, we proceed to compare RBFN and NB, as implemented in Weka. We rely

on both analytical and empirical tools. We begin with the simplest of cases, where k = 1.

6.4.1 RBFN with k = 1

Recall that cNBq (x) = argmaxcjP (C = cj)G
NB
j (x). Suppose now that we set k = 1 in RBFN,

i.e., we model each class with a single cluster. To fit a Gaussian to each cluster in this case,

Weka uses a diagonal covariance matrix, i.e., it assumes independence of the inputs given

the class. It follows that the multivariate Gaussian for the cluster is simply the product of

the univariate Gaussians for each input.4 Hence,

∀1 ≤ j ≤ m GRBFN
j = GNB

j = Gj

and the radial basis function for each hidden node is given by:

Kh(d(µh, x)) =
Gh(x)P (ch)∑m
i=1Gi(x)P (ci)

Let us further assume that m = 2, i.e., there are only two target classes, c1 and c2.

The corresponding RBFN thus has n input nodes, 2 hidden nodes and a single output node.

4Note that in Weka, the inputs to RBFN are actually first standardized. If x = (x1, . . . , xn), the inputs
to RBFN are

xsi =
xi − µi

σi
.

The distribution of the xsi is Gaussian with mean 0 and standard deviation 1, so that fitting a Gaussian to
the xsi is identical to fitting a Gaussian to the xi. Indeed, for each xi, the Gaussian fit is of the form

e
− 1

2

(xi−µi)
2

σ2
i = e−

1
2 (x

s
i )

2

= e−
1
2

(xsi−0)2

12

which is the Gaussian fit for xsi . It follows that standardization of the inputs has no effect on the Gaussian
fits.
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The outputs of the hidden nodes are given by:

K1(d(µ1, x)) =
G1(x)P (c1)

G1(x)P (c1) +G2(x)P (c2)

K2(d(µ2, x)) =
G2(x)P (c2)

G1(x)P (c1) +G2(x)P (c2)

which we abbreviate to k1 and k2 respectively, for simplicity. Note that:

0 ≤ k1, k2 ≤ 1

k1 + k2 = 1

These values are fed into Weka’s logistic regression learner to obtain the weights.

However, prior to running, Weka’s logistic regression standardizes its inputs so that the

actual inputs to logistic regression are:

ks1 =
k1 − µk1
σk1

and ks2 =
k2 − µk2
σk2

Since k1 + k2 = 1, it follows that σk2 = σk1 = σ and µk2 = 1− µk1 , so that

ks1 =
k1 − µk1

σ

and

ks2 =
k2 − µk2

σ
=
k2 − (1− µk1)

σ
= −(1− k2)− µk1

σ
= −k1 − µk1

σ
= −ks1

Thus, the set of points presented to logistic regression lie on the line ks1 + ks2 = 0.

Each one of these points is labeled as either from class c1 or class c2. Logistic regression then

finds a decision boundary that best separates the two classes. Such a decision boundary is

orthogonal to the line on which the points lie, so that its equation is of the form ks1−ks2 = α,

for some α. In practice, logistic regression returns three values: the coefficient ω1 for ks1, the
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coefficient ω2 for ks2, and the intercept ω0. But here, ω1 = −ω2 = ω. It follows that:

PRBFN(c1|x) =
eω(k

s
1−ks2)+ω0

1 + eω(k
s
1−ks2)+ω0

PRBFN(c2|x) =
1

1 + eω(k
s
1−ks2)+ω0

Consequently, the discriminant function for RBFN, is:

λRBFN(x) = log
PRBFN(c1|x)

PRBFN(c2|x)
= ω(ks1 − ks2) + ω0

such that RBFN predicts c1 when λRBFN(x) > 0, and c2 otherwise. By substituting in the

values of ks1 and ks2, we rewrite λRBFN(x) in terms of k1 and k2, yielding:

λRBFN(x) =
ω

σ
(k1 − k2) +

ω

σ
(1− 2µk1) + ω0

which, in terms of discriminative ability, is equivalent to:

λRBFN(x) = k1 − k2 + α

where

α =
ω0σ

ω
+ (1− 2µk1)

On the other hand, NB predicts c1 when cNBq (x) is c1, and c2 otherwise. Since cNBq (x)

is c1 when G1(x)P (c1) > G2(x)P (c2), it follows immediately that NB predicts c1 when

k1 > k2, and c2 otherwise. Hence, the discriminant function for NB is simply:

λNB(x) = k1 − k2

The similarity between λRBFN and λNB is obvious, with the former being a small gen-

eralization of the latter. NB’s resulting decision boundary, together with a possible RBFN’s
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decision boundary (when α = 0.45) are depicted in Figure 6.2. The thick segments repre-

sent the projections of the input space onto the normalized (i.e., k1 + k2 = 1), respectively

standardized (i.e., ks1 + ks2 = 0), Gaussian kernels. The predictions of NB and RBFN are

identical for all points except those that lie between the two parallel decision boundaries.

It is possible that, even when the two boundaries do not coincide exactly (i.e., α 6= 0 for

RBFN), this set may be empty, and the behaviors of NB and RBFN would still be identical.

In general, we expect some small variations in behavior between the two algorithms.

Figure 6.2: Decision Boundaries for NB and RBFN when k = 1 and m = 2. Two thick lines
(long and short ones) indicate the input space after and before standardization, respectively.
The thick-dotted line indicates the instance of decision line of RBFN and the solid line below
it indicates the decision line of NB. It shows that the decision boundary of NB and RBFN
is parallel and when α = 0, they are identical.
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As an illustration, Figure 6.3 shows the values of COD with respect to α for all

56 binary classification tasks in our selection of datasets. As expected, most points have

small COD values and also congregate around small values of α. The two most significant

outliers correspond to the UCI parkinsons dataset (COD=0.46) and the UCI Wisconsin

prognostic breast cancer dataset (COD=0.31). A close look at these datasets reveals that

in both cases they contain several attributes whose mean values are close to 0 (for both

target classes). Since the multivariate Gaussians defined for each class are products of the

univariate Gaussians defined over each attribute, attributes with mean around 0 tend to

bring the products to 0 for both classes, so that after normalization k1 ≈ k2 ≈ 1
2

and

µk1 ≈ 1
2
. Because k1 ≈ k2, λ

NB(x) will be small (≈ 0) and on either side of 0, giving rise

to a somewhat random classifier. On the other hand, since µk1 ≈ 1
2
, then α ≈ ω0σ

ω
, and

thus λRBFN(x) ≈ −ω0σ
ω

. Hence, RBFN behaves like a majority learner whose predicted class

depends on the sign of ω0 σ and ω are positive). It follows that in such cases, the behavior

of NB and RBFN may become significantly different.

While for m = 2, the inputs to logistic regression in the RBFN learning scenario lie

on the line defined by ks1 + ks2 = 0, by extension for larger values of m, the inputs to logistic

regression lie on the hyperplane defined by
∑m

i=1 k
s
i = 0. However, the foregoing analysis

of discriminant functions and geometry of decision boundaries does not generalize easily in

this higher-dimensional space. Hence, we resort to an empirical analysis of the value of COD

as m increases. Our selection of 85 datasets accounts for values of m between 2 and 28.

However, for most of these, except for m = 2, there are 12 or less datasets with that value

of m. Hence, we extend our selection of datasets so that each value of m ends up with 85

datasets. For each value of m, we generate a number of complementary of datasetoids [72]

as follows.

1. Let dm be the number of datasets with m target values

2. Select 85− dm datasets at random

3. For each selected dataset, create a datasetoid:
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Figure 6.3: COD vs α for 56 Binary Classification Datasets (k = 1). It shows that the
difference in behavior between RBFN and NB is small over most of datasets.

(a) Remove the target attribute

(b) Select an attribute at random

(c) Discretize the selected attribute into m bins and set it as target

4. Run each datasetoid against NB and RBFN

5. Compute average COD across all 85 datasets/datasetoids

Figure 6.4 shows the resulting average value of COD for several values of m between

2 and 28. The graph shows a generally increasing trend, such that the difference in behavior

between RBFN and NB becomes larger as the number of target values increases. The value

for m = 2 is very small, as expected, with a significant qualitative jump when m = 3 and

beyond.
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Figure 6.4: COD vs m for k = 1 It shows that the difference in behavior between NB and
RBFN becomes large in general as m increases.

