
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-11-04

Javalite - An Operational Semantics for Modeling
Java Programs
Saint Oming'o Wesonga
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Wesonga, Saint Oming'o, "Javalite - An Operational Semantics for Modeling Java Programs" (2012). All Theses and Dissertations. 3376.
https://scholarsarchive.byu.edu/etd/3376

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3376?utm_source=scholarsarchive.byu.edu%2Fetd%2F3376&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Javalite - An Operational Semantics for Modeling Java Programs

Saint O. Wesonga

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Eric Mercer, Chair
Jay McCarthy
Mark Clement

Department of Computer Science

Brigham Young University

November 2012

Copyright c© 2012 Saint O. Wesonga

All Rights Reserved



ABSTRACT

Javalite - An Operational Semantics for Modeling Java Programs

Saint O. Wesonga
Department of Computer Science, BYU

Master of Science

Java is currently a widely used programming language. However, there is no formal definition of
Java’s semantics. Consequently, Java code does not have a universal meaning. This work discusses recent
attempts to formalize Java and presents a new formalism of Java called Javalite. In contrast to common
approaches to formalization, Javalite is purely syntactic in its definition. Syntactic operational semantics
use the structure of the language to define its behavior. Javalite models most Java features with notable
exceptions being threads, reflection, and interfaces. This work presents an executable semi-formal model
of Javalite in PLT Redex. Being executable means that Javalite programs can be run using this model.
We then render the semi-formal model in the Coq theorem prover and present theorems stating that the
operational semantics are decidable and deterministic. This formal model can then be used to facilitate
research in areas such as proving properties of algorithms that perform various analyses on Java code, e.g.
verification, optimization, and refactoring.

Keywords: Javalite, Operational Semantics, PLT Redex, Coq



ACKNOWLEDGMENTS

I would like to thank Eric Mercer and Jay McCarthy for their assistance in co-authoring this paper.

I would specifically like to thank Dr. Mercer for his hours of work and invaluable advice, and Dr. McCarthy

for excellent advice on and help with PLT Redex tools and the Coq theorem prover.



Table of Contents

List of Figures vi

List of Tables vii

List of Listings viii

1 Introduction 1

2 Related Work 5

3 PLT Redex Model 9

3.1 Javalite Surface Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Javalite Machine Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 The Heap (h): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 The Local Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 The Continuation (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Custom Redex Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Coq Model 31

4.1 Coq Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Modeling PLT Redex Syntax Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Modeling PLT Redex Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.3 Extraction of Programs From Coq Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Javalite Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Reduction Rules in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Proofs About the Javalite Reduction Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



4.4.1 Decidability of Next State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Determinism of the Reduction Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Irreflexivity of the Transition Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 57

A Javalite Redex Meta-Functions 59

B Javalite Coq Syntax Definitions 66

C Javalite Coq Helper Functions 71

D Javalite Coq Reduction Relation 87

E Javalite Coq Proofs 94

References 106

v



List of Figures

1.1 Comparison of small vs big-step evaluation of an arithmetic expression. . . . . . . . . . . . . 2

(a) Small-step evaluation semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

(b) Big-step evaluation semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Comparison of Java and Javalite class declarations. . . . . . . . . . . . . . . . . . . . . . . . . 3

(a) A Java “Swap” Class Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

(b) A Javalite “Swap” Class Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 The Javalite surface syntax as defined in PLT Redex. . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 A simple Javalite program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Components of a Javalite state and their CEKS equivalents. . . . . . . . . . . . . . . . . . . . 13

3.4 The Javalite machine syntax as defined in PLT Redex. . . . . . . . . . . . . . . . . . . . . . . 14

3.5 A sound Java assertion that does not hold in Javalite. . . . . . . . . . . . . . . . . . . . . . . 15

3.6 The relationship between transition relation and the reduction relation. . . . . . . . . . . . . 17

3.7 Reduction from initial state at a method invocation. . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 The PLT Redex traces tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 The PLT Redex stepper tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



List of Tables

2.1 Comparison of Language Features Supported by Java Models . . . . . . . . . . . . . . . . . . 5

4.1 Comparison of PLT Redex and OCaml Javalite Interpreter Performance . . . . . . . . . . . . 34

vii



List of Listings

A Java Class Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A Javalite Class Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

An Invalid Javalite Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



Chapter 1

Introduction

Java
TM

is a widely adopted object-oriented programming language and has multiple implementa-

tions, both open and closed source, by various vendors. It is currently defined in the continuously evolving

document referred to as the Java Language Specification (Gosling et al. [2005]). This document is the stan-

dard that details the syntax and semantics of the Java language. Unfortunately, it is a prose-only definition

of Java’s semantics and therefore allows for ambiguity, contradiction, and incompleteness in the specifica-

tion. These undesirable characteristics affect language and compiler designers as well as Java programmers.

An example of the impact of these shortcomings is illustrated by Chan et al who present sample programs

for which different Java compilers produced different results and list suggestions for Java programmers to

navigate these hurdles (Chan et al. [2004]). Formal semantics are one way of resolving such ambiguity in

programming languages.

In order to rigorously define the meaning of programs in any programming language, a formal

semantics of that language must be defined. There are various approaches to formally defining the meaning

of programs. Some common ones include axiomatic semantics, denotational semantics, and operational

semantics. Axiomatic semantics is a technique based on logical deduction and assertions about relationships

that remain the same each time a given program executes (Slonneger and Kurtz [1995]) whereas the key idea

behind denotational semantics is the direct mapping of a program to its meaning (or denotation), which is

usually a mathematical object such as a number, a function, or a tuple (Schmidt [1986]).

Operational semantics, on the other hand, is an approach to specifying the meaning of programs by

describing how computations are performed i.e., how a program transitions from one configuration to another

(Plotkin [2004]). Unlike axiomatic or denotational semantics, operational semantics are typically runnable.

They are generally categorized into small step and big step operational semantics. The difference between

small and big-step operational semantics is illustrated by the example in Fig. 1.1, which compares small

and big-step evaluation semantics for the arithmetic expression (1 + 1) + (1 + 1). Small step operational

semantics formally define how the individual steps of a program are interpreted. The inference tree in

1



(1 + 1) + (1 + 1)

2 + (1 + 1)

2 + 2
4

(a) Small-step evalua-
tion semantics

1 ⇓ 1 1 ⇓ 1

(1 + 1) ⇓ 2

1 ⇓ 1 1 ⇓ 1

(1 + 1) ⇓ 2

(1 + 1) + (1 + 1) ⇓ 4

(b) Big-step evaluation semantics

Figure 1.1: Comparison of small vs big-step evaluation of an arithmetic expression.

Fig. 1.1a illustrates the small step approach to evaluating the given expression. The parenthesized sub-

expressions are each evaluated step by step until the value of the whole expression is determined.

On the other hand, big step operational semantics formally define what evaluation should yield rather

than exactly how evaluation should be done (Hennessy). An example of big-step evaluation of the arithmetic

expression (1 + 1) + (1 + 1) is shown in Fig. 1.1b. It demonstrates the evaluation logic with two main rules,

the first of which is the axiom that an integer should evaluate to itself (n ⇓ n). The second rule requires that

the sum of two expressions E1 and E2 be equal to the sum of the integers to which each of the expressions

evaluate (say n1 and n2 respectively). In other words, (E1 ⇓ n1 ∧ E2 ⇓ n2) → (E1 + E2) ⇓ (n1 + n2). The

use of such logic by big-step operational semantics leads to the determination of the result of a computation

without necessarily executing each individual step as is the case with small-step operational semantics.

Formalizing the semantics of programming languages using such approaches not only enables a

thorough and consistent description of such languages, but also enables rigorous research and reasoning

about the properties of the languages and their models. However, modeling the Java language and all

its supported features is a non-trivial undertaking. Different models include or exclude different features

based on the research objectives of their authors. Our research objective is to define formal model checking

algorithms for a formal model of the Java language and then prove properties about these algorithms. One

such algorithm is the slicing and dicing partial order reduction scheduler (Rungta and Mercer [2010]). It

searches for error traces in concurrent programs by scheduling threads using criteria that attempt to minimize

the number of interleavings that must be checked to reveal an error condition. We intend to show that this

algorithm is sound and complete. In this context, soundness means that the error traces it generates are

valid traces for the concurrent program whereas completeness means that the algorithm will always find an

error trace if there does exist one for a given concurrent program.

In order to create formal models of such algorithms and prove properties about them, we need formal

semantics of the Java language. These semantics need to be minimal enough to enable formal reasoning yet

concise enough to enable their results to apply directly to the Java language. Our thesis is that it is possible

to create an executable formalization of a Java-like language, and to prove its semantics deterministic and

2



public class Swap {

public boolean boo lFa l s e ;
public boolean boolTrue ;

public Swap ( ) {
boo lFa l s e = fa l se ;
boolTrue = true ;

}

public void swap ( ) {
boolean tmp = boolTrue ;
boolTrue = boo lFa l s e ;
boo lFa l s e = tmp ;

}
}

(a) A Java “Swap” Class Declaration

( class Swap extends Object
( [ bool bFalse ]

[ bool bTrue ] )

( ( Swap cons t ruc t ( ) ( begin
( this $ bFalse := fa l se )
( this $ bTrue := true )
this ) )

( un i t swap ( ) ( begin
( var bool tmp := ( this $ bTrue ) in

( begin
( this $ bTrue :=

( this $ bFalse ) )
( this $ bFalse := tmp)
) )

un i t ) ) ) )

(b) A Javalite “Swap” Class Declaration

Figure 1.2: Comparison of Java and Javalite class declarations.

automatically generate an interpreter for it. Consequently, we create Javalite (an operational semantics of

the Java language) to facilitate rapid prototyping of model checking algorithms and proofs about them.

Javalite supports the following Java features: classes, fields, and methods, inheritance, typecasts, dynamic

dispatch, field hiding, local variables, and program state. Javalite is based on the CEKS machine (Felleisen

et al. [1987]) and defines a Java-like syntax in which programs are written as well as a set of reduction

rules for syntactically executing Javalite programs. A comparison of Java and Javalite’s syntax is shown

is Fig. 1.2. Having created the Javalite semantics, we can then modify them to facilitate researching the

model checking algorithms we are interested in. For the partial order reduction scheduler, our approach will

be to augment the Javalite semantics with concurrency related primitives and semantics (such as threads

and schedulers respectively) and then show that the partial order reduction scheduler’s semantics are sound

and complete i.e., show that any possible Javalite trace has a corresponding trace in the augmented Javalite

partial order reduction semantics.

We create the Javalite semantics using the following approach. First, we rapidly prototype Javalite’s

semantics in PLT Redex. PLT Redex is a tool that simplifies the process of creating prototypes of models by

supporting semantics engineering tasks in domain-specific notations (Felleisen et al. [2009]). A key advantage

of this prototyping process is that it is simpler than creating a complete model in a programming language like

Java. The semi-formal PLT Redex Javalite model can then be used to prototype model checking algorithms,

e.g. a new symbolic execution algorithm that operates by redefining Javalite’s language features (such as

the new operator, field references, and so on) is currently in the works.

Although the Javalite Redex models represent the functionality of Java well, the PLT Redex envi-

ronment is not designed for proving properties about models. Such formal proof environments are typically

3



more involving but rigorous. Therefore, we translate the PLT Redex semantics of both Javalite and the

augmented Javalite (which models the algorithms of interest) into equivalent models in Coq. Coq is a formal

proof management system that provides a formal language to write mathematical definitions, executable

algorithms and theorems together with an environment for semi-interactive development of machine-checked

proofs (The Coq development team [2010]). With the Coq formal model, research can now be performed on

a variety of algorithms based on the Java language including optimization algorithms, code transformation

algorithms, and static analysis algorithms. We will use the formal Coq Javalite model to prove the soundness

and completeness of the aforementioned partial order reduction scheduler.

The scope of this thesis is the definition of the deterministic sequential Javalite semantics, the

translation of these semantics into the Coq theoreom prover, and the writing of the proof that the semantics

are indeed decidable and deterministic. The rest of this thesis is organized as follows: Chapter 2 reviews

related Java models. Chapter 3 discusses the PLT Redex Javalite model. Chapter 4 then presents the Coq

Javalite model as well as some of the properties that we have proved about Javalite using the Coq theorem

prover. It also discusses the implications of these theorems. Chapter 5 summarizes the approaches we used

and the significance of the models presented then discusses possible avenues of future work.

4



Chapter 2

Related Work

Different models of Java-like languages have been created to reason about various features of the

Java langauge. Usually, complex features are excluded from these mini-languages to simplify (or even enable)

the task of reasoning about language features and semantics. Some of these models of Java are shown in

Table 2.1, which compares the sets of features supported by each of the models.

Table 2.1: Comparison of Language Features Supported by Java Models

Feature Featherweight Java Lightweight Java Welterweight Java Classic Java Javalite

Classes X X X X X
Fields X X X X X
Methods X X X X X
Inheritance X X X X X
Typecasts X - X X X
Dynamic Dispatch X X X X X
Field Hiding X - X X X
Side Effects/State - X X X X
Executable - - - - X
Local Variables - - X X X
Interfaces - - - X -
Concurrency - - X - -
Exceptions - - - - -
Reflection - - - - -

Featherweight Java is billed by its authors as a minimal core calculus for modeling Java’s type

system. It omits almost all features of Java including interfaces and (more critically) assignment to enable

straightforward yet rigorous proofs (Igarashi et al. [2001]). However, it still provides classes, methods, fields,

inheritance, and dynamic typecasts. There is also an extension to it that supports generics (Featherweight

Generic Java). Featherweight Java can be viewed as a purely functional subset of Java. Consequently,

it does not need to model the heap and the order of evaluation of expressions does not affect programs.

Featherweight Java therefore uses a non-deterministic small-step reduction relation. Its authors present

a proof of type safety for Featherweight Java. A lot of work on language models for researching various

programming language features is based on FeatherWeight Java. Igarashi et al, for instance, present union

types for statically typed class-based object-oriented languages in order to enhance the flexibility of subtyping

(Igarashi and Nagira [2006]). They formalize their idea on top of Featherweight Java in order to prove their

type system sound.

5



Although functional calculi like Featherweight Java are more convenient for studying various prop-

erties, they are not suitable for certain types of studies. It has been shown in the study of type systems,

for example, that traditional treatment of existential types is sound for Featherweight Generic Java but

unsound for Java itself (Summers [2009]). More accurate models of Java therefore require the concept of

program state. In addition to allowing for possibly unsound scenarios (in relation to the full Java language),

functional core calculi cannot (by their nature) be used for the analysis of language features dependent on

state. Separation logic, for example, is an extension of Hoare logic that simplifies reasoning about low-level

imperative programs that use shared mutable data structures (Reynolds [2002]). The imperative nature of

the programs being reasoned about naturally demands that program state be a part of the model. Func-

tional calculi are therefore not directly applicable to separation logic. State is an essential component of the

Javalite model we present in this paper. The Javalite model therefore captures a larger subset of behaviors

possible in Java programs than the functional calculi. Unfortunately, modelling state also results in more

effort expended in maintaining the rigorousness of any proofs about the model.

There are imperative models of the Java language that also account for state, for example,

Lightweight Java (Strnǐsa et al. [2007]). It supports the standard object-oriented features such as classes,

fields, methods, inheritance, and dynamic method dispatch. Since it serves as the base langauge for the

formalization of module systems, it excludes support for local variables, field hiding, interfaces, and method

overloading since these are orthogonal to the module system (Strnǐsa et al. [2007]). We consider many of

these features to be important for our goal of studying model checking algorithms because supporting them

vastly increases the variety of programs that can be reasoned about. A comparison of the features sup-

ported by Javalite, Lightweight Java, and other models of the Java language is shown in Table 2.1. Unlike

Lightweight Java (and the other semantics), a key feature of Javalite is that its semantics are executable and

it has a formally verified implementation.

Welterweight Java is another semantics that attempts to create an alternative to FeatherWeight Java

by modelling imperativeness and program state (Östlund and Wrigstad [2010]). It is similar to LightWeight

Java but also models Java’s thread-based concurrency and lock-based synchronization. It is noteworthy

that Javalite does not support these concurrency and synchronization features. Also noteworthy is the fact

that Welterweight Java’s stated objective is to serve as a completely minimal core calculus. It intentionally

excludes expressions such as if-statements, equality tests, and instance-of expressions. In addition to this,

Welterweight Java’s semantics are not executable. Javalite, on the other hand supports the aforementioned

expressions since it will serve as the base language for model checking algorithms that deal with language

features such as branching. As mentioned earlier, Javalite’s semantics are also executable, which enables

rapid prototyping of extensions to the model.

6



ClassicJava (Flatt et al. [1999]) is a small subset of sequential Java with syntax and semantics

modeled using Scheme and ML rewriting techniques. It supports interfaces, which Javalite does not because

Javalite’s objective is to provide a semantics that captures the overall semantics of Java while still remaining

minimal enough to simplify reasoning about it. Moreover, interfaces are mainly related to the type system

(which Javalite does not support) and do not have significant runtime behavior (other than through reflection,

which neither ClassicJava nor Javalite support). Javalite’s lack of interface support means that the process

of converting classes that implement multiple interfaces to Javalite would be more tedious. Nonetheless,

Javalite supports inheritance and its semantics can be readily extended to support interfaces. Something the

two semantics have in common is that their evaluation rules are defined in terms of individual expressions.

It is noteworthy, however, that Javalite does not yet have a type-checker. Unlike ClassicJava, however, we

present a formal proof (in the Coq theorem prover) of the decidability and determinism of Javalite. We use

reduction relations for modeling evaluation of Javalite programs in Coq in a fashion similar to the operational

semantics of the simplified language, “Imp”, in the Software Foundations tutorial for the Coq theorem prover

(Pierce et al. [2012]).

Another imperative class-based language is used in the design of a type system for Java-like languages

that enforces the exception-safety strong guarantee (Lagorio and Servetto [2010]). The idea is that exceptions

should be thrown without causing visible side effects to the caller. The minimalistic language used by Lagorio

and Servetto lacks inheritance and casts, but naturally supports exception handling. For their purposes,

inheritance and casting are uninteresting for their model. However, our Javalite model supports these two

features because they are an essential part of most Java programs, which therefore minimizes the distance

between our model and the actual Java language while still enabling our objective of formal reasoning about

the model and algorithms based on it. We currently do not model exceptions as part of this work but they

can be readily added to our formalism.

Defining semantics is also necessary in the verification of concurrent software. As an example,

Flanagan et al describe how thread-modular and procedure-modular reasoning can be combined to verify

concurrent programs (Flanagan et al. [2005]). In this work, the authors define a language called Plato

to avoid the complexity of reasoning about programs in complex languages like Java and use it in their

discussion of their verification methodology. They use a tool that parses Java programs into abstract syntax

trees which are then translated into an intermediate language that can express their Plato syntax since

verification conditions are handled by external tools. As mentioned earlier, our research objective is to

enable rigorous reasoning about model checking algorithms such as symbolic execution and partial order

reduction algorithms. We therefore created the Javalite model with executable semantics, which none of

7



the other models possess. We hope to extend our Javalite model with concurrency to support partial order

reduction algorithms and proofs.

Another type of analysis that is performed on programs is pointer analysis. Smaragdakis et al

introduce the concept of full-object-senstitive analysis as a candidate for replacing previous object-sensitive

analyses (Smaragdakis et al. [2011]). In order to evaluate these analyses, the authors formalize them using an

abstract interpretation over FeatherWeight Java in A-Normal Form (ANF). ANF was introduced by Flanagan

et al. in 1993 and requires that all arguments to functions be trivial, meaning that the arguments are reduced

to variable lookups for values. ANF is common for language compilation and is a standard transformation to

most languages. It is typically called single-static assignment form. Smaragdakis et al. use ANF to simplify

the language semantics for points-to analysis. Their base language is therefore imperative. The formal Coq

model of Javalite that we present also uses ANF in order to simplify its method invocation expression and

therefore simplify proofs about the model. Smaragdakis et al use a small-step state machine. Javalite is also

imperative and also uses a small-step state machine. Consequently, Javalite would be a suitable language for

the formalization of pointer analysis performed by Smaragdakis et al because in addition to being imperative,

it also uses a heap whose mappings from locations to objects provides sufficient context information for their

analysis.

8



Chapter 3

PLT Redex Model

PLT Redex is a tool that supports semantics engineering tasks in domain-specific notations and

also includes a suite of tools embedded into PLT Racket (Felleisen et al. [2009]). It enables the creation

of semi-formal but runnable semantics. One of the key advantages of PLT Redex is that it accelerates the

prototyping process by enabling low effort creation, testing, and debugging of models. It is then easier to

discover potential issues with a model before attempting to prove properties about it (Klein et al. [2012]).

Similarly, we first present a semiformal model of Javalite in PLT Redex and then formalize that model in

Coq. Our model of the Java language is called Javalite. This chapter presents the semi-formal PLT Redex

Javalite model.

Javalite is an imperative model of Java and its feature set relative to Java is summarized in Table 2.1

in Chapter 2. The most notable omissions from the Java language are concurrency, interfaces, exceptions,

and integers. We have left the implementation of these features for future work. The semi-formal PLT Redex

implementation of Javalite is composed of three main parts: its surface syntax, its machine syntax, and its

operational semantics. Its operational semantics are defined using the structure of the language only (i.e.

its syntax). Javalite is therefore considered a syntactic machine. A syntactic machine is comparable to a

computer because it has states and deterministic instructions that take it from one state to another. However,

it also differs from a computer because it uses programs as states and reductions as instructions (Felleisen

et al. [2009]). A reducible expression in a program is called a redex and the text surrounding a redex is

called its context. The reduction rules of rewriting systems (such as the Javalite syntactic machine) determine

which of a program’s redexes should be reduced to some term. We now present the main components of

Javalite in the next sections.

