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ABSTRACT

Convenient Decentralized Authentication using Passwords

Timothy W. van der Horst

Department of Computer Science

Doctor of Philosophy

Passwords are a very convenient way to authenticate. In terms of simplicity and
portability they are very difficult to match. Nevertheless, current password-based login
mechanisms are vulnerable to phishing attacks and typically require users to create and
manage a new password for each of their accounts. This research investigates the potential
for indirect/decentralized approaches to improve password-based authentication. Adoption
of a decentralized authentication mechanism requires the agreement between users and
service providers on a trusted third party that vouches for users’ identities.

Email providers are the de facto trusted third parties on the Internet. Proof of email
address ownership is typically required to both create an account and to reset a password
when it is forgotten. Despite its shortcomings (e.g., latency, vulnerability to passive attack),
this approach is a practical solution to the difficult problem of authenticating strangers
on the Internet. This research utilizes this emergent, lightweight relationship with email
providers to offload primary user authentication from service providers; thus reducing the
need for service provider-specific passwords. Our goal is to provide decentralized authen-
tication that maintains the convenience and portability of passwords, while improving its
assurances (especially against phishing).

Our first step to leverage this emergent trust, Simple Authentication for the Web
(SAW), improves the security and convenience of email-based authentications and moves
them from the background into the forefront, replacing need for an account-specific pass-
word. Wireless Authenticationg using Remote Passwords (WARP) adapts the principles
of SAW to authentication in wireless networks. Lightweight User AUthentication (Luau)
improves upon WARP and unifies user authentication across the application and network
(especially wireless) layers. Our final protocol, pwdArmor, started as a simple wrapper to
facilitate the use of existing databases of password verifiers in Luau, but grew into a generic
middleware framework that augments the assurances of conventional password protocols.

Keywords: authentication, email-based authentication, passwords, password-authenticated
key exchange, single sign-on, authentication in wireless networks
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Chapter 1

Introduction

People have too many passwords. Services on the Internet regularly require users

to create yet another username and password. The attractiveness of passwords is clear:

their basic concept is accessible to even the most novice user, they are easy to configure,

and dealing with lost or forgotten passwords is completely automatable. As the number of

accounts per user increases, the limitations of human memory forces users to balance the

desire to use a strong password with the desire to log in without a lot of hassle. The latter

usually wins, resulting in weak passwords that are reused across multiple accounts.

The goal of this research is to reduce the need for service-specific passwords, while

improving the security and convenience of user authentication. There are several existing

solutions designed to address the scalability of password-based logins (see Section 1.1). This

research explores the middle ground between these existing solutions, and focuses on an

emergent trust relationship (between service providers and email providers) that has the po-

tential to dramatically simplify user authentications and improve their security (see Section

1.2).

1.1 Existing Solutions

Password managers, such as Password Safe [66] and the Mozilla Firefox Password Manager

[28], solve the problems associated with multiple passwords by remembering the passwords

on behalf of the user. A single password is then used to protect the password manager.

Nevertheless, password managers generally lack portability and require significant setup and
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account-level maintenance (i.e., the user still has to create/manage separate accounts across

many sites).

Systems based on a public key infrastructure (PKI) have long been viewed as a

solution to the shortcomings of passwords. In these approaches, trusted authorities are

established and issue digital credentials, which contain certified assertions. Authentication

is accomplished by the possessor of the certificate proving knowledge of the private key

associated with the public key embedded in the credential.

At a high level, client-side digital certificates are an attractive replacement for service-

specific passwords. The scalability and “offline” capabilities provided by public key cryp-

tography are very desirable. This technology has also weathered well the test of time. The

RSA algorithm is over 30 years old [71] and this year marks the twentieth anniversary of the

X.509 certificate format [20]. Yet, despite the worthy success of PKI in server deployments

(e.g., HTTPS), the proliferation of client-side certificates is remarkably underwhelming. The

“imminent” arrival of client-side certificates seems always just out of reach. This delayed

arrival is due, in part, to burdensome configuration and usage requirements as well as cer-

tificate distribution, management, and revocation issues [35]. High costs, the requisite user

and administrator training in a complex technology, and the difficulties of trusted roots and

cross-certification also make PKI hard to adopt [32].

A significant non-technological problem, as illustrated by Ellison and Schneier [27],

is determining “Who do we trust, and for what?” As a certificate is essentially a secure

container for assertions made by an issuer, clearly, the utility of these attestations is bounded

by the authority of the issuer to make those claims.

If overcoming the problems barring their adoption was simple, PKI vendors would

have crushed these obstacles to increased profits long ago. This is a difficult problem.

Decades have passed and still client-side certificates remain the exception rather than the

norm. This tepid acceptance leads one to question, given the current landscape, whether

certificates are a practical replacement to service-specific passwords.
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The goal of our research is to devise more convenient approaches with the potential

for an immediate impact on this authentication challenge.

1.2 Our Approach

PKI-based systems follow a decentralized approach to authentication, i.e., relying parties

(e.g., web sites) “rely” on identity providers to authenticate users on their behalf. This

eases the burden on users and administrators by facilitating the reuse of login credentials

across multiple domains. These systems also reduce risk for relying parties as user-specific

authenticators (e.g., password files) are replaced with access control lists composed of public

identifiers. In general, decentralized approaches have the potential to facilitate single sign-on,

dynamic user bases with guest or temporary access, as well as cross-domain access control.

As noted by Ellison and Schneier (see Section 1.1), establishing trusted third party

identity providers is a difficult problem. This research relies on the emergent trust between

email providers and relying parties to address this challenge.

1.2.1 Emergent Trust in Email Providers

Proving ownership of an email address by retrieving a message sent to it has become a

valuable approach to authenticating unknown entities on the Internet; it is typically required

to create an account and to reset a password when it is forgotten. Despite its shortcomings

(e.g., latency, vulnerability to passive attack), this approach is a practical solution to the

difficult problem of authenticating strangers on the Internet.

Garfinkel [33] coined the term email-based identification and authentication (EBIA) to

describe this imperfect, but extremely popular tool. This mechanism is typically relegated to

a secondary means of authentication; used to verify ownership of an email address specified

during account creation and when, almost inevitably, the account password is forgotten.

Pragmatically speaking, EBIA more than adequately fills its current role, and will likely

continue to do so, without any modification, within the foreseeable future.
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1.2.2 Password-based Decentralized Authentication

Password-based decentralized authentication is a middle ground between client certificates

and relying party-specific passwords. Several schemes (see Sections 3.7 and 4.6) have been

proposed and are gaining popularity and acceptance (especially OpenID [62]). Nevertheless,

these approaches are typically geared specifically for web-based logins and require users to

connect directly to their identity providers during an authentication attempt; a process

usually accomplished via browser redirects. This reliance on browser redirects introduces

attractive avenues for password phishing. Also, this web-centric focus makes these systems

unsuitable for use in scenarios where direct communication between users and their identity

providers is infeasible, such as authentication to a wireless network. Lastly, none of these

systems advocate, as we do, the specific use of email providers as identity providers.

1.3 Our Contributions

Password authentication is overused. Despite being a fundamental, and very popular,

method of user authentication, typical users have no desire to remember the complicated,

account-specific passwords necessary to secure this approach. Current alternatives require

significant increases in overhead and complexity that are prohibitively expensive for many

services. This dissertation explores, develops, and evaluates the potential that email, and

other personal messaging providers offer as a simple and practical form of user authentica-

tion.

This research leverages the existing identifiers and authenticators used by personal

messaging providers to define several authentication protocols that cover a spectrum of

convenience, security, and cost-of-deployment. These systems are generalized so that they

can operate at, and below, the application-layer (e.g., web sites logins) making it suitable

for network-layer scenarios (e.g., authentication to wireless networks). This dissertation also

identifies and explores several services that can take advantage of this new approach to user

authentication.
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1.3.1 Dissertation Outline

Chapters 2 to 5 are published papers and one technical report. Where noted, these papers

have been expanded to include informative content that was omitted from the final published

version, typically due to length requirements.

Chapter 2, “Simple Authentication for the Web (SAW)” [81], introduces the concept

of personal messaging-based authentication as a primary means of authentication. This

paper shows that, by extending and improving email-based password resets, personal mes-

saging identifiers and authenticators can be conveniently, and securely, leveraged to provide

authentication without requiring relying party-specific login credentials. This approach en-

ables unmodified personal messaging providers to act as identity providers and requires no

modification to client-side software. Although client-side software is not required, this paper

demonstrates that the convenience and security of this approach can be improved through

the adoption of client-side automation tools.

Chapter 3, “Wireless Authentication using Remote Passwords (WARP)” [39], ex-

pands the principles developed for SAW and explores the improvements that are possible

with the active participation of personal messaging providers in the authentication process.

WARP specifies a new protocol that addresses several issues that could significantly affect

the convenience of SAW: 1) The latency inherent in personal message delivery; and 2) The

requirement for direct client-side connectivity with the identity provider at authentication

time. These issues are addressed by enabling the relying party to facilitate a secure, in-band

authentication method that reuses the existing identifiers and authenticators shared between

users and their messaging providers. These improvements require client-side protocol sup-

port as well as active participation by the personal messaging provider. This approach also

provides improved protections against active attack.

Chapter 4, “Lightweight User Authentication (Luau)”, improves the framework cre-

ated for WARP and significantly improves its flexibility and assurances. In Luau, the SAW

token exchange mechanism is replaced with key exchange (optionally, authenticated key ex-
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change) techniques. The in-band authentication method is generalized so that a variety of

existing methods can be used to authenticate the user to their identity provider. As it is

not coupled to a personal messaging medium, this framework can be leveraged by a variety

of identity providers. Luau provides strong protections to users’ login credentials and can

be tailored to meet the needs and requirements of specific organizations and their users and

enables convenient escalation (or de-escalation) of assurances should the need arise.

Chapter 5, “pwdArmor” [82], was initially developed as simple wrapper to facilitate

the use of existing password verifiers in Luau; a small feature for facilitating the adoption of

Luau within very specific scenarios. This system grew into a generic framework that could

improve the assurances of a wide variety of conventional password protocols. In addition to

fulfilling its intended role in Luau to a more valuable extent that was originally believed,

pwdArmor can be used to improve the privacy and augment the assurances of existing

service-specific password-based logins that rely on encrypted tunnels. Because pwdArmor

treats server authentication as an added bonus, rather than the linchpin of its assurances, it

is a valuable tool to combat password phishing.

Chapter 6 briefly explores the various systems that others have built using these

technologies. One system, EPAK [40] extends Kerberos to enable the integration of our new

authentication schemes. A second system, CPG [1] builds an anonymous discussion board

for a closed group. Only legitimate group members can participate in the discussion and

their identities are concealed, not only from the other members of the group, but from the

administrators as well. As the actions of a group member are linked together, an abusive

group member can be banned, without compromising anonymity, to prevent future abuses. A

third system, EASEmail, provides a secure email scheme designed to simplify key distribution

and portability issues and improve usability.

Chapter 7 summarizes the contributions of this research, presents conclusions, and

discusses potential directions for future work.
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Chapter 2

Simple Authentication for the Web (SAW)

T. W. van der Horst and K. E. Seamons. Simple Authentication for the Web. 3rd Inter-

national Conference on Security and Privacy in Communication Networks (SecureComm),

Nice, France, September 2007.

Additional Content: The published version is augmented here with Figure 2.3 (the ad-

ministrative interface to add users to a SAW-enabled blog). A discussion of one-round SAW

is also added by way of Section 2.5.5 and Figure 2.8.

Abstract

Automated email-based password reestablishment (EBPR) is an efficient,

cost-effective means to deal with forgotten passwords. In this technique, email

providers authenticate users on behalf of web sites. This method works because

web sites trust email providers to deliver messages to their intended recipients.

Simple Authentication for the Web (SAW) improves upon this basic approach to

user authentication to create an alternative to password-based logins. SAW: 1)

Removes the setup and management costs of passwords at EBPR-enabled sites;

2) Provides single sign-on without a specialized identity provider; 3) Thwarts

passive attacks and raises the bar for active attacks; 4) Enables easy, secure

sharing and collaboration without passwords; 5) Provides intuitive delegation

and revocation of authority; and 6) Facilitates client-side auditing.
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2.1 Introduction

Password logins are overused. Reusing a password across all web sites is risky, but man-

aging multiple passwords results in frequently forgotten passwords. Many web sites handle

forgotten passwords by emailing the user a password or a hyperlink to a facility to reset the

password, a technique we refer to as email-based password reestablishment (EBPR).

This paper introduces Simple Authentication for the Web (SAW), a new web site

login approach that improves both the security and the convenience of EBPR. SAW utilizes

email for all authentications and not just for recovering from forgotten passwords. SAW also

provides single sign-on and can be fully automated so that the login details are transparent

to users.

2.1.1 Alternatives to Passwords

Password managers, such as Password Safe [66] and those built into popular web browsers,

solve the problems associated with multiple passwords by remembering users’ passwords.

A single password is then used to protect the password manager. Nevertheless, password

managers generally lack portability and require significant account-specific maintenance.

Other alternatives to passwords (see Section 2.7) require a specialized identity

provider. As is evidenced by their lack of widespread adoption amongst web sites, find-

ing a mutually trusted identity provider is difficult.

In 2003, Garfinkel [33] coined the term email-based identification and authentication

(EBIA) to describe the general concept of using an email address as an identifier and the

ability to receive email messages sent to that address as an authenticator. In evaluating this

current trend, Garfinkel argued that EBIA’s widespread use is evidence that the risks of this

system are manageable, especially given that the alternatives are prohibitively expensive for

many web sites.

The remainder of this paper is organized as follows. Section 2.2 provides an in-depth

look at the goals and design of SAW. In Section 2.3, we discuss a prototype implementation
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of SAW for web site logins. Section 2.4 presents a detailed evaluation of the threats to this

system. Section 2.5 presents some advanced features of SAW. Section 2.6 shows how SAW

overcomes the obstacles facing email-based authentication. Section 2.7 discusses related

work. Section 2.8 contains conclusions and a discussion of our future work.

2.2 SAW

As password-based, EBPR-enabled sites already demonstrate their willingness to offload

user authentication to email providers, the presentation and evaluation of the SAW protocol

focuses on deployment to web sites inclined to assume the risks of EBPR. Sites reluctant

to accept these risks (e.g., online banks) can still benefit from SAW by deploying it as an

additional factor of authentication.

For simplicity, this paper defines a secure login as one that uses HTTPS and an

insecure login as one that does not. We acknowledge the existence of password-based au-

thentication mechanisms (e.g., SRP [87], DH-EKE[76]) that securely operate over insecure

channels, however use of these protocols by web sites is rare. Both secure and insecure logins

are widely used and would benefit from the adoption of SAW.

2.2.1 Obstacles to Adoption

At EBPR-enabled web sites, users prove their identity by using their password or by demon-

strating ownership of their email address. If the ability to receive email messages is sufficient

to circumvent users’ passwords, why not make email the primary means of authentication

and remove site-specific passwords? We identify four obstacles:

Latency In some cases, email message delivery and retrieval may require a relatively long

period of time.

Lack of privacy Email messages are typically sent without cryptographic protection and

are therefore susceptible to passive eavesdropping and active modification.
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Figure 2.1: The SAW protocol. Based on the user’s email address, specified in (1), a web
site creates and distributes two authentication tokens. AuthTokenuser (2a) is sent directly
the user as an HTTP cookie. AuthTokenemail (2b) is emailed to the user. Both tokens must
be returned to the web site (3) to successfully authenticate. Each web site login attempt
involves its own unique, short-lived, single-use tokens.

Convenience Password-based systems are pervasive and accepted by both users and web

sites. Changing a web site’s login system often requires significant time and resources

as well as additional user training.

Reliance on a third party By involving an email provider in the authentication process,

a dependency upon a third party is introduced. If the email provider is unavailable,

the authentication process cannot succeed.

2.2.2 Goals

The design goals for SAW are:

• Remove the need for users and web sites to setup and manage passwords

• Provide web single sign-on via email

• Require no modification to email providers

• Thwart all passive attacks

• Raise the bar for active attacks
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• Overcome the obstacles identified in Section 2.2.1

• Reduce user involvement through automation to make logins more convenient and

reduce the attack surface for phishing and social engineering attacks

• Offer advanced features usually unavailable in password-based systems

– Easy, secure sharing and collaboration without passwords

– Intuitive delegation and revocation of authority

– Client-side auditing

The remainder of this section describes SAW’s improvements in security over existing

email-based authentication systems. In-depth discussion of the advanced features of this

system and how it addresses all of the obstacles listed above is left to Sections 2.5 and 2.6,

respectively.

2.2.3 Protocol

The steps to authenticate using SAW (see Figure 2.1) are as follows:

Token Request

The user submits (e.g., via a webform) her email address to a web site in the Token Request

message. This request may be sent over HTTPS (see Section 2.4.1).

Token Response

The web site, based on the permissions of the email address, creates several short-lived,

single-use Authentication Tokens, hereafter referred to as AuthTokenx, where x is the iden-

tifier of the specific token. These tokens are created based on a security parameter k.

If the address is authorized, AuthTokencomplete is chosen at random from {0, 1}k, and

split into two shares as follows:

AuthTokenuser = AuthTokenemail ⊕ AuthTokencomplete
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where AuthTokenemail is another random value from {0, 1}k. This method of token creation

is a conventional secret splitting scheme [73] and provides the perfect security of one-time

pad encryption. No amount of computation will recover one share without the other two.

AuthTokencomplete is cached by the web site in a temporary look-up table.

AuthTokenuser is returned directly to the user as an HTTP cookie. An email message

containing AuthTokenemail, and the identity of the web site that created it, is sent to the

user’s email address.

If the address is not authorized, a random member of {0, 1}k is returned as

AuthTokenuser, and, in lieu of AuthTokenemail, a human readable explanation of the fail-

ure is emailed. Always returning an AuthTokenuser prevents an impersonator from learning

anything about the email address owner’s permissions. This is reminiscent of password

systems that do not disclose that a username is invalid.

Token Submission

The user retrieves the email message sent by the web site, extracts AuthTokenemail, and

returns both tokens to the site. If these values combine to equal the AuthTokencomplete

for that particular user and token identifier (see Section 2.2.4), then the authentication is

successful and the system uses a session-level trust preservation mechanism for the remainder

of the session (e.g., a session cookie).

2.2.4 Token Identifiers

Each set of tokens is given a unique identifier, transID, to facilitate the matching of an

AuthTokenuser with its corresponding AuthTokenemail and to enable web sites to look up the

correct AuthTokencomplete. As every Token Request results in the creation of a new set of

tokens, this identifier allows a user to have multiple concurrent authentications in progress

with the same web site, thus permitting a user to retry the authentication process without

invalidating a previous attempt. Appending transID to the name of the HTTP cookie used
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to convey AuthTokenuser prevents the cookies from current authentication attempts from

being overwritten.

2.2.5 Client-side Automation

Manually polling an email account for a specific message is inconvenient and unnecessary.

Additionally, a carefully crafted phishing email resembling a token message could lure an

unsuspecting user to a malicious site.

Automating the process of retrieving and submitting AuthTokenemail enhances the

convenience and security of SAW. The user’s software agent verifies a token by checking its

sender and identifier with its list of outstanding authentication attempts. It then submits

the tokens to the desired site. Although a user could perform these same tasks, the user’s

software agent is able to do it much faster and more accurately.

Ideally, web browsers would have native support for SAW to allow single sign-on to

all SAW-enabled web sites while the browser is open by having the browser cache the email

account password for a limited time. Section 2.3 presents a prototype browser toolbar that

implements these benefits.

2.2.6 Alternatives to Email

SAW provides personal messaging-based authentication. AuthTokenemail is easily delivered

over a variety of personal messaging mediums (e.g., instant and text messaging). SAW

provides a platform to explore the potential that these personal messaging systems or a

hybrid combination of these mediums have for authentication.

Instant messaging, in addition to providing an attractive, low latency alternative for

delivering AuthTokenemail, also facilitates the use of SAW by those who rely on free web

mail accounts (e.g., Hotmail, Yahoo! Mail, Gmail) since the programmatic access (i.e.,

POP/IMAP) to these accounts necessary for client-side automation is often only available

to “premium” accounts. As these providers associate free instant messenger accounts (e.g.,
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From: SAW TokenGenerator@securecomm.org
To: TestSubject@some.edu
Subject: [SAW-https://securecomm.org/login] TransID=fc9f7de...

This email can be used in one of two ways:
If you are using the SAW toolbar:
This message will be handled and deleted automatically.

If you are NOT using the SAW toolbar:
Click on the link below ONLY if you recently initiated a
request to log in to https://securecomm.org/login:
https://securecomm.org/login?TransID=fc9f7de2d1f6e5f4f93fa42ff
aa9c13151450ffd4e1f73786346fed86e84d851&ATemail=2fe31bf9
c5d91e3d2ebc7688c812ba51d203ef6cfda5d99cbe7f5472b8e3ad57

Figure 2.2: An email message with AuthTokenemail. The hyperlink is a convenient means for users who
without the SAW toolbar to return the token to the site that created it and prevent inadvertent token
disclosure to phishing sites.

MSN Messenger, Yahoo! Messenger, Google Talk) with each email address, users are able

to leverage the same password as their email account to enjoy the benefits of SAW and

client-side automation.

2.3 Implementation

There is a myriad of web sites that are ideal candidates for adopting SAW. These systems

include: blogs, e-commerce sites, photo sharing sites, digital libraries, forums, conference

program committee sites, private wikis, mailing lists, and personal web sites.

SAW provides several advanced features (see Section 2.5) that make it an even more

attractive alternative to passwords. For example, since SAW provides decentralized authen-

tication of users, it enables web sites to specify permissions for users outside its local security

domain. This is powerful tool for sharing and collaboration (see Section 2.5.1).

2.3.1 Blog Access Without Passwords

We added support for SAW to Wordpress [85], a popular web log platform, by creating a

plug-in (see Figure 2.3). Based on email addresses supplied by the login page, this plug-
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Figure 2.3: This interface enables an administrator to easily add a large number of users to
this blog. As these users will authenticate using SAW, it not necessary to create/distribute
a password for each account.
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Figure 2.4: A login page and the SAW toolbar. Clicking the toolbar’s login button submits the selected
email address, retrieves the email sent by the web site, and submits both authentication tokens. Without
the toolbar these actions must be performed manually. (Note that only an email addresses is required.)

in creates and distributes the authentication tokens and then displays a page containing

instructions to complete the authentication. With the client-side toolbar, the remainder of

the login process is automated.

Without the client-side toolbar, the user must authenticate to the email provider and

retrieve the message containing AuthTokenemail (see Figure 2.2). To facilitate the transfer

of this token to the web site, this message includes a hyperlink that contains the token.

Clicking on the link submits AuthTokenemail along with AuthTokenuser since it is a cookie

set by that site. Current browser designs protect cookies from being sent to any unintended

site, thus eliminating the possibility of submitting AuthTokenuser to a phishing site.

The hyperlink in the email message exists as a convenience to users without a client-

side automation tool. When such a tool is used, the entire message body can be dropped

because all required information is contained in the subject line.

The client-side toolbar (see Figure 2.4) is implemented for both Internet Explorer

and Mozilla Firefox. These toolbars share a common service that manages email account
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Time to Total login Total login
check for time using time using
messages email IM

Gmail
2.5 sec 4 sec <1 sec

account
Private

1 sec 1.5 sec n/a
account

Table 2.1: Initial performance results using a high-traffic, free webmail account (Gmail) and
a lower-traffic, private email account.

information and communicates with email providers via POP or IMAP. It can also receive

instant messages using XMPP [72].

These toolbars provide a recognizable, uniform interface for authenticating to SAW-

enabled web sites. They detect sites that accept SAW and provide a “Log in” button that

enables one-click authentication to the web site.

Clicking on this button prompts the user for the email account password (once per

session), submits the desired email address/IM handle to that site and begins checking the

specified email, or IM, account for the message containing AuthTokenemail. By remembering

the email account password, the toolbar provides transparent single sign-on to all SAW-

enabled sites for the current session.

2.3.2 Performance

An initial performance analysis shows promising results (see Table 2.1). Before examining

specific numbers, it is important to note that the time required to authenticate in SAW

includes not only the time it takes for an email message to be delivered to an email provider,

but also the time required to retrieve it from the user’s mailbox. This analysis used two

different email accounts and results are an average of 50 iterations.