Interestingly, however, even with the increase in COD, the relative similarity remains

the same with NB and RBFN clustering together first for all values of m. For the sake of

space, we do not show the dendrograms here. So, while the absolute value of COD indicates

that the amount of similarity between RBFN and NB decreases as m increases, the relative

value of COD suggests that, of all learning algorithms considered here, RBFN with k = 1 is

closer in behavior to NB than any other algorithm.

Of course, very few people would think of k = 1 as the best setting for RBFN, as it

tends to nullify the advantage offered by “localization” and hybrid learning. The foregoing

analysis confirms that such a choice would also not be very judicious since it would only

cause RBFN to behave like NB, clearly a computational overkill in most cases (we return to
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the issue of complexity shortly). As stated above, Weka uses k = 2 as its implementation’s

default value. We thus turn to the case when k > 1.

6.4.2 RBFN with k > 1

As with larger values of m for k = 1, a direct comparison of discriminant functions and

geometry of decision boundaries does not generalize easily to values of k > 1. Hence, we

again resort to an empirical analysis of the value of COD as k increases. We expect that for

k = 2 the similarity between RBFN and NB may still hold, and possibly for a few larger

values of k. However, as k gets larger, it would seem that the amount of similarity should

eventually decrease as RBFN is likely to begin overfitting, while NB’s behavior remains

unchanged. Figure 6.5 shows how the value of COD evolves with increasing values of k.

Figure 6.5: COD vs k when m = 2. For k ≤ 3, RBFN clusters first with NB but clusters
with RandForest when k > 3. This indicates that the similarity of RBFN and NB is getting
weaker with increasing k.

As expected, COD increases with k. Interestingly, RBFN and NB cluster together

first only up to k = 3. For larger values of k, the cluster is “broken” and RBFN begins to

cluster first with Random Forest. However, notice that the value of COD seems to reach
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a kind of plateau around 0.18, so that, although they no longer cluster together first, the

amount of difference between RBFN and NB seems to remain constant across values of k > 3.

At this point, we must ask an important question. We have already shown that

choosing k = 1 is probably not judicious. Weka chooses k = 2, which still maintains

significant behavior similarity between RBFN and NB. So the question is, should we choose

larger values of k, and if we do, what kind of improvement might we obtain in terms of

predictive accuracy for RBFN? Figure 6.6 shows how RBFN’s training time and predictive

accuracy are affected by the value of k.

It is clear that while the training time of RBFN increases dramatically (at least

linearly) with k, there is no significant change in predictive accuracy. This behavior is likely

due to the overfitting alluded to above. Large values of k typically make sense in function

approximation or regression tasks, less so in classification tasks. It would appear, therefore,

that Weka’s choice of k = 2, which results in km basis functions, is a good compromise

between training time and predictive accuracy. Hence, we are left with a relatively high

degree of similarity between RBFN and NB in realistic settings for both algorithms.

6.4.3 Consequence

There is an important practical consequence to this, since there is a significant difference

in computational complexity between NB and RBFN. Let T denote the number of training

instances and n denote the number of attributes. Then NB is O(Tn) [25]. Since RBFN

is a hybrid learner, we must consider the complexity of each of its parts. The complexity

of k-means is O(TnkI), where I is the number of iterations (e.g., see [82]). Since Weka’s

RBFN performs k-means for each class separately, its complexity is O(TnmkI). In Weka’s

RBFN, the weights for logistic regression use the quasi-Newton method. The complexity of

the quasi-Newton method is O(W 2), where W is the size of the weight vector (e.g., see [35],

p. 197). Here, W = H(m − 1) = km(m − 1), so that the complexity of logistic regression
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(a) Training Time

(b) Predictive Accuracy

Figure 6.6: NB and RBFN’s Training Time and Accuracy with Increasing k

is O(k2m4). It follows that RBFN is O(TnmkI + k2m4), which is clearly much worse than

NB’s complexity.

From a practical standpoint, this theoretical difference also translates into significant

time differences, as shown on Figure 6.6(a). Table 6.2 shows the ratio of RBFN’s to NB’s

training time over our selection of datasets. On several occasions, RBFN takes several hours,

while NB only requires a few seconds. Overall, RBFN is more than 22 times slower than NB

on half of the datasets.
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Table 6.2: Ratio of RBFN’s to NB’s Training Time

Statistic Time Ratio
Mean 46,056
Maximum 57,060
Upper Median 78
Median 22
Lower Median 10
Minimum 5

If that kind of difference does not give rise to a significant difference in predictive

accuracy, one may be tempted to always use NB. However, recall that our empirical analysis

relies on observations averaged across many datasets. So, while the observed similarity

between RBFN and NB holds in the aggregate, there are noticeable local variations. As a

matter of fact, the value of COD between NB and RBFN over our 85 continuous datasets

ranges between 0 and 0.88 (µ = 0.16, σ = 0.22), while their corresponding difference in

predictive accuracy ranges between 0 and 20.83% (µ = 2.83%, σ = 3.98%).

We thus turn our attention to analyzing these local variations, i.e., discovering what

types of tasks RBFN is likely to be superior to NB. In other words, our similarity results

suggest that unless RBFN performs significantly better than NB, we should simply use

NB. What we would like to know is when it makes sense to incur the extra computational

complexity of RBFN, and when it can be avoided at no significant loss to predictive accuracy.

6.5 To RBFN or Not to RBFN

In this section, we use metalearning in an attempt at characterizing the types of tasks on

which the difference of behavior between RBFN and NB is significant and gives preference

to RBFN. The reason we rely on metalearning is that, while it is easy to design simple

cases where the performance of RBFN is much better than the performance of NB, these

are generally somewhat pathological cases, and it is difficult to come up with an analytical

form for more general cases.
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6.5.1 A Simple Case of Preference for RBFN

As per the above discussion, we assume k = 2 for RBFN. It is easy to show that NB is weak

on binary classification tasks where there are an equal number of non-linearly separable

target values, as illustrated in Figure 6.7.

Figure 6.7: Non-linearly Separable One-dimensional Binary Classification Task

The analytical form of NB for such a one-dimensional dataset is as follows [52].

P (y = O|x) =
1

1 + eω0+ω1x

P (y = X|x) = 1− P (y = O|x)

where

w0 = ln
1− P (y = O)

P (y = O)
+
µ2
O − µ2

X

2σ2

w1 =
µX − µO

σ2

Since P (y = O) = P (y = X) and µO = µX, it follows immediately that ω0 = ω1 = 0, so that

P (y = O|x) = P (y = X|x) = 0.5, and NB’s accuracy is 50%.

On the other hand, the analytical form of RBFN is as follows (see section 6.3.2).

P (y = O|x) =
eω0+

∑4
i=1 ωiKi(x)

1 + eω0+
∑4
i=1 ωiKi(x)

P (y = X|x) = 1− P (y = O|x)

where two of the kernel functions, say K1 and K2, are associated with class o, and the other

two, say K3 and K4, are associated with class x. Given the geometry of the problem, K1 will
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Table 6.3: Summary of T-test for Accuracy Difference Between RBFN and NB

Winner # Datasets
RBFN 18
NB 5
Tie 62

capture the first ooooo sequence, K3 will capture the first xxxxx sequence, K2 will capture

the second ooooo sequence, and K4 will capture the second xxxxx sequence. Hence, by

training the ωi’s, RBFN will be able to discriminate between the two classes perfectly, such

that RBFN’s accuracy is 100%.

6.5.2 Building a Selection Metamodel

From a practical standpoint, in all cases where NB has significantly higher predictive ac-

curacy, as well as those where there is no significant difference between NB’s and RBFN’s

predictive accuracy, one should run NB since this will produce the best accuracy in the least

amount of time. Conversely, in all other cases, where RBFN does perform significantly bet-

ter than NB, one might wish to run RBFN in spite of its much greater computational cost.

We propose to use metalearning to provide a general mechanism for users to make such a

decision. The metamodel is built to discriminate between NB and RBFN.

As stated above, there is some variance in the performance of NB and RBFN on

individual tasks. We wish to know when these differences are significant. To find out, we

run an unpaired student’s t-test on each of our datasets using 10-fold cross-validation, with

a p-value of 0.05. A summary of the results is in Table 6.3.