3.1 Javalite Surface Syntax

Javalite programs and expressions are written in a syntax specified by the grammar in Fig. 3.1. Ellipses

in a production of a PLT Redex grammar represent a possibly empty sequence of instances of the symbol

immediately preceding them. The notation Y ..., for example, represents zero or more instances of the

9



symbol Y. The production rules of grammar 3.1 correspond to the various features supported by Javalite

such as classes, fields, methods, and expressions. The production M → (T m ([T x] ...) e), for example,

declares that a method M is defined by a return type T, a method identifier m, a list of argument declarations

(each of which is defined by a type T and some formal argument name x ), and a method body e.

Javalite’s primitive types are unit (which is equivalent to Java’s void type) and bool, which has the

values true and false. Javalite does not include the notion of integers or floating point numbers. However, it

is still Turing complete. The non-primitive type of Javalite is the class type C. Its value is a pointer. Javalite

objects are stored in a heap and are accessed through references as is done in Java. These references are the

pointer values in Javalite. These pointer values are typed, meaning that they specify both the location of

an object on the heap as well as the type of the object. Pointers are defined by the rule pointer ::= (addr

loc C) | null where loc is a numeric heap location and C is the class identifier specifying the type cast of the

object. Javalite also supports the following statements which have the usual semantics.

x : A variable reference which can also be the reserved keyword this.

v : A value which can be unit, a boolean, or a typed pointer as discussed previously.

(new C) : The new operator allocates space on the heap for the fields of the class C being instantiated

then writes the default values of each of the fields into their corresponding locations on the heap.

(e $ f) : A field access operation where e evaluates to a pointer to an object.

(e @ m (e ...)) : An invocation of the method m on the object referenced by the pointer obtained by eval-

uating the first expression e. The parenthesized list of expressions are the arguments of the invocation.

(e == e) : The equality operator compares any two expressions for equality and evaluates to a boolean

value.

(C e) : The cast operator whose argument e evaluates to a pointer which is then cast to type C.

(e instanceof C) : The instance-of operator determines whether expression e evaluates to a pointer to an

instance of class C.

(x := e) : The assignment to identifier x of the value that expression e evaluates to.

(x $ f := e) : Field assignment (to a field f of some object identified by x) of the value to which expression

e evaluates.

(if e e else e) : A branching operation whose predicate is the first expression and whose targets are the

subsequent expressions.

10



P ::= (μ (C m))

μ ::= (CL ...)

T ::= bool

 | unit

 | C

CL ::= (class C extends C ([T f] ...) (M ...))

M ::= (T m ([T x] ...) e)

e ::= x

 | v

 | (new C)

 | (e $ f)

 | (e @ m (e ...))

 | (e == e)

 | (C e)

 | (e instanceof C)

 | (x := e)

 | (x $ f := e)

 | (if e e else e)

 | (var T x := e in e)

 | (begin e ...)

x ::= this

 | id

f ::= id

m ::= id

C ::= Object

 | id

id ::= variable-not-otherwise-mentioned

pointer ::= (addr loc C)

 | null

v ::= pointer

 | true

 | false

 | unit

 | error

loc ::= number

Figure 3.1: The Javalite surface syntax as defined in PLT Redex.

(var T x := e1 in e2) : The variable declaration statement represents the evaluation of an expression e1

whose value is then assigned to a newly created variable with identifier x. The scope of the variable is

the expression e2 and this expression is evaluated next.

(begin e ...) : A list of expressions to be evaluated in left-to-right order.

Note that Javalite does not support explicit looping constructs. Iteration is therefore only possible using

recursion.

As an illustration of the Javalite syntax, a sample syntax-highlighted Javalite class declaration (CL)

is shown in Fig. 3.2. The example presented is of the class named Swap (presented in Chapter 1) that

extends the base class Object. The keyword Object is a reserved word in Javalite. As per the C := Object |

11



Figure 3.2: A simple Javalite program.

id production in Fig. 3.1, Javalite class identifiers can be either the keyword Object or a Javalite identifier.

The production for identifiers (id) uses the special PLT Redex keyword variable-not-otherwise-mentioned to

indicate that an identifier can be any symbol not used as a terminal in the grammar. The declaration of

the Swap class is an instantiation of the class declaration production CL ::= (class C extends C ([T f] ...)

(M ...)). This production represents the fact that some class CL has two class identifiers (its own as well as

its parent’s), a list of fields f of types T , and a list of method declarations defined according to the syntax

specified by the non-terminal M . The Swap class has two fields (bFalse and bTrue), a method that performs

field initialization (construct), and a swap method.

Other than the surface syntax, there are some important differences between Java and Javalite’s

semantics. First, Javalite does not have an explicit return statement. Instead, the last subexpression in a

method’s body expression is considered the return value. In the Swap program in Fig. 3.2, for example,

the construct method’s last expression is the object this, which is then the return value of the method. In

addition to this, the swap method has a return type of unit. This means that the expression unit is the

only valid return value and must be the last subexpression of the method body. This differs from Java’s

approach, which entirely excludes a return expression for void return types.

Unlike Java, Javalite does not have the concept of constructors. Consequently Javalite’s new operator

does not invoke any method. It only initializes the new object’s locations on the heap with their default

values. This is in contrast to Java’s new operator which invokes the class constructor of the newly created

object in addition to initializing its fields to their default values. When Java programs are translated into

12



Figure 3.3: Components of a Javalite state and their CEKS equivalents.

Javalite, Java constructors have to be created as a separate method which must be explicitly invoked. We

currently use a naming convention that picks a unique name (typically “construct”) for the Javalite equivalent

of the constructor. Despite these differences between Java and Javalite, the process of converting between

them could easily be performed automatically.

3.2 Javalite Machine Syntax

Javalite uses a variant of the CEKS syntactic machine (Felleisen et al. [1987]) for its operational semantics.

A CEKS machine has four major components. A control string (C), an environment (E), a continuation

(K), and a store (S). The control string is a program, command, or instruction to be evaluated. Initially,

the entire program is the control string. An environment is a finite mapping from variables to locations

whereas a store is a finite mapping from locations to closures (i.e. to values) (Felleisen et al. [2009]). To look

up the value of a variable, its location is determined from the environment mapping E in order to retrieve

its value from the store S. A continuation K is a last-in-first-out data structure that saves the contexts of

redexes as they are evaluated to values which can then fill the holes in the contexts.

Our Javalite semantics are closely modeled after a CEKS machine. The various components of a

Javalite state are shown in Fig. 3.3. The expression e is equivalent to a CEKS machine’s control string. The

program heap h, the local environment η, and the continuation k are equivalent to a CEKS machine’s store,

environment, and continuation respectively. The Javalite program state has an additional component (the

class list µ), which is equivalent to the source code of all classes used by the program. All these components

of a Javalite program state are defined syntactically by a grammar in PLT Redex. This grammar is an

extension of the surface syntax grammar and is shown in Fig. 3.4. The next sections present these Javalite

program state components as well as their structure and functionality.

13



e ::= ....

 | (raw v @ m (v ...))

object ::= ((C [f loc] ...) ...)

hv ::= v

 | object

h ::= mt

 | (h [loc -> hv])

η ::= mt

 | (η [x -> loc])

state ::= (μ h η e k)

k ::= ret

 | (* $ f -> k)

 | (* @ m (e ...) -> k)

 | (v @ m (v ...) * (e ...) -> k)

 | (* == e -> k)

 | (v == * -> k)

 | (C * -> k)

 | (* instanceof C -> k)

 | (x := * -> k)

 | (x $ f := * -> k)

 | (if * e else e -> k)

 | (var T x := * in e -> k)

 | (begin * (e ...) -> k)

 | (pop η k)

Figure 3.4: The Javalite machine syntax as defined in PLT Redex.

3.2.1 The Heap (h):

The Javalite heap is a mapping of locations (integers) to objects. It is defined by the production h ::= mt

| (h [loc → hv]) in Fig. 3.4 in which the symbol mt represents an empty heap. The definition is recursive

since a mapping of a location to a heap value [loc → hv] is paired with a heap definition h, which is either

the mt symbol or a heap definition containing other location mappings. An example of a heap as defined by

the machine syntax is the expression (((mt [0 → true]) [1 → (Object)]) [2 → false]). Locations 0 and 2 are

mapped to boolean values while location 1 is mapped to an instance of the base class Object. In Javalite,

both class fields and local variables are stored on the heap. Therefore, the mappings in the sample heap just

presented could be for either fields or locals.

An important attribute of Javalite heaps is that they are always in canonical form. This means that

identical objects map to exactly the same heap location (Iosif [2001]). This canonical ordering ensures that

heap entries are differentiated by their structure and shape as opposed to their location on the heap. We

have also implemented a garbage collector for Javalite. Since these operational semantics are runnable, it

serves to contain the state space explosion problem by implementing the aforementioned canonicalization

scheme. It runs after a configurable number of transitions of the state machine, performing a mark and

sweep collection. The garbage collector is also responsible for applying the canonicalization transformations

14



class f oo {
}

class Asse r t i on {
public stat ic void main ( St r ing [ ] a rgs ) {

f oo a = new f oo ( ) ;
f oo b = new f oo ( ) ;

a s s e r t ( a != b ) ; // This a s s e r t i o n i s v a l i d in Java , but not in J a v a l i t e
}

}

Figure 3.5: A sound Java assertion that does not hold in Javalite.

of the heap for heap symmetry. The canonical order is based on the number of fields in objects. Objects

with fewer fields are assigned lower numeric heap locations than objects with more fields. Ties are broken

between objects with the same number of fields by using the lexicographical ordering of the field names.

Therefore, the entire heap is sorted by number of fields and their lexicographical ordering. The garbage

collector also applies hash consing, a technique that ensures that different objects with the same future all

map to the same heap location. This means that two instances of a class without fields are equal as shown

in Fig. 3.5. This is a deviation from Java’s semantics in which creating more than one new instance of a

class that has no fields will always yield unique heap references. In Javalite, creating more than one new

instance of a class with no fields yields the same heap references.

An important aspect of the heap is its storage format. The format of objects on the heap is

determined by the grammar production object ::= ((C [f loc] ...) ...) in the machine syntax definition. An

object is stored as a list of the classes in its hierarchy, each of which is grouped with its fields and their

corresponding heap locations. This format makes it easy to implement the instance-of and cast operators

since heap entries contain type information.

3.2.2 The Local Environment

Since local variables are stored on the heap, the local environment (η) is a mapping from local variables

to heap locations. It is defined by the production η ::= mt | (η [x → loc]) in the machine syn-

tax grammar. The symbol mt represents an environment without any local variable declarations. Non-

empty environments are defined recursively using a tuple of the form (η [x → loc]) where each mapped

variable [x → loc] is paired with a previously defined (possibly empty) local environment. Consider a

method that declares three local variables A, B, and tmp, of type Object. Its local environment would be

(((mt [A → 0]) [B → 1]) [tmp → 2]) where the locations 0, 1, and 2 represent the appropriate numeric

15



locations where the corresponding variables are stored on the heap. Whenever the value of a local variable is

needed, its heap location is looked up from the local environment and then a heap-lookup of the determined

location is performed to obtain the value of the local variable.

3.2.3 The Continuation (k)

The continuation k in a Javalite program state represents the computation to be performed after the control

string has been evaluated. The value resulting from the evaluation of a control string may have been required

as an intermediate value of another computation. If this is the case, then such a pending computation (the

continuation) is described as having a hole. Holes are marked with asterisks in the continuation productions

as shown in the Javalite machine syntax in Fig. 3.4. Continuations can also be chained using the arrow

symbol →. The syntax a → b means that the continuation a will be computed followed by continuation b.

We present a brief overview of Javalite’s continuations next.

(∗ $ f → k) : Reducing the current expression to an object in preparation for a field access before con-

tinuing with k.

(∗ @ m (e ...) → k) : Reducing the current expression to the object on which method invocation will be

performed.

(v @ m (v ...) ∗ (e ...) → k) : Evaluating the current expression as an argument to a method invocation.

(∗ == e → k) : Reducing the left operand of the equality operator to a value.

(v == ∗ → k) : Reducing the right operand of the equality operator to a value.

(C ∗ → k) : Reducing the current expression to an object for casting to an instance of C.

(∗ instanceof C → k) : Reducing the current expression to an object on which to check membership in

the class hierarchy of C.

(x := ∗ → k) : Evaluating an expression for assignment to a variable.

(x $ f := ∗ → k) : Reducing the expression for assignment to a field.

(if ∗ e else e → k) : Reducing the expression to a boolean value which is the predicate of an if-

statement.

(var T x := ∗ in e → k) : Reducing an expression for assignment to a local variable.

(begin ∗ (e ...) → k) : Reducing an expression in a list of expressions to be reduced.

(pop η k) : Restoring the local environment η before continuing with k.

Having discussed Javalite’s surface and machine syntax, we now present a discussion of its reduction rules.

16



Figure 3.6: The relationship between transition relation and the reduction relation.

3.3 Reduction Rules

Javalite’s operational semantics are based on the concept of evolving program state. Consequently, they can

be represented as a transition relation on states. This transition relation is encoded as a set of reduction

rules that transform one state into another. An overview of this process is shown in Fig. 3.6. The individual

state components of the initial state on the left are reduced by the reduction rule to new components in the

resultant state on the right.

An example of the evolution of states by the reduction rules is shown in Fig. 3.7, which shows the

full state of a Javalite program defined by the state production in the machine syntax as well as a new state

to which it is reduced. The initial state shown on the left has a raw method invocation, meaning that a

method (swap) is being invoked on a typed pointer into the heap. Therefore a location in the heap needs

to be allocated for the object reference this (since the object pointed to by this depends on the invoked

method). Location 10 is allocated and the typed pointer being used for the method invocation is written

to that location. Next, a mapping of the local environment variable this to the allocated location (10) is

created. Note that a new local environment η1[this→ 10] is created. η1 inherits all the mappings of η and

adds this new mapping.

For a method call, the control string invoking a method is replaced with the control string of the

target method. The continuation after a method call simply restores the previous local environment η. This

is the continuation pop η k. Continuations are stacked as various operations unfold. Recall that all these

transformations of the control string and the continuation stack are purely syntactic operations defined by

a transition relation which is implemented as a set of rewriting rules. Following below is a discussion of all

the Javalite reduction relation rules.

17



Figure 3.7: Reduction from initial state at a method invocation.

Variable Access Rule. Javalite’s reduction rules are defined by a Redex pattern and expression. The

pattern describes redexes and their contexts (Felleisen et al. [2009]) and is displayed on the first line of the

rule. The expression determines the result of a use of such a rule on a specific expression and is displayed

on the second line. For the variable access rule shown below, the pattern is the state (µ h η x k) whereas

the expression is the state (µ h η v k).

(μ h η x k)  [variable access]

(μ h η v k)

 where v = h-lookup[[h, η-lookup[[η, x ]] ]]

Each rule also has an assigned name displayed in square brackets on the first line of the rule. For

side conditions required for a successful pattern match, a where clause is included after the rule’s expression.

Such side conditions may use meta-functions, which are mathematical functions on the entities within the

model (Felleisen et al. [2009]). h-lookup and η-lookup are examples of meta-functions in the variable access

rule. The complete listing of Javalite’s meta-functions is presented in Appendix A.

The variable access rule states that for the state (µ h η x k) (whose control string x is a variable

identifier) it will first look up the identifier in the local environment η to determine its heap location using

the η–lookup meta-function. The resultant heap location is then passed to h-lookup to find the variable v

which the identifier x refers to on the heap h. The application of this rule then yields a new state whose

control string is the variable found on the heap.

18



Class Instantiation Rule. The class instantiation expression (new C) indicates that a new object needs

to be created on the heap. The new object creation rule proceeds as follows. It calls the fields-parents+self

meta-function to create a list of fields for each class in the hierarchy of class C. fields-parents+self returns

a hierarchical (nested) list of the form (([T0 f0] ...) ...). The ith component of this nested list is the field

declaration list of the ith class in the hierarchy of C.

(μ h η (new C) k)  [new]

(μ h1 η (addr loc1 C) k)

 where (([T0 f0] ...) ...) = fields-parents+self[[μ, C ]] , 

(C0 ...) = class-parents+self[[μ, C ]] , 

((v0 ...) ...) = (default-value*[[(T0 ...) ]]  ...), 

(number0 ...) = (get-length[[(T0 ...) ]]  ...), 

((loc0 ...) ...) = h-malloc-n*[[h, number0, ... ]] , 

object = (C (C0 [f0 loc0] ...) ...), 

h0 = h-extend*[[h, [loc0 -> v0], ..., ... ]] , 

loc1 = h-malloc[[h0 ]] , 

h1 = h-extend*[[h0, [loc1 -> object] ]]

As mentioned earlier, field values are stored on the heap. In order to allocate heap locations for

each field of the object, the get-length meta-function is used to compute the length of the field list of each

class. These lengths are then passed to the h-malloc-n* metafunction which allocates enough heap locations

for all the fields in the hierarchy of the object. Since these locations must be initialized with their default

values, the class instantiation rule also calls the default-value* meta-function to create a hierarchial list of

the default values of each of the fields in the new object’s class hierarchy. Recall that the storage format of an

object on the heap is defined by the grammar production object ::= ((C [f loc] ...) ...) in the machine syntax

definition. A list of the actual class identifiers in the hierarchy is therefore required. This list is created by

the call to the class-parents+self meta-function. The object to be stored on the heap is then created by the

assignment object = (C(C0 [f0 loc0] ...) ...), which groups all the fields by their class identifiers and lists

each of the fields with its allocated heap location.

Note that the Javalite heap allocation functions return new unused heap locations. They do not

alter the passed in heap. A new heap h0 is therefore explicitly created by extending the input heap with

mappings from each of the allocated field locations to the default values of the corresponding fields. The

reduction rule also calls h-malloc on the newly created heap h0 to allocate a new location loc1 to point to

the newly created object. It then extends heap h0 to include a mapping from the new location loc1 to the

newly created object. The reduction rule finally creates a new state (µ h1 η (addr loc1 C) k) using the new

heap h1 and a new (pointer) expression (addr loc1 C) containing the location of the newly created object.

19



Field Access Rule. For a field access expression e $ f, the object e must be evaluated before the field

access can be performed. Therefore, the field access - object evaluation reduction rule creates a new state

whose control string is the expression e.

(μ h η (e $ f) k)  [field access - object eval]

(μ h η e (* $ f -> k))

(μ h η (addr loc C) (* $ f -> k))  [field access]

(μ h η v k)

 where object = cast[[h-lookup[[h, loc ]] , C ]] , 

loc0 = field-lookup[[object, f ]] , 

v = h-lookup[[h, loc0 ]]

When a state’s continuation is a field access continuation (∗ $ f → k), a pointer expression control

string (addr loc C) indicates that the field access can proceed since the pointer expression specifies the

object on which to perform the field access. In this scenario, the field access reduction rule retrieves the

object at the location loc on the heap by calling h-lookup. It then casts the retrieved object to an instance

of class C and determines the location loc0 on the heap where field f is stored by calling the field-lookup

meta-function. The rule then calls h-lookup to retrieve the value of field f stored at loc0. The field access

reduction rule creates a new state (µ h η v k) whose control string is the newly found value v. Since the

field access operation is complete, it also restores the continuation k in the new state.

Method Invocation Rules. In a method invocation expression (e0 @ m (e1 ...)), the object eval rule

is used to evaluate the subexpression e0 on which the method is being invoked. To indicate that method

invocation must be performed after this expression is evaluated, the rule creates the method invocation

continuation (∗ @ m (e1 ...) → k), which contains the method identifier and arguments as well as the original

continuation k that indicates the compuation to be performed after the method invocation completes.

20



(μ h η (e0 @ m (e1 ...)) k)  [method invocation - object eval]

(μ h η e0 (* @ m (e1 ...) -> k))

(μ h η v (* @ m (e0 e1 ...) -> k))  [method invocation - arg0 eval]

(μ h η e0 (v @ m () * (e1 ...) -> k))

(μ h η vi (vo @ m (va ...) * (e0 e1 ...) -> k))  [method invocation - argi eval]

(μ h η e0 (vo @ m (va ... vi) * (e1 ...) -> k))

(μ h η vo (* @ m () -> k))  [method invocation - no args]

(μ h η (raw vo @ m ()) k)

(μ h η v1 (vo @ m (v0 ...) * () -> k))  [method invocation - args]

(μ h η (raw vo @ m (v0 ... v1)) k)

Once the expression on which a method invocation is being performed has been evaluated to an

object, the resultant state is of the form (µ h η v (∗ @ m (e0 e1 ...) → k)). The argument expressions

e0, e1, ... need to be evaluated next. The method invocation - arg0 eval reduction rule therefore starts the

execution of e0 by creating a new state whose the control string is e0. It then creates an argument evaluation

continuation (v @ m ()∗ (e1 ...), which contains the information required to continue the method invocation

operation after the first argument expression has been evaluated. This continuation holds the object on

which the method is being invoked, the method identifier, and the rest of the argument expressions that still

need to be evaluated. Note the position of the hole in this continuation. It occurs immediately after the

empty parentheses and this indicates that the value of the first argument will be the first value to be added

to the method’s argument list. If more than one argument is being passed to the method m, the remaining

arguments are evaluated by the argi eval rule. This rule creates a new state whose control string is the next

argument to be evaluated and whose continuation includes the value vi of the last argument.

In the absence of arguments to the method being invoked, the no args reduction rule generates a

state with an argument-less raw method invocation expression. In a raw method invocation, all the argument

expressions have been evaluated. In the args rule, for example, all the final argument expressions have just

been evaluated yielding the value v 1. Since the method can now be invoked, the rule creates a state whose

control string is a raw method invocation and whose continuation k is the operation that succeeds the method

invocation.