The first account is a high-traffic, free webmail address provided by Gmail. This

account is accessed using POP over TLS and requires 2.5 seconds for the toolbar to connect
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and retrieve an email. It takes 4 seconds from the moment the user clicks the log in button

until authentication completes.

The second account is a lower-traffic, private email address that is also accessed via

POP over TLS. This account requires one second to connect and retrieve an email and takes

1.5 seconds for completion of the entire login process.

When instant messaging is used (only the Gmail account provides IM capability) the

entire login process takes less than a second.

2.4 Threat Analysis

This section analyzes the threats and attacks to SAW. First, it considers the affects of passive

eavesdropping on this protocol’s communication channels. Next, it examines the ability of

an attacker to actively impersonate a valid user. Then, it shows how this system mitigates

the risks of password phishing, denial of service attacks, and spam. Finally, it examines the

threats to login information stored at the web site, user, and email provider and how to

address stale email addresses.

2.4.1 Passive Eavesdropping

Current EBPR methods are vulnerable to passive attacks. By emailing plaintext passwords,

or a link to facilitate a password reset, anyone sniffing the network will be able to compromise

the user’s account. This section discusses the protections SAW required for each of its three

communication channels:

User and Web Site

Although HTTPS provides confidentiality and integrity to the login process as well as au-

thentication of the web site, a significant number of EBPR-enabled sites lack this protection.

If an insecure channel is used for communication between the user and the web site, then
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the submission of a user’s email address and the contents of the Token Submission message

are passively observable.

Under these conditions, SAW closely resembles a one-time password system; authen-

tication tokens become worthless to an attacker once users have submitted them to the site.

SAW has the added benefit that these tokens must be used within a short time frame. This

is a significant improvement over EBPR-enabled web sites with insecure login pages.

Note that without an HTTPS connection between the user and the web site, it is

possible for an eavesdropper to see everything users see when they interact with the site and

it may be possible for an attacker to hijack the user’s session.

Also, without HTTPS on this link SAW cannot detect or prevent an active man-in-

the-middle (e.g., an attacker with a spoofed domain name) and a replay attack would be

possible.

Web site and Email Provider

Ideally, a secure channel should be also used for the communication between web sites

and email providers, however, because the vast majority of email traffic currently does not

have any cryptographic protections in place, it is not feasible, at this time, to make this a

requirement.

Fortunately, the AuthTokenemail that is sent over this link is useless without the

AuthTokenuser that was delivered directly to the user. When an HTTPS connection is em-

ployed between the user and the web site, AuthTokenuser is never visible to an eavesdropper

and the risks of sending AuthTokenemail in the clear are mitigated.

Email provider and User

The link between the email provider and the user requires a connection that provides confi-

dentiality, integrity, and authentication of the email provider (e.g., POP/IMAP over TLS).

This prevents local eavesdroppers from collecting the email account password.
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2.4.2 Active Impersonation

Provided at least one token is securely sent to the user, SAW eliminates the potential for

passive attack. Nevertheless, attackers able to monitor the communications between the web

site and users’ email providers are positioned to mount an active impersonation (see Figure

2.5).

By submitting a Token Request, an active attacker obtains a valid AuthTokenuser. By

eavesdropping on the unprotected link between the web site and the email provider it is also

possible for the attacker to intercept the corresponding AuthTokenemail. Email providers, or

more likely malicious insiders, are also able actively impersonate their users.

We believe that SAW is workable and usable, even in light of this attack. Sites that

employ EBPR are also susceptible to a similar of attack in which an attacker requests a

password reset for the victim’s account and then eavesdrops the resulting email message

sent by the web site. Nevertheless, as Garfinkel [33] states, the widespread adoption of

EBPR indicates that these risks are manageable.

This potential for active impersonation brings to light a problem that SAW shares

with PKI-based systems. Both systems are vulnerable to malicious or compromised trusted

third parties; a certificate authority (CA) or email provider has the ability to undetectably

impersonate its clients. Just as a PKI-based system is only as strong as its CAs, SAW is

only as strong as its email providers.

The ability to deliver email to only its intended recipients is a required characteristic

for email providers who want to retain their users. Some email providers will be more

desirable than others in the same way that some CAs are more trusted than others because

of their reliability and privacy practices.

Section 2.5.4 describes several optional mechanisms that will prevent active imper-

sonations by email providers and make it more difficult for an external entity to mount this

attack.
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Figure 2.5: In an active impersonation, the attacker submits the victim’s email address
in a Token Request (1). AuthTokenuser (2a) is returned directly to the attacker and, by
eavesdropping the communication between the web site and the victim’s email provider,
the attacker obtains the corresponding AuthTokenemail (2b). The attacker is now able to
impersonate the victim to that web site (3). EBPR-enabled sites are also vulnerable to a
similar attack.

It is possible to tunnel SMTP through a TLS connection; however it is not a common

practice to do so. This is most likely due to the overhead involved in creating and accepting

a large number of TLS connections. If, however, TLS was used to transfer messages between

email providers this would eliminate the ability for an external entity to perform an active

impersonation. Unfortunately, it does not thwart a malicious or compromised email provider

from implementing this attack1.

Tunneling SMTP through a TLS connection reduces the attack surface for active

impersonation attacks, raising the bar significantly compared to current EBPR practices.

However, current EBPR practices indicate that SAW is already workable and usable at many

web sites without this advanced protection. Requiring secure email delivery strengthens

SAW and could make it attractive to web sites that require stronger guarantees against

active impersonation.

1Splitting AuthTokenemail amongst multiple email will prevent non-colluding email providers from mount-
ing this attack (see Section 2.5.4).

21



2.4.3 Password Phishing and Denial of Service

Phishing lures potential victims into divulging sensitive information (e.g., passwords) by

emailing an official-looking message containing a link to a site that looks like a web site used

by the victim. Since SAW eliminates site-specific passwords, the only thing a phisher gains

from tricking users into attempting to authenticate a phishing site is an email address, which

the attacker already knows because she sent the phishing message to it.

Unfortunately, although SAW protects users’ ability to authenticate to specific web

sites from phishers, it does not prevent an attacker from tricking users into believing that

they have successfully authenticated and are now interacting with the real web site. This

remains a difficult open problem, not just for SAW, but for web site logins in general.

As clicking links found in email messages is potentially dangerous, such links should

only be followed when they are the result of a Token Request. The short time span between

requests and delivery aids users in following this practice. Using hyperlinks is more secure

than having the user cut-and-paste the token because it ensures that the token will be

returned to the web site that issued it.

A race condition is possible when emailing hyperlinks to users. If an attacker is able

to email a spoofed message before the web site’s email message arrives, the attacker may

be able to fool users into following a link to a malicious site. Although the users visit the

attacker’s site, none of the authentication tokens are disclosed to it.

Unfortunately, a quick visit to a malicious web site can be quite dangerous due to

browser vulnerabilities, or sly social engineering, that result in the installation of malicious

software. This is a very real threat and demonstrates the advantage of taking the user out

of the loop and allowing these actions to be performed by the toolbar, which employs strict

token matching to remove this race condition.

There are several ways to mitigate denial of service attacks. For example, a web site

can limit the number of messages that it sends out to a single address. Also, client-side
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software can recognize unsolicited authentication emails as spam and automatically discard

them or file them away for later analysis.

Also, it is possible for the token messages themselves to be categorized as spam.

Garfinkel [33] suggests that emails used for authentication purposes should be signed by the

sender to prevent this. This approach, however, may be too expensive for many web sites.

In SAW, token messages are very easily identified and it is trivial to teach a spam filter that

they are not spam. Any unrequested messages that do get through can be handled by the

client-side software as stated above.

2.4.4 Storage of Login Information

In SAW, there is no long-term storage of sensitive user-specific authentication information at

web sites. Although values for AuthTokencomplete are cached for users currently attempting

to authenticate, these values are short-lived and are only used once.

There is also no long-term storage of authentication information by users. Although

client-side automation tools may store email account information, the account password

should never be stored outside of a session.

It is probable that email providers will maintain a long-term storage of messages

containing an AuthTokenemail. Fortunately, this token is useless without its corresponding

AuthTokenuser and both tokens are short-lived and single-use. This mitigates the risks of

storing AuthTokenemail at the email provider for auditing purposes. Offline analysis of the

individual tokens yields no new information because each AuthTokencomplete is as likely as

the next. Token size, determined by k, should be chosen to be sufficiently large to thwart

any brute force attempt to guess them. Online, brute force attacks for the two tokens are

trivially detected.
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2.4.5 Stale Email Addresses

Allowing users to change their primary address at a web site is easy when their original email

addresses are still accessible. When doing so, it is important that this process require an

authentication challenge to the original address. A similar concept (requiring a user to enter

the original password before it is changed) exists in many password-based systems.

A stale email address is an email address that has become inaccessible to the user. One

approach to address this problem is to have a password backup or secret question/answer.

These methods switch the traditional roles of emails and passwords as primary and secondary

authentication mechanisms. Lamentably, this method negates many of the benefits of SAW,

as it reintroduces passwords. We identify two approaches to deal with this problem.

First, if an email address is no longer accessible, a user can use whatever out-of-

band techniques that were used to create the account at the web site in the first place. For

example, if the email address of a member of a conference program committee goes stale,

that member can contact the committee chair and have the email address changed to a new

one.

Systems with open user registration usually do not have an out-of-band means to

manage accounts. The simplest solution is to create a new account. However, it may be

the case that the user has information stored at the web site under the old account, e.g., a

collection of photos. In this situation, a secondary email address, preferably in a completely

different domain than the primary one, registered with the web site during account creation

presents an elegant solution for the vast majority of users. This method also mitigates the

problem of relying on a single third party at authentication time by providing a “backup”

that can be used if the primary email provider is currently unavailable.

2.5 Advanced Features

Currently, email-based authentication is predominantly relegated to automated password

reestablishment. By extending and significantly improving this type of authentication, SAW
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brings it to the forefront and demonstrates its innate power as a primary authentication

mechanism and as a viable alternative to passwords at EBPR-enabled web sites.

A major benefit of SAW is that email addresses, unlike digital certificates, are very

easy to obtain and are useful in a variety of different applications in a myriad of security

domains. It is also easier for a web site to trust almost any email provider because the amount

of trust placed in them is much less than that of a traditional CA. Correspondingly, the

implicit trust that email providers will only deliver an email message to its intended recipient

allows them to be completely oblivious to the fact that they are performing the duties

of an identity provider. This enables web sites to unilaterally deploy this authentication

mechanism without modifying the email provider or entering into any legal or business

relationships with them. Finally, in its simplest form, it requires no special user software.

2.5.1 Sharing and Collaboration

Users need a secure way to share files (e.g., photos, documents) with friends and collabora-

tors. There is no easy-to-use, universal mechanism available to do this. To securely share

files in password-based systems, each participant must have a username and password. The

account creation process necessary for this mechanism is commonly a source of frustration.

Email messages are also commonly used to transfer and share files. We call this

approach informal sharing because it does not require the recipient to possess a local account

like the password-based approach. This method is easy, intuitive, and there are reasonable

assurances that files will reach their destination. Emailing content is a push-based approach

and due to the informal nature of the transaction, it is unlikely that the content will be sent

with any cryptographic protection. Also, files sent via email can clog the recipient’s mailbox.

SAW provides the foundation to build a secure, pull-based informal sharing mech-

anism. Since email addresses are necessarily unique they serve quite effectively as unique

identifiers in access control lists. Using SAW it is possible to securely and efficiently use

proof of email address ownership as an authenticator. Sharing, or allowing collaborative
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AuthType Digest
AuthName “private”
AuthDigestFile /pwFile
Require user alice bob

(a)

AuthType EBAC
AuthName “private”
Require user alice@a.edu
bob@gmail.com

(b)

Figure 2.6: A traditional .htaccess file (a) restricts access to a directory to set of known users,
e.g., alice and bob. These users, and their passwords, are defined in the AuthDigestFile.
With EBAC (b), this password file is eliminated and users prove ownership of their email
addresses using SAW to gain access to a directory. This removes the need to create/distribute
user-specific passwords.

access, is accomplished by specifying the email address, or list of email addresses, that are

permitted to access a resource. We call this approach email-based access control (EBAC).

This method of specifying permissions is simple and easy to use. It is also desirable

for systems with discretionary access control (DAC), where users are allowed to specify

access control for the content they control, e.g., photo sharing applications. These users

can now securely share content, e.g., private photo albums, with their friends and family

without requiring them to create accounts with the site or to manage long-lived links. This

method is also well suited for use with the Apache Web server’s .htaccess files, which permit

user-specified, directory-level access control (see Figure 2.6).

We have implemented a module for Apache that provides this functionality and cur-

rently use it to protect a private collaborative wiki. In addition to enabling secure access

control without having to create user accounts and distribute passwords, this module allows

us to use SAW to protect access to an application without having to modify that application.

2.5.2 Delegation

Decentralized authentication systems (e.g., PKI-based approaches, SAW) lend themselves

well to server-based delegation because delegates can be easily specified with public iden-

tifiers in a manner similar to the approach to sharing and collaboration described above.

When servers take an active role in providing delegation, they have the potential to pro-
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vide powerful, feature-rich delegation options. Nevertheless, server support for delegation is

rare as it typically requires extensive modifications to existing applications to integrate an

appropriate permissions model.

In general, delegation of authority in password-based systems is accomplished by

sharing the password. To the eyes of the system, the delegate is the delegator.

There are several problems with this approach. First, once a password has been given

away, it cannot be revoked, with a reasonable degree of certainty, without changing it. By

giving the delegate the same password as the delegator, too much authority is delegated. The

delegate now has the power to change the password and revoke access from the delegator, at

least temporarily. The delegate can also share the password with others without the approval

of the original delegator. Often times it is hard to remember who has received the delegated

password and why.

A key benefit of this approach to delegation in password-based systems is that the site

does not need to be aware of the delegation. We call this capability client-based delegation.

Client-based delegation in SAW leverages email forwarding rules. A delegate provides

the delegator’s email address to the web site and, through a forwarding rule at the delegator’s

email provider, AuthTokenemail is sent to the delegate’s email address. By removing this

forwarding rule, a delegator immediately revokes permission for future authentications by a

delegate. The delegator’s list of forwarding rules provides an up-to-date record of delegations,

which facilitates delegation management.

Client-based delegation in SAW does not require support from the web site. This type

of delegation described works best when the user’s email provider enforces the forwarding

rules. Forwarding rules specified and processed in a local email client (e.g., Outlook Express)

are problematic because the delegate must rely on the delegator to retrieve the email message

from the server before the client forwards it to the delegate. Although web site support for

delegation is not required, such support could provide more control over which permissions
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Figure 2.7: Delegation SAW using email forwarding rules. Bob delegates access to a web
site to Alice by creating a forwarding rule with his email provider. To access the site, Alice
submits Bob’s email (1). She then receives AuthTokenuser directly from the site (2a). Once
AuthTokenemail (2b) arrives at Bob’s email provider, the forwarding rule sends this message
to Alice. Once Alice receives the message, she completes the authentication process (3).

are delegated and enable users that lack access to email forwarding facilities at their email

provider to delegate their authority.

Various types of delegation are achievable through this technique. The simplest form

is complete delegation, where all token messages are forwarded to the account of the delegate.

This can also be accomplished by specifying the delegate’s email address as the delegator’s

secondary email address, but this method is not as desirable as the former because it requires

modification to data stored at the web site and is not as scalable. In this model, it should

be possible for the delegate to change the primary/secondary email accounts associated with

the site. This form of delegation is helpful for users with multiple email addresses.

Multiple email addresses significantly improve the privacy of the user. For example,

by using a free email address as opposed to a more identifying address, e.g., a business

email, users avoid leaking information about themselves, e.g., their place of employment

or real name. Using multiple addresses for authentication also limits the information that

colluding web sites glean from pooling their information. Using the complete delegation

model the token requests for multiple accounts funnel into a single one, enabling the user to

authenticate to multiple email identities, while only having to retrieve authentication tokens

from a single account, thus providing a form of multiple-identity single sign-on.
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Selective delegation provides finer-grained delegation. In this model, only token mes-

sages that meet a certain criteria are forwarded. For example, only messages with tokens

from site Y are forwarded to delegate X. This method allows the user to specify whether or

not attempts to change the primary/secondary email address registered at a provider should

be forwarded, thus preventing delegates from assuming complete control, unless explicitly

allowed by the delegator. When selectively delegating authority it is important to intelli-

gently forward tokens to the authorized user who actually initiated the request. This avoids

superfluous messages to all involved.

A valid email address [70] allows for the addition of a sequence of words, called

a phrase, before the actual email address. This has traditionally been used to create a

pretty-printed form of a real name that corresponds to the email address, e.g., “William

Henry Gates III” <bgates@microsoft .com>. By modifying the contents of this phrase, the

intended target of the authentication mechanism is easily identifiable. For example, suppose

Linus Torvalds has been authorized by Bill Gates to access a particular web site. When

Linus supplies the value:

“Delegate to: torvalds@osdl.org”<bgates@microsoft.com>

as his email address, Bill’s email filter is able to trivially determine whether a particular

authentication message is meant for him or for Linus.

This method also facilitates the creation of groups of users. Although this approach

has the potential to remove the anonymity of group members, it also avoids everyone in the

group from getting the authentication messages from everyone else in the group. It must be

noted that this solution also allows web sites to be aware that delegation is occurring and

possibly act on it. This may or may not be desirable to the user.

One-time delegation is a subset of selective delegation. The delegator begins the

authentication process and collects the required authentication tokens, but instead of sub-

mitting them to the web site, the delegator supplies them to the delegate. Due to the short

lifespan of the tokens, this process is very time-sensitive.
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2.5.3 Client-side Auditing

Since current password authentication only involves the web site and the entity attempting

to authenticate, which may or may not be the user, there is no means, without the support

of the web site, to provide audit information to the user concerning authentication attempts

and failures.

In SAW, it is possible for the user to audit the authentication process without any

support from the web site because any such attempt must necessarily pass through the user’s

email account. This auditing capability remains available, even when authority is delegated

using client-based delegation. By saving a copy of the messages that are forwarded, a client-

side audit trail is established. Alternatively, with minimal modification to the site, an audit

message (e.g., an authentication message with the AuthToken removed) sent to a user’s

secondary email address also creates a client-side audit trail. If a web site has built-in

delegation capabilities, the client-side auditing of SAW may not work unless the site notifies

the user each time a delegate accesses the system.

2.5.4 Active Impersonation Countermeasures and Privacy-Enhancing Features

This section describes some optional mechanisms that prevent active impersonations by email

providers and add confidentiality and anonymity to the email messages. These mechanisms

are not mandatory because we believe that the increased overhead and complexity they add

is too costly to address risks that the large number of EBPR-enabled sites have already

demonstrated are manageable.

First, it must be noted that in order to avoid detection an active attacker must

intercept and remove email messages destined for the user. Otherwise, a client-side auditing

mechanism would detect this breach. This is arguably more difficult than simply passively

observing this link.
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To prevent active impersonations, SAW can concurrently involve multiple email ac-

counts in a single authentication. The secret splitting scheme used to create the authentica-

tion tokens is easily extended to n email accounts as follows:

AuthTokenuser = AuthTokenemail1 ⊕ · · · ⊕ AuthTokenemailn ⊕ AuthTokencomplete

If each AuthTokenemaili is sent to a different email account, active impersonations

require the eavesdropping of, or the collusion of, all the providers of these accounts. Choosing

email providers in unrelated domains greatly decreases the possibility of this occurring.

Also, by using a threshold secret sharing scheme [73], it is possible to split the secret

such that the user only has to retrieve m of n messages to successfully authenticate. This has

the potential to improve latency when one or more email providers are busy or unavailable.

Nonetheless, splitting AuthTokenemail between multiple accounts diminishes the single sign-

on potential of SAW.

Note that the location where the actual passive eavesdropping occurs affects the payoff

to an attacker. If an attacker is observing the incoming traffic to a particular email provider,

she is easily thwarted by using the multiple email account scheme described above. On the

other hand, if the attacker is listening to all outgoing email traffic of a particular web site the

multiple email account scheme would not be effective, but the attacker can only impersonate

the user at that particular site, not at the other sites that can be accessed by the user.

To optionally provide confidentiality and anonymity to the delivery of AuthTokenemail,

the message containing it is encrypted and delivered via an anonymous remailer. Users de-

crypt this message using the decryption key that accompanies AuthTokenuser. By encrypting

this message and hiding its origin, users prevent their email providers from gleaning infor-

mation about an authentication at the expense of increased latency.

31



Figure 2.8: The one-round SAW protocol. If a user-supplied email address is authorized to
obtain the data requested (1), a web site creates and distributes two authentication tokens.
AuthTokenuser (2a) is sent directly to the user while AuthTokenemail (2b) is emailed. Both
tokens must be combined to obtain the requested resource.

2.5.5 One-Round SAW

Step 3 of SAW, Token Submission, is eliminated in one-round SAW by leveraging SAW’s

existing token delivery mechanism (Step 2) to provide both authentication and data delivery.

One-round SAW (see Figure 2.8) operates as follows:

Step-1 The user submits her email address and her request for data to the web site in the

Token Request. This request should be sent over HTTPS.

Step-2a The web site returns AuthTokenuser (a randomly-generated value).

Step-2b If an address is authorized the web site emails AuthTokenemail, computed as fol-

lows:

AuthTokenemail = data⊕ AuthTokenuser

The user can then combine AuthTokenuser and AuthTokenemail to recreate data. If

an address is not authorized AuthTokenemail is set to a randomly-generated value.

Since only authentic users can obtain AuthTokenemail and reconstruct it, only they

will obtain the item. One-round SAW increases user privacy because the server never learns

the result of the authentication; the server is unable to prove whether the requester is a

legitimate user or an impostor.
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Large Resource Distribution When using one-round SAW, a server must take into

account the size of the requested item. The token splitting used by SAW creates shares the

same size of the secret it splits. If items are small, the impact is negligible. For large items,

it is advised to encrypt the item, split the encryption key, and deliver the encrypted item

with only one of the encryption key shares as follows:

Step-1 Unchanged.

Step-2a The web site returns AuthTokenuser (a randomly-generated value) and Ek(data),

which is the requested data encrypted with key k.

Step-2b If an address is authorized the web site emails AuthTokenemail, computed as fol-

lows:

AuthTokenemail = k ⊕ AuthTokenuser

The user can then combine AuthTokenuser and AuthTokenemail to recreate k and

use it to decrypt data. If an address is not authorized AuthTokenemail is set to a

randomly-generated value.

One-round SAW is an application of one-time pad encryption [73]. The “key” is

AuthTokenuser and the “ciphertext” is AuthTokenemail. Key distribution is a major difficulty

of one-time pad encryption because it requires that the key and the ciphtertext be the same

size. In other words, if you can securely distribute the key, why not save some effort and

deliver the ciphertext instead. One-round SAW does not assume that there is a secure

method to communicate a key to the user, rather it relies on the premise that both channels

must be observable by the user, and not an attacker, to provide its security.

Hidden Credentials [15] also provides the ability for servers to distribute encrypted

data with the assurance that only authorized parties will be able to decrypt it. Hidden

credentials requires a third party to issue asymmetric decryption keys. In one-round SAW

symmetric encryption keys are generated by the service provider, thus eliminating the need

for user-specific asymmetric key pairs.
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2.6 Overcoming Email Obstacles

Latency

Although typical email message delivery is nearly instantaneous, SAW is not immune to high

traffic conditions and other factors (e.g., virus/spam filters, archiving) that delay message

delivery. Some corporate email systems support the designation of high priority messages

to reduce latency. When such support is unavailable, using instant messaging in lieu of

email is an effective method to avoid the potentially high latency of email. While SAW may

not suitable for every email system, our initial performance results demonstrate feasibility

of SAW as a primary means of authentications, even on a highly loaded email system like

Gmail.

Privacy

Section 2.5.4 enumerates the privacy enhancing features available to SAW. These features,

as well as the protections provided by the protocol itself, allow SAW to detect and prevent

threats to a user’s privacy, even when the link between the web site and the email provider

has no cryptographic protection.