At the metalevel, each of our 85 datasets is characterized by its values over a pre-

defined set of metafeatures, as in other metalearning for classification approaches (e.g., see [2,

18, 59]). Our set of 38 metafeatures consists of a combination of statistical measures and a

small set of landmarkers, including the following.

• lgE: log of the number of examples
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• lgREA: log of the ratio of the number of examples to the number of attributes

• numClasses: number of target classes

• numInstsPerClass: ratio of the number of examples to the number of target classes

• RMajorClass: probability of the majority class

• landmarkerMajorityGuesser: majority class landmarker

• landmarker1NN: 1-NN landmarker

• landmarkerNaiveBayes: NB landmarker

• meanCovarianceMatrix: average over all target values of the class-dependent means

of attribute pair covariances

• normalizedKurtosis: normalized kurtosis

• entireEntropy: class entropy

For each dataset, its corresponding meta-example is generated and labeled with one

of two target values: rbfn when RBFN significantly outperforms NB (18 instances), and

nb otherwise (67 instances). The default accuracy, i.e., the accuracy when one predicts the

most frequent class, is 67
85

= 78.8%. For the sake of comprehensibility, we use Weka’s J48 as

the metalearner, with the following parameter values:

• confidenceFactor: 0.25

• pruning: true

• minNumObj: 2 (the minimum number of instances per leaf)

Figure 6.8 shows the induced decision tree. Interestingly, the highest decision nodes in the

tree have to do with the size of the dataset. This is consistent with findings involving NB and

logistic regression, where it is stated that NB usually performs better for smaller number of

training examples, while logistic regression performs better with larger training sets. Recall

that Weka’s RBFN uses logistic regression to learn the output layer’s weights. Our selector
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Figure 6.8: Decision Tree Selector

Table 6.4: Confusion Matrix for Decision Tree Selector

Pred.

A
c
t
u
a
l NB RBFN

NB 63 4
RBFN 7 11

tree suggests that when there are many examples, the predicted winner is RBFN (top branch:

lgE > 7.3025: rbfn (10.0)). Conversely, when there are few examples, the predicted

winner is NB (top branch: lgE <= 7.3025 and lgREA <= 1.4032: nb (40.0)).

The tree’s confusion matrix, using 10-fold cross-validation, is shown in Table 6.4.

Its overall accuracy is 87%, a significant increase over the default, which suggests that the

metamodel’s predictions will yield performance improvements in the practical use of RBFN

and NB.

Looking closer at the selection task, we notice that the types of error metamodel makes

have different costs. When RBFN is mistakenly predicted as NB, the user loses accuracy

but saves in training time. On the other hand, when NB is mistakenly predicted as RBFN,

the user loses accuracy and incurs unnecessary additional training time. Clearly, the second

type of error is more costly than the first. At the risk of sacrificing comprehensibility for the

sake of a better model, we consider ensemble-like learning algorithms for the metalearner.
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Table 6.5: Confusion Matrix for Best Selector Model

Pred.

A
c
t
u
a
l NB RBFN

NB 66 1
RBFN 6 12

Our goal is to reduce as much as possible the second type of errors while not increasing

the first type. Our best metamodel is obtained by applying the idea of rotation forest with

J48graft as the base learner and the default 50% of instances to be removed. The model’s

overall accuracy is 91.8%, and its improved confusion matrix is shown in Table 6.5. Not only

is this model more accurate, it only makes one false prediction for NB.

6.6 Discussion

Since we use Weka’s default implementations, it is worthwhile to investigate whether the

behavior similarity between RBFN and NB is restricted to the assumptions of these imple-

mentations. We first consider the assumption of Gaussian kernels and then the assumption

of class-dependency of said kernels. In both cases, we use our idea of clustering. To test

the impact of the choice of basis functions, we perform clustering with five additional im-

plementations of RBFN, as follows. Each implementation is denoted by a pair consisting

of 1) the unsupervised learning algorithm used to build the hidden layer (EM or k-Means)

together with the type of radial basis function used in the hidden layer (Gaussian or Thin

Plate Spline), and 2) the supervised learning algorithm used to compute the weights of the

output layer (Logistic Regression, Single Layer Perceptron, LibLINEAR or LibSVM).

• EMG+Log

• KG+LibLINR

• KG+SLP

• KG+LibSVM
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• KThin+Log

Figure 6.9 shows the dendrogram obtained by averaging COD over all 85 continuous

datasets using the same clustering algorithm as in Section 6.1. The label RBFN corresponds

to Weka’s default implementation (KG+Log). The dendrogram suggests that the similarity

between RBFN and NB is affected more by the choice of basis functions (or kernels) than

by the choice of the supervised weight update method. Four out of the five Gaussian kernel

RBFNs, with different supervised learning algorithms, cluster together first, followed by

NB. The fifth Gaussian kernel RBFN, with a rather different supervised learning algorithm

(SVM), clusters a little later. Finally, the non-Gaussian, thin plate spline kernel RBFN, with

the standard logistic regression algorithm as supervised learning algorithm, is most unlike

NB. Hence, conclusions about the similarity between RBFN and NB are valid as long as

both use Gaussian kernels.

The other aspect of Weka’s implementation of RBFN that likely impacts the observed

similarity between RBFN and NB is the fact that kernels are class-dependent rather than

shared across classes. To verify that this is the case, we perform clustering with three

variations of shared kernels as follows.

• RBFN+Raw1. The hidden layer consists of a single hidden node.

• RBFN+Raw2. The hidden layer consists of two hidden nodes.

• RBFN+Raw. The hidden layer consists of m hidden nodes. This is similar to k = 1

in the standard Weka implementation, except that here there is no one-to-one corre-

spondence between a hidden node and a target class.

Figure 6.10 shows the resulting dendrogram. Again, the label RBFN corresponds to

Weka’s default implementation. The dendrogram clearly shows that there is no similarity

between RBFN and NB when the basis functions are shared across classes. This should not

be completely surprising given the analysis of section 6.4. Interestingly, when considering

accuracy over our 85 datasets, RBFN is significantly (p=0.05) better than RBFN+Raw on
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Figure 6.9: COD-based Clustering with Additional RBFN Implementations

27 datasets, while RBFN+Raw wins only once, and there is no significant difference on the

remaining 57 datasets.

Hence, we are certainly not claiming that RBFN and NB behave similarly in general.

We have simply shown that the assumptions embedded in Weka’s implementations of these

algorithms, specifically the use of Gaussian kernels and the choice of 2 class-dependent basis

functions per class, make them behave rather similarly over a broad range of datasets, and

certainly more similarly than any other algorithm in our wide selection of learning algorithms.

Interestingly, Weka’s assumptions are rather reasonable.

• Gaussian kernels seem appropriate for classification tasks.
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Figure 6.10: COD-based Clustering with Shared Kernels Implementations

• Class-dependent kernels are natural and seem to outperform kernels shared across

classes.5

• k = 1 makes little sense and k > 2 incurs unnecessary computational cost for no

significant gain in accuracy.

As a result, our finding has important practical consequences, all of which having to

do with being careful about the type of tasks under study.

• Use of default parameter values. Most practitioners, who lack the needed know-how,

confine their use of tools to their default parameter settings. As seen here, there is

potential “danger” in doing so. Indeed, if one is considering the use of RBFN, but the

5More work is clearly needed to validate this preliminary finding, but our point here is simply that Weka’s
implementation is at least legitimate, i.e., not unwittingly or purposely sub-optimal.
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task at hand is such that the similarity is strong and NB would give a similar answer,

it would be cheaper to use NB. The metamodel described in section 6.5.2 is an attempt

at avoiding this problem for RBFN and NB.

• Ensemble learning. It has long been known that the value of an ensemble resides in

the diversity of its constituent learning algorithms. Researchers who design ensembles

do not always take the time to verify the actual level of diversity in their selection, but

may rely on existing taxonomies (e.g., Weka’s classification of algorithms in different

model classes) or preferences. Again, as pointed out above, current taxonomies and

perceptions about RBFN and NB would likely suggest that both be used in an ensem-

ble. Yet, the foregoing analysis clearly shows that in many cases there would be little,

if any, added value in including both since their behaviors are so similar on a broad

set of learning tasks.

• Metalearning for algorithm selection. Much of the work in metalearning has focused

on building models that can select (or rank) classification algorithms. There are two

issues here. First, even when differences are imperceptible in the aggregate (as in the

present study), they may matter at the task level, and further efforts should thus be

expanded in finding automatic mechanisms to map learning tasks to learners effectively.