Raw Method Invocation. A raw method invocation expression is comprised of a pointer, a method

identifier, and a list of primitive values (arguments). In order to syntactically evaluate a raw method

invocation, we need to perform a virtual method lookup to determine the appropriate class in the hierarchy

21



on which the method should be invoked. The first requirement is a list of class identifiers in the hierarchy of

the class C on which the method is being invoked. This list is created by retrieving the object on which the

call is being invoked (using the h-lookup metafunction) and passing this object to the class-list-from-object

meta-function.

(μ h η (raw (addr loc C) @ m (vx ...)) k)  [raw method invocation]

(μ h0 η0 em (pop η k))

 where (C0 Cp ...) = class-list-from-object[[h-lookup[[h, loc ]] ]] , 

(any0 ... (Ct (xm ...) em) error ...) = (method-lookup[[class-lookup[[μ, Cp ]] , m ]]  ...), 

(loco locx ...) = h-malloc-n[[h, (add1 (length (vx ...))) ]] , 

h0 = h-extend*[[h, [loco -> (addr loc Ct)], [locx -> vx], ... ]] , 

η0 = η-extend*[[η, [this -> loco], [xm -> locx], ... ]]

The virtual method lookup is then performed by calling the method-lookup meta-function on each of

the class declarations for each class identifier in the hierarchy of C. Class declarations for a class identifier are

retrieved by the class-lookup meta-function. method-lookup returns the class identifier, method argument

names, and method body of the class if the specified method is defined for the specified class identifier.

Otherwise, it returns the error keyword. The syntax (any0 ... (Ct (xm ...)em) error ...) selects the appropriate

virtual method from this list since the method immediately preceding the trailing list of zero or more error

values is the virtual method closest in the hierarchy to the class C.

Now that the exact method being invoked is known, we need to allocate heap locations for the

arguments to the method and the reference this (recall that all variables, fields, and arguments are stored

on the heap). The number of locations for the arguments and the object this is computed by the expression

(add1 (length (vx ...)) locations) and is passed to the h-malloc-n meta-function, which returns a list of new

heap locations for the respective arguments. These locations are then mapped to the arguments and the

object this by a call to the h-extend* meta-function which returns a new heap h0.

A new local environment η0 is also created by extending the initial environment η with bindings

for the arguments and the reference this. The reduction rule then creates a new state containing the new

heap h0 and the new local environment η0. The rule also replaces the raw method invocation control string

with the control string em representing the body of the virtual method being invoked. The continuation

of the new state is the (pop η k) continuation which will restore the pre-invocation local environment and

continuation (η and k respectively) after the method invocation evaluation is complete.

Equals Rules. The equality testing expression (e0 == e) requires the evaluation of the expressions on

both sides of the equality. The l-operand eval and r-operand eval rules shown below initiate the evaluation

of the left and right expressions respectively. Once the right hand side expression e has been evaluated to

22



a value v0, the Racket equal? function is used to compute the result of the comparison. The resultant

Racket boolean value is converted to a Javalite boolean value vres by the –>bool meta-function. The equals

reduction rule then restores the original continuation k since the comparison is complete.

(μ h η (e0 == e) k)  [equals - l-operand eval]

(μ h η e0 (* == e -> k))

(μ h η v (* == e -> k))  [equals - r-operand eval]

(μ h η e (v == * -> k))

(μ h η v0 (v1 == * -> k))  [equals]

(μ h η vres k)

 where vres = (->bool (equal? v0  v1))

Typecast Rules. The evaluation of a type cast expression (C e) is initiated by evaluating the expression

e to a pointer value. As expected, the typecast - object eval rule shown below creates a new state with e as

the control string and a typecast continuation (C * → k). Recall that Javalite pointers are typed and that

the heap storage format for an object includes all the classes and their fields in the hierarchy of an object.

Once the expression is evaluated to some pointer value (addr loc C0), there are two operations that need to

be performed by the typecast rule. First, the object refered to by the pointer needs to be retrieved (using

the h-lookup meta-function) to ensure that the cast operation is valid (class C1 to which we are casting

must be in the hierarchy of the pointer’s current class C0). The cast? meta-function returns a boolean

value indicating whether the cast can be performed. Next, the reduction rule needs to create the new state

(µ h η (addr loc C1) k) whose control string is a pointer to the same heap location loc but of the cast type

C1, completing the cast operation.

(μ h η (C e) k)  [typecast - object eval]

(μ h η e (C * -> k))

(μ h η (addr loc C0) (C1 * -> k))  [typecast]

(μ h η (addr loc C1) k)

 where object = h-lookup[[h, loc ]] , 

(cast? object  C1)

Instanceof Rules. An instance-of expression (e instanceof C) evaluates to a boolean value. The object

eval rule presented below initiates the evaluation of expression e. Once e has been evaluated to a pointer

value (addr loc C0), the instanceof rule checks whether the object at location loc on the heap can be cast to

the type C1 specified by the instanceof continuation. The object is retrieved with the h-lookup meta-function

23



as expected. The cast?/–>bool meta-function then returns a Javalite boolean value vres indicating whether

the class C0 can be cast to class C1. The instanceof rule creates a new state whose control string is the

value vres and restores the continuation k.

(μ h η (e instanceof C) k)  [instanceof - object eval]

(μ h η e (* instanceof C -> k))

(μ h η (addr loc C0) (* instanceof C1 -> k))  [instanceof]

(μ h η vres k)

 where object = h-lookup[[h, loc ]] , 

vres = (cast?/->bool object  C1)

Variable Assignment Rules. Given a state (µ h η (x := e) k), the evaluation of the variable assignment

expression is initiated by the object eval rule below. In order to perfom a variable assignment, the location

of the variable is required in order to update the heap with the new value v being assigned. The assign rule

determines the location of variable x using the η-lookup meta-function and then updates the heap h with a

mapping [loc → v] from the resultant location loc to the value v.

(μ h η (x := e) k)  [assign -- object eval]

(μ h η e (x := * -> k))

(μ h η v (x := * -> k))  [assign]

(μ h0 η v k)

 where loc = η-lookup[[η, x ]] , 

h0 = h-extend*[[h, [loc -> v] ]]

Field Assignment Rules. The evaluation of a field assignment expression (x $ f := e) is similar to the

variable assignment evaluation. The object eval rule initiates the evaluation of expression e. To complete

the assignment, we need to determine the location of the field f on the heap. The object referred to by x

has this information. Therefore, an η–lookup call returns the heap location loc0 of the pointer x.

(μ h η (x $ f := e) k)  [assign field -- object eval]

(μ h η e (x $ f := * -> k))

(μ h η v (x $ f := * -> k))  [assign field]

(μ h0 η v k)

 where loc0 = η-lookup[[η, x ]] , 

(addr loc1 C) = h-lookup[[h, loc0 ]] , 

object = cast[[h-lookup[[h, loc1 ]] , C ]] , 

loc2 = field-lookup[[object, f ]] , 

h0 = h-extend*[[h, [loc2 -> v] ]]

24



The actual value of the pointer (addr loc1 C) is retrieved by passing loc0 to the heap lookup meta-

function h-lookup, at which point we can look up the object referred to by x by passing loc1 to h-lookup. The

object is cast to an instance of C to match the typed pointer x to ensure that the right field will be used for

the assignment. The location loc2 of the field f is returned by the field-lookup meta-function. The assign

field rule finally extends the heap h with a mapping [loc2 → v] of the field f ’s location to the computed

value v of the expression being assigned. The resultant state therefore has the newly updated heap h0.

If-Then-Else Rules. The evaluation of the predicate ep of a branching expression (if ep et else ef ) is

initiated by the if-then-else – object eval rule shown below. Once the predicate ep has been evaluated, its

value v is used to fill the hole in the if-then-else continuation (if ∗ et else ef → k) of the if-then-else rule.

The Racket if function compares the terms v and true in order to select one of the expressions et and ef for

the new control string.

(μ h η (if ep et else ef) k)  [if-then-else -- object eval]

(μ h η ep (if * et else ef -> k))

(μ h η v (if * et else ef -> k))  [if-then-else]

(μ h η (if (equal? v  true)  et  ef)  k)

Variable Declaration Rules. As expected, a variable declaration expression (var T x := e0 in e1)

proceeds by first evaluating the expression e0 (as shown by the variable-declaration-object-eval rule) to a

value v. The variable-declaration rule then performs the variable assignment by allocating an unused location

locx for the variable x on the heap with a call to the h-malloc meta-function.

(μ h η (var T x := e0 in e1) k)  [variable declaration -- object eval]

(μ h η e0 (var T x := * in e1 -> k))

(μ h η v (var T x := * in e1 -> k))  [variable declaration]

(μ h0 η0 e1 (pop η k))

 where locx = h-malloc[[h ]] , 

h0 = h-extend*[[h, [locx -> v] ]] , 

η0 = η-extend*[[η, [x -> locx] ]]

It then extends the heap h with a mapping from the new location to the value v of the variable

([locx → v]) yielding a new heap h0 and then creates an entry for the new variable x in the local environmnent

by adding the mapping [x → locx] to it. The scope of the newly declared variable is the expression e1,

which is then evaluated next (and therefore becomes the new control string). After the evaluation of e1, the

variable x will no longer be valid. To ensure that the previous local environment is restored, the variable

25



declaration rule creates a pop continuation (pop η k) which will restore the previous local environment η and

continuation k after the evaluation of e1.

Begin Expression Rules. A Javalite begin expression is a sequence of any of the expressions defined by

the surface syntax in Fig. 3.1. Sequences of expressions are evaluated in left-to-right order. The simplest

case is the empty expression list (begin). The begin-empty-expression-list rule simply rewrites the (begin)

control string into the Javalite unit keyword. For a non-empty expression list such as (begin e0 e1 ...), the

begin-e0-evaluation rule initiates the evaluation of the first expression e0 and creates a begin continuation of

the form (begin ∗ (e1 ...), which indicates that there rest of the expressions (e1 ...) will need to be evaluated

before the original continuation k can be considered.

Once a state’s expression control string has been evaluated to a value v, one of two reduction

rules may apply if the evaluated expression had been from a begin (sequence) expression. If the evaluated

expression had been the last one in the list, then the begin-complete rule restores the original continuation k

that specified the next operation after the evaluation of the list of expressions. Otherwise, if the evaluated

expression was not the last one in the sequence, the begin-ei-evaluation rule retrieves the next expression in

the sequence (ei) from the continuation and substitutes it for the current control string (which is simply v,

the computed value of the last expression). The begin-e0-evaluation and begin-ei-evaluation rules result in a

left-to-right evaluation of the expressions in an expression list.

(μ h η (begin) k)  [begin -- empty expression list]

(μ h η unit k)

(μ h η (begin e0 e1 ...) k)  [begin -- e0 evaluation]

(μ h η e0 (begin * (e1 ...) -> k))

(μ h η v (begin * (ei ei+1 ...) -> k))  [begin -- ei evaluation]

(μ h η ei (begin * (ei+1 ...) -> k))

(μ h η v (begin * () -> k))  [begin -- complete]

(μ h η v k)

Pop Rule. The pop rule creates a new state by replacing the local environment η in the initial state

with the environment η0 encoded in the pop continuation. It also restores the continuation k. This rule is

therefore suitable for cleaning up after a method call (by restoring the caller’s environment and continuation)

or variable declaration.

(μ h η v (pop η0 k))  [pop η]

(μ h η0 v k)

26



3.4 Custom Redex Compiler

We also created a customized version of the Redex tool which allows developers to specify their languages’

known invariants, such as determinism of reductions. The ability to give such hints to the compiler enables

more compiler optimizations than are possible in the standard Redex compiler. The custom compiler also

allows for the direct use of native Racket data structures such as hash tables within Redex terms. This

optimization prevents the use of slower data structures while still supporting the same syntax as the Redex

compiler (with the minor annotation changes required to specify determinism/non-determinism of reduction

relations). It also caches the results of some intermediate computations based on the extra information it

has about a reduction relation.

3.5 Results

Since it is a semantics engineering toolkit, Redex provides various tools to experiment with and view the

reduction behavior of various terms. One such tool is the traces tool. It consumes a Redex-specified language,

a reduction relation, and an expression and then opens a window and draws a directed graph of all reduction

sequences starting from the given expression according to the specified reduction system (Felleisen et al.

[2009]). A snapshot of the traces tool’s output when applied to the Javalite language and it’s reduction

relation is shown in Fig. 3.8. The states are shown as rectangles with solid borders within which the

components of each state are displayed. A partial heap and the complete local environment, control string,

and continuation components of the states (respectively) are visible in the example in Fig. 3.8. Another

similar tool is the stepper tool. It also displays a directed graph of reduction sequences but allows for

customizable stepping through the reduction sequence. It can break on a named reduction rule or after

every single reduction, allowing the semantics engineer to study the progression of a reduction sequence. An

example of the stepper tool running is shown in Fig. 3.9.

As part of the Javalite development process, we have implemented a version of the Lambda Calculus

and Church numerals in Java and ported it to Javalite. The complete source listing for these programs is

available from our Javalite repository1. The average run time of the Java unit tests is 2ms while the average

run time of the equivalent Javalite implementations is 46.62s without Javalite garbage collection and 1h

2min with Javalite garbage collection.

1https://github.com/ericmercer/javalite/tree/master/sequential/examples/Church

27



Figure 3.8: The PLT Redex traces tool

28



Figure 3.9: The PLT Redex stepper tool

29



3.6 Conclusion

We have presented a semi-formal model of the Java language. Unlike other semantics, the Javalite model we

have presented is based on the PLT Redex environment and is therefore executable. Consequently, it enables

rapid prototyping of ideas, analysis algorithms such as model checking algorithms, and language extensions.

We have illustrated how the language’s reduction system works, including demonstrating two of the key PLT

Redex tools available for inspecting the executable reductions. We have also implemented a lambda calculus

in both Java and Javalite to compare the run times of both execution systems. Unfortunately, the PLT

Redex run times are much higher than the Java runtime’s. We have found that there is therefore potential

for significant improvement of the PLT Redex compiler, which will result in a drastic reduction in run time

of the Redex model. However, we have still found the prototyping flexibility afforded by PLT Redex and the

executability of the resultant models to be worth the effort invested in using the tools.

30



Chapter 4

Coq Model

Coq is a formal proof management system that provides a formal language for writing mathematical

definitions, executable algorithms and theorems (The Coq development team [2010]). It also provides an

environment for semi-interactive development of machine-checked proofs. Having implemented a working

prototype of the Javalite syntax and reduction relation in PLT Redex, we ported them into the Coq theorem

prover. Since Javalite is encoded as a reduction relation, it is necessary to ascertain whether or not the

relation is decidable. We proved that Javalite’s semantics are decidable. Moreover, since reduction relations

can be either deterministic or non-deterministic, we also proved that a program state’s successor state is not

only decidable but that a state always has at most one successor. These are significant properties because

they validate the fact that we created a sequential model of Java. In this chapter, we compare the definition

and encoding of operational semantics in both Coq and PLT Redex. We then present the Coq definition of

the Javalite surface and machine syntax, followed by a discussion of the decidability and determinism proofs.

4.1 Coq Implementation Details

4.1.1 Modeling PLT Redex Syntax Definitions

The Coq theorem prover is, naturally, a significantly different environment from PLT Redex. One of its

advantages is that it type checks the definitions of the Javalite syntax. We made several corrections to our

original PLT Redex model as that model was not completely type correct. The revisions were trivial and did

not substantively change the model itself. Since Coq’s primary goal is enabling theorem proving, it does not

provide semantics engineers with a toolset geared toward the simplified definition of languages via grammars

and extension of such languages by adding new productions. Consequently, the structure of our Javalite Coq

syntax is defined by the requirements imposed by Coq.

Coq’s syntax is much more verbose than Redex’s. In PLT Redex, definitions of the surface syntax

closely follow the BNF style as shown in Fig. 3.1. Coq, however, requires every right hand side choice of every

production to have an associated name (its constructor). This requirement applies to the reduction rules as

well. Each rule must have a named constructor and must be quantified over all the variables it uses. These

31



requirements lead to a more verbose definition of the Javalite syntax and semantics in Coq. Second, Coq

requires that every symbol encountered in a top-down parse of the source script must have been previously

defined, unlike the grammar definitions accepted by PLT Redex. This restriction leads to a completely

different structure of the Javalite syntax. In addition to this, Coq does not have a way of directly defining

a grammar (since the straightforward way of defining grammars conflicts with Coq’s requirement that all

symbols encountered must already be completely defined). Therefore, there are no separate definitions for

the Javalite surface and machine syntax in the Coq model. The layout of the surface and machine syntax is

based on the order in which the symbols they define are required.

Our main objective in porting the PLT Redex Javalite model to Coq is to enable formal machine-

checked proofs about the model. Consequently, we have altered the PLT Redex model to simplify proofs

about the model in Coq. One of the most significant changes we made to the Javalite model when porting

it to Coq was to how method calls are handled. The Javalite surface syntax in Fig. 3.1 defines the method

invocation expression as taking a list of expressions. In Coq, the equivalent definition would require the use of

mutually recursive data types (Expression and ExpressionList). Using these mutually recursive types would

significantly complicate any proofs that could be done about the model in Coq. Therefore, we have modified

the Coq model to use A-Normal Form (ANF). Methods are therefore defined to accept only identifiers as

arguments. The arguments to a method must therefore first be evaluated and assigned to a new set of

identifiers. The method can then be invoked with the identifiers. These method invocation semantics are in

constrast to the Redex model’s, in which we did not implement ANF. We also changed the Coq equivalent

(SeqExp) of the PLT Redex sequence of expressions definition (begin e ...) because of the same issue of

mutually recursive types. The SeqExp constructor accepts two Expression arguments, either or both of

which could also be a SeqExp. It is therefore possible to create expression lists using this constructor while

avoiding mutually recursive data types.

Another implementation choice that arose when porting the Redex model to Coq was how to handle

lists. Consider the Redex class declaration rule (CL (class C extends C ([T f] ...) (M ...))). It includes

a list of fields each with their associated types as well as a list of method definitions. To simplify some

of the manipulation of these fields and methods in Coq, we used hash maps to store the class declaration

information. Field lists are then stored as a mapping from field identifiers to their types. These hashmaps

are defined as functions in Coq and can therefore be readily used in any Coq model. Unfortunately, the

PLT Redex environment does not have an equivalent predefined utility. Therefore, we used purely syntactic

representations for all PLT Redex definitions.

It is noteworthy that syntactically, the traversal of the class hierarchies (which is done when searching

for fields or methods, for example) is achieved by pattern matching from the head of the list to the tail and

32



selecting the most recently defined instance of the field or method. This enables field shadowing and virtual

method invocation. Since the Coq environment does not provide such pattern matching facilities, we have im-

plemented field lookup functionality as a function (field lookup) whose arguments are the field, the type of the

pointer being used for the field access, and the object on the heap through which to search (since objects store

all field values for their class hierarchies). This function calls the get reversed class hierarchy CL to CLList

function to create a list of the class declarations to be searched from subclass to superclass for the corre-

sponding fields and methods. The complete listing for these functions is presented Appendix C.

4.1.2 Modeling PLT Redex Reduction Rules

In Coq, evaluation semantics can be encoded using either functions or relations. Functions in Coq are required

to be both deterministic and total. A key advantage of using functions in Coq is that the deterministic nature

of any computation trivially follows from the restriction. However, using functions can be cumbersome.

The aforementioned requirements generally necessitate using step indices to enforce termination, which is

an additional cumbersome step. See the get class hierarchy gas CL to CLList Coq function defined in

Appendix C for an example of step indices. Another disadvantage of functions in Coq is that they can

be too restrictive for certain applications. When dealing with concurrency, for example, the definition of

evaluation needs to be non-deterministic. This automatically rules out the use of functions as the primary

definition of concurrent evaluation.

Relations on the other hand provide much more flexibility. They can readily handle both non-

deterministic and deterministic evaluation. Coq also has better support for working with relations when

working on proofs based on induction (Pierce et al. [2012]). It is therefore natural to use relations for

encoding evaluation semantics. However, relations do require that properties such as determinism or totality

of the computation they represent be explicitly proved. We express the evaluation of a Javalite program

as a relation between states. A Coq proposition is a statement expressing a factual claim and can be

either provable or unprovable (Pierce et al. [2012]). The Javalite reduction relation is expressed in Coq

as a proposition on pairs of states. Coq allows the stating of either provable or unprovable propositions.

Therefore, we explicitly show that the Javalite reduction relation is decidable (Theorem 1). In other words,

it is a provable proposition on pairs of states. Since Coq relations defined by propositions can also encode

either deterministic or non-deterministic computations, we explicitly show that if a state s reduces to some

state s’ and also reduces to another state s”, then the states s’ and s” are equal, which implies that the

evaluation relation is deterministic (Theorem 2).