Convenience

While it is difficult to compete with something as pervasive and embedded as password-

based authentication, SAW provides significant benefits to justify the switch and is designed

to minimize the cost of such a transition. Most notably, no modification or changes are

required to email providers. No specialized client-side software is required, although the

convenience and benefits of this system are greatly enhanced through client-side automation.

The only entity that requires modification is the web site.

Web sites already have the necessary hooks to both the local applications and the

email system to implement SAW. Transitioning to SAW requires a repurposing of services
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that are already in use. The most significant modification to this module is the addition of

the ability to create authentication tokens, which is purposely straightforward and compu-

tationally light-weight.

Pervasive user training on email-based authentication began many years ago with the

adoption of EBPR. Users are already well aware of the utility and convenience their email

accounts hold for authentication. SAW exploits this foundation to extend and improve this

form of authentication.

Reliance on a third party

The reliance of SAW on email providers is mitigated by the distributed and decentralized

nature of email providers. The use of a secondary email address alleviates the problems

caused by temporary lapses in availability of a user’s primary email provider. Although an

email provider could selectively drop or refuse authentication messages, this issue is between

the email provider and the user and is outside the scope of SAW.

2.7 Related Work

PKI-based systems overcome many of the problems associated with passwords. By specifying

trusted CAs, and using certificates issued by those CAs for client authentication, systems like

client certificates in TLS have the potential to overcome the weaknesses of password-based

systems. Unfortunately the adoption of PKI-based systems by businesses and the general

public has been slow. PKI systems have burdensome configuration and usage requirements

[35]. High costs, the requisite user and administrator training in a complex technology, and

the difficulties of trusted roots and cross-certification also makes PKI hard to adopt [32].

Ellison and Schneier [27] further illustrate the risks of PKI and “trusted” CAs. Overall,

PKI-based systems are too heavy-weight for most web sites and their users.

Centralized single sign-on is seen by many as the panacea to the rising password woes.

Systems like Liberty [54] and Shibboleth [74] use specialized identity servers that provide
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authentication and the ability to assert additional attributes about their users. Though

promising for future applications, the legal and business relationships required to imple-

ment these systems prohibit their widespread adoption. At this stage these systems are too

heavy weight to replace passwords as the preferred authentication system. SAW does not

require any legal/business agreements between the identity provider and the web site. Such

agreements may improve the benefits of SAW, but are not necessary to deploy and use this

system.

There are a variety of URL-based authentication systems. These systems, such as

OpenID [62], Light-Weight Identity (LID) [55], and Simple eXtensible Identity Protocol

(SXIP) [77], uniquely identify a user using a URL. Based on this URL, web sites commu-

nicate with a specialized identity provider to verify user identity. Although these systems

provide a decentralized authentication mechanism, they require the creation of specialized

identity providers and new identifiers (i.e., URLs) that are not as intuitive, recognizable,

or as widely used as email addresses and other personal messaging identifiers. SAW is a

simpler alternative to these systems when the authentication does not require any attribute

information exchange. Also, SAW can serve as the authentication method for the identity

provider, avoiding the need for yet another password.

Wordpress [85], a popular web log platform, has a third-party plug-in, Comment

Authorization [23], that is designed to reduce comment spam by requiring self-moderation of

comments. Once a comment is posted, an authorization link is sent to the author’s purported

email address. By clicking the link, the owner of the email address authorizes the posting

of the comment. This method of self-authorization presents a novel idea for distributed

authorization, but it is not a general purpose authentication mechanism like SAW.

Our primary research focus for the past decade has been trust negotiation [84], an

approach to authentication in open systems that relies on third party attribute assertions

contained in digital credentials. Trust negotiation has a significant deployment hurdle. Users

typically do not possess digital credentials because most web sites do not accept them; most
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web sites do not accept certificates because users do not possess them. It is unclear when, or

if, this chicken and egg problem will be overcome. SAW grew out of our search for simpler

approaches with the potential for an immediate impact on authentication challenges in open

systems.

2.8 Conclusions

SAW is a simple concept. It builds on EBPR, which has already proved its utility for

authenticating users, and improves it by thwarting passive attacks and significantly raising

the bar for active attacks. These enhancements make SAW a viable alternative for passwords

at a significant number of web sites. SAW has the potential to thrive because it does

not require universal acceptance, modification of email providers, nor significant changes to

existing web site infrastructure.

SAW is an important step towards simplifying authentication and making it more con-

venient. It relieves both web sites and users from having to establish and manage passwords

by off-loading user authentication to email providers. Although SAW does not eliminate

passwords completely (users still have to authenticate to their email providers), it should

greatly reduce the number of passwords users need to remember. In addition, this system

provides single sign-on to all SAW-enabled sites, exploits client-side automation to speed up

the login process, and reduces the attack surface for phishing and social engineering attacks.

SAW addresses all the obstacles enumerated in Section 2.2.1 that would impede the

adoption and utility of this new web site login approach. It also provides several advanced

features not usually available to password-based systems. These include: 1) Leveraging

email addresses and proof-of-address-ownership to facilitate sharing and collaboration; 2)

Using email forwarding rules to allow intuitive delegation and revocation of authority; and

3) Exploiting the fact that all authentication attempts pass through a user’s email account

to provide client-side auditing.
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SAW is a simple concept, but therein lies its strength. It is easy to understand and

to implement. Its benefits are significant. The risks of its use are clear and have already

proven to be manageable.

2.8.1 Future Work

As mentioned earlier, SAW provides personal messaging-based authentication and easily

translates from email to other mediums, e.g., instant and text messaging. We are currently

exploring other personal messaging systems and the possibilities of a hybrid combination of

these mediums.

For example, a cell phone with email or text-messaging capabilities has the potential

to mitigate the risks of using SAW from an untrusted machine, such as in a cyber café or

public library. By retrieving AuthTokenemail from the phone, or having the email provider

forward it to the phone, the untrusted device will never be able to capture the email account

password. To be effective, a means to conveniently transfer the token from the phone to the

computer must be devised, e.g., transforming the token into a more human-friendly form or

using a limited-range wireless protocol.

SAW primes the pump for attribute-based authentication because some email

providers (e.g., universities and businesses) are authoritative sources for certain user at-

tributes. In fact, the mere possession of an account at a specific provider is a desir-

able attribute for specifying access control. Email aliases are one technique to assert

these attributes without modifying the email provider. For example, Alice has the ac-

count alice@cs.someschool.edu. This email address may be used to learn that Alice is

a computer science student or faculty member at someschool. By creating the alias: al-

ice@phd.grad.cs.someschool.edu, more attributes are added.

Alternatively, by replacing the delegation string described in Section 2.5.2 with an

attribute(s) request, the email provider could be modified to deliver messages only if the

recipient has specific attributes. In either of these approaches, the trustworthiness of the

38



attributes being asserted depends on the relationship between the email provider and the

web site.

Since a variety of applications, not just web site logins, benefit from SAW, it would

be convenient for users to have a centralized, client-side location to retrieve and distribute

AuthTokenemail. A local email client is an excellent location to host such a service. Through

an extension or plug-in this email client (e.g., Mozilla Thunderbird and Outlook) would

provide a single, intuitive location to manage local access to email accounts. It also provides

a location to enforce fine-grained permissions on the programs that are allowed to access the

authentication information sent from a particular web site.

A variety of interesting and exciting possibilities become a reality when email

providers take an active role in the authentication process. Specifically, we are interested

in making SAW feasible even when users cannot directly contact their email providers, e.g.,

logins for wireless internet access.

We are also currently preparing a large scale user study to evaluate the usability of

SAW. This study will focus on authenticated blog access and file sharing.

Acknowledgments. This research was supported by funding from the National Science

Foundation under grant no. CCR-0325951, prime cooperative agreement no. IIS-0331707,

and The Regents of the University of California. We thank Andrew Harding for his work

on the browser extensions, Daniel Wille for his work on the WordPress plug-in, and Reed

Abbott for his work on the Apache authentication module.

39



Chapter 3

Wireless Authentication using Remote Passwords (WARP)

A. Harding, T. W. van der Horst, and K. E. Seamons. Wireless Authentication using Re-

mote Passwords. 1st ACM Conference on Wireless Network Security (WiSec), Alexandria,

VA, March 2008.

Additional Content: The published version is augmented here with Section 3.1.1 (Moti-

vating Scenarios) and graphical versions of the figures. These were present in the original

submission, but had to be removed/condensed due to length restrictions.

Abstract

Current wireless authentication mechanisms typically rely on inflexible shared

secrets or a heavyweight public-key infrastructure with user-specific digital cer-

tificates and, as such, lack general support for environments with dynamic user

bases where guest access is frequent. Simple Authentication for the Web (SAW)

facilitates dynamic user bases in the context of web site logins by enabling users

to authenticate to personal messaging identifiers (e.g., email addresses, IM han-

dles, cell phone numbers). SAW, however, is ill-suited for wireless authentication

because, in most cases, it is dependent on client-side Internet connectivity. Wire-

less Authentication using Remote Passwords (WARP) overcomes this constraint

by building a hybrid protocol that combines the principles of SAW authentication

with the Secure Remote Password (SRP) protocol.
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3.1 Introduction

Wireless networks provide an attractive means for network access as they enable convenient

roaming and device deployability without the burden of network cables and port accessi-

bility. Although convenient, wireless communications are subject to passive eavesdropping,

active injection, and modification attacks. For these reasons, it is important that wireless

networks provide secure authentication to prevent unauthorized access to network resources

and provide confidentiality and integrity to transmitted information.

Current wireless authentication mechanisms are usually based on user-specific cer-

tificates (PKI), global passphrases, or username/password pairs (see Section 3.7). These

methods are either too heavy or inflexible and lack general support for environments with

dynamic user bases, such as corporations or universities where guest access is frequent.

Wireless Authentication using Remote Passwords (WARP) augments the Secure Re-

mote Password (SRP) [87] protocol using concepts from Simple Authentication for the Web

(SAW) [81]. By proving ownership of an authorized personal messaging identifier (e.g., email

address, IM handle, cell phone number), WARP enables users to authenticate without pre-

established secrets or the heavy cost and inconvenience of user-specific certificates. The

burden of wireless access control in dynamic user bases is dramatically reduced as authenti-

cation of these globally unique identifiers is performed by trusted third parties.

3.1.1 Motivating Scenarios

Home User Johnny, a security minded user, is anxious to set up a wireless network at

home. Johnny is wary of current “home” solutions that use global passphrases. He is a

member of a linux users group and often holds meetings in his residence. Johnny dislikes

having to share his passphrase with his guests. He also does not have the resources or time

to setup and maintain the infrastructure required for EAP-TLS[4] or MSCHAPv2[89]. He

wants to provide secure wireless connectivity with the least amount of inconvenience for

himself and his guests.
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Corporate Environment Various employees from another company are visiting daily.

Until this point, the company has tied the wireless authentication server to the user accounts

used for regular computer and network access. Because of the tight integration, IT staff have

had no extra burden managing wireless access; creation/deletion of the user accounts for a

new/terminated employee automatically grants/revokes wireless access privileges. But now,

without access to the collaborating company’s user accounts, they have been forced to add

temporary users every time someone visits.

Conference Committee A week long conference is being held at a university. It is de-

sired that all participants have wireless connectivity during the conference. Obtaining user

accounts for each participant through the IT department is time consuming and the task

of distributing usernames and passwords is unwieldy. Certificate-based methods are also

undesirable; the burden of obtaining a certificate is considered a waste of the attendees’

time. Additionally, the conference staff have enough preparations without adding the has-

sle of configuring the wireless network. Forgotten username/password pairs or improperly

configured certificates could spell disaster for the staff on the first day of the conference and

they want to avoid wasting time that could otherwise be used for gainful participation in the

conference. In short, they want to spend minimal time managing the wireless connectivity

and reduce the number of steps participants need to take (and potentially do wrong) in order

to authenticate.

3.2 Background

Simple Authentication for the Web (SAW) [81] enables decentralized authentication of glob-

ally unique personal messaging identifiers (e.g., email addresses, IM handles, cell phone

numbers). This approach is ideal for systems with dynamic user bases because no shared

secrets (e.g., passwords) are required between clients and relying parties (e.g., web sites). In-
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stead, SAW leverages unmodified personal messaging providers (e.g., email, text and instant

message services) to act as identity providers to relying parties.

SAW builds on the same basic technique employed by the “Forgot your password?”

link common to many web sites; users must retrieve personal messages (e.g., email, text

and instant messages) sent to them by the relying party through their messaging provider.

Relying parties depend on providers to deliver messages only to authenticated recipients. As

WARP represents a significant departure from SAW, a detailed protocol overview is omitted.

WARP builds on the following principles of a SAW authentication:

1. Reuse existing identifiers and authenticators.

2. Tightly couple identifiers and identity providers, e.g., email addresses specify the loca-

tions of their respective mail servers.

3. Authentication requires that users obtain two tokens known to the relying party. The

first token is given to the initiator of an authentication, while the second is only

obtained after a successful authentication to the identity provider.

3.2.1 The Chicken and the Egg

As many personal messaging providers (e.g., email, instant messaging) rely on client-side

Internet connectivity for message retrieval, an interesting chicken and egg problem must be

overcome to adapt SAW for wireless authentication: How do clients communicate with their

personal messaging providers when the reason they are authenticating in the first place is to

obtain network and Internet connectivity? Four potential solutions have been identified:

Temporary Connectivity A user has limited time to access the required personal messag-

ing resources before his connectivity is terminated. This approach carries increased liability

and is undesirable as it allows anyone to have temporary access to network resources; access

that could be used to launch attacks on or from the local network.
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Filtered Connectivity Attempt to allow clients to exchange traffic with only their per-

sonal messaging providers. For example, clients obtain IP-level connectivity to a restricted

network with limited Internet access. The client is switched to the regular network after

successfully authenticating.

Protection against abuse is complex and potentially impossible. Sophisticated filters

could restrict traffic to authorized personal messaging protocols, but filtering is impossible

if encryption is used. Data-limiting caps could be used but would be difficult to fine-tune.

The complexity of the safeguards needed to decrease the liability of this approach make it

largely unacceptable.

Out-of-band Message Delivery The chicken and egg problem does not exist when out-

of-band channels are employed to deliver messages to users, e.g., text messages sent through a

cellular providers’ network (SMS). This approach does not work in locations without cellular

coverage and requires SMS-capable devices.

Surrogate Authentication A surrogate approach requires the party to which users are

authenticating to relay small messages to their personal messaging providers on their behalf.

In this approach an IP-level of connectivity is not required; the Extensible Authentication

Protocol (EAP) [3] carries the authentication traffic. Since the authenticator, not users,

directly communicates with the personal messaging provider it has greater control and can

limit unauthorized data transfer.

As users are unlikely to trust authenticators to log in as them to their personal mes-

saging providers, this approach must provide assurances that user login credentials cannot

be stolen or misused by the authenticator.

WARP is a surrogate solution that provides strong protections to user credentials.
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3.3 WARP

In this paper, user (U) refers to the user and its wireless supplicant, relying party (RP)

refers to the wireless access point (and potentially an associated authentication server, e.g.,

RADIUS server) and identity provider (IDP) refers to the personal messaging provider.

In general, WARP should be both convenient and secure. Specifically, it should:

• Preserve the three principles of SAW (see Section 3.2)

• Authenticate U

• Provide confidentiality and integrity to the session established between U and RP; and

to the communications between U and IDP

To satisfy the first principle of SAW, WARP also reuses existing personal messaging

identifiers and authenticators, e.g., email addresses and email account passwords.

With regard to the second principle, the location of IDP must be learned from/based

on the user’s identifier. For example, if an email address is used IDP would be hosted on

a known port of the domain specified by the identifier, or specified in DNS similar to the

MX (mail server) entry. Note that this requires IDPs to support this protocol; a significant

departure from SAW, which leverages unmodified providers.

The third principle is the most challenging to fulfill. The purpose of the two token

scheme is to allow IDP to assist U in the creation of an encrypted session with RP without

IDP being able to compromise that session. It is simple for RP to deliver a token to each U

and IDP, and relay small messages between the two. The difficultly arises by requiring IDP

to confidentially deliver its token to only an authenticated U.

Conventional wisdom dictates that the simpliest way to accomplish this is to use a

secret key known only to U and IDP. WARP’s solution to this problem is to build on the

Secure Remote Password (SRP) protocol, which is a password authenticated key agreement

scheme that enables the establishment of a strong ephemeral session key from a potentially

weak password.
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Figure 3.1: SRP protocol messages.

The remainder of this section is organized as follows. Section 3.3.1 gives an overview

of SRP. Section 3.3.2 documents sSRP, which contains the SAW-based additions to SRP.

Section 3.3.3 shows how sSRP is used for wireless authentication.

3.3.1 Secure Remote Password

Secure Remote Password (SRP) [87] is a protocol designed to provide password-based mutual

authentication between a user (U) and a host (H), and establish an ephemeral session key.

SRP reveals no information to eavesdroppers during authentication that can be used to

mount an offline attack against the password. It is also resilient against well-known passive

and active attacks. The host does not store passwords for each identifier in plaintext but

instead a unique salt and verifier. The salt is used with the plaintext password to generate

the verifier. The verifier is not password-equivalent and cannot be used to impersonate the

user.
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Figure 3.2: sSRP protocol outline (augmentations to SRP in bold).

As WARP treats SRP as a black box that results in a shared key between U and H,

only a high level overview of SRP is given here. Figure 3.1 shows a condensed version of the

SRP protocol currently being proposed as an extension [78] to TLS that operates as follows:

1. U sends its identifier (I) to H.

2. H looks up the public group parameters (g and N) for I as well as the user’s salt and

verifier (s and v). H computes B (its ephemeral session parameter) and returns it,

along with g, N , and s to U.

3. U generates A (its ephemeral session parameter). Next, U computes the session key

K using the values from H. U then sends A and a proof (PU) of K to H.

4. H computes the session key K, verifies PU , and sends its own proof (PH) to U.
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3.3.2 Surrogate SRP (sSRP)

WARP augments SRP with principles of SAW to create the Surrogate Secure Remote Pass-

word (sSRP). In sSRP, an identity provider (IDP) assumes the role of the SRP host. This

protocol introduces a relying party (RP) through which messages between U and IDP are

relayed. Like SRP, the protocol is initiated by the user (U).

sSRP treats the internals of SRP as a black box and only relies on SRP to create

password-based ephemeral session keys between U and IDP. sSRP simply adds several mes-

sage elements that are unrelated to the original, unmodified SRP messages. At a high level,

we’re piggybacking SAW token distribution over unmodified SRP. Figure 3.2 shows the sSRP

protocol. Here is a description:

1. U submits its identifier (I) to RP, which authorizes the identifier and forwards it to

IDP.

2. IDP looks up the public group parameters (g and N) for I as well as the user’s salt

and verifier (s and v). IDP computes B (its ephemeral session parameter) and returns

it, along with g, N , and s to U via RP.

3. U generates its SRP session parameter (A), computes the session key K. and then

sends A and a proof (PU) of K to RP. RP generates a random value (KS) and splits it

into two keyshares: KSIDP and KSU . RP appends KSIDP to U’s message and sends

it to IDP.

4. IDP computes the session key K, verifies PU , and then encrypts KSIDP using K. IDP

then computes its own proof (PH) and sends it, along with the encrypted KSIDP to

RP. RP appends KSU before forwarding the message on to U.

5. U performs the following:

(a) Decrypts KSIDP using K.

(b) Recreates KS using KSIDP and KSU
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(c) Creates the keyshare proof (PKS).

PKS = H(I‖g‖N‖s‖B‖A‖PU‖PIDP‖KS).

(d) Sends PKS to RP.

sSRP leaves both U and RP with shared key KS, which is used as keying material

to encrypt future transmissions. This key is different than the SRP shared key K.

In order to protect against eavesdropping and impersonation attacks, the link between

U and RP must provide confidentiality, integrity, and authentication of RP. This protects

the transmission of KSU as it is sent to the user (see Section 3.5.1).

Upon first inspection, it may seem like KSU provides no additional assurances. KSU

serves two purposes: 1) Prevents IDP from having the full keying material (IDP never sees

KSU); and 2) Makes KSIDP by itself worthless, as an attacker needs both keyshares to either

impersonate the user or decrypt post-authentication transmissions.

sSRP enables proof of personal messaging identifier ownership without employing the

personal messaging medium itself. Ubiquitously deployed, this service provides a mechanism

useful not only to WARP, but also to SAW and many other mechanisms that rely on proof

of identifier ownership through password-based authentication.

Using other identity providers Although this description of sSRP used personal mes-

saging identifiers, e.g., email addresses or instant messaging handles, sSRP can be used with

any password-based identity provider where an sSRP service can be deployed. This means

that users could authenticate to a wireless network using identifiers such as OpenID or Unix

logins.

3.3.3 Employing sSRP in WARP

WARP is an incarnation of sSRP for wireless authentication. In WARP, the wireless suppli-

cant S takes on the role of the user and the authentication server (AS) that of the relying

party.
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EAP-WARP, a new EAP method, has been created to support WARP. EAP-WARP

encapsulates the sSRP protocol as it travels between the supplicant and the authentication

server. EAP-WARP works as follows:

1. S and AS use EAP-TTLS [30] to authenticate AS and provide confidentiality and

integrity for the link.

2. S, AS, and IDP perform sSRP. Upon submission of the sSRP keyshare proof PKS, S

has proven ownership of an authorized identifier to AS.

3. AS sends an EAP-Success message back to S.

4. S and AS use KS to derive the EAP Master Session Key (MSK), which provides

confidentiality and integrity for the subsequent wireless session.

3.4 Implementation

Software to support wireless authentication using WARP has been developed and will soon

be available.

libssrp is a general purpose library written in C that provides the functionality

needed to conduct sSRP authentication. It is meant to be used by applications that supply

their own transport functionality.

The current version of libssrp relies on OpenSSL [80] for its cryptographic primitives

and arbitrary precision integers. libssrp, by default, relies on an SRP-compatible password

file populated with salts and verifiers generated from plaintext passwords. An API can

alternatively be used to allow flexible retrieval of salts and verifiers. An argument to stay

with the default configuration is given in Section 3.6.

The wpa supplicant [58] open-source package has been extended to support EAP-

WARP. The extension consist of two files: 1) One C source file to provide EAP-WARP

support; and 2) A patch file that modifies wpa supplicant to include the extension. The

extension is less than 400 lines of code.
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This simple extension provides a layer that extracts sSRP packet data and provides

it to libssrp. sSRP packet data returned from libssrp is inserted into an EAP packet that

is returned to wpa supplicant. The extension also exports the EAP MSK, derived from

KS, to wpa supplicant.

FreeRADIUS [79], an open-source RADIUS server, has also been extended with EAP-

WARP support. The extension is around 800 lines of C code and comments, and like the

extension for wpa supplicant, provides extraction and insertion of sSRP messages to and

from EAP packets, as well as exporting keying material. The libssrp library is again used

to provide the bulk of the functionality.

An incarnation of the sSRP service has been written using the libssrp library and

provides sSRP over TCP/IP. The service is written in C, can daemonize, and supports

logging to syslog.

3.5 Threat Analysis

This section contains a threat analysis of WARP and the underlying sSRP protocol to enable

proper risk evaluation by those deploying WARP.

SRP and SAW are the parent protocols of sSRP. SRP is already resilient to passive

eavesdropping and active modification or impersonation attacks. sSRP purposefully inserts

a middle party in between the user and identity provider in SRP. This creates two channels

for attackers to target. Section 3.5.1 discusses threats to the channel in between U and RP.

Threats on the channel between RP and IDP is provided in Section 3.5.2. Section 3.5.3

evaluates threats when both channels are available to an attacker.

A discussion regarding impersonation by IDP is provided in 3.5.4. Section 3.5.5 theo-

rizes how WARP could be used to mount a denial-of-service attack. Section 3.5.6 concludes

the threat analysis by discussing how sSRP could be abused as a covert channel and how

such an attack is limited.
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3.5.1 Channel between U and RP

In WARP, U communicates directly with only RP. Even if U connects to a malicious RP,

this entity cannot leverage these communications to impersonate U at a legitimate RP.