Second, when strong similarities exist among algorithms, it may be counterproductive

to build models that try hard to tell them apart. Instead, one may consider clustering

algorithms based on similarity and devising novel selection mechanisms where the

metalearner selects among cluster of behaviorally similar algorithms rather than among

individual algorithms. This is the subject of current work [46].

Beyond the present study of RBFN and NB, we would point out that one would

not expect that the amount of diversity among learning algorithms continually increases.

The set of problems we attempt to solve, or test our algorithms against (e.g., UCI), varies

(increases) much more slowly than the number of new algorithms or variants thereof being

created. Given this almost fixed set against which to test, it should be clear that one would
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expect some algorithms to have similar, yet uncovered, performance or behavior on that set.

In this paper, we have focused on a specific pair of algorithms, highlighted by the clustering

we performed on our selection of 21 algorithms. We think that the approach has merit

and that computing natural clusterings may bring to light interesting, otherwise difficult

to anticipate, similarities among learning algorithms. Furthermore, results on a slightly

extended set of algorithms and a larger collection of datasets from UCI seem to indicate

that there is strong pairwise correlation in terms of accuracy performance among current

learners. As a result, one may wonder whether designing yet another learning algorithm for

UCI is as promising an area of research as designing a new learning algorithm for an as-yet

unexplored area of the learning space.

6.7 Conclusion

In this paper, we have offered a detailed comparison of the behavior RBFN and NB, based

on a combination of analytical tools and empirical results. We have shown that RBFN and

NB indeed exhibit a high level of similarity across a broad range of learning tasks, and shed

some light as to why this may be and what the scope of applicability of that observation

is. We have concluded that the observed similarity is a direct result of the assumptions

made by Weka’s implementations of RBFN and NB. However, we have also argued that said

implementations were natural and reasonable, so that the observed similarity is indeed of

practical import.

Having established that the observed similarity in no way suggests that the two

algorithm have identical behavior, but is true in the aggregate, we turned to metalearning

for the development of a selection metamodel that could discriminate between RBFN and

NB, and in particular accurately predict when the increase in training time caused by RBFN

would be worthwhile, i.e., result in higher predictive accuracy for the learning task under

consideration.
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Finally, we have discussed some of the consequences of our finding, both specific to

RBFN and NB, and more generally across other learning algorithms. We argue that discov-

ering similarity (resp. difference) among learning algorithms may prove useful in ensemble

learning and metalearning, and will help us get a better understanding of our science. In

cases where similarity in generalization performance is not matched by similarity in compu-

tational complexity, as is the case for RBFN and NB, we may also be able to use a faster

model for the same performance.
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Chapter 7

Clustering-based Metalearning for Algorithm Selection

Abstract

Classification algorithm selection is one of the important open research questions in data

mining, and one whose answer has tremendous value for practitioners. In recent years, met-

alearning has emerged as a viable solution to this problem. To make algorithm selection

most useful, one would ideally like the largest possible set of candidate algorithms to select

from. However, given the relatively small number of examples at the metalevel, this makes

the metalearning task challenging, both because the ratio of examples to classes is very small,

and because there are serious risks of overfitting due to underlying similarities among algo-

rithms. To alleviate these problems, we propose to 1) cluster algorithms based on behavior

similarity, and 2) redefine the metalearning task as mapping classification tasks to clusters

of behaviorally-similar algorithms. Experiments with a wide range of classification tasks and

algorithms demonstrate promise. In particular, the clustering-based selection model is more

effective than typical selection and ranking models.
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7.1 Introduction

One of the challenges faced by data mining practitioners is the selection of the most accurate

algorithm for their classification tasks. Given that each algorithm performs well only on a

subset of classification task —a direct consequence of the No Free Lunch theorems [66, 85, 86],

and that there is a growing number of available algorithms, finding the best algorithm for a

particular classification task is indeed becoming increasingly difficult.

While hiring human experts may help, it is also costly and often biased. Since no

expert can be expected to know all algorithms, decisions tend to be influenced by personal

experience and preferences. Furthermore, comparatively little is known about each algo-

rithm’s area of expertise, or what characterizes tasks on which it performs well and tasks on

which it performs poorly. Hence, human decisions run the risk of being suboptimal. Recent

research suggests that automatic tools can sometimes bring up solutions that have thus far

eluded human experts (e.g., see [11]). As an alternative, one could simply run all available

algorithms on the given task and choose the algorithm with the best performance. However,

this is not without problems either. In particular, one may not have access to the candi-

date algorithms, and even if they do, it might be computationally prohibitive to execute all

possible algorithms.

For the practitioner, what is needed is an automatic system capable of returning the

most suitable algorithm for his/her task. Metalearning, or the use of data collected from the

application of data mining to build metamodels that map classification tasks to algorithms,

has proven a viable solution for the design and implementation of such systems [16]. Met-

alearning for algorithm selection is typically formulated as a special case of Rice’s general

framework for algorithm selection [63, 71]. Let L be a set of learning algorithms for classi-

fication and T be a set of classification tasks, such that for each t ∈ T , bL(t) represents the

algorithm in L that gives the best predictive accuracy on t. Since classification tasks may be

unwieldy to handle directly, some characterization of tasks by a set of metafeatures is gener-

ally used, such that for each t ∈ T , c(t) denotes the characterization of t. Then, metalearning
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takes the set m = {< c(t), bL(t) >: t ∈ T} as a training set and induces a metamodel that,

for each new classification task, t, predicts the model from L that will perform best on t.

Alternatively, one may induce a metamodel that predicts a complete ranking of algorithms

from L, thus providing the user additional information when the algorithm predicted best

exhibits what appears to be a poor performance (e.g., see [12, 18]).1

In order to maximize value for the user, the set L should be such that it offers as broad

as possible a coverage of the task space so that any task presented by the user will fall into the

area of expertise of at least one learner in L. There are two possible approaches to achieving

maximum (under L) coverage: 1) know each learner’s area of expertise and select one learner

per area, or 2) use all learners in L. It should be clear that if we knew the area of expertise of

all learning algorithms, the problem of algorithm selection would be largely solved. Hence,

the only practical alternative is to make L large and consider all of the learning algorithms

in L. However, this too presents some challenges. First, because the set m of training

examples at the metalevel (i.e., documented base-level learning tasks) is relatively small, the

ratio |m|
|L| of training examples to target classes decreases as the size of L increases. This,

in turn, makes it difficult for any metalearner to induce an accurate metamodel. Second,

there is a significant risk of overfitting due to the likelihood of similarities among learning

algorithms in L.2 To illustrate, consider the simple metalearning task shown in Table 7.1.

This task consists of three training (meta-)examples, each corresponding to a specific base-

level learning task characterized by two continuous-valued metafeatures. Each example is

also labeled with the algorithm known to perform best on the associated learning task. Let

us further assume that the behavior of algorithm lA is very similar to that of algorithm lB.

Since lA and lB are different target labels, the metalearner would try to induce a model

that discriminates between instances 1 and 2. In that attempt, it risks overfitting. Indeed,

1In the single algorithm prediction approach, the user has no further information as to what other
algorithm to try. In the ranking approach, the user may try the second best, third best, and so on, in an
attempt to improve performance.

2While this likelihood clearly increases with |L|, it is also non negligible for smaller values of |L| since, as
stated above, we generally do not know individual areas of expertise.

86



Table 7.1: Simple Metalearning Task

Example Feature 1 Feature 2 Best Alg

1 0.45 0.68 lA
2 0.43 0.66 lB
3 0.25 0.36 lC

suppose that a new, previously unseen dataset is presented to the system with metafeatures

< 0.44, 0.67 >. What would the metamodel output in this case? Depending on how it

handled the discrimination between instances 1 and 2 during learning, it would return either

lA or lB. However, since the behaviors of lA and lB are similar, the actual best algorithm for

this new instance may also be recorded as either lA or lB. As a result, there is a 50% chance

that the metamodel predicts lA when lB is the new instance’s actual label, and 50% chance

that it predicts lB when lA is the correct answer.