33



4.1.3 Extraction of Programs From Coq Proofs

An interesting feature of the Coq theorem prover is that a program can be extracted from each theorem that

is proven. We have extracted a program from the theorem stating that the Javalite reduction relation is de-

cidable. This program is a Javalite interpreter. The source listing of the Javalite interpreter is available from

our Javalite github repository.1 We ran the extracted interpreter on the Javalite Swap program presented

in Chapter 1 and on the Church numerals example. Table 4.1 shows the results. The OCaml version of the

extracted Javalite interpreter evaluates the Church numerals test program about seventy times faster than

the PLT Redex environment with garbage collection turned off, and an order of magnitude faster than the

PLT Redex model with garbage collection enabled. We ran these tests on a Windows 7 Enterprise machine

with 8GB of RAM and an Intel Core 2 Quad 2.67Ghz Q9400 CPU using OCaml 4.00.1 and Racket version

5.2.900.1. We now discuss the definition of Javalite in the Coq theorem prover.

Table 4.1: Comparison of PLT Redex and OCaml Javalite Interpreter Performance

Environment Swap Test Church Numerals Test

PLT Redex (Garbage Collection) 0.568s 62.63m
PLT Redex (No Garbage Collection) 0.193s 46.62s
Extracted Ocaml Interpreter 0.172s 0.63s

4.2 Javalite Syntax

One basic requirement in Javalite is the ability to identify variables, classes, fields, and so on. The key

property of identifiers in Coq is not necessarily their names. Rather, it is the ability to differentiate between

them. Therefore, we use the predefined numeric type positive in Coq for Javalite identifiers. Predefined types

and values in Coq are imported from libraries using the Require Import syntax as shown below. There are a

couple of notation styles worth pointing out. First, comments in a Coq script are delimited by (* and *), and

Coq supports nested comments. The comments in this code block are the equivalent PLT Redex definitions

of the subsequent Coq code. Second, the Definition keyword in Coq aliases two symbols: the new symbol

is defined to be an alias of the old symbol. Lastly, sets can be defined inductively. Using the Inductive

keyword, a vertical bar is used to separate the individual rules that specify the form of valid members of the

set. The command Inductive C : Set := | SomeClass : id -> C informs Coq that we are declaring a new

type C that has just one constructor called SomeClass, which takes a single argument of type id to create a

member of the set C.

Require Import Arith Bool List.

1https://github.com/ericmercer/javalite/tree/master/sequential/coq/javalite.ml

34



Require Import FMaps.

Require Import Coq.NArith.BinPos.

(* (id variable -not -otherwise - mentioned) *)

Definition id := positive.

(* (f id) *)

Definition F := id.

(* (m id) *)

Definition M := id.

(* (C Object

id)

*)

Inductive C : Set :=

| SomeClass : id -> C.

In the above definition, the Coq production for the non-terminal C does not include a rule for the

Object class identifier used in Redex. This is because Coq does not allow the use of “free” identifiers like

Redex. Excluding an explicit constructor for the Object class is not problematic because its only purpose is to

indicate the upper boundary of class hierarchies when retrieving fields and class identifiers in the heirarchy of

some class, at which point there are no longer any results to return. Later in this section, we shall examine the

storage format we use for classes and fields and consequently see that upper bounds can still be determined

without defining a separate constructor for the Object class. In contrast to the definition of class identifier C,

the declaration of Javalite’s type T is straightforward and has three constructors shown in the next snippet

below. The T Class constructor requires a specific class to be specified. For the location production, we

used Coq’s nat type, which represents the natural numbers. The definition of Javalite primitive values and

pointers is also shown below.

Definition Boolean := bool.

(* (T bool

unit

C)

*)

Inductive T : Set :=

| T_Bool

| T_Unit

35



| T_Class : C -> T.

(* (x this

id)

*)

Inductive X : Set :=

| This

| SomeId : id -> X.

(* (loc number) *)

Definition Location := nat.

(* (pointer (addr loc C)

null)

*)

Inductive Pointer : Set :=

| Addr : Location -> C -> Pointer

| Null.

(* (v pointer

true

false

unit

error)

*)

Inductive V : Set :=

| V_Pointer : Pointer -> V

| V_Bool : Boolean -> V

| V_Error

| V_Unit.

As mentioned earlier, there is no explicit separation of Javalite into surface and machine syntax

in the Coq definitions. Nonetheless, the machine syntax definitions immediately follow the surface syntax

definitions in the Coq script. The snippet below shows the definition of Javalite’s expressions in Coq. Notice

that the Raw method invocation, which is defined in the machine syntax in the Redex model, is defined with

the other expressions (which were part of the surface syntax in the Redex Model) because Coq does not

support a language extension mechanism like PLT Redex’s. It is also noteworthy that since Coq does not

allow for “free” symbols, the syntactic sugar of Javalite is dropped entirely and only the required terms are

declared in Coq. Consider the PLT Redex definition of the variable declaration expression var T x := e in

36



e. Its format includes symbols such as := that increase the readability of the expression. Its Coq equivalent

is the constructor VarDecExp, whose arguments are a VariableDeclaration term and two Expression terms.

There are no additional syntactic elements just like in an abstract syntax tree, for example.

Inductive VariableDeclaration : Set :=

| VarDec : id -> T -> VariableDeclaration.

(*

(e x

v

(new C)

(e $ f)

(e @ m (e ...))

(raw v @ m (v ...))

(e == e)

(C e)

(e instanceof C)

(x := e)

(x $ f := e)

(if e e else e)

(var T x := e in e)

(begin e ...))

*)

Inductive Expression : Set :=

| Expr_X : X -> Expression

| Expr_V : V -> Expression

| NewClass : C -> Expression

| FieldRef : Expression -> F -> Expression

| MethodInvocation : Expression -> M -> list X -> Expression

| Raw : Pointer -> M -> list V -> Expression

| Equality : Expression -> Expression -> Expression

| Cast : C -> Expression -> Expression

| InstanceOf : Expression -> C -> Expression

| VarAssign : X -> Expression -> Expression

| FieldAssign : X -> F -> Expression -> Expression

| IfExpr : Expression -> Expression -> Expression -> Expression

| VarDecExp : VariableDeclaration -> Expression -> Expression -> Expression

| VoidExp : Expression

| SeqExp : Expression -> Expression -> Expression.

37



Having defined Javalite’s primitive values and expressions, we now present its class and method

declarations shown below. Note that the class declaration (CL) uses a FieldTypeMap (which is a mapping

from a positive identifier to a Javalite type T ) and a MethodMap (which is a mapping from a positive identifier

to a Javalite Method declaration). These mappings simplify the process of querying a class declaration to

determine the type of a field or to look up a method declaration by its identifier. We also use a hash map

(of class identifiers to class declarations) to define the class declaration list µ in Coq.

Definition ArgumentList := list VariableDeclaration.

(* (M (T m ([T x] ...) e))

*)

Inductive Method : Set :=

| AMethod : M -> T -> ArgumentList -> Expression -> Method.

Module HashMap := PositiveMap.

Definition FieldTypeMap := HashMap.t T.

Definition FieldValueMap := HashMap.t V.

Definition MethodMap := HashMap.t Method.

(* (CL (class C extends C ([T f] ...) (M ...)))

*)

Inductive CL : Set :=

| ClassDecl : C -> option CL -> FieldTypeMap -> MethodMap -> CL.

(* (mu (CL ...))

*)

Definition Mu := HashMap.t CL.

Inductive ProgramEntryPoint : Set :=

| Entrypoint : C -> M -> ProgramEntryPoint.

(* (P (mu (C m)))

*)

Inductive P : Set :=

| Program: Mu -> ProgramEntryPoint -> P.

The definitions corresponding to the machine syntax are shown below. A notable change in the

Coq definition is that the Javalite heap h is defined as a mapping from identifiers to heap values Hv. This

38



simplifies heap lookups by reducing them to a predefined hash map lookup operation. We used this approach

in Coq because it has libraries that predefine such mapping structures (unlike in PLT Redex where there

is no syntactic library already defined to do this). The rest of the definitions follow the patterns we have

encountered thus far. Next, we discuss the encoding of the Javalite transition relation in Coq.

Definition FieldLocationMap := HashMap.t Location.

Definition ClassToFieldLocationsMap := HashMap.t FieldLocationMap.

(* (object ((C [f loc] ...) ...))

*)

Inductive HeapObject : Set :=

| HeapObj : C -> ClassToFieldLocationsMap -> HeapObject.

(* (hv v

object)

*)

Inductive Hv : Set :=

| Hv_v : V -> Hv

| Hv_object : HeapObject -> Hv.

(* (h mt

(h [loc -> hv ]))

*)

Definition H := HashMap.t Hv.

(* (eta mt

(eta [x -> loc ]))

*)

Inductive Eta : Set :=

| Eta_mt : Eta

| Eta_NotMt : Eta -> X -> Location -> Eta.

(* (k ret

( * $ f -> k)

( * @ m (e ...) -> k)

(v @ m (v ...) * (e ...) -> k)

( * == e -> k)

(v == * -> k)

(C * -> k)

( * instanceof C -> k)

(x := * -> k)

39



(x $ f := * -> k)

(if * e else e -> k)

(var T x := * in e -> k)

(begin * (e ...) -> k)

(pop eta k))

*)

Inductive Continuation : Set :=

| K_Return : Continuation

| K_FieldAccess : F -> Continuation -> Continuation

| K_MethodInvocation : M -> list X -> Continuation -> Continuation

| K_EqualityLeftOperand : Expression -> Continuation -> Continuation

| K_EqualityRightOperand : V -> Continuation -> Continuation

| K_Cast : C -> Continuation -> Continuation

| K_InstanceOf : C -> Continuation -> Continuation

| K_VarAssign : X -> Continuation -> Continuation

| K_FieldAssign : X -> F -> Continuation -> Continuation

| K_If : Expression -> Expression -> Continuation -> Continuation

| K_VarAssignIn : T -> X -> Expression -> Continuation -> Continuation

| K_Seq : Expression -> Continuation -> Continuation

| K_Pop : Eta -> Continuation -> Continuation.

Inductive State : Set :=

| StateCons : Mu -> H -> Eta -> Expression -> Continuation -> State.

4.3 Reduction Rules in Coq

Variable Access Rule. The Coq proposition that defines Javalite’s reduction rules is declared by the

syntax Inductive ExprReduces : State → State → Prop := ... This syntax gives the proposition the name

ExprReduces and indicates that ExprReduces is a proposition on two states. The ellipses are a placeholder

for the individual definitions of the scenarios under which the proposition holds. If s and s′ are states in

Coq, then the expression ExprReduces s s′ is the proposition that states that the reduction relation holds

for s and s′. In other words, s reduces to s′. Each scenario where the proposition holds is required to have a

constructor (which must be uniquely named) in Coq. Each of these constructors is considered to be evidence

that the proposition holds. In addition to this, side conditions under which the proposition holds may be

specified. Consider the variable access code snippet shown below.

Inductive ExprReduces : State -> State -> Prop :=

40



(* ------------------------------------------------------------------------- *)

(* Variable Access *)

| ER_VariableAccess :

forall (x:X) (mu:Mu) (h:H) (eta:Eta) (k:Continuation) (l:Location) (hv:Hv),

(eta_lookup eta x) = Some l ->

(h_lookup h l) = Some hv ->

ExprReduces (StateCons mu h eta (Expr_X x) k)

(StateCons mu h eta (Expr_V (Hv_To_V l hv)) k)

This snippet declares a constructor named ER VariableAccess and specifies that the proposition

ExprReduces s s′ holds where s is the state (StateCons mu h eta (Expr X x) k) and s′ is the state (StateCons

mu h eta (Expr V (Hv To V l hv)) k). The reduction rules in Coq utilize universal quantification to make

the reduction claim precise. Note that there are preconditions that must hold for the proposition to be

valid. For this variable access scenario, the control string of the “input” state is the identifier (Expr X x),

which must exist in the local environment η, hence the precondition ((eta lookup eta x) = Some l). The

location l on the heap must also be mapped to a value for the variable access reduction to be valid hence

the second precondition ((h lookup h l) = Some hv). When implication is used in a set of preconditions

as in this scenario, it is equivalent to conjunction of the individual preconditions. The ER VariableAccess

constructor is therefore evidence to Coq that, given the preconditions, a state whose control string is an

identifier reduces to a new state whose control string is the value of the variable refered to by the identifier.

The various helper functions such as Hv To V are presented in the Coq code listing in Appendix C.

Class Instantiation Rule. The class instantiation expression (new C) indicates that a new object needs

to be created on the heap. The new rule proceeds as follows. It calls the get fields of parents and self C

function to create a list of fields for each class in the hierarchy of class C. get fields of parents and self C

returns a list of mappings (one per class in the hierarchy) of field identifiers to their types.

(* ------------------------------------------------------------------------- *)

(* New *)

(*

(--> ( h eta (new C) k)

( h_1 eta (addr loc_1 C) k)

"new"

(where (([ T_0 f_0] ...) ...) (fields -parents+self C))

(where (C_0 ...) (class -parents+self C))

(where (( v_0 ...) ...) (( default -value* (T_0 ...)) ...))

41



(where (number_0 ...) ((get -length (T_0 ...)) ...))

(where (( loc_0 ...) ...) (h-malloc -n* h number_0 ...))

(where object (C (C_0 [f_0 loc_0] ...) ...))

(where h_0 (h-extend* h [loc_0 -> v_0] ... ...))

(where loc_1 (h-malloc h_0 ))

(where h_1 (h-extend* h_0 [loc_1 -> object ])))

*)

| ER_New :

forall (mu:Mu) (h h_0 h_1:H) (eta:Eta) (c:C) (loc_1:Location)

(k : Continuation)

(classlist : CList)

(defaultvalues : list FieldValueMap)

(hierarchicalfieldlist : list FieldTypeMap)

(hierarchicaltypelist : list FieldTypeMap)

(hierarchicallocations : list LocationList)

(listofclassfieldloclists : ClassToFieldLocationsMap)

(hierarchicalfieldlocmap : list FieldLocationMap),

(classes_of_parents_and_self c mu) = Some classlist ->

(* ensure ’classlist ’ is not empty *)

(beq_nat O (length classlist )) = false ->

(get_fields_of_parents_and_self_C c mu) = hierarchicalfieldlist ->

(get_hierarchical_type_map hierarchicalfieldlist) = hierarchicaltypelist ->

(get_hierarchical_default_values hierarchicaltypelist) = defaultvalues ->

(h_malloc_n_star h (get_value_lengths defaultvalues )) = hierarchicallocations ->

(create_hierarchical_field_location_map hierarchicallocations defaultvalues)

= hierarchicalfieldlocmap ->

(h_extend_star_hierarchical_map h hierarchicalfieldlocmap defaultvalues)

= Some h_0 ->

(h_malloc h_0) = loc_1 ->

(build_class_loc_lists classlist hierarchicalfieldlist hierarchicallocations)

= listofclassfieldloclists ->

(h_extend h_0 loc_1 (Hv_object (HeapObj listofclassfieldloclists ))) = h_1 ->

ExprReduces (StateCons mu h eta (NewClass c) k)

(StateCons mu h_1 eta (convert_pointer_to_expr (Addr loc_1 c)) k).

42



The length of the field list of each class is needed in order to allocate heap locations for each field

of the object. These lengths of the class fields are computed by the get value lengths function and passed

to the h malloc n star function, which allocates enough heap locations for all the fields in the hierarchy of

the object. Since these locations must be initialized with their default values, the class instantiation rule

uses the get hierarchical default values function to create a hierarchial list of the default values of each of

the fields in the new object’s class hierarchy. Recall that the storage format of an object on the heap is

defined by a hierarchical list of mappings from field identifiers to field locations. A list of the actual class

identifiers in the hierarchy is therefore required and is created by the call to the classes of parents and self

function. The object to be stored on the heap is then created by the expression (Hv object (HeapObj

c listofclassfieldloclists)). The term listofclassfieldloclists is created by the build class loc lists function,

which groups all the fields by their class identifiers and maps each of the fields to its allocated heap location.

Note that the Javalite heap allocation functions return new unused heap locations. They do not

alter the passed in heap. A new heap h 0 is therefore explicitly created by extending the input heap with

mappings from each of the allocated field locations to the default values of the corresponding fields. The

reduction rule also calls h malloc on the newly created heap h 0 to allocate a new location loc 1 to point

to the newly created object. It then extends heap h 0 to include a mapping from the new location loc 1 to

the newly created object. The reduction rule finally creates a new state using the new heap h 1 and a new

(pointer) expression (from the term (Addr loc1 c)), which contains the location of the newly created object.

Field Access Rule. The evaluation of the receiving object e of a field access expression FieldRef e f is

represented by the ER FieldAccess1 constructor shown below.

(* ------------------------------------------------------------------------- *)

(* Field Access - Object Eval *)

| ER_FieldAccess1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (f:F) (k:Continuation),

ExprReduces (StateCons mu h eta (FieldRef e f) k)

(StateCons mu h eta e (K_FieldAccess f k))

(* Field access *)

| ER_FieldAccess2 :

forall mu h eta loc C f1 k v1 object obj loc_0 ,

(h_lookup h loc) = Some (Hv_object obj) ->

(cast obj C) = Some object ->

43



(field_lookup object C f1 mu) = Some loc_0 ->

(h_lookup h loc_0) = Some (Hv_v v1) ->

ExprReduces (StateCons mu h eta (Expr_V (V_Pointer (Addr loc C))) (K_FieldAccess f1 k))

(StateCons mu h eta (Expr_V v1) k)

Once e has been evaluated to a pointer expression (Expr v (V Pointer (Addr loc C))), the state’s field

access continuation (K FieldAccess f1 k) indicates that the field f1 is to be accessed. The ER FieldAccess2

reduction rule requires that the object at the location loc on the heap (obtained by calling h lookup) is a

heap object. The reduction also specifies the precondition that casting the retrieved object to an instance

of class C yields a valid object and that the value of the field f is stored at a valid heap location loc0 (as

determined by the field-lookup function). In addition to this, calling h-lookup to retrieve the value of field

f must yield a valid heap value. As explained in Chapter 3, field look-ups in PLT Redex are performed by

pattern matching on field lists. In the Coq environment, the field look-ups are implemented as a function

whose arguments include the field to look up as well as the heap object on which to retrieve the field. The

Coq definition of the field lookup function is shown below. It calls the hierarchical field lookup function,

which obtains the hierarchy of class declarations for the class on which the field is being looked up (using

the get reversed class hierarchy CL to CLList function). By using these functions, the field shadowing

behavior of Java is retained by the model.

Definition hierarchical_field_lookup (f:F) (c:C) (c2flm:ClassToFieldLocationsMap)

(mu:Mu) : option Location :=

match (convert_C_to_CL c mu) with

| None => None

| Some cl => match get_reversed_class_hierarchy_CL_to_CLList

(HashMap.cardinal c2flm) cl mu with

| nil => None

| cl::t => (hierarchical_field_lookup_from_list f (cl::t) c2flm)

end

end.

Definition field_lookup (object:HeapObject) (c:C) (f:F) (mu:Mu)

: option Location :=

match object with

| HeapObj c2flm => (hierarchical_field_lookup f c c2flm mu)

end.

The ER FieldAccess2 reduction creates a new state whose control string is the accessed value v and

restores the continuation k.

44



Method Invocation Rules. The ER MethodInvocationObjectEval reduction rule evaluates the receiving

object expression e0 in a method invocation expression (MethodInvocation e 0 m args).

(* ------------------------------------------------------------------------- *)

(* Method invocation - object eval *)

| ER_MethodInvocationObjectEval :

forall (mu:Mu) (h:H) (eta:Eta) (e_0:Expression) (args:list X) (m:M) (k:Continuation),

ExprReduces (StateCons mu h eta (MethodInvocation e_0 m args) k)

(StateCons mu h eta e_0 (K_MethodInvocation m args k))

(* Method invocation *)

| ER_MethodInvocation :

forall (mu:Mu) (h:H) (eta:Eta) (pv_o:Pointer) (m:M) (k:Continuation) (args:list X)

(primitive_args:list V),

(lookup_arguments h eta args) = primitive_args ->

ExprReduces (StateCons mu h eta (Expr_V (V_Pointer pv_o)) (K_MethodInvocation m args k))

(StateCons mu h eta (Raw pv_o m primitive_args) k)

Once the method invocation’s receiving expression e 0 has been evaluated to a pointer pv o, the

ER MethodInvocation constructor requires that the list of argument identifiers args in the method invocation

continuation (K MethodInvocation m args k) be converted into a list of primitive values (by calling the

lookup arguments function). At this point, the method invocation can be represented as a raw method

invocation expression. In a raw method invocation, all the argument expressions have been evaluated to

primitive values.

Raw Method Invocation. A raw method invocation expression is comprised of a pointer, a method iden-

tifier, and a list of primitive values (arguments). In order to syntactically evaluate a raw method invocation,

we need to perform a virtual method lookup to determine the appropriate class on which the method should

be invoked. The prerequisites of the evaluation are specified by the ER MethodInvocationRaw constructor.

The first requirement is a list of class declarations in the hierarchy of the class C on which the method is

being invoked. This list is created by retrieving the object on which the call is being invoked (using the

h lookup function) and passing this object to the class decls of parents and self function.

| ER_MethodInvocationRaw :

forall (mu:Mu) (h h_0 h_tmp:H) (eta eta_0:Eta) (e_m:Expression) (k:Continuation)

(m:M) (varlist:list V) (c C_t:C) (loc loc_o:Location)

45



(loclist:LocationList) (methodvars:IdList) (obj1:HeapObject)

(arglist:ArgumentList) (t:T)

(classlist:CLList) (CL_t:CL),

(h_lookup h loc) = Some (Hv_object obj1) ->

(class_decls_of_parents_and_self c mu) = Some classlist ->

(get_class_with_virtual_method m classlist) = Some CL_t ->

(convert_CL_to_C CL_t) = C_t ->

(method_lookup m CL_t) = Some (AMethod m t arglist e_m) ->

(argument_list_to_XList arglist) = methodvars ->

(* allocate locations for "this" and the arguments *)

(h_malloc_n h (S (length varlist ))) = (loc_o:: loclist) ->

(* write "this" and the args into the heap.

loclist and varlist must be the same length.