The channel between U and RP must provide confidentiality, integrity, and authen-

tication of RP in order to protect the transmission of KSU . A man-in-the-middle attack

is still possible over this channel depending on how authentication of the relying party is

implemented. It is therefore necessary for sSRP to provide protection if the user connects

to an attacker instead of the intended relying party.

For example, WARP uses EAP-TTLS to provide security on this channel and au-

thenticate AS. In order to prevent man-in-the-middle attacks, the supplicant would need to

verify AS’s certificate before accepting the connection. A careless supplicant choosing not to

verify the certificate would allow a man in the middle to place himself between the supplicant

and AS. The supplicant would establish a TLS session with the attacker, who would then

establish a TLS session with AS. The supplicant would be oblivious to such an attack. All

traffic would now flow through the attacker. The attacker can now observe KSU .

KSU , by itself, is useless since, without knowledge of KSIDP , the attacker is unable

to derive KS. KSIDP is encrypted with the SRP session key K before travelling across this

channel to prevent the attacker from obtaining it. The attacker, who does not know K, is

unable to decrypt the keyshare and subsequently unable to impersonate the user.

A man-in-the-middle attack could allow an attacker to intercept PKS before it arrived

at the relying party. The proof could then be sent by the attacker to impersonate the user.

This is fruitless, however, as knowledge of KS is required to further communicate with RP. In

WARP terms, this means that the attacker would not have the correct EAP keying material

to export and would therefore be incapable of communicating further with the access point.
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3.5.2 Channel between RP and IDP

The user relies on RP to connect to the correct identity provider. Even if RP connects to a

malicious identity provider, sSRP prevents that provider from learning anything about the

user’s password.

The channel that is established between RP and IDP is insecure. SRP parameters

are protected by the built-in protections provided by SRP. KSIDP is sent across this channel

twice in this protocol: 1) In the clear on its way to the IDP; and 2) Encrypted with the

shared SRP session key K as it is sent back to U. AS has knowledge of KSIDP and could

attempt to brute-force K by encrypting KSIDP with all possible values for K. Even if AS

is able to obtain K, K is not helpful in discovering the password [88].

3.5.3 Both Channels

If Mallory, who can observe the channel between U and RP, colludes with Eve, who can

observe the channel between RP and IDP, then a one-time impersonation of the user is

possible. To initiate this attack, Eve passively observes KSIDP as it is sent from RP to

IDP. Mallory likewise obtains KSU as described in Section 3.5.1. If Eve is able to commu-

nicate KSIDP to Mallory, then Mallory can construct KS and impersonate the user. This

impersonation is limited to a single authentication because the keyshares are single-use and

short-lived.

Although this one-time impersonation attack is complex and unlikely, it can be

avoided. Encrypting KSIDP with IDP’s public key before it is sent to IDP provides con-

fidentiality, since only IDP is be able to decrypt it. An alternative approach would be to

encrypt the entire channel between RP and IDP, but this creates unnecessary overhead as

the remainder of the message elements are already protected.

Figure 3.3 shows a slight modification to the interaction between RP and IDP in

sSRP, which prevents this one-time impersonation attack. The modifications are as follows

(other interactions remain unchanged):
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Figure 3.3: One-time impersonation resistant sSRP (augmentations shown in bold).

1. RP appends the optional public key request, Dreq, to A as it travels to IDP.

2. IDP fills the request by sending his public key certificate along with B and s to U

through RP. The certificate contains his public key (D).

3. RP: verifies and strips off the certificate.

4. RP: encrypts KSIDP with D before it is sent to IDP.

The encrypted KSIDP is only decryptable by IDP and is therefore useless to an

eavesdropper.

3.5.4 Impersonation By IDP

Identity providers can impersonate any of their users. If an attacker or malicious insider

takes control of the sSRP service hosted by the provider, they can impersonate users to

gain wireless connectivity. For example, the attacker could replace the password verifier of
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an authorized identifier with his own or alter the sSRP service to always grant successful

authentication.

WARP relies on an SRP password file on the identity provider to provide verifiers,

salts, and public parameters for authorized users. Because the password verifiers are not

plaintext equivalent to the password, an attacker who steals the password file is unable to

use the verifier to impersonate the user without first determining the user’s password.

SAW, and therefore WARP, are built around existing trust given to identity providers.

An organization adopting WARP must make judgments regarding the identity providers they

choose to trust. Some organizations may alternatively require use of identifiers within its

own systems (e.g., organizational email addresses) to satisfy a required trust level.

3.5.5 Denial-Of-Service (DoS)

SRP is resilient against attackers modifying the information being exchanged between U

and H. sSRP does nothing to compromise this resilience. At most, an attacker could cause

authentication to fail. This could be used to deny service to an otherwise authorized user.

As simpler, jamming-based denial-of-service attacks (DoS) already exist, the potential for

DoS attacks using WARP is negligible.

3.5.6 Covert Channels

A covert channel is a method of communication that uses another channel’s bandwidth to

transmit data without knowledge or consent. Covert channels take many different forms (e.g.,

steganography, timing between transmissions, text manipulation). WARP could be used to

send data between U and IDP. Because WARP only opens up a channel of communication

between the supplicant and the provider of an authorized identifier, it cannot be used as a

covert channel to any arbitrary party.

Using WARP as a covert channel would not be an effective means of transferring

large amounts of data; the number and size of WARP’s messages are quite small. Similar
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authentication request throttling used to limit DoS attacks could also be employed to greatly

reduce the amount of information that could be exchanged over the covert channel.

Since the link between the AS and IDP is unencrypted, the supplicant could commu-

nicate information to a passive eavesdropper on that link.

3.6 Deployability

Deployability of WARP can be discussed from three points of view: wireless users, organi-

zations providing wireless access, and identity providers.

Users WARP leverages familiar and convenient password-based interfaces while decreasing

the total number of required user passwords by reusing existing login credentials.

Organizations WARP softens the burden of password and account management. Pro-

viding access to regular organizational staff could be automated by generating the access

control list using existing knowledge of staff identifiers. Guest access could then be main-

tained through a second access control list.

WARP is unusable in situations where the authentication server is unable to commu-

nicate with identity providers (e.g., ad-hoc networks without Internet connectivity).

WARP assumes the same level of trust extended to identity providers by SAW and

may be inappropriate for use in organizations where the existing trust extended to third-

party identity providers is insufficient.

Identity Providers WARP requires identity providers to host an sSRP service. Until

incentives outweigh the cost, it is unlikely that every identity provider will be willing to

meet this requirement. Fortunately, sSRP is simple and easy to implement and therefore

comes at a minimal cost.

As mentioned previously, sSRP relies on an SRP password file to provide verifiers,

salts, and public parameters for authorized users. Migration of existing non-SRP password
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files is tricky because these files generally contain non-plaintext forms of the passwords, e.g.,

password hashes, and entries in an SRP password files must be generated from plaintext

user passwords.

Identity providers who currently use services that receive a plaintext password from

the user, e.g., Unix logins, could modify the service to intercept the password and generate

an SRP password file entry. This removes the need for a formal re-enrollment process; users

log in once to enable sSRP. The modified service could be deployed well in advance of sSRP

deployment to generate SRP password entries for active users. Since existing password files

are not used to generate the verifiers, they can be safely maintained side-by-side the SRP

password file; facilitating gradual deployment.

3.7 Related Work

Many authentication mechanisms rely on pre-established shared secrets. Global passphrases

used in systems like WPA-PSK[86] can be difficult to distribute. If the shared secret is

compromised a new one must be deployed to each device. Guest access can only be achieved

by disclosure of the shared secret. It is also difficult to audit access because each user

connects using the same passphrase.

Individual user accounts with passwords are employed by challenge/response-based

systems such as MSCHAPv2 [89]. Account-level password-based authentication provides

reasonable deployability for a static group of users. It also lends itself to auditing because

authentication is tied to a set of credentials. However, these systems suffer from the same

issues of other password-based authentication mechanisms: password re-use and difficulty in

remembering strong passwords. It is also difficult to configure guest access where account

creation incurs significant overhead or time.

Recent authentication mechanisms, e.g., EAP-TLS [4], rely on user-specific digital

certificates to provide authentication. However, managing user-specific certificates and se-

curing public/private key-pairs are challenging tasks for even savvy end-users. The sign-up
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process can be resource intensive, adding additional overhead on administrators who must

verify user identity and issue certificates according to stringent company policies. Often this

process must be performed not only for each user, but for each of the user’s devices, which

increases complexity.

Greenpass [34] leverages EAP-TLS for authentication. EAP-TLS relies on PKI to

provide the client and server certificates used in the TLS handshake. Greenpass also provides

decentralized delegation of access by allowing delegators to sign a SPKI/SDSI certificate that

a guest can then use as their EAP-TLS client-side certificate. Greenpass still involves a CA

issuing user-specific certificates to regular users.

Network-in-a-Box (NiaB) [9] enrolls devices in the wireless network by employing

location-limited communication channels (e.g., infrared or a USB key) to securely distribute

the necessary PKI keys and certificates. Although key distribution is simplified, NiaB still re-

quires an administrator be present to authorize each device during enrollment. This location-

limited channel approach creates a physical bottleneck when many devices need to be enrolled

within a short time period (i.e., conference wireless access where most delegates arrive within

a short time period).

3.8 Conclusions and Future Work

WARP is a convenient and secure wireless authentication mechanism. By preserving the

principles of SAW, WARP enables decentralized user authentication and facilitates dynamic

user bases in the wireless realm without requiring client-side Internet or IP-connectivity.

WARP’s use of SRP enables users to authenticate using existing personal messaging account

identifiers and passwords, without fear that relying parties or eavesdroppers can compromise

their login credentials. Although identity providers assist users in creating authenticated,

encrypted sessions with relying parties, the identity providers cannot compromise these ses-

sions.
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sSRP could replace the use of email or instant messages in the original SAW protocol

for website logins. Using sSRP in this manner increases SAW’s ability to thwart active

impersonation attacks and eliminate latency issues associated with personal message delivery.

We are currently investigating how to integrate the intuitive delegation between per-

sonal messaging identifiers and natural client-side auditing capabilities of SAW into WARP.

Forthcoming revisions to sSRP eliminate the need to use PKI-based approaches, e.g.,

EAP-TTLS, to prevent passive observation of KSU and KSIDP . These revisions also enable

the authentication of relying parties to identity providers.
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Chapter 4

Luau: Lightweight User Authentication

T. W. van der Horst and K. E. Seamons. Luau: Lightweight User Authentication, Technical

Report.

Additional Content: The original submission is augmented here with Section 4.5.4, which

includes a brief discussion of the potential for delegation using Luau. Also, as one form of

delegation relies on session resumption, the discussion on future work (see Section 4.7 ) is

expanded with one potential approach to securely resume a session.

Abstract

Proof of email address ownership is typically required to create an account

and to reset a password when it is forgotten. Despite its shortcomings (e.g.,

latency, vulnerability to passive attack), this approach is a practical solution to

the difficult problem of authenticating strangers on the Internet.

Lightweight User AUthentication (Luau) utilizes this emergent, lightweight

relationship with email providers to offload primary user authentication from

service providers; thus reducing the need for service provider-specific passwords.

To facilitate this, Luau enables more efficient and secure proofs of email address

ownership.

While Luau is password-based, user passwords are never disclosed to service

providers. Luau thwarts user impersonation by eavesdroppers and can be tailored

to the risks of active attack found in four common deployment scenarios. When
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a scenario requires server authentication and an encrypted session, Luau relies

on existing secure tunnel schemes (e.g., TLS), but also takes into account that

human error often negates the assurances of these tunnels and, therefore, enables

service providers to detect a variety of man-in-the-middle attacks. Together,

these protections significantly reduce the risk of password phishing.

4.1 Introduction

People have too many passwords. Services on the Internet regularly require that users cre-

ate yet another username and password. This affects both security and convenience due to

problems associated with password reuse [44] and forgotten passwords. Lightweight User

AUthentication (Luau) is a new password-based decentralized authentication approach that

leverages a widely adopted trust model and enables service providers to offload user authen-

tication to third parties they already trust. Luau is designed to be a practical replacement

to service-specific passwords.

4.1.1 Emergent Trust in Email Providers

Proving ownership of an email address by retrieving a message sent to it has become a

valuable approach to authenticating unknown entities on the Internet. Garfinkel [33] coined

the term email-based identification and authentication (EBIA) to describe this imperfect,

but extremely popular tool. This mechanism is typically relegated to a secondary means

of authentication; used to verify ownership of an email address specified during account

creation and when, almost inevitably, the account password is forgotten. Pragmatically

speaking, EBIA more than adequately fills its current role, and will likely continue to do so,

without any modification, within the foreseeable future.

The pervasive acceptance of EBIA demonstrates that a myriad of service providers

are willing to rely on email providers to authenticate users on their behalf. What, then,
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curtails the utility of this approach as a primary means of user authentication? We identify

four factors:

1. Latency of email delivery hinders convenience

2. Unavailability of the email provider prevents logins

3. Eavesdropping (by an attacker or the email provider) enables impersonation

4. Requiring users to directly connect to their email provider is not practical in some

scenarios

Addressing the first and second factors may require a significant increase in email in-

frastructure or specialized handling of EBIA messages. The third factor is trivially addressed

by “turning on” TLS protection for email delivery (though readily available, TLS is typically

not enabled between the service provider and email provider due to economic/performance

concerns). The fourth factor is typically a non-issue for web logins, however, it makes EBIA

infeasible in scenarios where this connectivity is unavailable, e.g., wireless network authenti-

cation. None of these factors overtly hinder EBIA in its current role as an ad hoc secondary

authentication mechanism.

EBIA has given the world a taste of its latent potential as a primary user authentica-

tion mechanism; a practical approach to decentralized authentication. Through EBIA, email

providers have become the de facto identity providers on the Internet. The primary goal of

this work is to improve the security and convenience of proof of email address ownership in

order to leverage this emergent phenomenon as a primary authentication mechanism. Note

that such an authentication scheme is a suitable replacement to passwords only at services

that accept this trust model. For services that do not accept this model, this approach still

has utility as a more secure and efficient means to verify ownership of an email address.

Given this goal, how should this inchoate trust in email providers be leveraged?

Client-side digital certificates are an appealing solution, however, for the reasons outlined

below, Luau provides a decentralized authentication approach that is password-based.
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4.1.2 Client-side Digital Certificates: An ideal solution?

At a high level, email provider-issued, client-side digital certificates are an attractive re-

placement for service-specific passwords, and a step towards the goal of single sign-on. The

scalability and “offline” capabilities provided by public key cryptography are very desirable.

This technology has also weathered well the test of time. The RSA algorithm is over 30

years old [71] and this year marks the twentieth anniversary of the X.509 certificate format

[20]. Yet, despite the worthy success of PKI in server deployments (e.g., HTTPS), the pro-

liferation of client-side certificates is remarkably underwhelming. The “imminent” arrival

of client-side certificates seems always just out of reach. This delayed arrival is due, in

part, to burdensome configuration and usage requirements as well as certificate distribution,

management, and revocation issues [35]. High costs, the requisite user and administrator

training in a complex technology, and the difficulties of trusted roots and cross-certification

also make PKI hard to adopt [32].

If overcoming the problems barring their adoption was simple, PKI vendors would

have crushed these obstacles to increased profits long ago. This is a difficult problem.

Decades have passed and still client-side certificates remain the exception rather than the

norm. This tepid acceptance leads one to question, given the current landscape, whether

certificates are a practical replacement to service-specific passwords.

4.1.3 Our Approach

Password-based decentralized authentication resides in the middle-ground between service-

specific passwords and client-side certificates. Users have passwords to their identity

providers, but not with each and every relying party. Relying parties therefore “rely” on

identity providers to authenticate users on their behalf. As with EBIA, this approach de-

pends on the availability of the identity providers; a non-trivial benefit of this dependence

is real-time verification/revocation.
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Several schemes (see Section 4.6) have been proposed in this vein and are gaining

popularity and acceptance (especially OpenID [62]). Nevertheless, none of these systems

advocate, as we do, the specific use of email providers as identity providers. Also, these

approaches are typically geared specifically for web-based logins and require users to con-

nect directly to their identity providers during an authentication attempt; a process usually

accomplished via browser redirects. This reliance on browser redirects introduces attractive

avenues for password phishing. Also, this web-centric focus makes these systems unsuitable

for use in scenarios where direct communication between users and their identity providers

is infeasible, such as authentication to a wireless network.

Our approach leverages the trust that is currently placed in email providers, thus

eliminating the need to establish a new trusted identity provider. Luau also addresses the

drawbacks of current approaches to password-based decentralized authentication, namely:

password phishing, their reliance on humans to ensure that a secure tunnel (e.g., TLS) is

established with the correct entity, and their inability to be used for wireless authentication.

In addition to addressing security and convenience, Luau is designed with an eye towards

practical deployments (see Section 4.5).

Paper outline Section 4.2 lays the foundation for Luau. Section 4.3 presents the Luau

protocol. Section 4.4 analyzes its security. Section 4.5 considers deployment and implemen-

tation issues. Section 4.6 examines related work. Section 4.7 contains conclusions and future

work.

4.2 Foundation

In this paper, the relying party (RP) desires to authenticate the user (U) with the assistance

of the user’s identity provider (IDP). We assume that U authenticates to IDP using a password

and that RP has no pre-established shared secrets with IDP.
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4.2.1 Threat Model

This section specifies the threat model used to compare EBIA, and other decentralized

authentication mechanisms, to Luau. This model defines the likely deployment scenarios,

the common methods of attack, and the attackers.

Deployment Scenarios In this paper a scenario is defined by the properties of two dif-

ferent communications channels. As each of these channels may be secured independently

by employing a server-authenticated encrypted tunnel (e.g., TLS), there are, from a global

perspective, four potential scenarios:

Scenario: S1 S2 S3 S4

Secure Tunnel (U � RP) no yes no yes

Secure Tunnel (RP � IDP) no no yes yes

Scenarios S1 and S2 are the most common for deployments of EBIA and correspond

to HTTP and HTTPS logins, respectively, with unsecured SMTP to deliver messages to

the email providers. S3 and S4 correspond to HTTP and HTTPS logins, respectively, with

TLS-protected SMTP. Although presented in the context of web logins, these scenarios have

corresponding meanings in wireless setups (i.e., replace HTTP/HTTPS with EAP/EAP-

TTLS [3, 30]).

As it is rare for email providers to support TLS-protected SMTP, S1 and S2 represent

the most frequently used scenarios. Therefore, even though the authentication of IDP, which

comes as part of the secure tunnel between RP and IDP, would be useful to a decentralized

authentication system, EBIA is evidence that significant value can be achieved without

requiring it. Also, the abundance of services that operate in S1 (e.g., low security web sites

with HTTP login pages) indicates that there is value in not having to authenticate (via PKI)

some relying parties.

Attacks The goal of login mechanisms is typically unilateral entity authentication (U to

RP) as authentication of RP to U and any keys to secure the resulting session are han-
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dled externally (e.g., with a server-authenticated encrypted tunnel). Therefore of primary

concern is the ability for an attacker to impersonate U to RP, hereafter referred to as an

IMPU→RP break. Directly related to this is an attacker’s ability to impersonate IDP to RP,

hereafter referred to as an IMP IDP→RP break. An IMP IDP→RP break implies an IMPU→RP

break as the ability to impersonate IDP enables an attacker to mount a synchronized attack

to impersonate any of IDP’s users to RP.

If the attacker can insert herself between U and RP she can become a man-in-the-

middle (mitm) and if she is not detected this constitutes a MITM break. This break

enables an attacker to eavesdrop or hijack the resulting session between U and RP. There are

three common methods for an attacker to become a mitm: 1) Routing-mitm, an attacker

controls a router between U and RP or has tricked traffic to route through her (e.g., ARP

poisoning); 2) Pharming-mitm, DNS is poisoned so that lookups return a network address

controlled by the attacker; and 3) Phishing-mitm, U is tricked into connecting to the attacker

in lieu of the legitimate host (e.g., clicks a link in a phishing email).

One incarnation of a mitm attack is an RP that attempts to manipulate U’s authen-

tication so that it can impersonate U to a different RP. For example, U thinks she is logging

in to comment on a blog, but the blog wants to log in as her to her online bank.

Attackers Two attackers are considered in this model. Eve (E) is a passive eavesdropper

whose goals are IMPU→RP and IMP IDP→RP breaks. Mallory (M) is an active attacker whose

goals are IMPU→RP, IMP IDP→RP, and MITM breaks. E is limited to observing the normal

interactions between the three parties. M can observe, inject, modify, delay, destroy, and

replay messages as well as create multiple concurrent sessions with any other party.

4.2.2 EBIA Trust Model

EBIA is founded on the premise that email providers deliver messages to their intended

recipients and that they do not impersonate their users without authorization. The three
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EBIA

User Web Site
Email

Provider
1. IDU, τ−−−−−→

2a. Request τ−−−−−−−−−−−→
2b. τ←−−−−−−−−−−−
3. τ−−−−−→

Stage 1: Web site gives email provider to-
ken τ . (It is understood that the email
provider will only give τ to the legiti-
mate user identified by IDU.)

Stage 2: The user connects to her email
provider, authenticates, and retrieves
token τ .

Stage 3: The user gives τ to the web site.

Luau

User (U)
Relying

Party (RP)
Identity

Provider (IDP)
1. IDU, κU,RP−−−−−→

2b. EκU,IDP
(κU,RP)←−−−−− 2a. EκU,IDP

(κU,RP)←−−−−−
3. Proof(κU,RP)←−−−→

Stage 1: Relying party and identity
provider establish key κU,RP. (Again,
the identity provider will only give
κU,RP to the legitimate user identified
by IDU.)

Stage 2: The identity provider encrypts
κU,RP such that only the legitimate user
can decrypt it. The relying party for-
wards this package to the user.

Stage 3: The user decrypts κU,RP. Both the
user and the relying party then prove
knowledge of κU,RP to each other.

Figure 4.1: High level approaches of EBIA and Luau.

stages for an authentication with EBIA are given in Figure 4.1. In Stage 1, the web site

gives the email provider a message to deliver to one of its clients. This message is composed

of the user identifier and a session-specific token. In Stage 2, the user connects to her email

provider and retrieves this message. In Stage 3, the user returns the token to the web site,

thus demonstrating ownership of the email address.

At a higher level of abstraction, EBIA relies on a two part approach. The first is a

3-party key distribution (Stages 1 and 2). The second is an entity authentication of the user

based on that key (Stage 3).

EBIA assumes the existence of a discovery function which determines the identity

provider from the user’s identity; given an email address it is a simple process to discover

the corresponding email provider.
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Secure Tunnels EBIA relies on a secure tunnel (e.g., TLS) to authenticate RP to U (and,

optionally, IDP to RP) as well as to secure the resulting channels. When the risk of attack

is assumed to be negligible (e.g., S1), tunnels are typically not employed, however, if risks

become greater, tunnels are enabled on a per channel basis to protect that link. Failure to

establish, or to correctly verify, this tunnel completely invalidates its protections.

Negating Secure Tunnels Phishers routinely sidestep secure tunnels. The simplest

method to circumvent a tunnel is to not create it and hope that the user does not no-

tice. For example, a web page is made to appear exactly like the real site, but it is not sent

over HTTPS1 so the server is never authenticated to the client (as it usually would have

been).

Another approach, hereafter referred to as the certificate trick, involves the user ac-

cepting the wrong certificate for the real server. There are two common avenues for this

attack. First, the attacker sends the fake page over HTTPS2 using a valid certificate issued

to the phishing site, not the real site. As the certificate is valid for this site, no warnings are

issued by the browser. Second, the attacker creates a self-signed certificate and assumes the

user will ignore all browser warnings and accept this certificate3.

The rampant success of phishing demonstrates the risk of relying solely on the user

to ensure that a tunnel is established with the correct entity.

Attacking EBIA The vulnerabilities of EBIA are summarized as follows (recall that

IMP IDP→RP also implies IMPU→RP):

1The Anti-Phishing Working Group (APWG) reports that 99.23% of phishing occurs over plain HTTP
[7].