As an effective way to overcome the foregoing challenges, we propose a new algorithm

selection model based on clustering. The basic idea is simple. We group the target values

in the metadataset in terms of the behavior similarity of the corresponding algorithms, and

induce a metamodel that predicts clusters rather than individual algorithms. Returning to

the example of Table 7.1, if lA and lB were to be grouped together, as per our proposed

approach, then both instances 1 and 2 would have the same label. The metalearner would

not have to try to needlessly separate them, and the correct answer would be returned for

the new instance since no matter what its actual label, the corresponding algorithm would

be in the cluster predicted by the metalearner. This novel approach does not only simplify

the metalearning task (i.e., improving the ratio of training examples to target classes) and

greatly reduce the risk of overfitting, it is also more accurate than traditional algorithm-based

selection.

The paper is organized as follows. In section 7.2, we briefly review previous work

on metalearning for algorithm selection. In section 7.3.3, we present our behavior simi-

larity metric, describe the resulting clustering of a broad selection of learning algorithms,

and introduce our clustering-based algorithm selection system. In section 7.4, we compare

87



clustering-based selection with algorithm-based selection and demonstrates its superiority.

Finally, section 7.5 concludes the paper.

7.2 Related Works

Metalearning for classification algorithm selection probably finds its origins in STABB, which

showed that a learner’s bias could be adjusted dynamically [77], and VBMS, which learned

to select the best among (three) algorithms as a function of (two) dataset characteristics [62].

Later, the MLT project (ESPRIT Nr. 2154) produced a user guidance system, called

Consultant-2, which although built through knowledge engineering rather than metalearn-

ing, stands out as the first automatic tool that systematically relates application and data

characteristics to classification learning algorithms [23, 40]. About the same time, the Stat-

Log project (ESPRIT Nr. 5170) extended VBMS by considering a larger number of dataset

characteristics, together with a broad class of candidate algorithms for selection [15, 30, 51].

StatLog identified 16 metafeatures and used them in an attempt to find relationships with

accuracy. It considered 23 machine learning algorithms and 22 datasets. Continuing in the

tradition, the METAL project (ESPRIT Nr. 26.357) was the first large-scale project ex-

clusively focused on the design of automatic user guidance systems for algorithm selection

via metalearning [16, 80]. METAL covered 53 datasets, and made a number of significant

contributions to metalearning, including designing novel task characterizations, such as, ad-

vanced statistics [26, 41, 48], landmarking [7, 28, 59], and model-based approaches [6, 9, 56].

In addition, the project introduced the idea of rankings rather than best-in-class selection

to give more information to the user [18], and implemented it in the Data Mining Advisor

(DMA), a Web-enabled prototype assistant system [33].

In addition to work done in the context of the foregoing projects, others have published

results on similar attempts. For example, another rather comprehensive attempt at algorithm

selection was carried out in a set of experiments involving 100 datasets, 31 metafeatures,

and 8 learning algorithms [2]. In one experiment, the authors compared the performance of
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the learning algorithms with respect to a multi-criteria performance measure, called relative

weighted performance measure, which combines weighted ranking of average accuracy and

computational time. When equal weights are given to both components, the very simple

(and fast) OneR (that uses a minimum-error attribute for prediction) algorithm turned out

to be the best one since its computational advantage far outweighed its poor accuracy.

Unfortunately, the proposed measure could hardly distinguish the performance of C4.5,

PART, KD, and NB. Furthermore the computational cost associated with extracting the

values of metafeatures is ignored. Finally, we note that a few researchers have attempted to

predict actual algorithm performance directly [10, 34, 74].

7.3 Clustering-based Metalearning

In this section, we discuss the design of our proposed clustering-based metalearning system

for algorithm selection.

7.3.1 Choice of Learning Algorithms

To facilitate access to our results by as wide an audience as possible, we consider well-

established learning algorithms from Weka, one of the most popular and richest open-source

data mining software package [83]. For simplicity, and to cater to novice users who are

unlikely to have the know-how to tune parameters, only the default versions of the following

21 algorithms are taken into consideration.

1. NäıveBayes (NB)

2. Bayesian Network (BayesNet)

3. Logistic Regression (Logistic)

4. Radial Basis Function Network (RBFN)

5. Multilayer Perceptron (MLP)

6. Sequential Minimal Optimization (SMO)
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7. One-nearest Neighbor (IB1)

8. Three-nearest Neighbor (IB3)

9. Locally-weighted Learning (LWL)

10. Classification and Regression Tree (SimpleCart)

11. Multi-class Alternating Decision Tree (LADTree)

12. Functional Tree (FT)

13. C4.5 Decision Tree (J48)

14. NB Tree (NBTree)

15. Random Forest (RandForest)

16. Decision Table (DecTable)

17. Ripper (JRip)

18. Nearest Neighbor with Generalization (NNge)

19. Partial Tree Decision Rule Learning (PART)

20. Ripple-Down Rule Learning (Ridor)

21. Mode Predictor or Majority Class Learner (ZeroR)

We note at the onset that Weka’s algorithms are organized according to an inter-

nal taxonomy that consists of a number of model classes, including tree-based, rule-based,

instance-based, probability-based and function-based approaches. It would, of course, be

possible to let this taxonomy be the basis for a clustering of our selected algorithms. How-

ever, recall that our metamodel will select clusters rather than algorithms. Hence, our

objective is to group together algorithms whose behavior is similar, so that when a cluster

is selected, there will be little difference in the performance of any of the algorithms in the

cluster on the learning task under consideration. Weka’s taxonomy is human-generated, and

thus may focus on intuitive criteria that miss underlying, non-obvious behavior similarity
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among algorithms. We found one such striking similarity between the probability-based,

generative näıve Bayes learning algorithm and the function-based, discriminative radial ba-

sis function network learning, which is the topic of a separate study [45]. As a result, we

prefer to rely on automatic clustering.

7.3.2 Choice of Behavior Distance Measure

Our chosen measure of behavior distance between algorithms is the classifier output difference

(COD), one of the diversity measures typically used in ensemble learning [58]. Given two

learning algorithms l1 and l2, COD(l1, l2) is the probability that l1 and l2 make different

predictions. As we do not typically have access to actual probabilities, we use frequency-

estimates for COD values as follows. Let h1 be the model induced by l1 and h2 be the model

induced by l2 on some learning task t. Then

COD(l1, l2, t) =
| {x ∈ t : h1(x) 6= h2(x)} |

| t |

In practice, we compute COD on a number of learning tasks and average the values, so that:

COD(l1, l2) =
1

| T |
∑
t∈T

COD(l1, l2, t)

While global measures, such as accuracy, provide only an idea of average performance

over all instances, COD captures local variations among instances. For example, even though

l1 and l2 may have the same overall accuracy on some task, they may be acting very differently

on that task, with l1 misclassifying examples that l2 classifies correctly, and vice versa. There

are two reasons why we favor COD for clustering classification learning algorithms. In recent

work on unsupervised metalearning, we have indeed shown that [47]:

1. Unlike all other considered local measures, COD satisfies the properties of a metric.
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2. COD is strictly stronger than accuracy, in the sense that if two algorithms are close

based on COD, they also have similar accuracy.

We note that computing COD over a set of algorithms is computationally intensive.

Each algorithm must be run against each dataset, usually with cross-validation, and all

predictions for all training instances must be recorded. This takes at least the running

time of the most expensive learning algorithm in L on the heaviest learning task, assuming

parallel computation is available. Pairwise comparisons of predictions and averaging must

subsequently be performed. However, this cost need only be incurred once.

7.3.3 Clustering of Classification Learning Algorithms

Using COD distance information averaged over 129 datasets from various sources including

the UCI Machine Learning Repository [4] and the Gene Expression Machine Learning Repos-

itory [75], we clustered our 21 algorithms using complete-linkage, hierarchical agglomerative

clustering (see [47] for details). The result is shown in Figure 7.1.

Although it shows all possible clusterings, the hierarchical clustering algorithm does

not provide information as to which of these is preferable over the others. The choice

of a specific clustering is typically made by selecting a level at which to cut through the

dendrogram, and defining the clusters as the groups of algorithms hanging from the subtrees

whose top branches intersect with the horizontal line corresponding to the chosen level, as

illustrated on a simple example in Figure 7.2.

It is clear that the selection of a level, or cut point, greatly impacts the actual cluster-

ing, and thus the proposed metalearning task. If the level is too low (i.e., the corresponding

line cuts through the dendrogram just above the leaf nodes), then each cluster contains a

single learning algorithm, and our approach degenerates into the typical algorithm selection

approach. Conversely, if the level is too high (i.e., the corresponding line cuts through the

dendrogram just above its root), then all classification algorithms belong to a single cluster,
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Figure 7.1: COD-based Clustering of Learning Algorithms

and our approach is no better than no algorithm selection at all. Finding an appropriate

level at which to cut is critical to the success of our approach.