*)

(h_extend h loc_o (make_heap_pointer loc C_t)) = h_tmp ->

(h_extend_star h_tmp loclist varlist) = Some h_0 ->

(* create a new local environment with the bindings for "this" and args *)

(eta_extend_star (eta_extend eta This loc_o) methodvars loclist) = Some eta_0 ->

ExprReduces (StateCons mu h eta (Raw (Addr loc c) m varlist) k)

(StateCons mu h_0 eta_0 e_m (K_Pop eta k))

The virtual method lookup is then performed by calling the get class with virtual method func-

tion. This function is shown below. Its arguments are the method identifier to look up (m) and the class

hierarchy (subclass to superclass) in which to search (CL). It traverses the class hierarchy from the first

listed class to the last, looking up the class declarations for the specified method and returning the first class

in the hierarchy whose method hashmap contains a mapping for the requested method.

Definition method_lookup (m:M) (cl:CL) : option Method :=

HashMap.find m (get_method_list cl).

Fixpoint get_class_with_virtual_method (m:M) (classlist:list CL) : option CL :=

match classlist with

| nil => None

| cl::t => match method_lookup m cl with

| Some method => Some cl

46



| None => get_class_with_virtual_method m t

end

end.

See Appendix C for the full source listing of the functions used in the model. Calling method lookup

returns the body expression of the method being invoked as well as the argument list arglist and return type

t of the method if the specified method is defined in the class declaration CL t. Otherwise, method lookup

returns the term None. Now that the exact method being invoked is known, we need to allocate heap

locations for the arguments to the method and the reference this (recall that all variables, fields, and

arguments are stored on the heap). The number of locations for the arguments and the object this is

computed by the expression (S (length varlist)) and is passed to the h malloc n function, which returns

a list of new heap locations for the respective arguments. The first allocated location loc o is mapped to

the object (constructed by the expression (make heap pointer loc C t)) on which the invocation is being

performed (i.e. the reference “this”). Notice that the constructed pointer stored at loc o points to the

same location as the receiving object of the raw method invocation but has the appropriate type determined

by virtual method resolution. The rest of the locations (loclist) are mapped to the method’s arguments

(varlist) by a call to the h extend star function which returns a new heap h0.

A new local environment is also created by the expression (eta extend eta This loc o), which extends

the initial environment eta with a binding mapping the reference this to the location loc o. The final local

environment eta 0 then extends the aforementioned local environment to include mappings of the method

argument names to the heap locations where their values are stored. The reduction rule then creates a

new state containing the new heap h0 and the new local environment η0. The ER MethodInvocationRaw

rule finally creates a new state whose control string is the expression e m, which represents the body of the

method being invoked. The continuation (K Pop eta k) of the new state will restore the pre-invocation local

environment and continuation (η and k respectively) after the method invocation evaluation is complete.

Equals Rules. As expected, the equality testing expression (Equality e 0 e) requires the evaluation of

the expressions on both sides of the equality. The ER Equals1 rule shown below initiates the evaluation of

the left expression e0 to a value v. The ER Equals2 rule then creates a new continuation with the value v

and initiates the evaluation of the right hand side expression e. Once both expressions have been evaluated

to primitive values, the ER Equals3 rule uses the convert to boolean expr function to compute the Javalite

boolean result of the comparison.

(* ------------------------------------------------------------------------- *)

47



(* Equals ’==’: l-operand eval *)

| ER_Equals1 :

forall (mu:Mu) (h:H) (eta:Eta) (e_0 e:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (Equality e_0 e) k)

(StateCons mu h eta e_0 (K_EqualityLeftOperand e k))

(* Equals ’==’: r-operand eval *)

| ER_Equals2 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (v:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v) (K_EqualityLeftOperand e k))

(StateCons mu h eta e (K_EqualityRightOperand v k))

(* Equals ’==’: equals *)

| ER_Equals3 :

forall (mu:Mu) (h:H) (eta:Eta) (v_0 v_1:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v_0) (K_EqualityRightOperand v_1 k))

(StateCons mu h eta (convert_to_boolean_expr (V_equals v_0 v_1)) k)

Typecast Rules. The evaluation of a type cast expression (C e) is initiated by evaluating the expression

e to a pointer value. Recall that Javalite pointers are typed and that the heap storage format for an object

includes all the classes and their fields in the hierarchy of an object. Once the expression e is evaluated

to some pointer value (Addr loc C 0), the ER Typecast2 rule specifies the preconditions for the casting

reduction to succeed. First, retrieving the object refered to by the pointer (using the h lookup function)

must yield a valid object. Second, the cast operation must be valid, i.e. class C 1 to which we are casting

must be in the hierarchy of the pointer’s current class C 0. The can cast function returns a boolean

value indicating whether the cast operation can be performed. When these preconditions are met, the

ER Typecast2 reduction rule creates a new state whose control string is a pointer to the same heap location

loc but of the type C1, completing the cast operation.

(* ------------------------------------------------------------------------- *)

(* Typecast - Object eval *)

| ER_Typecast1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (c:C) (k:Continuation),

ExprReduces (StateCons mu h eta (Cast c e) k)

48



(StateCons mu h eta e (K_Cast c k))

(* Typecast *)

| ER_Typecast2 :

forall (mu:Mu) (h:H) (eta:Eta) (c_0 c_1:C) (loc:Location) (object:HeapObject)

(k:Continuation),

(h_lookup h loc) = Some (Hv_object object) ->

(can_cast object c_1) = true ->

ExprReduces (StateCons mu h eta (convert_pointer_to_expr (Addr loc c_0)) (K_Cast c_1 k))

(StateCons mu h eta (convert_pointer_to_expr (Addr loc c_1)) k)

Instanceof Rules. An instance-of expression (e instanceof C) evaluates to a Javalite boolean value. The

object eval rule starts the evaluation of e. Should it evaluate to a pointer value (Addr loc C 0), then the

ER Instanceof2 rule specifies that the location loc on the heap must be mapped to a valid heap object. This

is verified by the call to the h lookup function. The boolean result of whether the the object at location loc

can be cast to the type C1 specified by the instance-of continuation is computed by the can cast function.

(* ------------------------------------------------------------------------- *)

(* Instanceof - object eval *)

| ER_InstanceOf1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (c:C) (k:Continuation),

ExprReduces (StateCons mu h eta (InstanceOf e c) k)

(StateCons mu h eta e (K_InstanceOf c k))

(* Instanceof *)

| ER_InstanceOf2 :

forall (mu:Mu) (h:H) (eta:Eta) (c_0 c_1:C) (v_res:Boolean) (k:Continuation)

(loc:Location) (object:HeapObject),

(h_lookup h loc) = Some (Hv_object object) ->

(can_cast object c_1) = v_res ->

ExprReduces (StateCons mu h eta (convert_pointer_to_expr (Addr loc c_0))

(K_InstanceOf c_1 k))

(StateCons mu h eta (convert_to_boolean_expr v_res) k)

Variable Assignment Rules. In order to evaluate a variable assignment expression (VarAssign x e), the

expression e is evaluated to some value v and then the location of the variable on the heap is determined

49



in order to update the heap with the new value v being assigned. The ER Assign2 rule determines the

location of variable x using the eta lookup function and then updates the heap h with a call to the h extend

function which creates a mapping [loc → v] from the resultant location loc to the value v.

(* ------------------------------------------------------------------------- *)

(* Assign - Object eval *)

| ER_Assign1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (x:X) (k:Continuation),

ExprReduces (StateCons mu h eta (VarAssign x e) k)

(StateCons mu h eta e (K_VarAssign x k))

(* Assign *)

| ER_Assign2 :

forall (mu:Mu) (h h_0:H) (eta:Eta) (v:V) (loc:Location) (x:X) (k:Continuation),

(eta_lookup eta x) = Some loc ->

(h_extend h loc (Hv_v v)) = h_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_VarAssign x k))

(StateCons mu h_0 eta (Expr_V v) k)

Field Assignment Rules. The evaluation of a field assignment expression (FieldAssign x f e) is similar

to the variable assignment evaluation. To complete the assignment, we need to determine the location of the

field f on the heap. The object referred to by x has this information. An eta lookup call returns the heap

location loc0 of the pointer x.

(* ------------------------------------------------------------------------- *)

(* Assign Field - Object eval *)

| ER_AssignField1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (x:X) (f:F) (k:Continuation),

ExprReduces (StateCons mu h eta (FieldAssign x f e) k)

(StateCons mu h eta e (K_FieldAssign x f k))

(* Assign Field *)

| ER_AssignField2 :

forall (mu:Mu) (h h_0:H) (eta:Eta) (x:X) (f:F) (c:C) (v:V)

(loc_0 loc_1 loc_2:Location) (obj object:HeapObject) (k:Continuation),

50



(eta_lookup eta x) = Some loc_0 ->

(h_lookup h loc_0) = Some (Hv_v (V_Pointer (Addr loc_1 c))) ->

(h_lookup h loc_1) = Some (Hv_object obj) ->

(cast obj c) = Some object ->

(field_lookup object c f mu) = Some loc_2 ->

(h_extend h loc_2 (Hv_v v)) = h_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_FieldAssign x f k))

(StateCons mu h_0 eta (Expr_V v) k)

The actual value (addr loc 1 C) of the pointer is retrieved by passing loc 0 to the heap lookup

function h lookup, at which point we can look up the object referred to by x by passing loc 1 to h lookup.

The object is cast to an instance of C to match the typed pointer x thus ensuring that the right field will

be used for the assignment. The location loc 2 of the field f is returned by the field lookup function. The

ER AssignField rule finally extends the heap h with a mapping [loc 2 → v] of the field f ’s location to

the computed value v of the expression being assigned. The resultant state therefore has the newly updated

heap h0.

If-Then-Else Rules. The evaluation of the predicate ep of a branching expression (if ep et else ef ) is

initiated by the if-then-else – object eval rule shown below. Once the predicate ep has been evaluated, its

value v1 is used by the eval if then else function to select one of the expressions et and ef for the new

state’s control string.

(* ------------------------------------------------------------------------- *)

(* If -then -else - object eval *)

| ER_IfThenElseObjectEval :

forall (mu:Mu) (h:H) (eta:Eta) (e_p e_t e_f:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (IfExpr e_p e_t e_f) k)

(StateCons mu h eta e_p (K_If e_t e_f k))

(* If -then -else *)

| ER_IfThenElse :

forall (mu:Mu) (h:H) (eta:Eta) (v1:Boolean) (e_t e_f:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (convert_to_boolean_expr v1) (K_If e_t e_f k))

(StateCons mu h eta (eval_if_then_else v1 e_t e_f) k)

51



Variable Declaration Rules. A variable declaration expression (VarDecExp (VarDec x1 t) e 0 e 1)

evaluates the expression e 0 and assigns its value to the newly declared variable x1 and uses the resultant

environment to evaluate the expression e 1. In other words, e 1 is the scope of the variable x1. Once e0

has been evaluated to a value v, the ER VarDec2 rule performs the variable assignment by allocating an

unused location locx for the variable x on the heap with a call to the h malloc function.

(* ------------------------------------------------------------------------- *)

(* Variable declaration - object eval *)

| ER_VarDec1 :

forall (mu:Mu) (h:H) (eta:Eta) (e_0 e_1:Expression) (x1:id) (t:T) (k:Continuation),

ExprReduces (StateCons mu h eta (VarDecExp (VarDec x1 t) e_0 e_1) k)

(StateCons mu h eta e_0 (K_VarAssignIn t (SomeId x1) e_1 k))

(* Variable declaration *)

| ER_VarDec2 :

forall (mu:Mu) (h h_0:H) (eta eta_0:Eta) (v:V) (e_1:Expression) (x1:id) (t:T)

(k:Continuation) (loc_x:Location),

(h_malloc h) = loc_x ->

(h_extend h loc_x (Hv_v v)) = h_0 ->

(eta_extend eta (SomeId x1) loc_x) = eta_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_VarAssignIn t (SomeId x1) e_1 k))

(StateCons mu h_0 eta_0 e_1 (K_Pop eta k))

It then extends the heap h with a mapping from the new location to the value v of the variable

yielding a new heap h0. The reduction rule then creates an entry for the new variable x in the local

environmnent by adding the mapping [x → loc x] to it. The scope of the newly declared variable is

the expression e1, which is then evaluated next (and therefore becomes the new control string). After the

evaluation of e1, the variable x will no longer be valid. To ensure that the previous local environment is

restored, the ER VarDec2 rule creates a pop continuation (K Pop eta k) which will restore the previous

local environment eta and continuation k after the evaluation of e1.

Begin Expression Rules. A Javalite begin expression is a sequence of any of Javalite’s expressions.

Sequences of expressions are evaluated in left-to-right order. The simplest case is the empty expression list

V oidExp. The ER BeginEmptyExpList rule simply rewrites the V oidExp control string into the Javalite

V Unit value. Non-empty expression lists are expressed by chaining SeqExp’s together. This pattern is used

52



to prevent the use of mutually recursive data types in the definition of expressions in Coq. The expressions e 0

and e 1 in the sequence expression (SeqExp e 0 e 1) can be any expressions, including sequence expressions.

Their evaluation is handled by the ER Begin e 0 evaluation and ER Begin e i evaluation reduction rules

shown below.

The begin-e0-evaluation rule initiates the evaluation of the first expression e0 and creates a begin

continuation of the form (begin ∗ (e1 ...)), which indicates that the rest of the expressions (e1 ...) will need

to be evaluated before the original continuation k can be considered.

(* ------------------------------------------------------------------------- *)

(* Begin - Empty expression list *)

| ER_BeginEmptyExpList :

forall (mu:Mu) (h:H) (eta:Eta) (k:Continuation),

ExprReduces (StateCons mu h eta VoidExp k)

(StateCons mu h eta (Expr_V V_Unit) k)

(* Begin - e_0 evaluation *)

| ER_Begin_e_0_evaluation :

forall (mu:Mu) (h:H) (eta:Eta) (k:Continuation) (e_0 e_1:Expression),

ExprReduces (StateCons mu h eta (SeqExp e_0 e_1) k)

(StateCons mu h eta e_0 (K_Seq e_1 k))

(* Begin - e_1 evaluation *)

| ER_Begin_e_1_evaluation :

forall (mu:Mu) (h:H) (eta:Eta) (v:V) (k:Continuation) (e_1:Expression),

ExprReduces (StateCons mu h eta (Expr_V v) (K_Seq e_1 k))

(StateCons mu h eta e_1 k)

Pop Rule. The ER PopEta reduction rule creates a new state by replacing the local environment η in the

initial state with the environment eta 0 encoded in the pop continuation. It also restores the continuation

k. This rule is therefore suitable for cleaning up after a method call (by restoring the caller’s environment

and continuation) or variable declaration.

(* ------------------------------------------------------------------------- *)

(* Pop \u03b7 (close scope) *)

53



| ER_PopEta :

forall (mu:Mu) (h:H) (eta eta_0:Eta) (v:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v) (K_Pop eta_0 k))

(StateCons mu h eta_0 (Expr_V v) k)

Now that we have examined the formal definition of the reduction relation, let us discuss some of the proofs

about the reduction.

4.4 Proofs About the Javalite Reduction Relation

4.4.1 Decidability of Next State

As mentioned earlier, a proposition in Coq is simply a statement making a claim. It can therefore be either

provable or unprovable. 2 + 2 = 5 and 2 + 2 = 4 are both valid propositions in Coq. Since we are

using the proposition (ExprReduces) to represent the evaluation of Javalite programs, the Coq proposition

ExprReduces s s′ represents the claim that there is a Javalite reduction rule that evolves (reduces) state s

to state s′. In order to reason about Javalite’s operational semantics, the decidability of propositions such

as ExprReduces s s′ is paramount. A key component of the ability to decide whether such a proposition is

provable (that it holds) is the ability to determine whether or not a state has a successor i.e. another state to

which it can be reduced using one of the defined rules. Therefore, we have proved Theorem 1, which states

that any given state s either has some successor s′ or has no successors at all.

Theorem 1 (ExprReduces dec) Let s be a program state. Then

(∃ s′ s.t. ExprReduces(s, s′)) ⊕ (∀ s′. ¬ExprReduces(s, s′)).

We created a constructive proof of this theorem in Coq. This means that for scenarios where a

successor state s′ exists for the state s, we constructed such a state as evidence of the left clause.

Proof Sketch The proof proceeds by induction on each of the possible control strings of the state s. For

each of these control strings, the proof performs one of two actions. It constructs a new state s′ to which

the state s reduces and provides the corresponding constructor name to show that ExprReduces s s′ (recall

that constructors are considered evidence that a given proposition holds). Alternatively, it shows that each

of the reduction rules cannot apply to the given expression in the initial state. The Coq proof consists of

383 lines of code and completes in 19 seconds. The complete proof listing is presented in Appendix E.

54



4.4.2 Determinism of the Reduction Relation

Having proved Theorem 1, we now know that it is possible to determine whether or not a state has successors.

However, if a state does have some sucessor, Theorem 1 does not specify how many successors it has. It

only guarantees the existence of at least one. When studying the evaluation semantics of a language, it is

important to know whether or not the ExprReduces evaluation relation is function-like, i.e. whether it maps

each element to at most one element.

Theorem 2 (ExprReduces fun) Let s, s′, and s′′′ be program states. Then

∀ s s′ s′′. [ExprReduces(s, s′) ∧ ExprReduces(s, s′′)]→ s′ = s′′.

Proof Sketch Assume that state s reduces to both s′ and s′′. There are 26 reduction rules in the

ExprReduces proposition. Therefore, there are 26 possible rules that can lead to ExprReduces s s′. For each

of these rules, there are 26 ways in which the proposition ExprReduces s s′′ could hold. Therefore, there

are 676 (262) scenarios to examine. Some of these rules are not defined by the ExprReduces proposition and

are therefore dropped as contradictory cases. Each of the remaining possible reductions can then be shown

to be defined by the ExprReduces proposition. The corresponding Coq proof was originally 333 lines long

due to the repetitive application of the described technique. However, we reduced it to 26 lines long by

automating the examination of each of the 676 scenarios and the resulting code ran in 19 seconds.

4.4.3 Irreflexivity of the Transition Relation

At this point, Theorems 1 and 2 assert that the Javalite reduction relation is a decidable and deterministic

relation. When studying the Javalite language with this insight, a natural question to address is whether the

evaluation relation is reflexive. If it is, then this would imply that there exists some trivial (and therefore

unnecessary) reduction rule (since such a rule does not perform any meaningful tranformation in terms of

furthering program evaluation). Moreover, a reflexive relation would also imply that evaluation could get

stuck in an infinite loop even in programs without any looping constructs. Therefore, we proved Theorem

3, which states that the reduction relation is not reflexive, i.e. that a state cannot reduce to itself. This

guarantees that the expression reduction cannot get stuck in a trivial infinite loop in which a state is reducing

to itself over and over again.

Theorem 3 (ExprReduces not reflexive) Let s represent a program state. Then

∀ s. ¬ ExprReduces(s, s)

55



Proof Sketch This proof proceeds by contradiction. We assume that the proposition ExprReduces(s s)

holds. We then proceed by induction on the expression component of the state s. This generates subcases

of the proof for each of the different types of declared expressions. Based on the rules defined by the

ExprReduces proposition, we then show that for each expression, the proposition ExprReduces(s s) is a

contradiction since the definition of the ExprReduces relation has no expressions that reduce to themselves.

This Coq proof is 44 lines long and ran in 6 seconds.

4.5 Conclusion

The Coq theorem prover provides a rigorous environment for defining models and proving properties about

them. As a result of its strict type checker, we were able to detect some inconsistent definitions in the

PLT Redex model that were not discovered by the unit or system tests. Defining Javalite in Coq enabled

us to create machine checked proofs of the decidability and determinism of Javalite and potentially allows

the research and development of a veriety of algorithms and tools in this formal environment. The formal

model of Java presented in this chapter is a solid foundation for the development of formal models of model

checking algorithms as well as the writing of machine verified proofs about the properties of these algorithms.

In addition to this, the interpreter extracted from the decidability proof of the Coq Javalite model is much

faster than PLT Redex. Our methodology of arriving at a formal model involved rapid prototyping of the

model in PLT Redex, porting the model to Coq, proving its decidability, determinism, and irreflexivity, and

finally extracting a fast interpreter for the formal Javalite model.

56



Chapter 5

Conclusion

Our objective in this work was to create a model of Java that would support rapid prototyping

of program analysis algorithms such as model checking algorithms, while enabling the writing of rigorous

proofs about these algorithms. We created the model in PLT Redex to enable fast prototyping and ported

it into the Coq theorem prover to support the creation of formal proofs about the model. In addition to

this, we have proved that our Javalite reduction relation is a decidable and deterministic relation. Having

created our formal model of the Java langauge, it is now possible to research various algorithms such as

static analysis and code transformation algorithms on a larger subset of Java programs and obtain concise

results. However, there are still some avenues of future work that remain such as prototyping generalized

symbolic execution and proving it to be sound and complete.

In addition to this, PLT Redex model will need to be updated to use ANF like the Coq model.

Once this is done, the ability to execute Javalite programs using the interpreter extracted from the proof

of Theorem 1 will complement the currently existing test-suite. All the Redex tests could then be executed

and verified to generate the same results in both interpreters. We have an initial Redex-to-Coq conversion

program that accounts for ANF but not for the exact types required by the method.

Next, our current Java model does not support exceptions. Nonetheless, nothing precludes the

addition of exceptions to Javalite. It would require a new continuation for “catch” clauses. This continuation

could be scanned by newly added reduction rules to determine which expression should handle the exception,

at which point the continuation could be truncated. The surface syntax would need to be updated as well

to support declaring, catching, and throwing exceptions.