2APWG estimates that 0.28% of phishing occurs over HTTPS [7].
3These attacks are not limited to phishers. Cain and Able [17] is a popular tool that uses ARP poisoning to

force all local network traffic to flow through the tool. It also provides an automated TLS man-in-the-middle
attack using a self-signed certificate.
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S1 S2 S3 S4

E IMP IDP→RP IMP IDP→RP None None

M IMP IDP→RP,MITM IMP IDP→RP,MITM* MITM MITM*

* – requires certificate trick

In S1 and S2, EBIA is vulnerable to IMP IDP→RP breaks by both E andM since the token τ

is not encrypted in Stage 1. When SMTP is tunneled through TLS (as it is in S3 and S4)

then τ cannot be observed by either attacker. In S1 and S3 there is no protection (other

than human observation) fromMITM breaks. In S2 and S4 the server-authenticated tunnel

provides additional methods for humans to detect mitm attacks, but it is still vulnerable to

the certificate trick4. Although τ is submitted (in Stage 3) to RP in plaintext in S3, E cannot

use this to impersonate U as τ is typically a short-lived, single-use token that is invalidated

once U has presented it.

While EBIA provides better assurances in S3 and S4 than in S1 and S2, recall that

these scenarios are rare in actual deployments.

4.3 Luau

Goals The primary goal of password-based authentication is to ensure that U’s password

is required to impersonate U. In addition to this aim and addressing the four factors that

hinder the use of EBIA as a primary authentication mechanism, Luau is designed to:

1. Eliminate passive attacks.

2. Improve detection by U and RP of mitm attacks.

3. Reduce the risk of password phishing.

The first goal addresses a significant drawback of EBIA: the ability for E to imper-

sonate U, or IDP, to RP. As EBIA has demonstrated the utility of unauthenticated identity

4In S4,MITM breaks are possible using routing/pharming-mitm, but not using phishing-mitm attacks
as the message sent by RP typically contains a link to the legitimate server. S2, however, is vulnerable to a
phishing-mitm attack as M can modify this link to point to herself.
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providers, we require that protection from E not necessitate a secure tunnel between RP and

IDP. Nevertheless, it should allow for the easy addition of such a tunnel, if authentication of

IDP and protection fromM is desired.

The second goal is based on the observation that, in all four scenarios, it is often pos-

sible to detect a mitm attack by using information (e.g., domain names, network addresses,

digital certificates used in a tunnel’s creation) that is readily accessible to each party. Even

if a secure tunnel is used, Luau operates on the assumption that all communications are over

an open channel until both sides are given the opportunity to detect mitm-attacks.

The third goal is motivated by the effectiveness of phishers and the certificate trick,

even if RP employs server-authenticated, encrypted tunnels to strengthen its ability to au-

thenticate itself to users. This idea is not reflected in existing tunnels (e.g., TLS) as they

rely solely on users to detect mitm attacks. As users can be easily tricked into negating

a tunnel’s benefits, Luau uses a secure tunnel, if available, in the following capacities: 1)

Improved identification of RP to detect mitm attacks; and 2) Protect, after a successful

authentication, the resulting session.

High Level Approach Similar to EBIA, Luau follows a key distribution and entity au-

thentication approach (see Figure 4.1). In Stage 1, RP establishes a shared secret κU,RP with

IDP and supplies U’s identifier IDU. Rather than requiring U to directly contact IDP to

retrieve κU,RP, an in-band distribution mechanism is leveraged. In Stage 2a, IDP returns κU,RP

encrypted with the key κU,IDP, which is shared between U and IDP (the establishment of this

key is covered in Section 4.3.1). RP then forwards the encrypted κU,RP to the initiator of the

authentication (Stage 2b).

This in-band approach is more efficient than the out-of-band approach of EBIA be-

cause the authentication of U to IDP is implicit and it avoids the complexity of the interaction

between U and IDP to retrieve the correct token. This in-band technique also eliminates the
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vulnerability to phishing introduced by browser redirects and enables use of this approach

in a wireless authentication scenario, when U cannot directly contact IDP.

In Stage 3, U and RP demonstrate to each other that they know κU,RP. A mutual proof

is preferable to simply returning κU,RP to RP because it helps ensure that the authentication

is non-transferrable (i.e., it only has meaning to the RP that initiated it) and it enables RP

to detect mitm attacks.

Unlike EBIA, Luau requires the modification, and the active participation, of all three

parties. We believe that the benefits of improved security (i.e., protections from passive and

active attacks, including phishing) and convenience (i.e., lower latency, removing need for

site-specific passwords, and wireless authentication) are sufficient to merit this change. In

both approaches, the dependence on the reliability of the email provider remains, though

this drawback can be mitigated for the common case (see Section 4.5.3).

4.3.1 Building Blocks

Luau builds on existing approaches for: 1) Converting a password to a shared secret; 2)

Three party key distribution; and 3) Mutual authentication using a shared secret.

Shared Secret between U and IDP (κU,IDP) It is convenient to model the relationship

between U and IDP as a shared symmetric key κU,IDP, however, this is rarely the case. Typ-

ically, U and IDP have a password and a password verifier, respectively. We identify three

methods to leverage a password to obtain a shared symmetric key:

Password-derived key [Not Advised ] A straightforward password-derived key has the dis-

advantage of leaking material to verify an offline password guessing attack. One benefit

of this approach is that U and IDP can independently derive this key without direct

communication. If used, the key derivation function should be relatively time-intensive

to limit the effectiveness of an offline attack.
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U RP IDP
1. nU−−−−−−−−−−−−−→ 2. nU, nRP−−−−−−−−−−−−−→

3a. nRP, Eκenc
U,IDP

(κU,RP),
macκmac

U,IDP
(α, Eκenc

U,IDP
(κU,RP))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

nU and nRP are nonces
α = IDU, IDRP, nU, nRP

3b. Eκenc
RP,IDP

(κU,RP),
macκmac

RP,IDP
(α, Eκenc

RP,IDP
(κU,RP))←−−−−−−−−−−−−−

Figure 4.2: Three party key distribution [22]. The keys κenc
U,IDP, κmac

U,IDP, κenc
RP,IDP, κmac

RP,IDP are pre-
established, while κU,RP is generated by IDP. Eκ(·) is symmetric encryption. macκ(·) is a
message authentication code.

Password-independent key [Acceptable] U directly connects to IDP and, after authenti-

cating, they agree on a value for the key (e.g., IDP selects a random key). A benefit

of this approach is that this key cannot be used to guess U’s password offline. While

this approach is acceptable for typical web usage, it is not feasible in most wireless

authentication scenarios, unless this key is established a priori, as it requires direct

communication between U and IDP.

Password-authenticated key exchange [Preferred ] In PAKE protocols (e.g., EKE [14],

SPEKE [45], SRP [87]) a password is used to establish a key without leaking material

for an offline password guessing attack. As these protocols are designed to operate

securely over unprotected channels it is feasible for RP to relay the PAKE protocol

messages between U and IDP, thus ensuring compatibility with the needs of wireless

authentication (see Section 4.5.2 for further justification for why RP would do this).

Luau requires that U and IDP establish κU,IDP (which has two parts κenc
U,IDP and κmac

U,IDP)

before U attempts to authenticate to RP. This is hereafter referred to as pre-authentication.

Once this key is obtained U should not have to directly communicate with IDP until this

key expires. It is reasonable to assume that U and IDP may have multiple valid keys at any

one time (e.g., multiple devices each with their own key), therefore, each key must have a

unique identifier IDκU,IDP
.
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Three Party Key Distribution 3PKD [12] provides provably secure three party key

distribution. It assumes that two parties (e.g., U and RP) each share a unique key with a

trusted third party (e.g., IDP), but not with each other. Both parties rely on IDP to assist

them in obtaining a shared secret with each other. Choo et al. [22] improved the original

3PKD algorithm. The improved protocol, altered to reflect notation used in this paper, is

shown in Figure 4.2.

Mutual Authentication Mutual authentication protocol one (MAP1) enables two parties

to authenticate each other in a provably secure fashion. It assumes two parties share the key

κU,RP and uses message authentication via pseudo-random functions5 (PRF ) to accomplish

entity authentication. The protocol, altered to reflect the notation used in this paper and

with RP as the initiator, is as follows:

U RP

nRP←−−−−−−−−−−
nU,macκU,RP(IDU, IDRP, nRP, nU)−−−−−−−−−−→

macκU,RP(IDRP, nU)←−−−−−−−−−−
4.3.2 Constructing Luau

Luau modifies 3PKD to enable IDP to help U and RP to establish a key within the constraints

and assumptions of Luau. It then uses MAP1 to authenticate U to RP.

Modifications to 3PKD In 3PKD, IDP unilaterally generates κU,RP and encrypts it such

that only those entities with access to the keys associated with IDU and IDRP can decrypt

it. As such, both sides can identify who else knows κU,RP. 3PKD cannot be utilized “as is”

since two of its assumptions do not hold in Luau:

5In practice, a PRF is often constructed using secure hash functions and message authentication codes
(mac) [11].
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1. RP and IDP do not share a key.

2. IDRP has no meaning to IDP.

The first assumption is not viable because it is not scalable for each RP to share a key

with every IDP, nor are public keys a viable alternative as they violate the assumption of

S1 and S3 that RP cannot be authenticated via PKI. The second assumption does not hold

since, as demonstrated by EBIA, the actual identity of RP (IDRP) is ultimately immaterial

to IDP.

Luau relies on a Diffie-Hellman (DH) key exchange [25] to establish a seed key κRP,IDP

between RP and IDP that eliminates the complexity of managing long-term keys at both

RP and IDP. Luau assumes the presence of pre-established, well-known, well-tested genera-

tor/prime pairs (g, p) for a specified key size (e.g., [49, 52]) for use in the DH key exchange.

This prevents M from injecting a pair for which she can compute discrete logs6. RP ulti-

mately selects which pair to use for a specified run of the protocol.

This key exchange ensures that κU,RP, which is derived from κRP,IDP, cannot be observed

by E and removes the need for Eκenc
RP,IDP

(κU,RP) in message 3b. Protection fromM is added by

employing a secure tunnel for this channel. While these modifications do not affect IDP’s

ability to transfer κU,RP to U, it does remove the ability for RP to authenticate to U using

κU,RP. Luau addresses this limitation using MAP1.

Integrating MAP1 Using κU,RP and MAP1 it is a simple process to authenticate U to RP,

however, as IDRP is meaningless to IDP, an authentication of RP to U cannot rely on κU,RP.

Therefore, Luau relies on well-established techniques for identifying/authenticating servers

on the Internet to specify IDRP. In S1 and S3 it is sufficient to determine that U is connected

to the legitimate RP based on network identifiers (e.g., domain names, network addresses).

In S2 and S4 the server authentication of the encrypted tunnel (e.g., digital certificate) is

6For example, p = 3, p− 1 is composed of only small prime factors, and many cases of p = 2n [73].
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leveraged in addition to available network identifiers. Using MAP1, Luau couples the claim

that RP knows κU,RP with the scenario-dictated value for IDRP.

Luau makes RP the initiator of the MAP1 exchange rather than U. This allows U

to authenticate first and, thus, permits RP to use the value for IDRP (as perceived by U) to

detect mitm attacks. If RP detects such an attack, it communicates this to U by not sending

the final MAP1 message, thus forcing the authentication attempt to abort.

As MAP1 may be contained within an encrypted tunnel, it is important to address

the compound authentication binding problem [69]. This problem illustrates the need to

couple an inner authentication protocol with its outer, server-authenticated tunnel to prevent

mitm-attacks. The typical solution requires that the inner authentication protocol produce

a session key and that this key be bound with the session key produced by the tunnel. Luau

does not utilize this approach.

The main reason for not adhering to the traditional solution is that it is not practical

to modify existing tunnel libraries (e.g., TLS) to accept external keying material. Instead,

Luau couples the outer tunnel with the inner authentication protocol through the value used

for IDRP. Recall that when a tunnel is employed, the server’s certificate is included in IDRP.

This binding also ensures the non-transferability of the authentication of U to RP to other

relying parties.

As Luau does not require privileged access to secure tunnel libraries, it is feasible

to implement Luau at an application layer and is easy to offload tunneling functionality to

another machine.

4.3.3 The Luau Protocol

Luau leverages the lightweight relationship between service providers and email providers to

authenticate U to RP. It eschews the inherent latency of EBIA in favor of an in-band approach

that improves efficiency, avoids the phishing avenues introduced by browser redirects, and is

compatible with the needs of wireless authentication.
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U RP IDP
1. nU, IDU−−−−−−−−−−−→ 2. gx, nU, nRP, IDU−−−−−−−−−−−−−−−−→

3b. nRP, Eκenc
U,IDP

(κU,RP),
macκmac

U,IDP
(α)←−−−−−−−−−−−

3a. gy, nIDP, Eκenc
U,IDP

(κU,RP),
macκmac

U,IDP
(α),macκmac

RP,IDP
(β)←−−−−−−−−−−−−−−−−

4. macκU,RP(IDU, IDRP, nRP, nU)−−−−−−−−−−−→ α = IDU, nU, nRP, Eκenc
U,IDP

(κU,RP)

β = α,macκmac
U,IDP

(α), nIDP, g
x, gy

κRP,IDP = PRFr (gxy); r = nRP‖nIDP

κmac
RP,IDP = PRFκRP,IDP

(“mac”)

κU,RP = PRFκRP,IDP
(“key”)

5. macκU,RP(IDRP, nU)←−−−−−−−−−−−

Figure 4.3: The Luau protocol. The keys κenc
U,IDP and κmac

U,IDP are pre-established (see Section
4.3.1).

While IDP can impersonate U, Luau seeks to eliminate, without requiring PKI, all

passive impersonation attacks. Luau also seeks to mitigate the risk of users negating the

secure tunnel and improve detection of mitm attacks by both U and RP. Recall that each

deployment scenario dictates the use of secure tunnels on a per channel basis.

Protocol at a Glance As Luau assumes that RP and IDP do not have a pre-established

secret, it creates κRP,IDP using a DH key exchange. If authentication of IDP to RP and

protection from M is desired, a server-authenticated tunnel is used to protect the channel

between RP and IDP.

A modified 3PKD transports the key κU,RP (derived from κRP,IDP) to U through RP.

U authenticates to RP via MAP1. If authentication of RP to U and protection from M is

desired a secure tunnel is enabled between U and RP.

Protocol Messages Luau’s protocol messages are illustrated in Figure 4.3. The first

message of 3PKD and nU from MAP1 are combined to form Luau’s first message. Luau’s

second message adds RP’s DH public param gx to message 2 of 3PKD. Both the first and

second messages of Luau explicitly specify IDU, which also includes IDκU,IDP
for the desired
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κU,IDP. Note that the selected generator/prime pair for the DH key exchange is included with

gx.

Message 3a of Luau is a combination of messages 3a and 3b of 3PKD, and adds

IDP’s DH public param gy and nonce nIDP. Note that Eκenc
RP,IDP

(κU,RP) is removed as RP uses

the DH exchange to derive κU,RP and that both macs have been updated to account for the

new/removed elements of this message and message 2. nRP is also removed since all messages

pass through RP, which can easily append it in message 3b; the mac in message 3b ensures

that RP appends the correct value. Routing IDP’s message to U through RP is more efficient

(less communication in a global sense) and it ensures availability when U cannot directly

contact IDP (e.g., wireless network authentication).

Messages 4 and 5 constitute the final messages of MAP1 with RP playing the role of

the initiator rather than U.

4.4 Security Analysis

Though we believe that Luau lends itself well to further study in existing proof models (e.g.,

[11], [12], [10], [18]), due to lack of space, this section focuses on the arguments to construct

such a proof.

At a high level, we argue that the properties of MAP1 and our modified 3PKD reduce

IMPU→RP and IMP IDP→RP breaks down to the assurances of the DH key exchange between

RP and IDP. It is also argued that IDRP eliminates MITM breaks in S4 (even when the

certificate trick is successfully employed) and increases the difficultly for an attacker to mount

MITM breaks in S1, S2, and S3.

As all stored information is vulnerable to a “break-in” or some other form of leakage

(e.g., cryptanalysis), this section also examines the impact of compromised session and long-

term secrets. Lastly, this section explores phishing, privacy issues, and the potential for

covert channels.
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Assumptions Luau uses the same assumptions as MAP1 and 3PKD with respect to

encryption schemes (e.g., AES) and pseudo-random functions (e.g., HMAC), namely, the

strength of these primitives are determined by key size.

The best assurance a password protocol can provide is that an attacker has no ad-

vantage against the protocol greater than online guessing [36]. As Luau relies on existing

password-based schemes to establish κU,IDP, we make the following assumption:

Assumption 1 Within the context of pre-authentication:

• If a password-derived key is used, then, at best, κU,IDP cannot be obtained with a greater

advantage than offline guessing since RP knows κU,RP and it can use Eκenc
U,IDP

(κU,RP) to

verify an offline guessing attack.

• If a password-independent or PAKE protocol is used, then κU,IDP cannot be obtained with

a greater advantage than online guessing.

4.4.1 Attacking Luau

As argued below, Luau thwarts passive attacks, foils the certificate trick in S4, and raises

the bar forMITM breaks in S1, S2, and S3. Note that IMP IDP→RP breaks byM in S1 and

S2 are still possible as IDP is not authenticated to RP.

Preventing IMPU→RP MAP1 is used to authenticate U to RP. This protocol carries the

assurance that κU,RP is required to impersonate U to RP with non-negligible advantage over

random guessing (the proof of the protocol shows that attacks on it can be reduced to

breaking pseudorandom functions [11]). Therefore, in order to mount a successful IMPU→RP

break an attacker must obtain κU,RP.

As Luau assumes strong encryption, there are two methods for an attacker to procure

κU,RP: 1) Obtain κU,IDP and decrypt Eκenc
U,IDP

(κU,RP); or 2) Compromise the DH key exchange that

creates κRP,IDP.
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By Assumption 1, an attacker cannot obtain κU,IDP with greater advantage than online

guessing (recall that this is the best a password-based protocol can achieve). With respect

to compromising the DH key exchange, given sufficiently strong generator/prime pairs and

exponent sizes (e.g., [49, 52]), it is reasonable to claim E cannot obtain κRP,IDP in any of the

four deployment scenarios.

In S1 and S2,M can perform a DH-mitm attack and obtain the values that RP and

IDP will derive for κRP,IDP (the nature of the DH-mitm attack ensures that they each generate

different values). Using RP’s value, M can derive κU,RP and perform an IMPU→RP break.

Nevertheless, in S3 and S4, the server-authentication of the encrypted tunnel prevents M

from compromising the DH key exchange in these scenarios.

Unlike other password-based decentralized authentication solutions (e.g., OpenID),

Luau does not use cookies to maintain an authenticated state with IDP and, as such, problems

with cross-site scripting and some browser vulnerabilities are avoided.

Preventing IMP IDP→RP With κRP,IDP an attacker can impersonate any of IDP’s users to RP

using a synchronized attack in which the attacker also acts as U. As discussed above, κRP,IDP

can only be obtained by compromising the DH key exchange between RP and IDP, which is

only possible byM in S1 and S2.

The purpose of macκmac
RP,IDP

(β) is to provide a “proof of possession” of κRP,IDP as well

as provide limited protection from active attack; it forces a DH-mitm attack before M can

make undetected7 modifications to the messages between RP and IDP. For example, without

this protection, an attacker could replace IDU with the identifier of a different valid user in

order to enable that user to impersonate the victim. This protection adds minimal overhead

as it piggybacks on an existing mac in 3PKD.

Between RP and IDP, Luau is not bound to the external tunnel as it is between U

and RP. The term mitm has no meaning to IDP since it only interacts with unauthenticated

7 In order to remain undetected M must modify macκmac
RP,IDP

(β) to reflect its (not IDP’s) DH public
parameters.
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relying parties. As such it remains the sole responsibility of RP to detect mitm attacks on

this channel. The key κU,IDP could be used by U to indicate a specific RP, however, without a

method for IDP to authenticate RP it would be meaningless. Also, we believe it is reasonable

to assume that RP is less likely to fall prey to mitm attacks since a human is not involved

in the real-time verification of IDP’s identity.

Addressing MITM breaks Recall that, by definition, only M can perform MITM

breaks and that a successful break requires M to mount a mitm attack between U and

RP while avoiding detection. The success of phishing demonstrates that human judgment

(i.e., checking the readily observable network identifiers and, if present, digital certificate)

provides only weak protection against mitm attacks.

Luau improves the detection of mitm attacks for both U and RP by requiring each

party to commit (using κU,RP) to its value for IDRP (i.e., network identifiers and, if present,

certificate) in messages 4 and 5. This additional protection requires very little overhead as

Luau piggybacks this protection on the existing macs of MAP1. The value of IDRP, and

M’s ability to obtain κU,RP in S1/S2, make this protection scenario-dependent:

S1 Routing-mitm attacks cannot be detected in this scenario. Undetected

pharming/phishing-mitm attacks are possible, but require a coordinated DH-

mitm attack in which M uses IDP to generate a legitimate Eκenc
U,IDP

(κU,RP) and

macκmac
U,IDP

(α) and whereM modifies messages 4 and 5 using κU,RP so that they contain

the “expected” value for IDRP.

S2 MITM breaks are possible on two conditions. First, the certificate trick must be em-

ployed since RP authenticates to U in this scenario. Second, M must also perform a

DH-mitm attack between RP and IDP and use its values for κU,RP to modify messages

4 and 5.

S3 As in S1, routing-mitm attacks cannot be detected in this scenario as they effectively

mask their presence in the network identifiers used for IDRP. Other mitm attacks are
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not possible because the secure tunnel between RP and IDP thwarts the DH-mitm

attack that enablesM to modify messages 4 and 5 in S1 and S2.

S4 As IDRP includes RP’s authenticated certificate, it is possible to detect routing-mitm

attacks and the certificate trick becauseM cannot spoof ownership of RP’s certificate

without access to RP’s private key. As in S3,M cannot modify messages 4 and 5 and

therefore cannot perform pharming/phishing-mitm attacks.

Summary The vulnerabilities of Luau are summarized as follows (recall that IMP IDP→RP

also implies IMPU→RP):

S1 S2 S3 S4

E None None None None

M IMP IDP→RP,MITM* IMP IDP→RP,MITM† MITM‡ None

* – may require DH-mitm between RP and IDP

† – requires certificate trick and DH-mitm

‡ – only via routing-mitm

Though vulnerabilities to M exist in S1, S2, and S3, do not discount the potential

utility of Luau in these scenarios. These weaknesses are rooted in the requirements of the

deployment scenario (e.g., unauthenticated identity providers in S1/S2), which EBIA has

demonstrated to be worthwhile, despite its risks.

4.4.2 Additional Considerations

Identifying RP and Preventing Phishing Luau ensures that U’s password is never dis-

closed to relying parties (i.e., prevents password phishing) in all four scenarios. Nevertheless,

thwarting phishing in general is limited by the ability for users to unambiguously specify the

desired RP.
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This is a problem with decentralized authentication systems in general, including

client-side certificate approaches. As U can authenticate to any RP, how does she know if

she is at the right one?

Luau’s philosophy is to treat all RP’s as untrusted and ensure that U’s password

is never disclosed and that an authentication attempt cannot be used to allow this RP

to impersonate U at another RP. Nevertheless, it can only do so for the context of the

authentication process. After the authentication is complete, it is outside Luau’s influence

to prevent the RP from attempting to elicit additional information from U under the guise

of being someone else.

One potential solution is to add a continuity system that enables users to recognize if

they have previously authenticated to a specific RP. This straightforward approach provides

some utility, but does not preclude an RP that U has visited before from mounting attacks.

Compromise of Session Secrets The nonces (nRP, nIDP) in this protocol are used in the

same manner as they are in IKEv2 [47] to create a seed key (κRP,IDP) from the result of the

DH key exchange (gxy). These nonces also enable RP and IDP to reuse their DH parameters

across multiple sessions (e.g., for performance reasons) while ensuring that each session is

unique. These nonces also introduce session-specific randomness from each participant to

ensure the freshness of the keys used in this session.

Compromising RP’s or IDP’s DH exponent (x or y, respectively) is not necessary to

mount IMP IDP→RP breaks in S1 and S2. In the other two scenarios, the use of an encrypted

tunnel between RP and IDP, ensures that an attacker cannot learn κRP,IDP.