7.3.4 Choice of Level

Recall that L denotes our set of 21 classification learning algorithms, T denotes our set of

129 classification tasks, and for each t ∈ T , bL(t) denotes the algorithm in L that gives the

best predictive accuracy on t, while c(t) denotes the characterization of t by some set of

relevant metafeatures. At the metalevel, each t ∈ T gives rise to a training meta-example.

In the traditional algorithm selection setting, meta-examples are of the form < c(t), bL(t) >.

In our proposed clustering-based selection setting, given a clustering C, each cluster in C is
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Figure 7.2: Effect of Level (here shown as θ) on the Resulting Clustering

given a label, and meta-examples are of the form < c(t), cl(bL(t)) >, where cl(bL(t)) is the

label of the cluster to which bL(t) belongs.

From the meta-examples, the metalearner induces a metamodel that predicts a cluster

in C from which a specific classification algorithm may be chosen. The accuracy of the

metalearner is computed as follows.

AccMeta(C) =
| {t ∈ Te : clpred(t) = cl(bL(t))} |

| Te |

=
| {t ∈ Te : bL(t) ∈ clpred(t)} |

| Te |

where Te is the test set and clpred(t) is the cluster predicted by the metalearner for t. In

other words, accuracy depends on the number of times the predicted cluster contains the

best algorithm. When all clusters are singletons, we obtain the standard accuracy of the

corresponding algorithm selection metalearner.

Assume for now that, given the predicted cluster, the user simply picks one algorithm

at random from that cluster to execute on his/her target task. We revisit this issue later

and show how to assist the user further by providing a ranking of algorithms. For the

present discussion, the selection approach is sufficient. Note that most clusters will not be

singletons so that there will be variance in the accuracy on the user’s target task, from the

best performing algorithm to the worst performing algorithm in the selected cluster. The

key idea behind our behavior-based clustering is to try to minimize this variance by ensuring
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that algorithms in a cluster are as similar as possible (i.e., relatively small COD) so that any

one of them is likely to be as good as the best one, provided the best one is in the group.

Recall that small values of COD entail similar accuracies.

Because we use complete linkage in our hierarchical clustering, the value of COD

at each merge point in the dendrogram corresponds to the largest pairwise difference in

algorithm behavior within the newly formed cluster. For a cluster cl, we refer to this value

as mCOD(cl). Since, for a particular clustering, we do not know a priori which cluster

will be predicted, and indeed, different clusters are predicted for different test examples, the

quantity we try to minimize is actually the maximum of the COD values over all clusters in

the clustering, i.e.,

COD(C) = max
cl∈C
{mCOD(cl)}

On the other hand, as with any learning task, we also wish to maximize AccMeta(C).

Hence, our choice of cut point is governed by the natural tension between minimizing

COD(C) and maximizing AccMeta. It is easy to see that these two goals cannot be reached

simultaneously and that a compromise must be found. Indeed, it is easy to maximize

AccMeta(C) by choosing a very high cut point, such that, as mentioned above, all algo-

rithms are in a single cluster. In this case, AccMeta(C) is trivially 100%. However, COD(C)

is then maximal and the metamodel is essentially useless because of the extreme diversity

among algorithms in the predicted cluster. Similarly, it is easy to minimize COD(C) by

choosing a very low cut point, such that, as mentioned above, all algorithms are in singleton

clusters. In this case, COD(C) is trivially 0. However, the metamodel’s accuracy will suffer

due to overfitting and the low ratio of examples to target class values.

Our approach to selecting an adequate cut point through the COD-generated den-

drogram takes this tension into account naturally. It is adapted from one of the standard

techniques, consisting in cutting where the gap between two successive merges is largest [49].

Here, we proceed similarly, except that we set lower and upper bounds on clustering size to

ensure that the selected clustering is neither too sparse nor too dense. Thus, we compute
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the gaps gi = COD(Ci) − COD(Ci−1] between all successive merges, find the largest value

k = argmax gi for 6 ≤ i ≤ 16, and set COD(Ck−1) as our cut point (note that clusterings

are number from 0 to 21, from bottom to top). The corresponding clustering is then used

to label the training meta-examples.

7.4 Experimental Results

In this section, we build clustering-based metamodels for algorithm selection and ranking,

and compare their performances with metalearning for algorithm selection and ranking.

7.4.1 Metalearning of Algorithm Selection Model

At the metalevel, each of our 129 datasets is characterized by its values over a pre-defined set

of metafeatures, as in other metalearning for classification approaches (e.g., see [2, 18, 59]).

Our set of 22 metafeatures consists of a combination of statistical measures and a small set

of landmarkers, including the following.

• lgE: log of the number of examples

• lgREA: log of the ratio of the number of examples to the number of attributes

• numClasses: number of target classes

• numInstsPerClass: ratio of the number of examples to the number of target classes

• landmarkerMajorityGuesser: majority class landmarker

• landmarker1NN: 1-NN landmarker

• landmarkerNaiveBayes: NB landmarker

We do not attempt to optimize the choice of a metalearner, but simply choose Weka’s

decision tree learning algorithm J48 as our metalearner. We will use the same metalearner

throughout so that comparisons across metamodels are fair. Again, recall that metalearning

for algorithm selection is a special case of cluster-based metalearning, where all clusters are
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singletons (i.e., level 0 in our dendrogram). Furthermore, there are two level at which per-

formance may be measured. At the metalevel, we wish to see how accurate our metalearner

is at predicting the target cluster. At the base level, we wish to see how the metamodel’s

prediction impact accuracy on the user’s tasks of interest. We propose the following, com-

plementary metrics to compare the performance of cluster-based metalearning strategies.

• AccMeta(C). This is accuracy of metalearning based on clustering C, measured by 10-

fold cross-validation. It is measured at the metalevel across all training meta-examples.

• WCAccBase(C). For each test meta-example t, we measure the absolute value of the

difference between the accuracy on t of the best algorithm in t’s target cluster and

the accuracy on t of the worst-performing algorithm in t’s predicted cluster. We then

average over all meta-examples. This measures the worst performance, at the base level,

of clustering-based selection, i.e., when the user always picks the poorest algorithm in

the predicted cluster.3

• BCAccBase(C). For each test meta-example t, we measure the absolute value of the

difference between the accuracy on t of the best algorithm in t’s target cluster and

the accuracy on t of the best-performing algorithm in t’s predicted cluster. We then

average over all meta-examples. This is a more optimistic measure of performance at

the base level, since it assumes that the user always picks the best algorithm in the

predicted cluster.

• AV G+AccBase(C). For each test meta-example t, we measure the absolute value of

the difference between the accuracy on t of a randomly selected algorithm in t’s target

cluster and the accuracy of a randomly selected algorithm in t’s predicted cluster. We

repeat the random selection 100 times, average the results for t, and finally average

over all meta-examples. This measures a kind of average performance, at the base

level, of clustering-based selection, i.e., when the user would always pick at random.

3Note that this really worst-case in that even if the predicted cluster is the target cluster, there is a
non-zero error accrued since we calculate the accuracy difference between the best and worst algorithms in
the cluster.
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• AV G−AccBase(C). For each test meta-example t, we measure the absolute value of

the difference between the accuracy on t of the best algorithm in t’s target cluster and

the accuracy of a randomly selected algorithm in t’s predicted cluster. We repeat the

random selection 100 times, average the results for t, and finally average over all meta-

examples. This measures a kind of pessimistic average performance of clustering-based

selection, i.e., when the user picks at random in the predicted cluster but is gauged

against the best algorithm.

• AV G−CODBase(C). For each test meta-example t, we measure the COD value be-

tween the best algorithm in t’s target cluster and a randomly selected algorithm in t’s

predicted cluster. We repeat the random selection 100 times, average the results for

t, and finally average over all meta-examples. This is similar to the previous metric

but in behavior space rather than accuracy space. These two metric together provide

a nice assessment of the overall relative effectiveness of clustering metamodels.