In today’s world of ubiquituous multiprocessors, research on concurrency models and features has

become even more important. To facilitate such research, future work also involves adding concurrency

primitives such as threads and locking to Javalite. This will facilitate research on the impact of various

scheduling techniques and enable researchers to prove properties of schedulers. There are various progress

properties of the scheduler in (Rungta and Mercer [2010]) that still need to be proved. A concurrent version

Javalite would be well tailored to the study of these properties since it is a large enough subset of Java.

57



It is also noteworthy that the Javalite model we have presented does not include a type checker.

This places the burden of type checking Javalite programs on their authors. A separate type checker could be

created for both the Redex and Coq models. In addition to this, the Javalite languauge could be updated in

Coq to allow for the creation of only valid Javalite programs. As an example, the Coq model’s if expression

has an Expression predicate like in the Redex model. The language could be rewritten to force if expressions

to use boolean values only since Coq would type check such a construction and prevent the creation of a

program that clearly doesn’t type check. Implementing a type-checker to eliminate these issues remains

future work. Similarly, there is no explicit proof showing that the Javalite reduction relation maintains the

type soundness property of a program. Proving this property of the relation is dependent on implementing

the idea of a type checker and therefore remains future work as well.

We found prototyping our model in PLT Redex to be an efficient way of creating a working and

executable model. It is easy to extensively test, debug, and refine the model in Redex. Having done so, the

conversion of the model into the Coq formal proof assistant was a straightforward process because many

bugs in the model were detected and fixed in the PLT Redex environment. As a lesson for tool developers,

the authors of (Klein et al. [2012]) explain that tests complement proofs. Their assessment was based on

their examination of theorems presented in five papers which were false as stated. Our PLT Redex model

is executable and allowed us to test the model before porting it to Coq. In addition to this, the strict type-

checking of the Coq theorem prover also illuminated some bugs in the Redex model such as in the variable

access reduction rule highlighted in the previous chapter. We have therefore found that the lightweight

mechanization provided by PLT Redex and the formal environment provided by Coq are complementary

properties of these tools. In conclusion, we believe that the Javalite model we have presented is a more

suitable model than current alternatives for rapid prototyping of algorithms, properties about which can

then be formally proved using the Coq implementation of the model.

58



Appendix A

Javalite Redex Meta-Functions

(define-metafunction javalite

get-length : (any ...) -> number

[( get-length (any_0 ...))

,(length (term (any_0 ...)))])

(define-metafunction javalite

default-value : T -> v

[( default-value bool)

false]

[( default-value unit)

unit]

[( default-value C)

null ])

(define-metafunction javalite

default-value* : (T ...) -> (v ...)

[( default-value* ())

()]

[( default-value* (T_0 T_1 ...))

(( default-value T_0) (default-value T_1) ...)])

(define-metafunction javalite

h-max : h -> number

[(h-max mt) -1]

[(h-max (h [loc -> hv]))

,(max (term loc) (term (h-max h)))])

(define-metafunction javalite

h-malloc : h -> number

[( h-malloc h)

,(add1 (term (h-max h)))])

59



(define-metafunction javalite

h-malloc-n-helper : number number -> (loc ...)

[( h-malloc-n-helper number_b number_c)

,(let ([z (term number_b )]) (build-list (term number_c) (lambda (y) (+ y z))))])

(define-metafunction javalite

h-malloc-n : h number -> (loc ...)

[( h-malloc-n h number)

(loc_0 ...)

(where (( loc_0 ...)) (h-malloc-n* h number ))])

(define-metafunction javalite

internal-h-malloc-n* : number (number ...) -> (number (loc ...) ...)

[( internal-h-malloc-n* number_b (number_0 ))

(number_t (loc_1 ...))

(where (loc_1 ...) (h-malloc-n-helper number_b number_0 ))

(where number_t ,(if (empty? (term (loc_1 ...)))

(term number_b)

(add1 (apply max (term (loc_1 ...))))))]

[( internal-h-malloc-n* number_b (number_0 number_1 number_2 ...))

(number_t (loc_0 ...) (loc_1 ...) ...)

(where (loc_0 ...) (h-malloc-n-helper number_b number_0 ))

(where number_i ,(if (empty? (term (loc_0 ...)))

(term number_b)

(add1 (apply max (term (loc_0 ...))))))

(where (number_t (loc_1 ...) ...)

(internal-h-malloc-n* number_i (number_1 number_2 ...)))])

(define-metafunction javalite

h-malloc-n* : h number ... -> ((loc ...) ...)

[( h-malloc-n* h number_0 ...)

((loc_0 ...) ...)

(where (number (loc_0 ...) ...) (internal-h-malloc-n* (h-malloc h) (number_0 ...)))])

(define-metafunction javalite

storelike-lookup : any any -> any

[( storelike-lookup mt any_0)

,(error ’storelike-loopup "~e not found in ~e" (term any_0) (term mt))]

[( storelike-lookup (any_0 [any_t -> any_ans ]) any_t)

any_ans]

[( storelike-lookup (any_0 [any_k -> any_v]) any_t)

60



(storelike-lookup any_0 any_t)

(side-condition (not (equal? (term any_k) (term any_t ))))])

(define (id- <= a b)

(string <=? (symbol- >string a) (symbol- >string b)))

(define (storelike-extend <= storelike k hv)

(match storelike

[’mt ‘(mt [,k -> ,hv])]

[‘(,storelike [,ki -> ,hvi])

(cond

[( equal? k ki)

‘(,storelike [,ki -> ,hv])]

[(<= k ki)

‘(,( storelike-extend <= storelike k hv) [,ki -> ,hvi ])]

[else

‘((,storelike [,ki -> ,hvi]) [,k -> ,hv ])])]))

(define (storelike-extend* <= storelike extend *)

(match extend*

[’() storelike]

[‘([,k -> ,hv] . ,extend *)

(storelike-extend* <= (storelike-extend <= storelike k hv) extend *)]))

(define-metafunction javalite

h-lookup : h loc -> hv

[( h-lookup h loc)

(storelike-lookup h loc)])

(define-metafunction javalite

h-extend* : h [loc -> hv] ... -> h

[( h-extend* h [loc -> hv] ...)

,(storelike-extend* <= (term h) (term ([loc -> hv] ...)))])

(define-metafunction javalite

?- lookup : ? x -> loc

[(?- lookup ? x)

(storelike-lookup ? x)])

(define-metafunction javalite

?- extend* : ? [x -> loc] ... -> ?

[(?- extend* ? [x -> loc] ...)

61



,(storelike-extend* id- <= (term ?) (term ([x -> loc] ...)))])

(define-metafunction javalite

restricted-field-lookup : object f -> loc

[( restricted-field-lookup (C_c

(C_0 [f_0 loc_0] ...) ...

(C_t [f_t0 loc_t0] ...

[f_target loc_target]

[f_t1 loc_t1] ...)

(C_1 [f_1 loc_1] ...) ...)

f_target)

loc_target

;; Allows for redefinition and restricts matching

;; to be the most recent definition by current cast.

(side-condition

(not (member (term f_target)

(term (f_t1 ... f_1 ... ...)))))])

(define-metafunction javalite

field-lookup : object f -> loc

[( field-lookup object f_target)

(restricted-field-lookup (restrict-object object) f_target )])

(define-metafunction javalite

restrict-object : object -> object

[( restrict-object (C_c (C_0 [f_0 loc_0] ...) ...

(C_c [f_c loc_c] ...)

(C_1 [f_1 loc_1] ...) ...))

(C_c (C_0 [f_0 loc_0] ...) ...

(C_c [f_c loc_c] ...))])

(define-metafunction javalite

class-name : CL -> C

[( class-name (class C_t extends C ([T f] ...) (M ...)))

C_t])

(define-metafunction javalite

parent-name : CL -> C

[( parent-name (class C extends C_p ([T f] ...) (M ...)))

C_p])

62



(define-metafunction javalite

field-list : CL -> ([T f] ...)

[( field-list (class C extends C_p ([T f] ...) (M ...)))

([T f] ...)])

(define-metafunction javalite

class-list-extend : (C ...) C -> (C ...)

[( class-list-extend (C_0 ...) C_1)

(C_0 ... C_1 )])

(define-metafunction javalite

class-lookup : C -> CL

[( class-lookup (CL_0 ... CL_1 CL_2 ...) C)

CL_1

(side-condition (equal? (term (class-name CL_1)) (term C)))])

(define-metafunction javalite

class-list-from-object : object -> (C ...)

[( class-list-from-object (C_0 (C_1 [f_1 loc_1] ...) ...))

; Restrict out the current cast -- Object will be first class

(C_1 ...)])

(define-metafunction javalite

class-parents+self : C -> (C ...)

[( class-parents+self Object)

(class-list-extend () Object )]

; id retricts out the base case above

[( class-parents+self id)

(class-list-extend (class-parents+self C_p) id)

(where CL (class-lookup id))

(where C_p (parent-name CL))])

(define-metafunction javalite

field-lists-extend : (([T f] ...) ...) ([T f] ...) -> (([T f] ...) ...)

[( field-lists-extend (([ T_0 f_0] ...) ...) ([T_1 f_1] ...))

(([ T_0 f_0] ...) ... ([T_1 f_1] ...))])

(define-metafunction javalite

fields-parents+self : C -> (([T f] ...) ...)

[( fields-parents+self Object)

(field-lists-extend () ())]

63



; id restricts out the base case above

[( fields-parents+self id)

(field-lists-extend (fields-parents+self C_p) ([T f] ...))

(where CL (class-lookup id))

(where C_p (parent-name CL))

(where ([T f] ...) (field-list CL))])

(define-metafunction javalite

method-name : M -> m

[( method-name (T_0 m ([T_1 x] ...) e))

m])

(define-metafunction javalite

method-expression : M -> e

[( method-expression (T_0 m ([T_1 x] ...) e))

e])

(define-metafunction javalite

method-args : M -> (x ...)

[( method-args (T_0 m ([T_1 x] ...) e))

(x ...)])

(define-metafunction javalite

method-lookup : CL m -> any

[( method-lookup (class C_0 extends C_1 ([T x] ...) (M_0 ... M_t M_1 ...)) m)

(C_0 (method-args M_t) (method-expression M_t))

(side-condition (equal? (term (method-name M_t)) (term m)))]

[( method-lookup (class C_0 extends C_1 ([T x] ...) (M ...)) m)

error

(side-condition (equal? (findf (? (i) (equal? (term (method-name ,i)) (term m)))

(term (M ...))) #f))])

(define (->bool v)

(if v

’true

’false))

(define-metafunction javalite

cast : object C -> object

[(cast (C_1 (C_2 [f_2 loc_2] ...) ...

(C_3 [f_3 loc_3] ...)

64



(C_4 [f_4 loc_4] ...) ...) C_3)

(C_3 (C_2 [f_2 loc_2] ...) ...

(C_3 [f_3 loc_3] ...)

(C_4 [f_4 loc_4] ...) ...)])

(define (cast? object C_t)

(define inner-cast?

(term-match/single

javalite

[(C_1 (C_2 [f_2 loc_2] ...) ...)

(term (C_1 C_2 ...))]))

(if (member C_t (inner-cast? object )) #t #f))

(define (cast?/->bool object C_t)

(->bool (cast? object C_t)))

(define-metafunction javalite

instanceof* : object C -> v

[( instanceof* (C_1 (C_2 [f_2 loc_2] ...) ...) C_t)

,(->bool (member (term C_t) (term (C_2 ...))))])

(define-metafunction javalite

inject : P -> state

[( inject ( (C m)))

( mt mt ((new C) @ m ()) ret)])

(define-metafunction javalite

inject/with-state : state m -> state

[( inject/with-state ( h ? e k) m)

( h ? (e @ m ()) ret)])

65



Appendix B

Javalite Coq Syntax Definitions

Require Import Arith Bool List.

Require Import FMaps.

Require Import Coq.NArith.BinPos.

(* (id variable -not -otherwise - mentioned) *)

Definition id := positive.

(* (f id) *)

Definition F := id.

(* (m id) *)

Definition M := id.

(* (C Object

id)

Drop "Object" from this definition since it is not necessary (it only serves

to mark the upper bounderaries of class hierarchies for field lookups , etc , in

the PLT Redex model.

*)

Inductive C : Set :=

| SomeClass : id -> C.

Definition Boolean := bool.

(* (T bool

unit

C)

*)

Inductive T : Set :=

| T_Bool

| T_Unit

66



| T_Class: C -> T.

(* (x this

id)

*)

Inductive X : Set :=

| This

| SomeId : id -> X.

(* (loc number) *)

Definition Location := nat.

(* (pointer (addr loc C)

null)

*)

Inductive Pointer : Set :=

| Addr : Location -> C -> Pointer

| Null.

(* (v pointer

true

false

unit

error)

*)

Inductive V : Set :=

| V_Pointer : Pointer -> V

| V_Bool : Boolean -> V

| V_Error

| V_Unit.

Inductive VariableDeclaration : Set :=

| VarDec : id -> T -> VariableDeclaration.

(*

(e x

v

(new C)

(e $ f)

(e @ m (e ...))

(raw v @ m (v ...))

67



(e == e)

(C e)

(e instanceof C)

(x := e)

(x $ f := e)

(if e e else e)

(var T x := e in e)

(begin e ...))

*)

Inductive Expression : Set :=

| Expr_X : X -> Expression

| Expr_V : V -> Expression

| NewClass : C -> Expression

| FieldRef : Expression -> F -> Expression

| MethodInvocation : Expression -> M -> list X -> Expression

| Raw : Pointer -> M -> list V -> Expression

| Equality : Expression -> Expression -> Expression

| Cast : C -> Expression -> Expression

| InstanceOf : Expression -> C -> Expression

| VarAssign : X -> Expression -> Expression

| FieldAssign : X -> F -> Expression -> Expression

| IfExpr : Expression -> Expression -> Expression -> Expression

| VarDecExp : VariableDeclaration -> Expression -> Expression -> Expression

| VoidExp : Expression

| SeqExp : Expression -> Expression -> Expression.

Definition ArgumentList := list VariableDeclaration.

(* (M (T m ([T x] ...) e))

*)

Inductive Method : Set :=

| AMethod : M -> T -> ArgumentList -> Expression -> Method.

Module HashMap := PositiveMap.

Definition FieldTypeMap := HashMap.t T.

Definition FieldValueMap := HashMap.t V.

Definition MethodMap := HashMap.t Method.

(* (CL (class C extends C ([T f] ...) (M ...)))

*)

68



Inductive CL : Set :=

| ClassDecl : C -> option CL -> FieldTypeMap -> MethodMap -> CL.

(* (Mu (CL ...))

*)

Definition Mu := HashMap.t CL.

Inductive ProgramEntryPoint : Set :=

| EntryPoint : C -> M -> ProgramEntryPoint.

(* (P (mu (C m)))

*)

Inductive P : Set :=

| Program: Mu -> ProgramEntryPoint -> P.

Definition FieldLocationMap := HashMap.t Location.

Definition ClassToFieldLocationsMap := HashMap.t FieldLocationMap.

(* (object ((C [f loc] ...) ...))

*)

Inductive HeapObject : Set :=

| HeapObj : ClassToFieldLocationsMap -> HeapObject.

(* (hv v

object)

*)

Inductive Hv : Set :=

| Hv_v : V -> Hv

| Hv_object : HeapObject -> Hv.

(* (h mt

(h [loc -> hv ]))

*)

Definition H := HashMap.t Hv.

(* (eta mt

(eta [x -> loc ]))

*)

Inductive Eta : Set :=

| Eta_mt : Eta

| Eta_NotMt : Eta -> X -> Location -> Eta.

69



(* (k ret

( * $ f -> k)

( * @ m (e ...) -> k)

(v @ m (v ...) * (e ...) -> k)

( * == e -> k)

(v == * -> k)

(C * -> k)

( * instanceof C -> k)

(x := * -> k)

(x $ f := * -> k)

(if * e else e -> k)

(var T x := * in e -> k)

(begin * (e ...) -> k)

(pop eta k))

*)

Inductive Continuation : Set :=

| K_Return : Continuation

| K_FieldAccess : F -> Continuation -> Continuation

| K_MethodInvocation : M -> list X -> Continuation -> Continuation

| K_EqualityLeftOperand : Expression -> Continuation -> Continuation

| K_EqualityRightOperand : V -> Continuation -> Continuation

| K_Cast : C -> Continuation -> Continuation

| K_InstanceOf : C -> Continuation -> Continuation

| K_VarAssign : X -> Continuation -> Continuation

| K_FieldAssign : X -> F -> Continuation -> Continuation

| K_If : Expression -> Expression -> Continuation -> Continuation

| K_VarAssignIn : T -> X -> Expression -> Continuation -> Continuation

| K_Seq : Expression -> Continuation -> Continuation

| K_Pop : Eta -> Continuation -> Continuation.

Inductive State : Set :=

| StateCons : Mu -> H -> Eta -> Expression -> Continuation -> State.

70



Appendix C

Javalite Coq Helper Functions

Definition Hv_To_V (loc:Location) (hv:Hv) : V :=

match hv with

| Hv_v v => v

| Hv_object heapobj => V_Error

end.

Definition get_variable_name (vardec:VariableDeclaration) :=

match vardec with

| VarDec someid _ => someid

end.

(* -------------------------------------------------------------------------- *)

(* ------------------------- Additional Definitions ------------------------- *)

(* -------------------------------------------------------------------------- *)

Definition CList := list C.

Definition CLList := list CL.

Definition IdList := list id.

Definition XList := list X.

Definition LocationList := list Location.

Definition id_eq_dec := positive_eq_dec.

Definition F_eq_dec := id_eq_dec.

Definition M_eq_dec := id_eq_dec.

(* -------------------------------------------------------------------------- *)

(* -------------------------- Decidability Proofs --------------------------- *)

(* -------------------------------------------------------------------------- *)

Theorem X_eq_dec:

forall (x y:X), {x = y} + {x <> y}.

Proof.

decide equality.

apply id_eq_dec.

71



Qed.

Theorem C_eq_dec:

forall (x y:C), {x = y} + {x <> y}.

Proof.

decide equality.

apply id_eq_dec.

Qed.

Theorem Pointer_eq_dec:

forall (x y:Pointer), {x = y} + {x <> y}.

Proof.

decide equality.

apply C_eq_dec.

apply eq_nat_dec.

Qed.

(*

We don ’t need a " Boolean_eq_dec " theorem since we have aliased Boolean

to bool. Therefore , "bool_dec" will suffice.

*)

Theorem V_eq_dec:

forall (x y:V), {x = y} + {x <> y}.

Proof.

decide equality.

apply Pointer_eq_dec.

apply bool_dec.

Qed.

(*

Theorem SimpleType_eq_dec :

forall (x y: SimpleType ), {x=y} + {x <> y}.

Proof.

decide equality.

apply bool_dec.

Qed.

*)

Theorem T_eq_dec:

forall (x y:T), {x=y} + {x <> y}.

72



Proof.

decide equality.

apply C_eq_dec.

Qed.

Theorem VariableDeclaration_eq_dec:

forall (x y:VariableDeclaration), {x = y} + {x <> y}.

Proof.

decide equality.

apply T_eq_dec.

apply id_eq_dec.

Qed.

Theorem ValueList_eq_dec:

forall (x y:list V), {x=y} + {x <> y}.

Proof.

decide equality.

apply V_eq_dec.

Qed.

Theorem Expression_eq_dec:

forall (x y: Expression), {x=y} + {x <> y}.

Proof.

decide equality.

apply X_eq_dec.

apply V_eq_dec.

apply C_eq_dec.

apply F_eq_dec.

apply list_eq_dec.

apply X_eq_dec.

apply M_eq_dec.

apply list_eq_dec.

apply V_eq_dec.

apply M_eq_dec.

apply Pointer_eq_dec.

apply C_eq_dec.

apply C_eq_dec.

apply X_eq_dec.

apply F_eq_dec.

apply X_eq_dec.

apply VariableDeclaration_eq_dec.

73



Qed.

Theorem Method_eq_dec:

forall (x y:Method), {x = y} + {x <> y}.

Proof.

decide equality.

apply Expression_eq_dec.

apply list_eq_dec.

apply VariableDeclaration_eq_dec.

apply T_eq_dec.

apply M_eq_dec.

Qed.

Theorem Eta_eq_dec:

forall (x y:Eta), {x=y} + {x <> y}.

Proof.

decide equality.

apply eq_nat_dec.

apply X_eq_dec.

Qed.

Theorem Continuation_eq_dec:

forall (x y:Continuation), {x=y} + {x <> y}.

Proof.

decide equality.

apply F_eq_dec.

apply list_eq_dec.

apply X_eq_dec.

apply M_eq_dec.

apply Expression_eq_dec.

apply V_eq_dec.

apply C_eq_dec.

apply C_eq_dec.

apply X_eq_dec.

apply F_eq_dec.

apply X_eq_dec.

apply Expression_eq_dec.

apply Expression_eq_dec.

apply Expression_eq_dec.

apply X_eq_dec.

apply T_eq_dec.

74



apply Expression_eq_dec.

apply Eta_eq_dec.

Qed.

(* -------------------------------------------------------------------------- *)

(* ---------------------------- Helper Functions ---------------------------- *)

(* -------------------------------------------------------------------------- *)

Definition location_to_key := P_of_succ_nat.

Definition h_lookup (h: H) (loc : Location) : option Hv :=

HashMap.find (location_to_key loc) h.

Definition h_lookup_optional_loc (h: H) (loc : option Location) : option V :=

match loc with

| None => None

| Some loc => let res := HashMap.find (location_to_key loc) h in

match res with

| None => None

| Some hv => Some (Hv_To_V loc hv)

end

end.