If κU,RP is compromised, then M can impersonate U to RP during the valid lifetime

of κU,RP at RP. If κRP,IDP is compromised thenM can derive a valid κU,RP for the user specified

by RP when κRP,IDP was created. If κU,IDP is compromised then M can impersonate U to any

RP during the valid lifetime of κU,IDP at IDP.
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Compromise of Long-term Secrets If U’s password is compromised, IMPU→RP and

MITM breaks are possible until the password is changed. If IDP’s password verifier is

compromised (e.g., its verifier database is stolen) then an offline password guessing attack is

possible. Depending on the method selected for pre-authentication, obtaining the password

verifier may also allow an attacker to successfully negate Assumption 1 and obtain a valid

κU,IDP.

If RP’s private key is compromised by M, then she will be able to mount MITM

breaks in S2 and S4, however, it does not improve her ability to directly learn U’s password.

In Luau, authenticating as a legitimate RP within the context of the tunnel is only valuable

in that it more effectively convinces U to initiate an authentication.

IDP can impersonate any of its users to any RP. If IDP’s private key is compromised

by M, then she will be able to mount IMP IDP→RP breaks in S3 and S4. Also, depending

on the method selected for pre-authentication, M may be able to use this private key to

successfully attack the pre-authentication phase.

A significant benefit of Luau is that RP no longer has to maintain a user password

database. This eliminates RP as a jumping off point to attack other relying parties, thus

mitigating, in part, the dangers of the domino effect [44] of password reuse.

As all authentications of U must pass through IDP it is possible (in S3/S4) to provide

a global “lock-out” which prevents logins as U to any RP.

Privacy IDP never actually learns if U authenticates to a specific RP since anyone with

a valid IDU and IDκU,IDP
can interact with IDP and obtain an encrypted κU,RP. As discussed

further in Section 4.6, this provides plausible deniability, which does not exist in other

decentralized authentication approaches like OpenID.

With respect to privacy and RP, U’s email address is typically disclosed when accounts

are created and, as such, tracking is always possible. Luau does not preclude the mapping
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of a local username to an email account on the back end, which limits the information that

E learns when eavesdropping between U and RP in S1 and S3.

Covert Channels A covert channel uses another channel’s bandwidth to transmit data

without knowledge or consent. Covert channels take many different forms (e.g., steganogra-

phy, timing between transmissions, text manipulation). As RP relays information between

U and IDP (e.g., IDU, nU, Eκenc
U,IDP

(κU,RP), macκmac
U,IDP

(α)) this could be leveraged to send covert

data. This is of particular concern when Luau is used for wireless network authentication

since it can provideM with some limited communication with an Internet-based counterpart

even though she has not yet been authorized for network access.

4.5 Deployment and Implementation Issues

This section examines participant-specific deployment considerations as well as our proto-

types. To build these prototypes we created libluau, a general purpose library written in

Java. This library creates and processes the Luau protocol messages (for each participant) in

binary and human-readable formats, but relies on the parent application to transport these

messages to their intended destination.

4.5.1 Users

Client-side Support Existing systems (e.g., browsers, SSH clients, wireless supplicants)

must be updated in order to support Luau. This represents a significant deployment hurdle,

however, recent initiatives for decentralized authentication (e.g., CardSpace [19], DigitalMe

[26], Higgins [41]) demonstrate the willingness of major players to provide client-side software

support for the user.

Web browsers present an attractive avenue for incremental deployment, since, without

intervention by browser vendors, client-side support for Luau can be provided via browser

extensions or zero-footprint clients (e.g., Java Applets). To prevent M from circumventing
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the login process, U’s password must be delivered directly to the client-side software. This is

not a problem for most client software (e.g., SSH clients, wireless supplicants), however, it is a

significant problem for web browsers, which typically rely on a server-supplied HTML-based

login page.

Entering login credentials via the browser’s chrome avoids problems with malicious

login pages and provides a consistent authentication experience across all sites. Modern web

browsers already provide rudimentary support for prompting users for login credentials when

they recognize a server’s request for HTTP Basic or Digest authentication [29]. We advocate

improving this interface (see Section 4.7).

Implementation We created two client-side prototypes using libluau: an extension to

the Firefox browser and a signed Java Applet. Both use the PAKE protocol SRP for pre-

authentication and rely on HTTP headers to recognize that a web site supports Luau as well

as to transport the protocol messages.

4.5.2 Relying Parties

Relaying Pre-authentication Messages If U cannot directly communicate with IDP,

it is reasonable to allow RP to relay the messages of the PAKE protocol required for pre-

authentication between U and IDP because:

1. Messages are forwarded to only known identity providers of authorized users (IDU

dictates the IDP and RP dictates acceptable identifiers).

2. PAKE protocol messages are small in size and of a known composition.

3. For wireless authentication this is a lightweight alternative to allowing temporary net-

work access to unauthenticated users.

Wireless Authentication Extensible Authentication Protocol (EAP) [3] provides a

framework for deploying Luau as a wireless network authentication scheme. Although EAP
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provides a mechanism to directly bind an authentication protocol to a secure tunnel, this

binding does not provide any guarantees if the host is not properly authenticated (e.g.,

phishing, certificate trick). Luau’s ability to protect against users negating the benefits of

the tunnel is therefore desirable in this realm.

Due to the difficultly of adding new EAP methods to wireless networks, industry sup-

port is required to significantly impact this realm. While Luau takes into account the needs

of wireless authentication, we advocate that initial deployments be to web-based relying

parties as they represent an incremental, low-cost testbed for vetting this approach.

Implementation Relying party support is realized as a Java Servlet Filter that prevents

access-restricted pages from being retrieved by unauthorized users. This filter uses HTTP

headers to convey the messages created by libluau and to indicate that Luau logins are

available.

4.5.3 Identity Providers

Mitigating the Availability/Reliability of IDP If IDP is unavailable, U cannot au-

thenticate to RP. One approach to address this problem is to have a password backup or

secret question/answer with RP. This method switches the traditional roles of emails and

passwords as primary and secondary authentication mechanisms. If used, this would negate

a key benefit of Luau as it reintroduces passwords.

A secondary email address, preferably in a completely different domain than the

primary one, registered with RP during account creation, represents an elegant solution for

the vast majority of users. This approach mitigates the problem of relying on a single third

party at authentication time by providing a “backup” that can be used if the primary email

provider is currently unavailable.

On Identifiers and Identity Providers Identifiers can come in many forms (e.g., email

addresses, IM Handles, phone numbers, URLs, XRIs [61]). Luau assumes that these identi-
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fiers are directly or indirectly coupled to identity providers. A direct coupling implies that

the location of IDP can be derived from the identifier (e.g., an email address). An indirect

coupling implies that a lookup service must be involved to determine the identity provider.

For example, an XRI lookup service can be used to determine the current identity provider

for a given XRI. A reliable coupling process is necessary to ensure that the correct identity

providers are involved in the authentication process.

Becoming an identity provider may represent a significant increase in liability. Google,

Yahoo!, and Microsoft (which have massive user bases to which they provide free email ser-

vices) have already signaled their desire to support password-based decentralized authenti-

cation [63].

Implementation Our prototype identity provider is a Java Servlet that communicates

via HTTP headers. As Luau is a simple request and response with respect to the identity

provider, it does not have to maintain any relying party-specific state.

4.5.4 Delegation using Luau

Like other decentralized authentication systems, Luau is well suited to server-based delega-

tion. Although this type of delegation has the potential to provide powerful, feature-rich

delegation options, support for it is rare since it typically requires extensive modifications to

existing applications.

Recall that delegation in password-based systems (see Section 2.5.2) is often accom-

plished by sharing the password and that the key benefit is that service providers do not

need to be aware of, or support, delegation. Four significant problems with this approach

were also identified:

1. Once a password is shared, it cannot be revoked without changing the password.

2. Using the delegator’s password, the delegate can change the account password and,

therefore, revoke access from the delegator.
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3. A delegate can share the password with others without the approval of the delegator.

4. It is often hard to remember to whom the password has been delegated.

There are two approaches to provide client-based delegation in Luau. The first is

similar to one-time delegation in SAW. By supplying a delegate with a valid κU,RP of the

delegator to a specific relying party, the delegate can authenticate as the delegator to that

relying party. The second approach provides a broader delegation and requires that the

delegate be given a valid κU,IDP of the delegator; thus enabling the delegate to authenticate

as the delegator to any relying party.

Unlike SAW, the process of obtaining a key from the delegator is easily automated and

does not require direct interaction with the delegator at authentication time. A delegate’s

keys can be obtained by interacting with the delegator’s identity provider. This approach

leverages the ability, in Luau, for any entity to be a relying party. Specifically, the delegator’s

identity provider acts as a relying party in order to authenticate a delegate. Once a delegate

has successfully authenticated it obtains a valid key that enables it to authenticate as the

delegator8.

Example 1: Obtaining κU,IDP Assuming Alice delegates access to Bob, the process by

which Bob can authenticate as Alice to any relying party is as follows:

1. Bob authenticates to his identity provider and obtains κBob
U,IDP.

2. Using κBob
U,IDP and Luau, Bob authenticates to Alice’s identity provider and then obtains

κAlice
U,IDP .

3. Using κAlice
U,IDP and Luau, Bob authenticates to the relying party as Alice.

Example 2: Obtaining κU,RP Assuming Alice delegates access to Bob to Site X, the

process by which Bob can authenticate as Alice to Site X is as follows:

8This approach also enables a group of users to share a single identifier. For example, a group member
authenticates to the identity provider that controls the group identifier, the identity provider verifies group
membership and then issues a new key.
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1. Bob authenticates to his identity provider and obtains κBob
U,IDP.

2. Using κBob
U,IDP and Luau, Bob authenticates to Alice’s identity provider and specifies that

he wants to authenticate as Alice to Site X.

3. Alice’s identity provider authenticates as Alice to Site X. It then hands off κU,RP to Bob.

4. Using κU,RP Bob “resumes” the authenticated session9 with Site X as Alice.

Addressing the Problems with Delegation in Password-based Systems The first

problem is mitigated by the ability to immediately revoke existing κU,IDP keys (at the identity

provider) given to delegates and to reject future authentications by that delegate to the

delegator’s identity provider.

With respect to problem 2, a solution akin to SAW is possible in Luau. In SAW,

attempts to change the primary/secondary email address registered at a provider require an

additional authentication of the user, which can be clearly distinguished from a normal login

attempt. This enables users to configure their email forwarding rules to forward attempts

by delegates to authenticate but retain attempts by delegates to change the registered email

address at a specific provider, unless explicitly allowed by the delegator. In Luau, a special

flag set by the relying party in its request to the identity provider could specify whether or

not this authentication allows the user to change account login information at the relying

party. The identity provider allows or disallows this authentication attempt based on the

properties stored with a specific κU,IDP.

The third problem with delegation in password-based systems is more difficult and is

not addressed by SAW. If identity providers can be trusted to honestly disclose the delegation

chain for the specified κU,IDP at each authentication attempt, then it is straightforward to

address this problem in Luau. Nevertheless, the decentralized and independent nature of

identity providers makes this a difficult assumption to enforce. Further study of this issue is

left as future work.

9Session resumption in Luau is left as future work (see 4.7).

89



Problem 4 is mitigated since this approach does not require the delegator to share her

password with a delegate and it also enables the delegator’s identity provider to maintain

an up-to-date record of delegations.

Delegation in Luau is more efficient than SAW since it avoids the latency inherent in

email delivery and forwarding. This approach can easily accommodate lengthy delegation

chains and, although the burden for obtaining the keys rests on the delegate, this process is

easily automated. Luau also has the potential to be more secure and offer more features as

the identity provider can take an active role in the delegation process. Interesting future work

in this area involves the auditing and fine-grained polices that are possible if authentication

of relying parties to identity providers was added to Luau.

4.6 Related Work

Authenticated key exchange for three parties began with Needham and Schroeder [59], which

directly influenced Kerberos [50]. Bellare and Rogaway [12] provide a formal security model

and the first provably secure symmetric-key based system (3PKD).

Abdalla et al. [2] is the first provably secure password-based protocol in a 3-party

setting, where two parties each share a password with a trusted server. Recent research

[53, 42, 21, 43] in this vein has examined the use of these protocols as a decentralized au-

thentication system. To the best of our knowledge, all password-based 3-party key exchanges

require that relying parties share a secret with the user’s identity provider. In contrast, the

loose coupling between relying parties and identity providers in Luau does not require them

to pre-establish shared secrets.

There are a variety of PKI-based systems that provide decentralized user authenti-

cation. Certificate-based client authentication in systems like TLS [24] and EAP-TLS [4]

enable clients, certified by trusted third parties, to demonstrate ownership of a private key to

authenticate to servers. PKI systems, in general, have burdensome configuration and usage

requirements [35].
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OpenID [62] is a decentralized authentication system that uniquely identifies users via

URLs. Brands [16] has complied a thorough collection of drawbacks, which we summarize

here10:

Security Reliance on browser redirects invites phishing. Browser vulnerabilities and cross-

site scripting can hijack a user’s authenticated state with an identity provider. The

identity provider can impersonate all of its users. Compromising the OpenID account

gives access to all the user’s accounts.

Privacy Identity providers can track all websites you use.

Trust Why should an identity provider be trusted to vouch for an identity?

Usability URIs should identify websites, not people. Redirection creates a disjointed user

experience. If the identity provider is down, you cannot log in.

Adoption Many organizations are becoming identity providers, but their services do not

accept OpenIDs.

As mentioned previously, Luau eschews redirects in favor of an in-band approach

and does not maintain an authenticated state with identity providers using cookies. While

impersonation by the identity provider and the reuse of the same login credentials across

multiple domains can be seen as putting all of one’s eggs in one basket, in many cases,

the eggs are already in that basket. With control of a user’s email account, or simply the

ability to eavesdrop incoming email messages, current attackers can obtain access to all the

other accounts whose logins credentials can be reset using that email account. Recall that

Luau is only a suitable primary authentication scheme at relying parties that trust email

providers to authenticate users on their behalf. Luau plugs many security leaks in EBIA,

while maintaining its convenience.

Luau provides a “plausible deniability” approach to privacy as identity providers

never actually learn if a user successfully authenticates. With respect to trust and usability,

10This summary also includes potential patent issues not discussed here.
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Luau leverages the existing trust placed in email providers as well as existing, ubiquitous

identifiers. Lastly, with respect to adoption, Luau’s potential to thwart password phishing

and limit the ability for users to negate secure tunnels are attractive features for relying

parties in addition to the traditional benefits of decentralized authentication.

Liberty [54] and Shibboleth [74] are alternative approaches to password-based decen-

tralized authentication and can also assert additional attributes about their users. They

resolve many of the issues faced by OpenID through legal/business agreements, but still rely

on browser redirects, and therefore are still susceptible to password phishing, and are not

well suited for wireless authentication.

CardSpace [19] is an OS-based authentication interface that provides a consistent,

secure UI across all authentications. It is built on a framework in which the relying party

communicates with the identity provider through the user. Unlike Luau, this precludes

this approach from taking full advantage of unauthenticated third party identity providers

(which EBIA has demonstrated to be useful) and complicates its compatibility with wireless

authentication.

Simple Authentication for the Web (SAW) [81] leverages EBIA as a primary login

mechanism. It addresses the vulnerability of EBIA to passive attack through a token splitting

scheme and relies on unmodified email providers. Its key drawbacks are the usability impacts

incurred by the latency of email delivery and its vulnerability to active attack when TLS-

protected SMTP is not employed.

4.7 Conclusions and Future Work

Email providers are the de facto identity providers on the Internet. They have already

demonstrated their worth and have the potential to become even more valuable in this

respect to both their clients and to relying parties. Luau enhances these providers’ abil-

ity to conveniently and securely authenticate their users to relying parties by providing a
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lightweight, scalable, and adaptable protocol that unifies authentication across the applica-

tion and network layers and dramatically reduces the risk of password phishing.

EBIA has demonstrated the convenience and the utility of its trust model, even if

email providers are unauthenticated. Luau leverages this lightweight relationship between

service providers and email providers to reduce the need for site-specific passwords. As

relying parties typically require an email address during account creation, Luau represents a

practical reuse of existing login credentials while maintaining the portability and convenience

of passwords.

In addition to convenience, Luau provides assurances tailored to the deployment

scenario. Luau does not disclose a user’s password during the authentication process, even

when interacting with a malicious relying party. Luau also thwarts several mitm attacks

without requiring the relying party to authenticate to the user. Before phishers/pharmers

can impersonate users to a relying party, Luau requires that they perform a synchronized

attack in which they first impersonate that user’s identity provider to the relying party.

Future work includes extending Luau to support attribute assertions from the identify

provider and conducting usability studies with real-world deployments. As Luau is designed

to operate where secure tunnels are not feasible, integration with other technologies designed

for these scenarios is interesting. For example, after a secure login, SessionLock [6] prevents

session hijacking when using unsecured channels. Also, using Luau in a peer-to-peer setting

(e.g., a peer is a relying party) may enable new interactions and services.

Enabling session resumption between users and relying parties using κU,RP also merits

further research. Ideally, a special flag could be used to indicate that a session (uniquely

identified via the nU and nRP used in the initial authentication) should be resumed. The

modified 3PKD process would then be skipped and the MAP1 portion of Luau, using the

existing κU,RP and new nonces, would then be used.
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Chapter 5

pwdArmor:

Protecting Conventional Password-based Authentications

T. W. van der Horst and K. E. Seamons. pwdArmor: Protecting Conventional Password-

based Authentications. 24th Annual Computer Security Applications Conference (ACSAC),

Anaheim, CA, December 2008.

Additional Content: Figure 5.1 has been restored to the larger image submitted in the

original submission. Also, Section 5.4 has been expanded with both text and Table 5.1

to improve the summary of the security analyses of pwdArmor and conventional password

protocols.

Abstract

pwdArmor is a framework for fortifying conventional password-based authen-

tications. Many password protocols are performed within an encrypted tunnel

(e.g., TLS) to prevent the exposure of the password itself, or of material for an

offline password guessing attack. Failure to establish, or to correctly verify, this

tunnel completely invalidates its protections. The rampant success of phishing

demonstrates the risk of relying solely on the user to ensure that a tunnel is

established with the correct entity.

pwdArmor wraps around existing password protocols. It thwarts passive at-

tacks and improves detection, by both users and servers, of man-in-the-middle

attacks. If a user is tricked into authenticating to an attacker, instead of the
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real server, the user’s password is never disclosed. Although pwdArmor does

not require an encrypted tunnel, it gains added protection from active attack if

one is employed; even if the tunnel is established with an attacker and not the

real server. These assurances significantly reduce the effectiveness of password

phishing. Wrapping a protocol with pwdArmor requires no modification to the

underlying protocol or to its existing database of password verifiers.

5.1 Introduction

In the typical password-based login (e.g., HTML form, SSH “keyboard-interactive”) the

user’s plaintext password is sent to the server, which uses it to compute a verifier. This

verifier is then compared to the copy of the verifier stored by the server and, if they match,

the authentication succeeds. It is customary to establish a server-authenticated, encrypted

tunnel (e.g., TLS with a server certificate, SSH transport layer) to prevent passive observation

of the plaintext password as it is sent to the server and to protect the resulting session from

eavesdroppers and hijackers.

There are several methods that attackers use to circumvent this encrypted tunnel.

The simplest is to not create it and hope that the user does not notice. This is the bread-

and-butter of phishers around the globe1. A web page is made to appear exactly like the

“real” server, but it is not sent over HTTPS so the server is never authenticated to the client

(as it usually would have been). An attempt to “login” to the fake site discloses the user’s

password to the phisher.

A variation on this attack, hereafter referred to as the certificate trick, involves tricking

a user into accepting the wrong certificate for the real server. There are two main avenues

to mount this attack. First, the attacker sends the phishing page over HTTPS2 using a valid

certificate issued to the phishing site, not the real site. As the certificate is valid for this site,

1The Anti-Phishing Working Group (APWG) reports that 99.23% of phishing occurs over plain HTTP
[7].

2APWG estimates that 0.28% of phishing occurs over HTTPS [7].
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no warnings are issued by the browser. Second, the attacker creates a self-signed certificate

and assumes the user will ignore all browser warnings and accept this certificate as if it were

from the real server3.

SSH demonstrates the useful practice of reusing existing password verifiers; it can

rely on user account information that is created and managed externally. As SSH relies on

a server-authenticated, encrypted tunnel, the attacker must trick the user into accepting

her public key in lieu of the real server’s key in order to perform the certificate trick. If

successful, the attacker learns the user’s password. SSH uses a key continuity approach that

informs users if the server’s public key has changed since their last login.

In the context of their verifiers, password authentication mechanisms fall into two

categories: password-equivalent and password-dependent. In a password-equivalent protocol

(e.g., HTTP Digest authentication [29], Kerberos, EKE [14]) the server’s password verifier

is, for all intents and purposes, equivalent to the user’s password. In a password-dependent

protocol (e.g., HTTP Basic authentication [29], S/Key [37], SRP [87]) the verifier cannot be

used directly to impersonate the client, as it is dependent on the plaintext password, but

it can be useful to an offline guessing attack. We believe that password-equivalent verifiers

have an inherent risk (especially from malicious insiders) that can and should be avoided,

particularly when many of these verifiers can readily be used in a password-dependent fash-

ion.

Password-authenticated key exchange (PAKE) protocols (e.g., EKE, SRP), do not

require encrypted channels to protect the password and have the added benefit of establishing

a mutually-authenticated session key that can be used to protect a subsequent session. Unlike

conventional protocols within encrypted tunnels, these protocols cannot readily use existing

password verifiers in a password-dependent manner (see Section 5.2.3). Also, current PAKE

protocols do not provide privacy protection to the user’s identity.

3These attacks are not limited to phishers. Cain and Able [17] is a popular tool that uses ARP poisoning to
force all local network traffic to flow through the tool. It also provides an automated TLS man-in-the-middle
attack using a self-signed certificate.
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Our Contributions pwdArmor is a framework for leveraging conventional password pro-

tocols, and existing password verifier databases, to create PAKE protocols. Unlike other

PAKE protocols, pwdArmor is neither password-equivalent nor password-dependent, rather

it preserves this characteristic from its underlying password protocol. Also, pwdArmor can

provide privacy protection to the user’s identity, with or without an external encrypted

tunnel.

pwdArmor treats the server authentication of an encrypted tunnel as an added bonus

rather than a critical hinge of its security. Even if a user is tricked into performing the

protocol directly with an attacker, the user’s password is never exposed.

As a proof of concept, we used pwdArmor to wrap HTTP Basic authentication and the

One-Time Password (OTP) protocol [38] (a derivative of S/Key). The client-side is realized

as an extension to Firefox and also as a signed applet. The server-side is implemented as

Servlet Filter in Tomcat.

Although some verifier databases contain essentially a password-dependent verifier

(e.g., hash of the password), the selected conventional password protocol may use it as a

password-equivalent verifier (e.g., HTTP Digest authentication, MS-CHAPv2 [89]). Using

pwdArmor, and a different conventional password protocol, these verifier databases can be

leveraged in a more secure, password-dependent manner, potentially eliminating the need for

the original password-equivalent protocol. We demonstrate this by replacing HTTP Digest

authentication with pwdArmor and HTTP Basic authentication.

Paper Outline Section 5.2 lays the foundation for pwdArmor. Section 5.3 presents the

pwdArmor framework. Section 5.4 analyzes its security. Section 5.5 considers deployment

issues. Section 5.6 discusses the prototype implementation. Section 5.7 examines related

work. Section 5.8 contains conclusions and future work.
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5.2 Foundation

In this paper, user (U) and host (H) desire to mutually authenticate and optionally establish

a key that will provide forward secrecy. We assume that U has a password pwdU and that H

stores a verifier pwdver
U and associated information α, such that pwdver

U = V erifier(pwdU, α).

α contains the additional information (e.g., salt, realm, index), if any, required to create the

verifier from the password.

5.2.1 Threat Model

This section specifies the threat model used to compare existing conventional password

protocols and pwdArmor. This model defines the likely deployment scenarios, the common

methods of attack, and the attackers.

Target Scenarios We target two common scenarios, which, based on the properties of

their communications channels, are categorized as follows:

Sclear An unsecured channel (e.g., HTTP) is used for all communications.

Stunnel A server-authenticated, encrypted tunnel (e.g., HTTPS, SSH) is used for all commu-

nications.