Starting from the dendrogram of Figure 7.1, and using our cut point selection method,

we obtain a clustering of 10 clusters as shown in Figure 7.3 (cut point: 0.178). Table 7.2

shows the performance of the corresponding cluster-based metalearner (|C| = 10) compared

to the performance of a standard algorithm selection metamodel (|C| = 21), with respect to

our metrics. Standard deviations are given in parentheses and the column Wins record the

percentage of times the clustering approach outperforms the algorithm selection approach

on the 100 random trials.

Table 7.2: Clustering vs. Algorithm Selection

Metric |C| = 10 |C| = 21 Wins

AccMeta(C) 32.62% 22.30%
WCAccBase(C) 7.66 3.47
BCAccBase(C) 2.38 3.47

AV G+AccBase(C) 3.09 (1.95) 3.47 70%
AV G−AccBase(C) 4.44 (2.39) 3.47 40%
AV G−CODBase(C) 0.14 (0.10) 0.13 50%
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Figure 7.3: Selected Clustering for Metalearning. With a cut point of 0.178, 10 clusters are
obtained.

The results on AccMeta(C) show that even though the cluster-selection is somewhat

superior, both metamodels suffer from low accuracy. While the poor performance of the

algorithm selection metamodel may be explained in part by the small ratio of training meta-

examples to target values (129/21=6) and possible overfitting, this is less of an issue for the

cluster-selection metamodel. We suspect that the problem lies mostly in the metafeatures.

While we used a reasonably broad range of well-known metafeatures, the accuracy of the

metamodel suggests that they may not have the predictive power needed in this context.

As pointed out by Rice, “the determination of the best (or even good) features is one of

the most important, yet nebulous, aspects of the algorithm selection problem” [63]. Since

our main goal was to compare the relative performance of cluster selection and algorithm

selection rather than to derive a good metamodel, our comparison is at least fair. However,

more work is needed if we are to operationalize any of our metamodels.
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Results over our other metrics suggest that cluster-selection performs similarly to

algorithm selection with a slight disadvantage in WCAccBase(C) and a slight advantage in

BCAccBase(C) and AV G+AccBase(C). That is, on average, cluster selection is expected to

produce slightly better results at the base level. In fact, it will likely do so about 70% of

the time. For practitioners who worry about the worst cases, the result on WCAccBase(C)

can be problematic, however. It is desirable that users of our clustering-based metamodel

be given additional guidance to avoid the worst selection. We will consider one way to do

using ranking in the next section.

Before we do that, we wish to point out that our description and implementation of,

as well as experiments with, clustering-based metalearning has relied on COD data collected

indiscriminately over our set of 129 datasets. It is well-known, however, that a number of

rather simple factors, such as attribute types, skewness, and missing data, have a significant

impact on the behavior of many learning algorithms. For example, it is well accepted that

neural network learning is more adapted to continuous inputs and decision tree learning

to discrete inputs. As a result, it is likely that different, and likely improved, clustering,

and hence metamodels, would be obtained if datasets were to be split along any of these

dimensions. We clearly do not have space to, nor can we realistically, consider all possibilities.

However, for the sake of illustration, and because it is such a simple test to run on any

dataset, we consider splitting our 129 datasets on the basis of the attribute types they

contain: continuous-only vs. discrete-only. The same approach can be applied along any

other such a priori discrimination criterion.

The corresponding dendrograms, together with the selected clusterings are on Fig-

ures 7.4 (xut point: 0.173, 10 clusters) and 7.5 (cut point: 0.093, 15 clusters), respectively.

Tables 7.3 and 7.4 show the performance of the corresponding cluster-based metalearners

compared to the performance of a standard algorithm selection metamodel, with respect to

our metrics.
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Figure 7.4: Selected Clustering for Metalearning on Continuous-only Datasets With a cut
point of 0.173, 10 clusters are obtained.

Table 7.3: Clustering vs. Algorithm Selection: Continuous-only Datasets

Metric |C| = 10 |C| = 21 Wins

AccMeta(C) 33.75% 15.97%
WCAccBase(C) 5.50 3.14
BCAccBase(C) 1.72 3.14

AV G+AccBase(C) 3.04 (2.42) 3.14 50%
AV G−AccBase(C) 4.02 (2.65) 3.14 50%
AV G−CODBase(C) 0.16 (0.15) 0.15 56%

These results show some improvement in the quality of the clustering-based meta-

models, most markedly in the discrete-only case, where the value of the worst-case metric

WCAccBase(C) is almost the same for cluster-selection and algorithm selection. Further-

more, the clustering-based metamodel outperforms the algorithm selection metamodel on

BCAccBase(C) as well as on all three of our other base-level metrics at least 67% of the

time. Note that due to the nature of the datasets in each case, we are able to extend the

set of metafeatures to include type-specific metafeatures (e.g., skewness and kurtosis for
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Figure 7.5: Selected Clustering for Metalearning on Discrete-only Datasets With a cut point
of 0.093, 15 clusters are obtained.

Table 7.4: Clustering vs. Algorithm selection: Discrete-only Datasets

Metric |C| = 15 |C| = 21 Wins

AccMeta(C) 28.33% 26.66%
WCAccBase(C) 6.60 6.47
BCAccBase(C) 4.08 6.47

AV G+AccBase(C) 4.26 (4.38) 6.47 80%
AV G−AccBase(C) 4.59 (4.47) 6.47 80%
AV G−CODBase(C) 0.08 (0.07) 0.10 67%

continuous-only datasets, and meanAttributeChiSquare and averageValueperAttribute for

discrete-only attributes).

7.4.2 Metalearning of Algorithm Ranking Model

Up till now, our proposed metalearner returns a cluster of learning algorithms and leaves

it up to the user to select an algorithm within that cluster. As we have discussed, this

means that performance at the base level may be sub-optimal if the wrong algorithm is

chosen (especially when the clusters are large and/or exhibit poor intra-cluster similarity).
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Furthermore, as has been argued in the context of algorithm selection, there are significant

advantages to returning not a prediction of best 1-of-N , but rather a ranking of all available

algorithms so that if the predicted best fails to give satisfaction, the user may try the next

best one and so forth (e.g., see [12, 18]). We show how the ranking idea may be beneficially

applied in the cluster selection context.

The construction of a ranking model bears resemblance with the notion of collab-

orative filtering. Indeed, the ranking of learning algorithm l on query dataset or learning

task t is determined by the combination of rankings of l on t’s neighbors. One simple way

to accomplish this, as used for algorithm selection in [18], is to first find neighbors using

k-nearest-neighbor (k-NN) and then compute average rankings over the k neighbors. Fig-

ure 7.6 shows an example of finding the ranking of J48 on some query learning task tq where

k = 2. The ranking of J48 on tq is obtained its rankings on t3 and t4. If a simple, unweighted

average is used, the ranking of J48 on tq is (3 + 5)/2 = 4.

Figure 7.6: Finding the Ranking of J48 with 2 Nearest Neighbors

In the case of algorithm ranking, if there are N algorithms under study, all of them

must be ranked. Since we are predicting clusters, we only need to rank the M algorithms

found in the cluster, where in all cases except the degenerate one, M << N . The procedure

to estimate rankings is the same, however. We use k-NN and average. The computed rank-

ings can then be compared with the true rankings, using correlation measures. The two most

common rank correlation measures are Spearman’s rank correlation coefficient and Pearsons’
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Table 7.5: Clustering (CRk) vs. Algorithm Ranking (ARk)

k 1 2 3
CRk ARk CRk ARk CRk ARk

All 0.21 0.00 0.31 0.16 0.34 0.34
Cont. 0.51 0.13 0.54 0.25 0.53 0.19
Disc. 0.76 0.33 0.95 0.47 0.75 0.22

rank correlation coefficient. We will prefer Pearson’s rank correlation coefficient here since

it allows ties while Spearman’s rank correlation does not. Pearson’s rank correlation ranges

between -1 and +1, where +1 means that the two rankings are identical, -1 means that the

two rankings are the reverse of each other, and 0 means that there is no relation between

the two rankings.

To examine the effectiveness of the clustering metamodel, we again compare it against

an algorithm ranking model. Since the algorithm ranking metamodel considers all 21 algo-

rithms, it estimates the ranking of all algorithms using k-NN. To make it comparable to

the “sub-ranking” performed by the cluster-based model, it then picks only the top M algo-

rithms (where M is the size of the predicted cluster) and computes the correlation between

this estimated sub-ranking and the true ranking.