Fixpoint eta_lookup (eta: Eta) (x : X) : option Location :=

match eta with

| Eta_mt => None

| Eta_NotMt eta ’ x’ loc => if X_eq_dec x x’ then Some loc else eta_lookup eta ’ x

end.

Definition lookup_argument_locations (eta:Eta) (args:list X) : list (option Location) :=

map (eta_lookup eta) args.

Definition lookup_arguments_option (h:H) (eta:Eta) (args:list X) : list (option V) :=

map (h_lookup_optional_loc h) (lookup_argument_locations eta args).

Definition remove_optional_v optionv :=

match optionv with

| Some v => v

| _ => V_Error

end.

Definition lookup_arguments (h:H) (eta:Eta) (args:list X) : list V :=

map remove_optional_v (lookup_arguments_option h eta args).

75



(* Look up the class "c" in the registry "mu" *)

Definition convert_C_to_CL (c:C) (mu:Mu) : option CL :=

match c with

| SomeClass id => HashMap.find id mu

end.

Definition convert_CL_to_C (cl:CL) : C :=

match cl with

| ClassDecl classname _ _ _ => classname

end.

Definition class_lookup := convert_C_to_CL.

Definition convert_CList_to_CLList (mu:Mu):= map (fun c => convert_C_to_CL c mu).

Definition convert_CLList_to_CList := map convert_CL_to_C.

Definition convert_CLList_to_CList_option := option_map convert_CL_to_C.

Definition get_parent_of_CL_as_CL (cl:CL) : option CL :=

match cl with

| ClassDecl _ superclass _ _ => superclass

end.

Definition get_parent_of_C_as_CL (c:C) (mu:Mu) : option CL :=

match (convert_C_to_CL c mu) with

| None => None

| Some cl => get_parent_of_CL_as_CL cl

end.

Definition get_parent_of_cl_as_C (cl:CL) : option C :=

match (get_parent_of_CL_as_CL cl) with

| None => None

| Some cl’ => Some (convert_CL_to_C cl ’)

end.

Definition get_parent_of_c_as_C (c:C) (mu:Mu) : option C :=

match (convert_C_to_CL c mu) with

| None => None

| Some cl => get_parent_of_cl_as_C cl

end.

76



Definition get_id_from_C (c:C) : id :=

match c with

| SomeClass someid => someid

end.

Definition get_C_from_id (someid:id) : C := SomeClass someid.

Definition get_CL_from_id (someid:id) (mu:Mu) : option CL :=

convert_C_to_CL (get_C_from_id someid) mu.

Fixpoint get_class_hierarchy_gas_CL_to_CLList (n:nat)

(cl: option CL) (mu:Mu) : option CLList :=

match n with

| O => None

| S n’ => match cl with

| None => None

| Some cl => match cl with

| ClassDecl class superclass _ _ =>

match superclass with

| None => (* Important! Do not return nil *)

Some (cl::nil)

| Some cl => option_map (fun x => (x ++ (cl :: nil)))

(get_class_hierarchy_gas_CL_to_CLList

n’ (get_parent_of_CL_as_CL cl) mu)

end

end

end

end.

Definition get_class_hierarchy_CL_to_CLList (n:nat) (cl:CL) (mu:Mu) : CLList :=

match get_class_hierarchy_gas_CL_to_CLList n (Some cl) mu with

| None => cl :: nil

| Some cllist => cllist

end.

Definition get_reversed_class_hierarchy_CL_to_CLList (n:nat) (cl:CL) (mu:Mu) : CLList :=

match get_class_hierarchy_gas_CL_to_CLList n (Some cl) mu with

| None => cl :: nil

| Some cllist => rev cllist

end.

Definition class_list_from_class_to_field_locations_map

77



(c2flm:ClassToFieldLocationsMap) : CList :=

map (fun p => (get_C_from_id (fst p))) (HashMap.elements c2flm).

Definition classes_of_parents_and_self (c:C) (mu:Mu) : option CList :=

match (convert_C_to_CL c mu) with

| None => Some (c :: nil)

| Some cl => Some (convert_CLList_to_CList

(get_class_hierarchy_CL_to_CLList (HashMap.cardinal mu) cl mu))

end.

Definition class_decls_of_parents_and_self (c:C) (mu:Mu) : option CLList :=

match (convert_C_to_CL c mu) with

| None => None

| Some cl => Some (get_class_hierarchy_CL_to_CLList (HashMap.cardinal mu) cl mu)

end.

Fixpoint hierarchical_field_lookup_from_list (f:F) (cllist:CLList)

(c2flm:ClassToFieldLocationsMap) : option Location :=

match cllist with

| nil => None

| cl :: t => match HashMap.find (get_id_from_C (convert_CL_to_C cl)) c2flm with

| None => (hierarchical_field_lookup_from_list f t c2flm)

| Some fls => match HashMap.find f fls with

| Some loc => Some loc

| None => (hierarchical_field_lookup_from_list f t c2flm)

end

end

end.

Definition hierarchical_field_lookup (f:F) (c:C) (c2flm:ClassToFieldLocationsMap)

(mu:Mu) : option Location :=

match (convert_C_to_CL c mu) with

| None => None

| Some cl => match get_reversed_class_hierarchy_CL_to_CLList

(HashMap.cardinal c2flm) cl mu with

| nil => None

| cl::t => (hierarchical_field_lookup_from_list f (cl::t) c2flm)

end

end.

Definition field_lookup (object:HeapObject) (c:C) (f:F) (mu:Mu) : option Location :=

78



match object with

| HeapObj c2flm => (hierarchical_field_lookup f c c2flm mu)

end.

Definition contains_entry_for_class (c:C) (c2flm:ClassToFieldLocationsMap) : bool :=

HashMap.mem (get_id_from_C c) c2flm.

Definition can_cast (object:HeapObject) (c:C) : bool :=

match object with

| HeapObj cfll => contains_entry_for_class c cfll

end.

(* Only needs to ensure that the cast type is in the hierarchy *)

Definition cast (object:HeapObject) (c:C) : option HeapObject :=

match object with

| HeapObj cfll => if (can_cast object c) then Some object else None

end.

Fixpoint h_max (h:H) : Location :=

fold_left MinMax.max (map (fun el => nat_of_P (fst(el))) (HashMap.elements h)) O.

Definition h_malloc (h:H) : Location := S (h_max h).

(* Generate a list of numbers from [base .. start+base] (happens to be in reverse) *)

Fixpoint generate_n_numbers (start base:nat) : LocationList :=

match start with

| O => nil

| S n => (start + base) :: (generate_n_numbers n base)

end.

Definition h_malloc_n (h:H) (number:nat) : LocationList :=

match number with

| O => nil

| _ => generate_n_numbers number (h_max h)

end.

Definition convert_to_boolean_expr (b:Boolean) : Expression := Expr_V (V_Bool b).

Definition convert_pointer_to_expr (p:Pointer) : Expression := Expr_V (V_Pointer p).

Definition Boolean_equals := eqb.

79



Definition Pointer_equals (p0 p1: Pointer) : Boolean :=

match Pointer_eq_dec p0 p1 with

| left _ => true

| _ => false

end.

Definition V_equals (v0 v1:V) : Boolean :=

match V_eq_dec v0 v1 with

| left _ => true

| _ => false

end.

Definition h_extend (h:H) (loc:Location) (hv:Hv) : H :=

HashMap.add (location_to_key loc) hv h.

Fixpoint h_extend_star (h:H) (loclist:LocationList) (varlist:list V) : option H :=

match loclist , varlist with

| nil , nil => Some h

| loc::t, var::t’ => h_extend_star (h_extend h loc (Hv_v var)) t t’

| _, _ => None

end.

Theorem eq_lengths_means_some_h:

forall (loclist:LocationList) (varlist:list V) h h’,

(length loclist) = (length varlist) -> (h_extend_star h loclist varlist = Some h’).

Proof.

intros.

Admitted.

Fixpoint h_extend_star_hierarchical_list (h:H) (hl:list LocationList)

(dvs:list (list V)) : option H :=

match hl , dvs with

| nil , nil => Some h

| l::t, v::t’ => match (h_extend_star h l v) with

| None => None

| Some h’ => h_extend_star_hierarchical_list h’ t t’

end

| _, _ => None

end.

Fixpoint assign_field_locations (loclist:LocationList)

80



(fieldvaluelist:list (F * V)) : HashMap.t Location :=

match loclist , fieldvaluelist with

| loc::t, (field , val )::t’ => HashMap.add field loc (assign_field_locations t t’)

| _, _ => HashMap.empty Location

end.

Fixpoint create_hierarchical_field_location_map (hl:list LocationList)

(dvs:list FieldValueMap) : list FieldLocationMap :=

match hl , dvs with

| loclist ::t, fvm::t’ => (assign_field_locations loclist (HashMap.elements fvm)) ::

(create_hierarchical_field_location_map t t’)

| _, _ => nil

end.

Fixpoint create_location_value_list_helper (fieldvalues:list (F*V))

(flm:FieldLocationMap) : list (Location*V) :=

match fieldvalues with

| h::t => match (HashMap.find (fst h) flm) with

| Some loc => (loc , (snd h)) :: (create_location_value_list_helper t flm)

| None => nil

end

| _ => nil

end.

Definition create_location_value_list (flm:FieldLocationMap) (fvm:FieldValueMap)

: list (Location*V) := create_location_value_list_helper (HashMap.elements fvm) flm.

Definition create_hierarchical_location_value_list (hl:list FieldLocationMap)

(dvs:list FieldValueMap) :=

map (fun hl_dvs => create_location_value_list (fst hl_dvs) (snd hl_dvs ))

(combine hl dvs).

Fixpoint h_extend_star_hierarchical_map (h:H) (hl:list FieldLocationMap)

(dvs:list FieldValueMap) : option H :=

match hl , dvs with

| flm::t, fvm::t’ => match create_location_value_list flm fvm with

| nil => h_extend_star_hierarchical_map h t t’

| (loc , v)::tl => let (loclist , vlist) := (split tl) in

match (h_extend_star (h_extend h loc (Hv_v v))

loclist vlist) with

| None => None

81



| Some h’ =>

(h_extend_star_hierarchical_map h’ t t’)

end

end

| _, _ => Some h

end.

Definition eta_extend (eta:Eta) (x:X) (loc:Location) := (Eta_NotMt eta x loc).

(*

Ignores invalid arguments such as mismatched lengths for loclist & varlist

Check for extending with something that already exists - a hashmap would easily

handle these scenarios

*)

Fixpoint eta_extend_star (eta:Eta) (xlist:IdList) (loclist:LocationList) : option Eta :=

match loclist , xlist with

| nil , nil => Some eta

| loc::t, var::t’ => eta_extend_star (Eta_NotMt eta (SomeId var) loc) t’ t

| _, _ => None

end.

Definition eval_if_then_else (v1:Boolean) (e_t e_f:Expression) :=

match v1 with

| true => e_t

| false => e_f

end.

Definition get_method_list (cl:CL) : MethodMap :=

match cl with

| ClassDecl _ _ _ methodlist => methodlist

end.

Definition get_field_list (cl:CL) : FieldTypeMap :=

match cl with

| ClassDecl _ _ fieldlist _ => fieldlist

end.

Definition method_lookup (m:M) (cl:CL) : option Method :=

HashMap.find m (get_method_list cl).

Fixpoint get_class_with_virtual_method (m:M) (classlist:list CL) : option CL :=

82



match classlist with

| nil => None

| cl::t => match method_lookup m cl with

| Some method => Some cl

| None => get_class_with_virtual_method m t

end

end.

Fixpoint get_virtual_method (m:M) (classlist:list CL) : option Method :=

match (get_class_with_virtual_method m classlist) with

| None => None

| Some cl => method_lookup m cl

end.

Definition get_fields_of_parents_and_self_from_list (cllist:list CL) : list FieldTypeMap :=

map (fun cl => (get_field_list cl)) cllist.

Definition get_fields_of_parents_and_self_from_CL (cl:CL) (mu:Mu) : list FieldTypeMap :=

get_fields_of_parents_and_self_from_list

(get_class_hierarchy_CL_to_CLList (HashMap.cardinal mu) cl mu).

Definition get_fields_of_parents_and_self_C (c:C) (mu:Mu) : list FieldTypeMap :=

match (convert_C_to_CL c mu) with

| None => nil

| Some cl => get_fields_of_parents_and_self_from_CL cl mu

end.

Definition get_type_list_unordered (fl:FieldTypeMap) : list T :=

map (fun fl => snd fl) (HashMap.elements fl).

Definition get_hierarchical_type_map (hfm:list FieldTypeMap) : list FieldTypeMap := hfm.

Definition get_default_value (t:T) : V :=

match t with

| T_Class _ => V_Pointer Null

| T_Unit => V_Unit

| T_Bool => V_Bool false

end.

Fixpoint create_default_values_hash_map elems : HashMap.t V :=

match elems with

83



| nil => HashMap.empty V

| h::t => match h with

| (field , type) => HashMap.add field (get_default_value type)

(create_default_values_hash_map t)

end

end.

Definition get_default_values (ftm:FieldTypeMap) : FieldValueMap :=

create_default_values_hash_map (HashMap.elements ftm).

Definition get_hierarchical_default_values (htl:list FieldTypeMap) : list FieldValueMap :=

map (fun tm => (get_default_values tm)) htl.

Definition make_heap_pointer (loc:Location) (c:C) := (Hv_v (V_Pointer (Addr loc c))).

Definition argument_list_to_XList (arglist:ArgumentList) : IdList :=

map (fun vardec => get_variable_name vardec) arglist.

Definition get_field_ids (ftm:FieldTypeMap) : list id :=

map (fun el => fst el) (HashMap.elements ftm).

Definition create_field_location_pairs (ftm:FieldTypeMap)

(loclist:LocationList) : list (id * Location) :=

(combine (get_field_ids ftm) loclist ).

Fixpoint create_field_location_map (pairs: list(id * Location )) : FieldLocationMap :=

match pairs with

| nil => HashMap.empty Location

| (x, loc)::t => HashMap.add x loc (create_field_location_map t)

end.

Fixpoint build_class_loc_lists_helper (arg:list (C * (FieldTypeMap * LocationList )))

: ClassToFieldLocationsMap :=

match arg with

| nil => HashMap.empty FieldLocationMap

| (( SomeClass c), (ftm , loclist ))::t => HashMap.add c

(create_field_location_map (create_field_location_pairs ftm loclist ))

(build_class_loc_lists_helper t)

end.

(* "New" helpers *)

84



Definition build_class_loc_lists (hcl:CList)

(hfl:list FieldTypeMap)

(hl:list LocationList) : ClassToFieldLocationsMap :=

if (beq_nat (length hfl) (length hl)) then

let fields_and_locations := (combine hfl hl) in

(if (beq_nat (length hcl) (length fields_and_locations )) then

build_class_loc_lists_helper (combine hcl fields_and_locations)

else HashMap.empty FieldLocationMap)

else

HashMap.empty FieldLocationMap.

Definition get_required_heap_space (l:list nat) : nat := fold_left plus l 0.

Fixpoint partition_list (the_list:list Location)

(element_lengths: list nat) : list LocationList :=

if beq_nat (length the_list) (get_required_heap_space element_lengths) then

match element_lengths , the_list with

| len::t, h::t’ => (firstn len the_list) :: partition_list (skipn len the_list) t

| _, _ => nil

end

else nil.

Definition h_malloc_n_star (h:H) (l:list nat) : list LocationList :=

match l with

| nil => nil

| _ => partition_list (h_malloc_n h (get_required_heap_space l)) l

end.

Definition get_value_lengths (hfvm:list FieldValueMap) : list nat :=

map (fun fvm => HashMap.cardinal fvm) hfvm.

Definition inject (prog : P) : State :=

match prog with

| Program mu entrypoint =>

match entrypoint with

| EntryPoint c m => (StateCons mu (HashMap.empty Hv) Eta_mt

(MethodInvocation (NewClass c) m nil) K_Return)

end

end.

Definition inject_with_state (s:State) (m:M) : State :=

85



match s with

| StateCons mu h eta e k => (StateCons mu h eta (MethodInvocation e m nil) K_Return)

end.

86



Appendix D

Javalite Coq Reduction Relation

(* -------------------------------------------------------------------------- *)

(* ------------------------- Expression Reductions -------------------------- *)

(* -------------------------------------------------------------------------- *)

Inductive ExprReduces : State -> State -> Prop :=

(* ------------------------------------------------------------------------- *)

(* Variable Access *)

| ER_VariableAccess :

forall (x:X) (mu:Mu) (h:H) (eta:Eta) (k:Continuation) (l:Location) (hv:Hv),

(eta_lookup eta x) = Some l ->

(h_lookup h l) = Some hv ->

ExprReduces (StateCons mu h eta (Expr_X x) k)

(StateCons mu h eta (Expr_V (Hv_To_V l hv)) k)

(* ------------------------------------------------------------------------- *)

(* Field Access - Object Eval *)

| ER_FieldAccess1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (f:F) (k:Continuation),

ExprReduces (StateCons mu h eta (FieldRef e f) k)

(StateCons mu h eta e (K_FieldAccess f k))

(* Field access *)

| ER_FieldAccess2 :

forall mu h eta loc C f1 k v1 object obj loc_0 ,

(h_lookup h loc) = Some (Hv_object obj) ->

(cast obj C) = Some object ->

(field_lookup object C f1 mu) = Some loc_0 ->

(h_lookup h loc_0) = Some (Hv_v v1) ->

87



ExprReduces (StateCons mu h eta (Expr_V (V_Pointer (Addr loc C))) (K_FieldAccess f1 k))

(StateCons mu h eta (Expr_V v1) k)

(* ------------------------------------------------------------------------- *)

(* Equals ’==’: l-operand eval *)

| ER_Equals1 :

forall (mu:Mu) (h:H) (eta:Eta) (e_0 e:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (Equality e_0 e) k)

(StateCons mu h eta e_0 (K_EqualityLeftOperand e k))

(* Equals ’==’: r-operand eval *)

| ER_Equals2 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (v:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v) (K_EqualityLeftOperand e k))

(StateCons mu h eta e (K_EqualityRightOperand v k))

(* Equals ’==’: equals *)

| ER_Equals3 :

forall (mu:Mu) (h:H) (eta:Eta) (v_0 v_1:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v_0) (K_EqualityRightOperand v_1 k))

(StateCons mu h eta (convert_to_boolean_expr (V_equals v_0 v_1)) k)

(* ------------------------------------------------------------------------- *)

(* Typecast - Object eval *)

| ER_Typecast1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (c:C) (k:Continuation),

ExprReduces (StateCons mu h eta (Cast c e) k)

(StateCons mu h eta e (K_Cast c k))

(* Typecast *)

| ER_Typecast2 :

forall (mu:Mu) (h:H) (eta:Eta) (c_0 c_1:C) (loc:Location)

(object:HeapObject) (k:Continuation),

(h_lookup h loc) = Some (Hv_object object) ->

(can_cast object c_1) = true ->

ExprReduces (StateCons mu h eta (convert_pointer_to_expr (Addr loc c_0)) (K_Cast c_1 k))

88



(StateCons mu h eta (convert_pointer_to_expr (Addr loc c_1)) k)

(* ------------------------------------------------------------------------- *)

(* Assign - Object eval *)

| ER_Assign1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (x:X) (k:Continuation),

ExprReduces (StateCons mu h eta (VarAssign x e) k)

(StateCons mu h eta e (K_VarAssign x k))

(* Assign *)

| ER_Assign2 :

forall (mu:Mu) (h h_0:H) (eta:Eta) (v:V) (loc:Location) (x:X) (k:Continuation),

(eta_lookup eta x) = Some loc ->

(h_extend h loc (Hv_v v)) = h_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_VarAssign x k))

(StateCons mu h_0 eta (Expr_V v) k)

(* ------------------------------------------------------------------------- *)

(* Assign Field - Object eval *)

| ER_AssignField1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (x:X) (f:F) (k:Continuation),

ExprReduces (StateCons mu h eta (FieldAssign x f e) k)

(StateCons mu h eta e (K_FieldAssign x f k))

(* Assign Field *)

| ER_AssignField2 :

forall (mu:Mu) (h h_0:H) (eta:Eta) (x:X) (f:F) (c:C) (v:V)

(loc_0 loc_1 loc_2:Location) (obj object:HeapObject) (k:Continuation),

(eta_lookup eta x) = Some loc_0 ->

(h_lookup h loc_0) = Some (Hv_v (V_Pointer (Addr loc_1 c))) ->

(h_lookup h loc_1) = Some (Hv_object obj) ->

(cast obj c) = Some object ->

(field_lookup object c f mu) = Some loc_2 ->

(h_extend h loc_2 (Hv_v v)) = h_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_FieldAssign x f k))

(StateCons mu h_0 eta (Expr_V v) k)

89



(* ------------------------------------------------------------------------- *)

(* Pop eta (close scope) *)

| ER_PopEta :

forall (mu:Mu) (h:H) (eta eta_0:Eta) (v:V) (k:Continuation),

ExprReduces (StateCons mu h eta (Expr_V v) (K_Pop eta_0 k))

(StateCons mu h eta_0 (Expr_V v) k)

(* ------------------------------------------------------------------------- *)

(* Begin - Empty expression list *)

| ER_BeginEmptyExpList :

forall (mu:Mu) (h:H) (eta:Eta) (k:Continuation),

ExprReduces (StateCons mu h eta VoidExp k)

(StateCons mu h eta (Expr_V V_Unit) k)

(* Begin - e_0 evaluation *)

| ER_Begin_e_0_evaluation :

forall (mu:Mu) (h:H) (eta:Eta) (k:Continuation) (e_0 e_1:Expression),

ExprReduces (StateCons mu h eta (SeqExp e_0 e_1) k)