A third scenario, which adds server authentication to Sclear, is the least likely to be

used in practice and will not be specifically addressed in this paper due to lack of space.

Attacks Password protocols are designed such that pwdU is required to impersonate U

to H. Obtaining pwdU constitutes a PWD break. As the number of potential passwords is

relatively small (especially when compared to the size of keys typically used in cryptographic

protocols), an attacker’s ability to correctly guess the password is of particular concern.

There are two approaches to password guessing: online and offline.
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Online guessing attacks repeatedly invoke the protocol with H while varying the

password. The best protection an online password protocol can provide is to ensure that

attackers cannot obtain an advantage against the protocol greater than online guessing.

Offline guessing attacks are more efficient than online attacks, but they require ver-

ification material (i.e., the result of a known deterministic function of the password) to

determine if a guess is correct. Obtaining this material constitutes a LEAK break, which is

a step towards a PWD break. In practice, many organizations consider it acceptable that

an attacker cannot compromise a protocol (e.g., Kerberos) with an advantage greater than

offline-guessing. In these situations, services often dictate the minimum strength of user

passwords.

If the attacker can insert herself between U and H she can become a man-in-the-

middle (mitm). By simply relaying the authentication protocol’s messages between the two

unsuspecting parties, she can, after the authentication is complete, hijack U’s session with

H. This constitutes a MITM break, which enables the attacker to impersonate U without

a PWD break. In practice, there are three common methods to perform this attack: 1)

Routing-mitm, an attacker controls a router between U and H or has tricked traffic to route

through her (e.g., ARP poisoning); 2) Pharming-mitm, DNS is poisoned so that lookups

return a network address controlled by the attacker; and 3) Phishing-mitm, U is tricked

into connecting to the attacker in lieu of the legitimate host (e.g., clicks a link in a phishing

email).

Attackers Two attackers are considered in this model. Eve (E) is a passive eavesdropper

whose goals are PWD and LEAK breaks. Mallory (M) is an active attacker whose goals

are PWD, LEAK, and MITM breaks. E is limited to observing the normal interactions

between U and H.M can observe, inject, modify, delay, destroy, and replay messages as well

as create multiple concurrent sessions with any other party.
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5.2.2 Conventional Password Protocols

Conventional password protocols consist of these logical message elements:

U H

IDU−−→ (Lookup pwdver
U and α)

[C]←−− [Optionally generate challenge]

RU−−→ (Derive RU from pwdU [and C, if present])

[RH]←−− [Optionally generate its own auth response]

In the first round, U discloses her identifier IDU and H responds with an optional

challenge C, which may be dependent on IDU. U then sends her authentication response RU,

to which H can optionally respond with its own authentication response RH. If C and RH

are not required, then the protocol can be condensed into a single message with two logical

message elements: U→ H : IDU, RU.

RU enables U to demonstrate knowledge of pwdU to H. Based on the characteristics

of RU (and assuming the absence of an encrypted tunnel to protect it) we classify password

protocols as follows:

Type-0 RU is always the same and therefore replayable. A challenge by the server is typically

not required. Examples include responses that contain the password itself (e.g., HTML

forms, SSH “keyboard-interactive”).

Type-1 RU is not replayable, but it can be used to mount an offline password guessing

attack. A challenge by the server is required to construct RU. Examples include con-

ventional challenge/response protocols (e.g., HTTP Digest authentication) and some

one-time password protocols (e.g., OTP [38]).
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Type-2 RU is not replayable and it does not contain material for an offline password guessing

attack. Specifically, although RU may contain some form of the password it also involves

a large, unobservable, session-specific secret that significantly complicates an offline

attack as password guesses must also correctly guess the value of the session secret.

Examples include PAKE protocols like SRP and SPEKE [45].

An orthogonal characteristic to this classification is whether or not pwdver
U is equiv-

alent to pwdU (i.e., password-dependent vs. password-equivalent)4. Another orthogonal

characteristic is whether or not IDU is required to generate C. For example, in HTTP Di-

gest authentication the challenge (a server-generated nonce) is independent of IDU whereas

the challenge in OTP is identity-dependent because it contains the user’s seed and hash

count.

In our target deployment scenarios both Type-0 and Type-1 protocols rely on the

following assumption:

Assumption 1 U and H assume that messages passed between them will not be observed,

or modified, by an attacker.

The strength of this assumption is dictated by the scenario. In Sclear, this assumption

equates to “security by obscurity.” In practice, this is an acceptable risk for many low-value

sites and services. In Stunnel, this assumption is only valid when the tunnel is correctly

established with the legitimate host. Recall that phishers regularly trick users into negating

this assumption.

Attacking Type-0/1 Protocols If Assumption 1 holds then PWD, LEAK, andMITM

breaks cannot occur in Type-0/1 protocols. If Assumption 1 does not hold, then the following

attacks are possible:

4In PAKE protocols password-equivalent and password-dependent are called balanced and augmented,
respectively.
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Type-0 Type-1

E PWD, LEAK LEAK

M PWD, LEAK,MITM LEAK,MITM

5.2.3 Why not just use Type-2?

pwdArmor augments Type-0/1 protocols with the properties of a Type-2 protocol. As both

pwdArmor and Type-2 protocols require new client-side software, what advantages does

pwdArmor offer over a Type-2 protocol? The primary advantage is that pwdArmor can reuse

existing (legacy) password verifier databases while maintaining their password-dependence.

Current password-equivalent Type-2 protocols (e.g., EKE) can reuse existing verifier

databases, however, doing so eliminates any password-dependent benefits these verifiers may

have enjoyed with their original password protocol. Such a transition negates a significant

benefit of the original protocol, since the verifier, if it is stolen, can now immediately be used

to impersonate the user.

Current password-dependent Type-2 protocols (e.g., SRP) require databases of their

own specialized password verifiers in order to preserve password-dependence. Relying on

existing verifiers makes these protocols password-equivalent, thus negating their password-

dependent benefits. Requiring new verifiers introduces a significant deployment overhead and

potentially breaks compatibility with legacy systems that require the old verifier databases.

A second advantage is that pwdArmor provides optional privacy protection to the

identity of the user.

5.3 pwdArmor

Goals The primary mission of a password protocol is to ensure that pwdU is required to

impersonate U to H. In addition to this aim, pwdArmor is designed to meet the following

goals:

1. Eliminate PWD breaks.
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2. Limit the damage when Assumption 1 does not hold.

3. Detect mitm attacks.

4. Allow H to dictate the difficulty ofMITM breaks.

The first goal is to limit the avenues for users to inadvertently disclose their passwords

to phishers, eavesdroppers, and other attackers.

The second goal is motivated by the effectiveness of phishers in negating Assumption

1, even if H employs server-authenticated, encrypted tunnels to strengthen this assumption.

As users can be easily tricked into negating a tunnel’s benefits, pwdArmor uses a secure

tunnel, if available, in the following capacities: 1) Improved identification of H to detect

potential mitm attacks before they happen and to prevent LEAK breaks byM; 2) Protect,

after a successful authentication, the resulting session; and 3) Provide privacy protection to

IDU during the authentication.

The third goal is based in the observation that, in both Sclear and Stunnel, it is possible

to detect a mitm attack by using information (e.g., domain names, network addresses, digital

certificates used in a tunnel’s creation) that is readily accessible to each party. Adding, or

strengthening as the case may be, server authentication also helps assure users that they are

communicating with the desired host and not just a phisher that accepts any password and

then tries to elicit additional information from their victims.

The fourth goal captures the intuitive idea that H’s choice of Stunnel instead of Sclear

should complicate M’s ability to successfully achieve a MITM break. This idea is not

reflected in existing tunnels (e.g., TLS, SSH) as they rely solely on users to detect mitm

attacks and, as such, hosts have no say in the difficultly ofMITM breaks.

For the purposes of evaluating pwdArmor, E is considered successful if she obtains

LEAK or PWD breaks with a non-negligible advantage over online guessing. With respect

to M, LEAK breaks are acceptable and therefore she is considered successful only if she

obtains a non-negligible advantage over offline guessing. Additionally, MITM breaks are
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Figure 5.1: In conventional password protocols (left) the client- and server-side modules
directly interact. pwdArmor uses middleware to augment conventional password protocols
(right). Both the server-side pwdArmor and conventional password modules require access
to the verifier database. pwdArmor uses the verifier to secure the user’s authentication
response, while the conventional password protocol uses it to verify the password.

unacceptable, with the exception of the routing-mitm attack when H uses Sclear as this attack

in this scenario is virtually undetectable.

High Level Approach pwdArmor leverages middleware (see Figure 5.1) to wrap unmod-

ified Type-0/1 protocols and bind them to an external secure tunnel, if present. pwdArmor

encrypts U’s authentication response RU to ensure its confidentiality and integrity. This

encrypted message also contains the identifying host information (as observed by U), here-

after referred to as IDH, in order to facilitate the detection, by H, of mitm attacks. As this

information is scenario-dependent, H can also detect if U is using pwdArmor in a different

scenario than expected (e.g., H requires logins in Stunnel, but M has tricked U into using

Sclear).

The key (κenc
U,H ) used to encrypt this message is composed of two components: 1) κU,H,

which is created using a Diffie-Hellman (DH) key exchange [25]; and 2) pwdver
U . The use of

κU,H ensures that E cannot be successful without compromising the assumptions of DH. As

DH is subject to a mitm attack, M can force U and H to derive different values for κU,H,

each known toM. In this event, LEAK breaks are possible, however, the pwdver
U component

of κenc
U,H ensures that she cannot decrypt the message and obtain RU or modify IDH. Without

modifying IDH, it is unlikely aMITM break will be successful.
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Once the authentication succeeds, then a separate key derived from κU,H is suitable

for use as a mutually-authenticated key which provides forward secrecy.

5.3.1 Framework

The pwdArmor messages are illustrated below:

U H

IDU, nU−−−−−−−−−−→
gx, nH, α [, C]←−−−−−−−−−−

 Round One

gy, Eκenc
U,H

(IDU, IDH, RU)−−−−−−−−−−→
macκmac

U,H
(IDH, IDU [, RH])←−−−−−−−−−−


Round Two

Round One U begins by submitting her identifier and a nonce nU. H responds with its

DH public parameter gx and its own nonce nH. H’s response also includes α (how to derive

pwdver
U from pwdU) as well as the challenge, if any, supplied by the underlying password

protocol.

Round Two Using the elements from H’s message, U derives κenc
U,H . Specifically:

κU,H = PRFr(g
xy); r = nU‖nH

κenc
U,H = PRFκU,H

(pwdver
U , “enc”)

where PRF is a family of pseudorandom functions (e.g., HMAC [60] is commonly used as

a PRF). U then returns its encrypted response, along with its own DH public parameter

gy, to H. Including IDU in Eκenc
U,H

(·) allows U to securely assert her identifier to H. As the
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original transmission of IDU is sent without any cryptographic protection,M could modify

it so that the user logs into a different account (this assumes that these accounts share the

same password).

In the final message H demonstrates to U that it knows both pwdver
U and κmac

U,H =

PRFκU,H
(pwdver

U ,“mac”) through the use of a message authentication code (mac) function

(e.g., HMAC). This message must be sent only if the user authentication succeeds, otherwise,

it constitutes a LEAK break as the initiator of an authentication knows κU,H. After U verifies

H’s message, the key κother
U,H = PRFκU,H

(“other”) can be used by other applications as a

mutually authenticated key that provides forward secrecy.

Identifying H (IDH) The scenario determines IDH:

Sclear IDH = Network identifiers (e.g., domain name, network address).

Stunnel IDH = H’s certificate and network identifiers.

Privacy Protection If Stunnel cannot be used by H, but IDU must be kept secret from E ,

then IDU can be optionally encrypted using κpriv
U,H = PRFκU,H

(“priv”) before it is sent to H

(this is a well known approach to providing privacy when DH is involved). There are two

different situations to consider:

Challenge and α are not Identity-dependent IDU is removed from the first message,

encrypted using the key κpriv
U,H , and then added to the third message. The encrypted

IDU must be external to the contents of Eκenc
U,H

(·) as the key κenc
U,H is dependent on pwdver

U ,

which cannot be retrieved by H before IDU is known.

Challenge or α is Identity-dependent IDU is again encrypted with κpriv
U,H , and as either

C or α is identity-dependent and may leak identifying information, both of these values

are also encrypted with κpriv
U,H before they are sent to U. Since H cannot know the correct

values for C and α before it learns IDU, an extra round of messages is required since
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H’s first response cannot include these values and U cannot send Eκenc
U,H

(·) until these

values are received.

5.4 Security Analysis

Attacking pwdArmor As with conventional password protocols, if Assumption 1 holds

the PWD, LEAK, andMITM breaks cannot occur in pwdArmor. If Assumption 1 does not

hold, then the following attacks are possible (note that both Type-0 and Type-1 protocols

have the same assurances when used with pwdArmor):

Sclear Stunnel

E None None

M LEAK,MITM∗ LEAK

∗ Only ifM uses a routing-mitm attack

The remainder of this section provides arguments which justify the claims made above

and explores the impact of compromised session and long-term secrets.

Thwarting PWD breaks Neither E nor M can mount successful PWD breaks as the

conventional password protocol authentication response RU is encrypted using κenc
U,H , which

is based, in part, on pwdver
U . In effect, an attacker must know the password verifier before

she can attack this protocol to obtain pwdU. Note that while obtaining pwdver
U constitutes

a LEAK break, a LEAK break does not necessarily mean that the attacker has obtained

pwdver
U .

Limiting LEAK breaks pwdArmor relies on a DH key exchange to generate κU,H and

to prevent its passive observation. We assume the presence of pre-established, well-known,

well-tested generator/prime pairs (g, p) for a specified key size (e.g., [49, 52]). This prevents

M from injecting a pair for which she can compute discrete logs5. H ultimately decides on

5For example, p = 3, p− 1 is composed of only small prime factors, and many cases of p = 2n [73].
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which pair to use for a specified run of the framework. As RU is encrypted using κenc
U,H , a key

that is based, in part, on κU,H, E , who is limited to eavesdropping, cannot mount successful

LEAK breaks as each password guess must also correctly guess the value of κU,H.

The deployment scenario dictates the difficultly for M to mount LEAK breaks. In

Sclear,M can perform a DH-mitm attack by substituting the value of gx sent by H with its

own value gx′
. When M receives gy from U she can compute κU,H. Since she knows the DH

component of κenc
U,H she can verify offline password guesses by first using the guess to compute

pwdver
U

′
, deriving κenc

U,H , and then checking to see if the decryption of Eκenc
U,H

(·) contains the

password guess. Note that a DH-mitm attack destroys the ability for U and H to establish

the same value for κU,H and therefore relaying the encrypted RU will be detected by H as it

cannot successfully decrypt Eκenc
U,H

(·).

In Stunnel a LEAK break is only possible if U creates the tunnel withM instead of H

(i.e., succumbs to the certificate trick). In this case, M will be able to perform the LEAK

break in the same manner described above for Sclear.

Preventing MITM breaks Although a DH-mitm attack enables LEAK breaks, it de-

stroysM’s ability to mountMITM breaks as both U and H learn that something is amiss.

H knows this because it is unable to decrypt RU since its value for κU,H is different from U’s

value. U learns of this asM cannot produce a valid macκmac
U,H

(·), due to her lack of knowledge

of pwdver
U . Due to these factors, given a single run of the protocol to attack, M can choose

to attempt LEAK breaks orMITM breaks, but not both.

Recall that server-authenticated tunnels (e.g., TLS, SSH) rely on users to detect mitm

attacks. pwdArmor adds the ability for H to detect mitm attacks, which were missed by

U, by including IDH in Eκenc
U,H

(·). Therefore, in order to achieve MITM breaks, M must

conceal its presence from both U and H. Again, the difficultly of this masquerade depends

on the scenario.
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In Sclear conventional phishing/pharming-mitm attacks, missed by U, should be de-

tected by H since these attacks have difficultly masking all of the network identifiers that

compose IDH. A routing-mitm attack in this scenario does mask its presence effectively

and therefore cannot currently be detected by pwdArmor. Note that κother
U,H may be used to

establish a secure tunnel after the authentication completes, and this tunnel would prevent

even a routing-mitm attack from achieving aMITM break.

In Stunnel the entity with which U is connected is identified by the certificate used

in the server-authentication of the tunnel. In order for H not to detect a mitm attack, M

would have had to authenticate to U as if it was the legitimate H (e.g., in TLS/SSH this

requires a proof of ownership of H’s private key).

Compromise of Session Secrets If U’s or H’s DH exponent (x or y, respectively) is

compromised, thenM would be able to compute κU,H from a recorded session and therefore

perform a successful LEAK break.

The nonces (nU, nH) in this protocol are used in the same manner as they are in

IKEv2 [47] to create a seed key (κU,H) from the result of the DH key exchange (gxy). These

nonces also enable U and H to reuse their DH parameters across multiple sessions (e.g.,

for performance reasons) while ensuring that each session is unique. Note that the forward

secrecy of κU,H is maintained only between sessions where the DH values are not reused.

These nonces also introduce session-specific randomness from each participant to

ensure the freshness of the keys used in this session. Also, deriving session-specific, purpose-

specific symmetric keys using κU,H helps ensure that if one of these keys is ever compromised,

the effects are limited to the scope of that key.

It is important to observe that since κother
U,H is not used as keying material in the

resulting session, forward secrecy of that session is dependent on whether the underlying

Stunnel method provides forward secrecy.
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Conventional Password Protocols pwdArmor
Tunnel

(correctly established)
None None

No
Tunnel Type-0 Type-1 Type-2

E PWD,
LEAK LEAK None

M
PWD,
LEAK,
MITM

LEAK,
MITM None

Type-0/1
E None
M LEAK,MITM*
∗ Only ifM uses a
routing-mitm attack

Tunnel
(established withM)

Type-0/1
E None
M LEAK

Table 5.1: Summary and comparison of the assurances provided by conventional password
protocols and pwdArmor.

Compromise of Long-term Secrets If pwdU is compromised byM, she can impersonate

U until the password is changed. In Stunnel, if H’s private key is stolen by M, then she can

perform MITM breaks, however, it does not improve her ability to directly learn pwdU

and obtain a PWD break. In pwdArmor, the ability to authenticate as the legitimate host

within the context of the tunnel is only valuable in that it more effectively convinces U to

initiate an authentication withM.

If pwdver
U is compromised (e.g., H’s verifier database is stolen), then two attacks are

possible. First,M’s possession of pwdver
U constitutes a LEAK break. Second,M can perform

a DH-mitm attack and obtain an unencrypted RU. This attack is possible since M now

knows both private components of κenc
U,H and can decrypt Eκenc

U,H
(·). For Type-0 protocols this

constitutes a PWD break. For Type-1 protocols a MITM break is possible since M can

re-encrypt RU (and the correct value for IDH) using the appropriate key as well as construct

a valid value for macκmac
U,H

(·).

pwdArmor vs. Conventional Password Protocols Table 5.1 summarizes the security

analyses of pwdArmor and conventional password protocols. When an encrypted tunnel is
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Figure 5.2: Modern web browsers can already prompt users for login information. The
traditional HTTP Authentication dialog (left) is mimicked by our integration (right) of
pwdArmor into Firefox.

used and correctly established (i.e., Assumption 1 holds) neither approach is vulnerable to

the attacks of this model. The more interesting comparison comes when no tunnel is used,

or the tunnel was created with the attacker. In both these cases Type-0/1 protocols perform

equally poorly, while pwdArmor provides significant improvements.

5.5 Deployment Considerations

Client-side Support Due to the computational requirements of pwdArmor, client-side

software support is essential. Existing systems (e.g., browsers, SSH clients, wireless suppli-

cants) must be updated in order to support pwdArmor. Web browsers present an attractive

avenue for incremental deployment, since, without intervention by browser vendors, client-

side support for pwdArmor can be provided via browser extensions or zero-footprint clients

(see Section 5.6). To preventM from circumventing the login process, pwdU must be deliv-

ered directly to the client-side software and not the server. This is not a problem for most

client software (e.g., SSH clients, wireless supplicants), however, it is a significant problem

for web browsers, which typically rely on a server-supplied HTML-based login page.

Entering login credentials through the browser’s chrome is an attractive alternative

to logins embedded in web pages because it provides a consistent authentication experience

across all domains and avoids problems with malicious login pages. Modern web browsers are
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already capable of prompting users for login credentials (see Figure 5.2) when they recognize

a server’s request for HTTP Basic or Digest authentication. This practice, however, is not

widely adopted by web sites.

Wireless Authentication Extensible Authentication Protocol (EAP) [3] provides a valu-

able framework for implementing and deploying pwdArmor for wireless (and also wired)

network authentication in both Sclear and Stunnel scenarios. Although EAP provides mech-

anisms to directly bind authentication protocols to a secure tunnel (see Section 5.7), this

binding does not provide any guarantees if the host is not properly authenticated (i.e., the

user has been tricked by a phisher). Therefore, pwdArmor is still useful as it protects against

users negating the benefits of the tunnel. Support for a new pwdArmor EAP method must

be added to the user’s wireless supplicant software and to the network authentication server.

For home users, it is preferable for pwdArmor to be supported by the access points them-

selves as opposed to requiring them to host a specialized authentication server attached to

the access points (as it is typically done in enterprise environments).

5.6 Implementation

We have developed libpwdarmor, a general purpose library written in Java, that provides

the functionality needed to build client/server pwdArmor modules. This library creates and

processes pwdArmor messages in binary and human-readable formats (see Section 5.6.1),

however, the parent application is responsible for transporting these messages to their in-

tended destination.

Currently, libpwdarmor supports HTTP Basic and OTP authentication and the fol-

lowing verifiers:

• MD5-based BSD password algorithm (essentially, but a bit more complicated than, the

password hashed 1000 times; used by most Linux distributions to create the password

verifiers stored in /etc/shadow)
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• Apache variant6 of the MD5-based BSD password algorithm (used by the Apache web

server to create verifier databases for use with HTTP Basic authentication)

• HTTP Digest H(A1) verifier (the MD5 hash of “username:realm:password”)

• MD5-based OTP verifiers (the nth truncated hash of the seed and the password; these

non-static verifiers are updated after each successful authentication to the (n − 1)th

hash)

• SHA1-based OTP verifiers (same as above except the result of the SHA-1 hash function

is converted to little endian before it is truncated).

HTTP Basic can be adapted to use any of these verifiers, however, it only makes

sense to use OTP authentication with the OTP verifiers.

libpwdarmor adds a user options element (OU) to inform H of U’s supported DH

groups and password protocols as well as to request privacy protection for IDU. It also adds

a host options element (OH) to enable H to notify U of the selected DH group and password

protocol. This element also includes a session identifier that allows interaction with H over

a stateless transport mechanism.

As libpwdarmor supports a variety of underlying protocols, M could manipulate

OH so that U will use the weakest password protocol or verifier format she supports. This

has the potential to increase the efficiency of an offline guessing attack (e.g., one hash with

HTTP Digest verifier vs. 1000 hashes with MD5-based BSD password verifier). A relatively

time-intensive PRF could be used to limit the effectiveness of this attack.

Client-side Support We used libpwdarmor to create a browser extension for Firefox.

This extension recognizes that a web site supports pwdArmor and transports the pwdArmor

messages via HTTP headers. The extension uses a similar modal dialog box as browsers

currently use to prompt users for login information (see Figure 5.2).

6Which only differs from the original algorithm by changing the “magic” string from 1 to apr1.
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HTTP Basic OTP HTTP Basic
(MD5-based BSD Verifiers) (HTTP Digest Verifiers)

IDU “timv@atat”

α
alg=apr1, alg=otp-sha1, alg=http-digest,

salt=CGyXh... seed=pongo, cnt=100 realm=Hoth
C n/a otp-sha1 99 pongo n/a

RU password AND FULL FAN GAFF BURT HOLM password
RH n/a

Table 5.2: The pwdArmor message contents for specific conventional password protocols
(nonces, DH key exchange values, and encrypted values are omitted).

We also used libpwdarmor to create a signed Java Applet. As zero-footprint clients,

like Java Applets, involve browsers running server-supplied code they cannot provide the

same assurances as a pure client-based approach, but are attractive due to their portability.