We run k-NN with k=1, 2, and 3. For each k, we compare the Pearson rank corre-

lation coefficient of both metamodels. The results are in Table 7.5 for all three clusterings

considered in the previous section.

Across all underlying data types and all selected values of k, the correlation coefficient

of the clustering-based metamodel is larger than or equal to that of the algorithm ranking

metamodel. Note how the effect is significantly increased when the datasets are split based

on the nature of the attributes, with correlation values above 0.5, and reaching almost perfect

agreement with the true ranking for discrete datasets and k = 2. These results suggest that,

not only is the computation more efficient (remember that M < N), but the ranking of

algorithms in the cluster is also closer to the true ranking than the one estimated by the

complete ranking model.
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7.5 Conclusion

In this paper, we leverage results on behavior-based clustering of learning algorithms to

propose novel algorithm selection and ranking metamodels based on the prediction of clus-

ters. The basic idea is for the metalearner to induce a model that matches a dataset to the

cluster of learning algorithms that behave most similarly with the best algorithm for that

dataset. At first glance, this approach may appear to be less effective than single algorithm

selection since multiple algorithms are recommended to the user. However, clustering-based

metalearning has a number of advantages over metalearning for single algorithm selection

(and/or ranking).

• By clustering algorithms in terms of instance-level behavior, the metalearning process

is simplified (i.e., higher training examples to target values ratio) and the tendency of

overfitting that plagues single algorithm selection is decreased. Our results, both with

selection and ranking, show that the cluster-based model is at least as good as the

algorithm-based model, and often better.

• As with algorithm selection, the weakness of clustering selection with respect to the

difficulty of finding the best algorithm in a predicted cluster can be compensated for

by ranking algorithms in the cluster. Our results suggest that a clustering selection

model with ranking is typically more accurate than the traditional algorithm ranking

model.

• The clustering-based approach lends itself naturally to the building of specialized meta-

models, based on simple a priori criteria about dataset characteristics. We have illus-

trated this idea using the types of the attributes (continuous vs. discrete) to construct

improved metamodels. Other such criteria may similarly be used. No new computation

is required, only restricting the global COD distance matrix to the subset of datasets

that satisfy the selected criteria.
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• The clustering-based approach challenges the Procustean approach to algorithm se-

lection typically adopted, where one first selects a model class and then an algorithm

within that class [79]. Indeed, in that approach, the model classes and the algorithms

are fixed, generally as part of a taxonomy or ontology (e.g., see [36]). Here, however, the

classes are built from clustering based on behavior similarity rather than expert-driven

decisions. The clustering shown here highlights at least one significant discrepancy

between automatic clustering and human-designed ontology. Indeed, whereas NB and

RBFN are in different classes in Weka’s underlying taxomomy (i.e., one is probability-

based and the other function-based) as well as in the data mining ontology (i.e., one

is generative and the other is discriminative), they actually merge together first in our

COD-based clustering. This particular finding is the subject of a separate study [46].

• When new algorithms are introduced, it will not generally be necessary to rebuild the

metamodel from scratch, as is the case in algorithm selection. Indeed, the addition of

a new algorithm in the algorithm selection context corresponds to the addition of a

target value to the metalearning task. This, of course, changes the nature of the task,

which must be re-learned in light of the new information. Within the clustering-based

context, one simply needs to find what cluster the new algorithm belongs to and to

add it to said cluster. Only when a new algorithm is sufficiently different from all other

existing ones will a new cluster (and hence a new target value) need to be created for

it. In this regard, the clustering-based approach supports the possibility of incremental

metalearning. We have yet to experiment with this.

Despite our promising results, there is room for improvement and future research. In

particular, the accuracy of our metamodels is rather low, suggesting that the metafeatures

we employ are not sufficiently predictive for the metalearning task at hand. Discovering

effective metafeatures would be a key factor in improving the usefulness and operationaliza-

tion of our metamodels. When constructing our dendrograms, we have only considered the

default parameter settings of all learning algorithms. Work is needed to better understand
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and quantify the impact that certain parameter settings have on learning algorithms, and

whether/how they impact our clusterings. Finally, on the more practical side, our selection

metamodel suffers from the fact that if the actual best algorithm is not in the predicted clus-

ter, all others in that cluster will also perform poorly since they are similar to each other,

and the user is left with no recourse, being stuck with only poor choices to select from. One

possibility that may be investigated consists in two-level ranking system, wherein the system

first rank clusters, and then ranks algorithms within the clusters (as proposed here). With

such a ranking, the user could “escape” from a bad cluster and try the next best one.
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Chapter 8

Conclusion

Metalearning seeks to increase human understanding of the characteristics of learning

tasks, algorithms, and the relationship between them. By doing this, we make the best use of

current algorithms and are able to design new algorithms that compensate for the weaknesses

of existing ones. The results presented here are by no means complete, but are incremental to

the ultimate goal of metalearning, which is to obtain the complete knowledge of the behavior

of algorithms and their relationship to learning tasks.

Some of the important factors for the success of metalearning are the size of base-level

tasks and the quality of metafeatures. While a feature of an individual dataset represents

a characteristic of corresponding specific learning task, a metafeature on multiple datasets

represents a general characteristic of associated learning tasks. An important question is how

to obtain useful metafeatures given a particular metalearning task. There is no systematic

approach to discover good metafeatures, rather they are found based on the researcher’s

insight, creativity, and/or prior knowledge of the metalearning task at hand.

Our experiments used about a hundred datasets, which is small compared to all

learning tasks, but a decent size considering other related research. As for metafeatures,

we found that certain ones (e.g., mean attribute entropy and hardness) are related to the

performance of algorithms. These metafeatures allow us to estimate the difficulty of learning

tasks. They are especially useful and efficient with large volumes of data, such as DNA

sequence, business transaction, and medical data. Applying algorithms on these data can

be expensive with limited resources.
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Hierarchical clustering with the COD metric identified algorithms that behaved simi-

larly. Some of them are NB and RBFN. NB is a probability model, based on Bayes’ theorem

but RBFN is a type of neural networks. Their similarity in behavior turned out to be largely

due to their structural similarity which is affected by parameter choices and implementation.

From this analysis, we learned that 1) Weka RBFN usually performs at least as well as typical

RBFN (i.e., RBFN where Gaussian kernels are shared across classes) and is similar to NB,

2) even though their predictive behaviors are quite similar, NB has a significant advantage

in execution time. 3) The similarity of NB and RBFN provides a counter-example of the

current European data mining ontology project [36].

As an alternative solution to the algorithm selection problem, we propose a new

metamodel that returns a cluster of best-fit algorithms for the given task. This metamodel

has several advantages over current algorithm selection models. It simplifies metalearning

tasks and reduces the risk of overfitting to training data. Furthermore, when a new learning

algorithm is added to the pool of candidate algorithms, we can reuse the previous metamodel

by finding the cluster to which the new algorithm belongs. This approach is computationally

more efficient than rebuilding a metamodel from scratch.

The work done in this dissertation represents a valuable contribution, and yet there are

many exciting and important metalearning works. The following are some of the important

metalearning tasks that remain.

1. Analysis of the sensitivity of algorithms to various parameter settings

In this dissertation, we covered the behavior of learning algorithms with default param-

eters. This provides a starting point to the understanding of algorithms with various

parameters. In practice, the parameters of the target learning algorithm are often

changed in order to obtain better predictive performance. However, little is known of

the amount of impact of parameters on the performance of learning algorithms.

2. Discovery of more effective and efficient data characteristics
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The solution of useful data characteristics or metafeatures is a key to constructing an

effective metamodel. Until now, most data characterization methods hinge on statis-

tics, information theory, and landmarking. Even though some of them are effective on

certain metalearning tasks, we are still lacking in effective and efficient metafeatures.

3. Construction of the metamodel that predicts the entire learning process, instead of

just predicting the best algorithm for the given task.

With our selection metamodel, we focused on a portion of the entire learning pro-

cess. Some other important pieces of the process are data pre-processing and feature

selection. Since difficult datasets often have highly-dimensional features and contain

noisy and missing entries, there are various ways of handling them. This know-how

can contribute to build the optimal metamodel.

4. Search for the optimal algorithm that induces the best metamodel for the given met-

alearning task.

The choice of an algorithm that induces the metamodel for selection is usually undisci-

plined. Together with the choice of metafeatures, good selection of the algorithm may

have a profound impact on the result of the associated metalearning task.
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