This applet is intended to be loaded from a trusted source and then used to login to any

pwdArmor-enabled web site. After the applet is loaded the user enters the web site she

wants to authenticate to, or selects from a previously established list, and enters her login

information. After the authentication is complete the applet opens a new browser tab with

the cookies it received from the host and, thus, transfers the authenticated session from the

applet to the browser.

Server-side Support Server-side support is realized as a Servlet Filter in Tomcat. This

filter prevents access-restricted pages from being retrieved by unauthorized users and relies

on an HTTP header to indicate that pwdArmor logins are available. It also uses HTTP

headers to exchange the pwdArmor messages created by libpwdarmor. Once authentication

is successful it uses session cookies to maintain an authenticated state with the client.

5.6.1 Integrating with Existing Protocols

Table 5.2 gives examples of the specific contents of the pwdArmor messages for the following

password protocols:
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HTTP Basic with the Apache Variant of MD5-based BSD Verifiers In this proto-

col α specifies the method of verifier creation and contains the salt that is required to create

the same verifier stored by H. HTTP Basic has no host-supplied challenge and expects pwdU,

which is sent in RU.

IfM steals pwdver
U from H and then tricks U into attempting an authentication to her

then she will be able to use κU,H and pwdver
U to decrypt RU. Since HTTP Basic is a Type-0

protocol, the value for RU, in this case pwdU, allows M to repeatedly impersonate U until

pwdU is reset.

Outfitting HTTP Basic with pwdArmor provides it with the same protections it would

have normally received if it were contained within an encrypted tunnel, and adds the benefit

of protecting RU if that tunnel is circumvented.

OTP The value of α is equivalent, in content, to the challenge from the previous successful

authentication. The challenge contains the information to use pwdU to derive current one-

time password, which is sent to H in RU.

IfM obtains a copy of pwdver
U and tricks U into attempting an authentication to her,

she will be able to decrypt RU. As OTP is a Type-1 protocol, the value for RU, in this case

the current one-time password, allows M to impersonate U a single time. It is interesting

to note that when OTP is used without pwdArmor it is vulnerable to a “small n” attack in

which M reduces the hash index of the real host’s challenge. If M manipulates the hash

index contained in α, she will, at worst, obtain LEAK break since pwdver
U is needed to decrypt

RU and obtain the “small n” value generated by U. IfM obtains a copy of pwdver
U , the small

n attack is still not feasible as the value for pwdver
U that U will generate will not correspond

to the stolen pwdver
U as their respective hash indices are not equal.

HTTP Basic with HTTP Digest Verifiers The algorithm and realm specified in α

enables U to generate the H(A1) HTTP Digest password verifier. Again, HTTP Basic has

no host-supplied challenge and expects pwdU.
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pwdArmor provides HTTP Basic with the same protection from PWD breaks as

HTTP Digest, without requiring password-equivalent verifiers. In this approach pwdU is

hashed and then compared to H(A1), allowing what were password-equivalent verifiers to

become password-dependent. If HTTP Digest is still employed elsewhere using these same

verifiers, then they remain password-equivalent for those HTTP Digest authentications.

5.7 Related Work

As is evidenced by the success of password phishing, the assurances provided by encasing

conventional password protocols within encrypted tunnels (e.g., TLS) can be easily circum-

vented by tricking the user. The key problems with encrypted tunnels are the difficultly for

users to: 1) Determine if the host authentication ever occurred; and 2) Correctly verify the

identity of the server. Several solutions have been proposed to improve the authentication of

H by U. Visualization techniques [67] help improve verification of public keys. Additional hu-

man perceptible server authenticators (e.g., pictures, voice) [31] may also help users. Other

systems, like BeamAuth [5], use bookmarks to ensure that logins only occur with legitimate

sites. These solutions do not address the lack of creation of the tunnel. pwdArmor provides

the same passive/active protections as encrypted tunnels, along with the additional benefit

that if the host authentication is circumvented then pwdU is not leaked.

Delayed password disclosure (DPD) [46] authenticates H without a secure tunnel by

requiring U to verify the correctness of a host-supplied image after each character of pwdU

is entered. A distinct oblivious transfer for each password character ensures that actual

password character is not disclosed. U then authenticates via a traditional PAKE protocol.

Unlike pwdArmor, DPD is designed to thwart static phishing sites and does not protect

against mitm attacks. Also, pwdArmor maintains the current practice of allowing users to

quickly submit their usernames and passwords.

The need to couple an inner authentication protocol with its outer tunnel has been

previously examined as the compound authentication binding problem [8, 69]. The solution
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proposed (and adopted by EAP [3]) requires that the resulting session key be derived from:

1) The tunnel key; and 2) A key created by the inner authentication protocol or from pwdU.

Although this binding prevents mitm attacks, the tunnel must be modified and the password

protocol is not protected if the tunnel is incorrectly established.

IKEv2 [47] does not directly address the tunneling of Type-0/1 protocols, which it

calls “legacy authentication” mechanisms, but does supports the optional binding of itself

to EAP, provided the underlying EAP method produces a key. As with EAP, IKEv2 does

not provide any protections against phishers if the tunnel is incorrectly established.

Oppliger et al. [64] couples a TLS session to a specific authentication through a

hardware/software token. Client-side certificates (from the token) are used in the TLS

handshake to prevent mitm attacks, not for client authentication. pwdArmor accomplishes

the same goals by using nonces to ensure unique sessions and by using IDH to ensure a tight

coupling with the encrypted tunnel.

Halevi and Krawczyk [36] specifies a generic, password-based, encrypted challenge-

response protocol and an instantiation that provides mutual authentication and key ex-

change. Even though this protocol encrypts pwdU with H’s public key, if the phisher success-

fully performs the certificate trick then the benefits of this protocol are completely negated.

Also, the requirement that H have a public key pair may be unreasonable for the low-value

services that typically operate in Sclear scenarios.

PAKE protocols are the strongest answer, to date, for the troubles with password-

based authentication through encrypted tunnels. There are a variety of protocols: SRP

[87], SPEKE [45], EKE [14], PDM [48], SNAPI [57], PAK [56], AuthA [13], AMP [51]. If

executed correctly, these protocols are not vulnerable to PWD, LEAK, or MITM breaks.

As pwdArmor only provides all of these assurances if U does not fall victim to a certificate

trick, PAKE protocols provide superior benefits to pwdArmor, with two exceptions. First,

and most significantly, is their inability to reuse existing password verifier databases as

detailed in Section 5.2.3. Second, is their lack of privacy protection for IDU. With the
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exception of SNAPI, this protection cannot be easily added to these protocols as their DH-

based key exchanges are tightly coupled to IDU (and as such cannot be used to privately

transmit IDU) and they do not require H to have a public key pair.

5.8 Conclusions and Future Work

pwdArmor is a more secure alternative to the current practice of encasing conventional

password-based authentication protocols within a server-authenticated, encrypted tunnel.

The key benefit of pwdArmor is evident when users think they are authenticating to one of

their legitimate service providers, but are, in fact, being phished. In this scenario, all the

benefits of using an encrypted tunnel can be negated by users, whereas in pwdArmor, users’

passwords are never disclosed. This advantage comes from pwdArmor’s treatment of server

authentication as an added bonus, rather than the linchpin of its assurances.

Unlike other PAKE protocols, pwdArmor can reuse existing verifier databases while

maintaining the password-dependent nature of those verifiers. Reuse of existing verifiers is

valuable as it allows simplified deployment, avoids the overhead of creating new verifiers, and

preserves compatibility with legacy systems. pwdArmor also, unlike other PAKE protocols,

offers optional privacy protection to the user’s identity during the authentication.

Operating system utilities (e.g., CardSpace [19]) for managing and using login cre-

dentials have the potential to unify user authentication across a variety of mediums (e.g.,

web site, wireless network, local application logins). As such, they represents an attractive

avenue for deploying the client-side functionality required by pwdArmor.

Assuming the presence of HTTPS only for login pages, SessionLock [6] secures result-

ing web sessions from passive eavesdropping without TLS. A combination of pwdArmor and

SessionLock, could eliminate the need for HTTPS for a large number of low-security web

sites and therefore remove the additional costs associated with the performance overhead

and caching behavior of TLS.
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Chapter 6

Derivative Applications

This research is designed to remove the need for service-specific passwords by provid-

ing convenient and secure approaches to decentralized authentication. This chapter presents

three systems that take advantage of our new authentication protocols and demonstrate

the utility and potential of our new technologies. While SAW is used as the authentica-

tion mechanism for these systems, Luau is also suitable if its deployment requirements are

met. pwdArmor may be used in conjunction with Luau or as a replacement to an existing

password protocol at an identity provider.

6.1 Extensible Pre-Authentication in Kerberos (EPAK)

P. L. Hellewell, T. W. van der Horst, and K. E. Seamons. Extensible Pre-Authentication in

Kerberos. 23th Annual Computer Security Applications Conference (ACSAC), Miami, FL,

December 2007.

6.1.1 Overview

Kerberos [50] provides distributed identity-based authentication. It is a time-tested and

widely adopted approach, used by business, government, military, and educational institu-

tions. It enables a user to authenticate a single time and then use the result of that authen-

tication to log in to the application servers within the Kerberos realm for a predetermined
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time period. Kerberos is a closed-system: every user must be known to the authentication

server a priori.

As an organization’s access control systems and applications are often built around

the Kerberos infrastructure (e.g., Microsoft Active Directory), replacing Kerberos entirely

is prohibitive. Extending Kerberos itself to support additional authentication schemes is

therefore an attractive solution as it allows systems like Active Directory to remain intact.

Nevertheless, modifying Kerberos represents significant challenges due to a lack of source

code availability for some implementations and a lengthy standardization process.

Extensible Pre-Authentication in Kerberos (EPAK) extends Kerberos to facilitate

the integration of future authentication mechanisms. EPAK introduces a loose coupling

between Kerberos and its authentication scheme that enables new schemes to be added

without further modification to Kerberos. To demonstrate the power and flexibility of the

EPAK framework, we integrated two new authentication methods: trust negotiation and

SAW. Both of these authentication approaches enable open systems: users do not have a

direct pre-established relationship with the authentication server.

6.1.2 How EPAK works (High Level)

Normal Kerberos Operation The Kerberos protocol requires four parties: a Client, an

Authentication Server (AS), a Ticket-Granting Server (TGS), and an Application Server.

The AS is responsible for authenticating the Client. The TGS issues tickets that allow a

Client to access an application server.

The Kerberos authentication process consists of three phases (see Figure 6.1). In

Phase 1, the Client requests a ticket-granting ticket (TGT) from the AS. The response from

the AS can only be decrypted by a Client with the valid user’s password.

The dependence on a password to successfully complete Phase 1 tightly couples the

password-based authentication to the process of obtaining a TGT. This tight coupling com-

plicates the switch to non-password-based authentication mechanisms.
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Figure 6.1: The Kerberos protocol
has three phases.
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Figure 6.2: EPAK adds Phase 0 to the
original Kerberos protocol.

In Phase 2, the Client uses the TGT to obtain a service-granting ticket (SGT). In

Phase 3, the SGT is used to access the application server. Phase 1 only needs to be performed

once per time period, while Phases 2 and 3 can be repeated (e.g., to access other application

servers in the domain) as needed during that time period.

Kerberos with EPAK EPAK adds a single phase to Kerberos that is similar to the three

existing phases (see Figure 6.2). This phase, between the Client and the Pre-Authentication

Server (PAS), is used to authenticate the Client using the desired authentication mecha-

nism. Once an authentication succeeds, the Client receives an authentication-granting ticket

(AGT) from the PAS. This AGT is used to obtain a TGT from the AS. This straightfor-

ward modification removes the tight coupling (i.e., the password) between the Client and

the AS and enables a variety of authentication approaches to be leveraged without further

modification to Phase 1.

A significant benefit of EPAK is that authentication systems with slow performance

(e.g., SAW with high-latency email delivery) can leverage Kerberos’ SSO capability.
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6.2 CPG: Closed Pseudonymous Groups

R. S. Abbott, T. W. van der Horst, and K. E. Seamons. CPG: Closed Pseudonymous

Groups. Workshop on Privacy in the Electronic Society (WPES), Alexandria, VA, October

2008.

6.2.1 Overview

Anonymity is useful when eliciting honest and forthright feedback, especially if the com-

ments are negative or controversial. Closed Pseudonymous Groups (CPG) is a system for

pseudonymous communication within a closed group. In CPG, each legitimate group mem-

ber obtains a pseudonym (nym) that cannot be linked to the user’s identity, but can be used

to link together a user’s actions.

Although linkability is typically frowned upon in many anonymous systems, the ability

to connect an anonymous user’s actions can be valuable in many scenarios as it enables

administrators to accurately track a user’s activity over time. If users abuse their anonymity,

they can be blacklisted without compromising their true identity. CPG is designed to be

easy to understand, to implement using existing techniques, and to use.

Although CPG can be implemented with a variety of authentication schemes, our

prototype implementation uses SAW for the authenticate initial authentication of group

members, which are uniquely identified via their email addresses.

The account provisioning inherent in SAW makes this initial authentication a simple,

straightforward process, especially when there are no pre-established secrets (e.g., passwords)

between group members and the anonymous system. Nyms in our prototype implementa-

tion are realized as separate (anonymous) email addresses obtained independently by group

members. As the anonymous systems uses SAW to authenticate these nyms, it does not

need to manage user-specific passwords. This also helps ensure anonymity if a user forgets

their nym account password as an external email provider handles the reset process, not the
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Stage 1 Stage 2 Stage 3 Stage 4
Membership Token Acquisition Wait Nym Registration Service Access

• Server authenticates client

• Server signs blinded mem-
bership token (if one has
not already been issued to
this client)

• Client unblinds token
...

• Server verifies
unblinded token

• Server authenticates
nym

• Server records token
as used

• Server authorizes
nym for service
access

• Server
authenticates
nym

• Client uses
service

Table 6.1: Summary of CPG stages

anonymous system. The prototype implementation extends the SAW toolbar for Firefox to

automate the client-side computation required for CPG.

6.2.2 How CPG Works (High Level)

CPG requires three parties: membership server, service provider, and client. The member-

ship server verifies a user’s group membership and enables pseudonym registration with a

service provider. CPG is resilient to collusion between the membership server and the service

provider to discover a user’s true identity.

CPG has four stages (see Table 6.1). In Stage 1, the membership server authenticates

the client and signs a client-generated, blinded membership token. Stage 2 is a mandatory

waiting period to thwart timing attacks. In Stage 3, the client register a pseudonym with

the service provider using the unblinded membership token. Lastly, in Stage 4, the client is

able to use the pseudonym to log in to the service provider. The first three stages are used

to setup a nym with the service provider and the final stage is used during the lifetime of

the nym to access the provider.
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6.3 EASEmail

T. W. van der Horst, R. Segeberg, and K. E. Seamons. EASEmail: Easy Accessible Secure

Email. (Work In Progress), Computer Science Department, Brigham Young University,

2009.

6.3.1 Overview

The majority of email messages are sent without any cryptographic protection; thus, their

contents are clearly visible to any eavesdropper. In this respect, emails are like postcards,

which have two major drawbacks. First is their lack of message privacy. Second is their

vulnerability to forgery or modification. We refer to this level of protection as postcard-level

security.

Given these drawbacks, users, on occasion, desire to protect the content of their

messages from passive observation. This is especially true for web-based email (e.g., Gmail,

Hotmail, Yahoo) where all email is stored on the server. In the physical world, users protect

a message by using an envelope, which protects its contents from passive observers. We refer

to this level of protection as envelope-level security.

What do users have in the email world? In rare cases, senders and recipients share a

previously established secret(s). More common is the small minority that uses public key-

based approaches for encrypted email. A traditional PKI-based approach (e.g., PGP[68],

S/MIME [75]) requires senders and recipients to generate key pairs, reliably distribute their

public keys, and vigilantly protect (and backup) their private keys. Users are also required

to obtain and manage the public keys of others. These are intimidating, burdensome, and

error prone tasks [83] for many users. We refer to this level of protection as armored car-level

security.

EASEmail is a new encrypted email approach that provides at least envelope-level

security. By thwarting passive observation of message contents and raising the bar for
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message modification/forgery it provides an attractive middle ground between traditional

email delivery and the armored-car protection of traditional PKI-based approaches.

EASEmail requires no sender/recipient interaction on top of traditional email and

eliminates the need for users to store/manage private keys or manage/distribute public keys,

a major impediment to the proliferation of encrypted email. Using EASEmail, people send

encrypted emails without directly establishing or exchanging keys with recipients. Although

EASEmail can be implemented with a variety of authentication schemes, the prototype

implementation used SAW to authenticate ownership of these email addresses.

6.3.2 How EASEmail Works (High Level)

Traditional email encryption methods require senders to obtain recipients public keys.

EASEmail solves this issue by introducing a lightweight symmetric key distribution cen-

ter (KDC). In EASEmail, once a sender authenticates and obtains an encryption key from

the KDC, existing standards for email message encryption are used to secure the message

and send it to the recipient. The recipient can likewise authenticate to the KDC and obtain

the message decryption key.

The KDC uses SAW to authenticate users before releasing message encryption keys.

The keys furnished by the KDC are derived from a single master key using an identity-based

key derivation function. As such, the KDC does not have to store any user- or message-

specific information, making it lightweight and highly scalable.

It is possible to involve more than one KDC in the creation of an EASEmail. In-

volving more than one key server distributes trust ordinarily placed in a single key server.

Consequently, the risk to an encrypted email from a compromised KDC is greatly reduced.

All involved key servers must be compromised or collude to decrypt a message. This is a

valuable property, especially when the sender and/or recipient controls at least one of the

key servers. Both senders and recipients are able to interact with multiple key servers in
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parallel because these interactions are not dependent on one another. Threshold schemes

[73] can also be used to require m of n KDCs.
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Chapter 7

Summary and Conclusions

The goal of this research is to reduce the need for service-specific passwords, while

improving the security and convenience of user authentication. This chapter summarizes our

contributions, outlines two adoption strategies, and identifies future work.

7.1 Our Contributions

Identify email providers as the de facto identity providers on the Internet: This

research addresses the old quandary of “Who do we trust, and for what?” [27] by leveraging

the emergent trust in email providers that has made them the de facto identity providers on

the Internet. Although a personal messaging medium is valuable for communication, it is

the relationship between the personal messaging provider and user, rather than the medium

itself, that is ultimately useful for identification and authentication. The ability to leverage

this relationship independently of the messaging medium is valuable as the potential latency

of these mediums is high.

Provide a unilaterally deployable solution: SAW enables web sites to unilaterally

adopt email-based decentralized authentication. SAW requires no specialized third party, no

client-side software, reuses existing identifiers and authenticators, and represents an accept-

able risk to web sites that already employ email-based password resets.

Reduce the latency and improve the security of SAW: WARP and Luau demon-

strate that the latency and client-side connectivity restraints of SAW can be overcome if the
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identity provider supports the decentralized authentication protocol. They can also thwart

the one-session active impersonation attack present in SAW.

Unify authentication in application and network layers: Without the restraint of

client-side connectivity, WARP and its successor, Luau, can provide decentralized authenti-

cation in both web and wireless scenarios

Improve security by moving logins off web pages: All four of the systems created

in this research enable user authentication to be moved off server-controlled web pages.

This dramatically reduces the attack-surface for password phishing and enables improved

detection of man-in-the-middle attacks by both clients and servers.

Extend the useful lifetime of passwords: Passwords have not outlived their usefulness;

rather, the current manner in which they are used is stretching the bounds of their utility.

The crux of the problem is that the limitations of human memory and patience curb the

scalability of this traditional 1:1 relationship between users and service providers. This

research presents decentralized authentication mechanisms designed to shift this relationship

to a 1:n, in which a single relationship with an identity provider allows a user to authenticate

herself to multiple relying parties.

Bootstrap more secure alternatives: We argue that these new approaches not only

extend the useful lifetime of passwords, but also provide a robust platform for improving pri-

vacy, auditing, and delegation of authority, while maintaining the simplicity, the convenience

and the portability of passwords. They also pave the way towards attribute authentication,

the idea that a user authenticates based on “what” she is rather than “who” she is.
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7.2 Adoption Strategies

The power to catalyze the adoption of decentralized authentication lies in the hands of service

providers and personal messaging providers, but what comes first: relying parties or identity

providers? As it is impossible to foresee which party will take the first step, we identify two

likely adoption strategies for enabling secure and convenient decentralized authentication

using passwords.

7.2.1 A Bottom-up Approach

In this strategy web sites take the initiative to bootstrap the adoption of decentralized

authentication. They use SAW to become relying parties that leverage unmodified email

providers as identity providers. SAW enables users and relying parties to experience the

power and flexibility of decentralized authentication without having to obtain a new identi-

fier, password, or additional client-side software.

As web sites can unilaterally deploy SAW, it offers them an opportunity to “dip their

toes in the water” and test out decentralized authentication. If desired, a roll-out of SAW

can be done in parallel to an existing password system. The benefits to web sites of adopting

SAW include not having to maintain a database of user authentication information, which

is an attractive target for attackers and malicious insiders.

Email providers can take several steps to foster this process. For example, as the

convenience of SAW hinges on the latency of email delivery, giving higher priority to the

delivery of authentication email messages helps minimize login delays. Also, enabling TLS for

email delivery (at least for authentication messages) removes SAW’s vulnerability to a one-

session, active impersonation attack. Lastly, client-side automation software significantly

improves the convenience of SAW; email providers could promote, develop, or distribute

these tools.

The final milestone in this adoption strategy is the creation of a dedicated identity

provider service using Luau: a tailorable framework that provides a password-based de-
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centralized authentication solution that unifies authentication for the application and the

network layers. Providing a dedicated identity provider service, like Luau, alleviates the ad-

ditional pressure on personal messaging mediums created by SAW and removes the achilles

heel of message delivery latency.

pwdArmor can ease the transition of entities into identity providers by facilitating the

secure reuse of existing password verifiers. The client-side software for SAW that provides

a uniform and consistent login experience across disparate domains (and provides improved

protections against phishing) also facilitates an easier transition to more advanced approaches

like Luau by abstracting away the underlying decentralized authentication mechanism.

Though an important milestone, Luau is itself a jumping-off point for attribute-based

authentication (see Section 7.3).

7.2.2 Top-down: “The open hand”

This strategy does not involve SAW and begins with the final milestone of the bottom-

up strategy. In this approach, personal messaging providers adopt Luau and then invite

and encourage web sites to become relying parties and accept this form of authentication.

Again, the incentive for personal messaging providers is to add value to their accounts. The

incentives for web sites is the ability to offload user authentication and the potential ability

for the large number of users of an identity provider to able to instantly make use of the web

sites’ services. Again, pwdArmor eases the creation of identity providers by facilitating the

secure reuse of existing password verifiers.

Though similar to the deployment strategy employed by Microsoft Passport [65],

which ultimately failed, this approach has the advantage of a looser coupling between relying

parties and identity providers.
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7.3 Future Work

The systems presented in this dissertation do not remove password-based authentication

from the equation, they simply enable users to conveniently, and securely, leverage their

existing login credentials to their personal messaging providers to authenticate to relying

parties in open systems.

Although these novel authentication technologies are dependent on passwords, they

also provide a springboard to more secure authentications mechanisms. After the paradigm

shifts from service-specific passwords to a reliance on identity providers, it is much easier

to exploit the benefits of other authentication technologies (e.g., smart cards, biometrics,

etc.) as changes only have to be made at the identity provider, not every site that the user

frequents.

While personal messaging providers have significant potential as identity providers,

there are also many organizations (e.g., universities, employers, financial institutions, gov-

ernments) that are trusted to vouch for not only a user’s identity but also a selected set of

attributes (e.g., enrollment status, memberships, credit status, age, citizenship). The abil-

ity of these entities to authenticate their users and the attribute information they maintain

are valuable resources that should be migrated from the background to the forefront. En-

abling external parties to leverage these relatively untapped information represents a reuse

of valuable existing resources.

Past efforts at decentralized authentication have required significant business/legal

relationships between identity and relying parties. Once attributes enter the equation these

issues will have to be addressed. Once they are, then this research can be used to provide a

springboard to valuable systems, like trust negotiation, which exploits the ability for identity

providers to assert other attributes about their users, besides their identity.
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