(StateCons mu h eta e_0 (K_Seq e_1 k))

(* Begin - e_1 evaluation *)

| ER_Begin_e_1_evaluation :

forall (mu:Mu) (h:H) (eta:Eta) (v:V) (k:Continuation) (e_1:Expression),

ExprReduces (StateCons mu h eta (Expr_V v) (K_Seq e_1 k))

(StateCons mu h eta e_1 k)

(* ------------------------------------------------------------------------- *)

(* Instanceof - object eval *)

| ER_InstanceOf1 :

forall (mu:Mu) (h:H) (eta:Eta) (e:Expression) (c:C) (k:Continuation),

ExprReduces (StateCons mu h eta (InstanceOf e c) k)

(StateCons mu h eta e (K_InstanceOf c k))

(* Instanceof *)

| ER_InstanceOf2 :

90



forall (mu:Mu) (h:H) (eta:Eta) (c_0 c_1:C) (v_res:Boolean) (k:Continuation)

(loc:Location) (object:HeapObject),

(h_lookup h loc) = Some (Hv_object object) ->

(can_cast object c_1) = v_res ->

ExprReduces (StateCons mu h eta (convert_pointer_to_expr (Addr loc c_0))

(K_InstanceOf c_1 k))

(StateCons mu h eta (convert_to_boolean_expr v_res) k)

(* ------------------------------------------------------------------------- *)

(* Variable declaration - object eval *)

| ER_VarDec1 :

forall (mu:Mu) (h:H) (eta:Eta) (e_0 e_1:Expression) (x1:id) (t:T) (k:Continuation),

ExprReduces (StateCons mu h eta (VarDecExp (VarDec x1 t) e_0 e_1) k)

(StateCons mu h eta e_0 (K_VarAssignIn t (SomeId x1) e_1 k))

(* Variable declaration *)

| ER_VarDec2 :

forall (mu:Mu) (h h_0:H) (eta eta_0:Eta) (v:V) (e_1:Expression)

(x1:id) (t:T) (k:Continuation) (loc_x:Location),

(h_malloc h) = loc_x ->

(h_extend h loc_x (Hv_v v)) = h_0 ->

(eta_extend eta (SomeId x1) loc_x) = eta_0 ->

ExprReduces (StateCons mu h eta (Expr_V v) (K_VarAssignIn t (SomeId x1) e_1 k))

(StateCons mu h_0 eta_0 e_1 (K_Pop eta k))

(* ------------------------------------------------------------------------- *)

(* If -then -else - object eval *)

| ER_IfThenElseObjectEval :

forall (mu:Mu) (h:H) (eta:Eta) (e_p e_t e_f:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (IfExpr e_p e_t e_f) k)

(StateCons mu h eta e_p (K_If e_t e_f k))

(* If -then -else *)

| ER_IfThenElse :

forall (mu:Mu) (h:H) (eta:Eta) (v1:Boolean) (e_t e_f:Expression) (k:Continuation),

ExprReduces (StateCons mu h eta (convert_to_boolean_expr v1) (K_If e_t e_f k))

(StateCons mu h eta (eval_if_then_else v1 e_t e_f) k)

91



(* ------------------------------------------------------------------------- *)

(* Method invocation - object eval *)

| ER_MethodInvocationObjectEval :

forall (mu:Mu) (h:H) (eta:Eta) (e_0:Expression) (args:list X) (m:M) (k:Continuation),

ExprReduces (StateCons mu h eta (MethodInvocation e_0 m args) k)

(StateCons mu h eta e_0 (K_MethodInvocation m args k))

(* Method invocation *)

| ER_MethodInvocation :

forall (mu:Mu) (h:H) (eta:Eta) (pv_o:Pointer) (m:M)

(k:Continuation) (args:list X) (primitive_args:list V),

(lookup_arguments h eta args) = primitive_args ->

ExprReduces (StateCons mu h eta (Expr_V (V_Pointer pv_o)) (K_MethodInvocation m args k))

(StateCons mu h eta (Raw pv_o m primitive_args) k)

(* Raw method invocation - there are a couple of Redex tests that can easily

break this like setting only Object as the rv from class -list -from -object *)

| ER_MethodInvocationRaw :

forall (mu:Mu) (h h_0 h_tmp:H) (eta eta_0:Eta) (e_m:Expression) (k:Continuation)

(m:M) (varlist:list V) (c C_t:C) (loc loc_o:Location) (loclist:LocationList)

(methodvars:IdList) (obj1:HeapObject) (arglist:ArgumentList) (t:T)

(classlist:CLList) (CL_t:CL),

(h_lookup h loc) = Some (Hv_object obj1) ->

(class_decls_of_parents_and_self c mu) = Some classlist ->

(get_class_with_virtual_method m classlist) = Some CL_t ->

(convert_CL_to_C CL_t) = C_t ->

(method_lookup m CL_t) = Some (AMethod m t arglist e_m) ->

(argument_list_to_XList arglist) = methodvars ->

(* allocate locations for "this" and the arguments *)

(h_malloc_n h (S (length varlist ))) = (loc_o:: loclist) ->

(* write "this" and the args into the heap.

loclist and varlist must be the same length. *)

(h_extend h loc_o (make_heap_pointer loc C_t)) = h_tmp ->

(h_extend_star h_tmp loclist varlist) = Some h_0 ->

92



(* create a new local environment with the bindings for "this" and args *)

(eta_extend_star (eta_extend eta This loc_o) methodvars loclist) = Some eta_0 ->

ExprReduces (StateCons mu h eta (Raw (Addr loc c) m varlist) k)

(StateCons mu h_0 eta_0 e_m (K_Pop eta k))

(* ------------------------------------------------------------------------- *)

(* New *)

| ER_New :

forall (mu:Mu) (h h_0 h_1:H) (eta:Eta) (c:C) (loc_1:Location)

(k : Continuation)

(classlist : CList)

(defaultvalues : list FieldValueMap)

(hierarchicalfieldlist : list FieldTypeMap)

(hierarchicaltypelist : list FieldTypeMap)

(hierarchicallocations : list LocationList)

(listofclassfieldloclists : ClassToFieldLocationsMap)

(hierarchicalfieldlocmap : list FieldLocationMap),

(classes_of_parents_and_self c mu) = Some classlist ->

(beq_nat O (length classlist )) = false ->

(get_fields_of_parents_and_self_C c mu) = hierarchicalfieldlist ->

(get_hierarchical_type_map hierarchicalfieldlist) = hierarchicaltypelist ->

(get_hierarchical_default_values hierarchicaltypelist) = defaultvalues ->

(h_malloc_n_star h (get_value_lengths defaultvalues )) = hierarchicallocations ->

(create_hierarchical_field_location_map hierarchicallocations

defaultvalues) = hierarchicalfieldlocmap ->

(h_extend_star_hierarchical_map h hierarchicalfieldlocmap defaultvalues)

= Some h_0 ->

(h_malloc h_0) = loc_1 ->

(build_class_loc_lists classlist hierarchicalfieldlist hierarchicallocations)

= listofclassfieldloclists ->

(h_extend h_0 loc_1 (Hv_object (HeapObj listofclassfieldloclists ))) = h_1 ->

ExprReduces (StateCons mu h eta (NewClass c) k)

(StateCons mu h_1 eta (convert_pointer_to_expr (Addr loc_1 c)) k).

93



Appendix E

Javalite Coq Proofs

Hint Constructors ExprReduces.

Require Import Coq.Sets.Relations_1.

Definition ExprReducesTransitive := Transitive ExprReduces.

Theorem ExprReduces_fun:

forall (s s’ s’’:State),

ExprReduces s s’ ->

ExprReduces s s’’ ->

s’ = s’’.

Proof.

intros.

destruct s.

inversion H0; inversion H1; try congruence || (subst; discriminate ).

subst.

inversion H14.

inversion H15.

reflexivity.

subst.

inversion H15.

inversion H14.

congruence.

subst.

inversion H12.

inversion H13.

reflexivity.

Qed.

94



Axiom MethodLookupSoundness:

forall (cl:CL) (e:Expression) (arglist:ArgumentList) (t:T) (m1 m2:M),

(method_lookup m1 cl) = Some (AMethod m2 t arglist e) -> m1 = m2.

Theorem ExprReduces_dec:

forall (s:State),

{ s’ | ExprReduces s s’ } + { forall s’, ~ ExprReduces s s’ }.

Proof.

intros. destruct s. generalize m h e c. clear m h e c.

rename e0 into x.

Ltac dispatch_invalid_state := right; intuition; inversion_clear H0.

Ltac dispatch_invalid_state_with_congruence := right;

intuition; inversion_clear H0; congruence.

induction x.

(* Expr_X *)

intros.

remember (eta_lookup e x) as eta_lookup_e_x.

destruct eta_lookup_e_x.

remember (h_lookup h l) as h_lookup_h_l.

destruct h_lookup_h_l.

left.

exists (StateCons m h e (Expr_V (Hv_To_V l h0)) c).

apply (ER_VariableAccess x m h e c l h0); symmetry; assumption.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(* Expr_V *)

intros.

destruct c.

(** K_Return is not a valid continuation *)

dispatch_invalid_state.

(** K_FieldAccess *)

destruct v.

destruct p as [loc|].

95



remember (h_lookup h loc) as h_lookup_h_loc.

destruct h_lookup_h_loc.

destruct h0 as [hv|obj].

(** h_lookup h loc must return an object *)

dispatch_invalid_state_with_congruence.

remember (cast obj c0) as cast_obj_c0.

destruct cast_obj_c0 as [object |].

remember (field_lookup object c0 f m) as field_lookup_object_f_mu.

destruct field_lookup_object_f_mu as [loc_0 |].

remember (h_lookup h loc_0) as h_lookup_h_loc_0.

destruct h_lookup_h_loc_0 as [hv|].

destruct hv.

left.

exists (StateCons m h e (Expr_V v) c).

apply (ER_FieldAccess2 m h e loc c0 f c v object obj loc_0); symmetry; assumption.

(** (h_lookup h loc_0) must be (Hv_v v) *)

dispatch_invalid_state_with_congruence.

(** (h_lookup h loc_0) must be (Hv_v v) *)

dispatch_invalid_state_with_congruence.

(** ( field_lookup object f1 mu) must be (Some loc_0) *)

dispatch_invalid_state_with_congruence.

(** (cast obj C) must be Some object *)

dispatch_invalid_state_with_congruence.

(** (h_lookup h loc) must be Some ... *)

dispatch_invalid_state_with_congruence.

(** Null pointers can ’t be used for field access *)

dispatch_invalid_state_with_congruence.

(** Only pointers can be used for field access *)

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

96



(** K_MethodInvocation *)

destruct v.

left.

exists (StateCons m h e (Raw p m0 (lookup_arguments h e l)) c).

apply ER_MethodInvocation.

reflexivity.

(** Only pointers can be used for method invocation *)

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(** K_EqualityLeftOperand *)

left.

exists (StateCons m h e e0 (K_EqualityRightOperand v c)).

apply ER_Equals2.

(** K_EqualityRightOperand *)

left.

exists (StateCons m h e (convert_to_boolean_expr (V_equals v v0)) c).

apply ER_Equals3.

(** K_Cast *)

destruct v.

destruct p as [loc|].

remember (h_lookup h loc) as h_lookup_h_loc.

destruct h_lookup_h_loc as [hl|].

destruct hl as [hv|object ].

(*** h_lookup h loc must be Some heap object *)

dispatch_invalid_state_with_congruence.

remember (can_cast object c) as can_cast.

destruct can_cast.

left.

exists (StateCons m h e (Expr_V (V_Pointer (Addr loc c))) c0).

apply ER_Typecast2 with object.

symmetry. apply Heqh_lookup_h_loc.

symmetry. apply Heqcan_cast.

97



(*** can_cast should be true *)

dispatch_invalid_state_with_congruence.

(*** h_lookup should be Some ... *)

dispatch_invalid_state_with_congruence.

(*** Null pointer cannot be used for casting - do we need to allow this? *)

dispatch_invalid_state_with_congruence.

(*** Only pointers can be used for casting *)

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(** K_InstanceOf *)

destruct v.

destruct p as [loc|].

remember (h_lookup h loc) as h_lookup_h_loc.

destruct h_lookup_h_loc as [hl|].

destruct hl as [hv|object ].

(*** h_lookup h loc must be Some heap object *)

dispatch_invalid_state_with_congruence.

remember (can_cast object c) as can_cast_object.

left.

exists (StateCons m h e (convert_to_boolean_expr can_cast_object) c0).

apply ER_InstanceOf2 with object.

symmetry. apply Heqh_lookup_h_loc.

symmetry. apply Heqcan_cast_object.

(*** h_lookup h loc must be Some heap object *)

dispatch_invalid_state_with_congruence.

(*** Null pointer cannot be used for instanceof - do we need to allow this? *)

dispatch_invalid_state_with_congruence.

(*** Only pointers can be used for instanceof *)

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

98



(** K_VarAssign *)

remember (eta_lookup e x) as elex.

destruct elex as [loc|].

remember (h_extend h loc (Hv_v v)) as extendedH.

left.

exists (StateCons m extendedH e (Expr_V v) c).

apply ER_Assign2 with loc.

symmetry. apply Heqelex.

symmetry. apply HeqextendedH.

(*** eta_lookup must be Some ... *)

dispatch_invalid_state_with_congruence.

(** K_FieldAssign *)

remember (eta_lookup e x) as elex.

destruct elex as [loc_0 |].

remember (h_lookup h loc_0) as hlhl0.

destruct hlhl0 as [heapthing |].

destruct heapthing as [hv|heapobj ].

destruct hv.

destruct p as [loc_1 |].

remember (h_lookup h loc_1) as hlhl1.

destruct hlhl1 as [heapthing |].

destruct heapthing as [hv|obj].

(*** h_lookup h loc must be Some heap object *)

dispatch_invalid_state_with_congruence.

remember (cast obj c0) as cast_obj_c.

destruct cast_obj_c as [object |].

remember (field_lookup object c0 f m) as flofm.

destruct flofm as [loc_2 |].

remember (h_extend h loc_2 (Hv_v v)) as h_0.

left.

exists (StateCons m h_0 e (Expr_V v) c).

apply (ER_AssignField2 m h h_0 e x f c0 v loc_0 loc_1

loc_2 obj object ); symmetry; assumption.

99



dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(** K_If *)

destruct v.

dispatch_invalid_state_with_congruence.

left.

exists (StateCons m h e (eval_if_then_else b e0 e1) c).

apply ER_IfThenElse.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(** K_VarAssignIn *)

remember (h_malloc h) as loc_x.

remember (h_extend h loc_x (Hv_v v)) as h_0.

destruct x as [|x1].

dispatch_invalid_state_with_congruence.

remember (eta_extend e (SomeId x1) loc_x) as eta_0.

left.

exists (StateCons m h_0 eta_0 e0 (K_Pop e c)).

apply ER_VarDec2 with loc_x.

symmetry. apply Heqloc_x.

symmetry. apply Heqh_0.

symmetry. apply Heqeta_0.

(** K_Seq *)

left.

exists (StateCons m h e e0 c).

apply ER_Begin_e_1_evaluation.

(** K_Pop *)

left.

100



exists (StateCons m h e0 (Expr_V v) c).

apply ER_PopEta.

(* NewClass *)

intros.

remember (classes_of_parents_and_self c m) as option_classlist.

destruct option_classlist as [classlist |].

remember (get_fields_of_parents_and_self_C c m) as hierarchicalfieldlist.

remember (get_hierarchical_type_map hierarchicalfieldlist) as hierarchicaltypelist.

remember (get_hierarchical_default_values hierarchicaltypelist) as defaultvalues.

remember (h_malloc_n_star h (get_value_lengths defaultvalues )) as hierarchicallocations.

remember (create_hierarchical_field_location_map hierarchicallocations

defaultvalues) as hierarchicalfieldlocmap.

remember (h_extend_star_hierarchical_map h hierarchicalfieldlocmap

defaultvalues) as option_h_0.

destruct option_h_0 as [h_0|].

remember (h_malloc h_0) as loc_1.

remember (build_class_loc_lists classlist hierarchicalfieldlist

hierarchicallocations) as listofclassfieldloclists.

remember (h_extend h_0 loc_1 (Hv_object (HeapObj listofclassfieldloclists ))) as h_1.

remember (beq_nat O (length classlist )) as nonempty_classlist.

destruct nonempty_classlist.

dispatch_invalid_state_with_congruence.

left.

exists (StateCons m h_1 e (convert_pointer_to_expr (Addr loc_1 c)) c0).

apply (ER_New m h h_0 h_1 e c loc_1 c0 classlist

defaultvalues hierarchicalfieldlist

hierarchicaltypelist hierarchicallocations

listofclassfieldloclists hierarchicalfieldlocmap ); symmetry; assumption.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(* FieldRef *)

left.

exists (StateCons m h e x (K_FieldAccess f c)).

apply ER_FieldAccess1.

(* MethodInvocation *)

left.

101



exists (StateCons m0 h e x (K_MethodInvocation m l c)).

apply ER_MethodInvocationObjectEval.

(* Raw *)

intros.

destruct p as [loc|].

remember (h_lookup h loc) as hlhl.

destruct hlhl as [heapthing |].

destruct heapthing as [hv|obj1].

dispatch_invalid_state_with_congruence.

remember (class_decls_of_parents_and_self c0 m0) as optionclasslist.

destruct optionclasslist as [classlist |].

remember (get_class_with_virtual_method m classlist) as optionCL_t.

destruct optionCL_t as [CL_t |].

remember (convert_CL_to_C CL_t) as C_t.

remember (method_lookup m CL_t) as optionAMethod.

destruct optionAMethod as [someAMethod |].

destruct someAMethod.

remember (argument_list_to_XList a) as methodvars.

remember (h_malloc_n h (S (length l))) as loclist.

destruct loclist as [|loc_o].

dispatch_invalid_state_with_congruence.

remember (h_extend h loc_o (make_heap_pointer loc C_t)) as h_tmp.

remember (h_extend_star h_tmp loclist l) as optionH_0.

destruct optionH_0 as [h_0|].

remember (eta_extend_star (eta_extend e This loc_o) methodvars loclist) as optionEta_0.

destruct optionEta_0 as [eta_0 |].

left.

exists (StateCons m0 h_0 eta_0 e0 (K_Pop e c)).

apply (ER_MethodInvocationRaw m0 h h_0 h_tmp e eta_0 e0 c m l c0 C_t

loc loc_o loclist methodvars obj1 a t

classlist CL_t); try congruence.

102



symmetry in HeqoptionAMethod.

assert (m = m1) as H_same_method.

apply MethodLookupSoundness in HeqoptionAMethod.

exact HeqoptionAMethod.

rewrite <- H_same_method in HeqoptionAMethod.

apply HeqoptionAMethod.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

dispatch_invalid_state_with_congruence.

(* Equality *)

left.

exists (StateCons m h e x1 (K_EqualityLeftOperand x2 c)).

apply ER_Equals1.

(* Cast *)

left.

exists (StateCons m h e x (K_Cast c c0)).

apply ER_Typecast1.

(* InstanceOf *)

left.

exists (StateCons m h e x (K_InstanceOf c c0)).

apply ER_InstanceOf1.

(* VarAssign *)

left.

exists (StateCons m h e x0 (K_VarAssign x c)).

apply ER_Assign1.

(* FieldAssign *)

left.

exists (StateCons m h e x0 (K_FieldAssign x f c)).

apply ER_AssignField1.

103



(* IfExpr *)

left.

exists (StateCons m h e x1 (K_If x2 x3 c)).

apply ER_IfThenElseObjectEval.

(* VarDecExp *)

left.

destruct v as [name t].

exists (StateCons m h e x1 (K_VarAssignIn t (SomeId name) x2 c)).

apply ER_VarDec1.

(* VoidExp *)

left.

exists (StateCons m h e (Expr_V V_Unit) c).

apply ER_BeginEmptyExpList.

(* SeqExp *)

left.

exists (StateCons m h e x1 (K_Seq x2 c)).

apply ER_Begin_e_0_evaluation.

Qed.

Extraction "javalite.ml" ExprReduces_dec.

Theorem ExprReduces_not_reflexive:

forall (s:State),

~ ExprReduces s s.

Proof.

intuition.

destruct s.

induction e0; inversion H0; try congruence.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

absurd (k = k); eauto. rewrite H8 at 1.

104



clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

absurd (k = k); eauto. rewrite H7 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. rewrite H2. exact H3.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. rewrite <- H1. exact H2.

absurd (k = k); eauto. rewrite H8 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. rewrite H2. exact H3.

absurd (k = k); eauto. rewrite <- H7 in H11. rewrite <- H11 at 1.

clear - k. induction k; eauto; intros H; inversion H.

eapply IHk. rewrite H1. exact H2.

Qed.

105



References

Jien-Tsai Chan, Wuu Yang, and Jing-Wei Huang. Traps in Java. Journal of Systems and Software, 72(1):

33–47, June 2004. ISSN 0164-1212. doi: 10.1016/S0164-1212(03)00040-2. URL http://dx.doi.org/10.

1016/S0164-1212(03)00040-2.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT Redex. MIT

Press, 2009. ISBN 978-0-262-06275-6.

Mattias Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control.

Theoretical Computer Science, 52(3):205–237, June 1987. ISSN 0304-3975. doi: 10.1016/0304-3975(87)

90109-5. URL http://dx.doi.org/10.1016/0304-3975(87)90109-5.

Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia. Modular verification of mul-

tithreaded programs. Theoretical Computer Science, 338:153–183, June 2005. ISSN 0304-3975. doi:

10.1016/j.tcs.2004.12.006. URL http://dl.acm.org/citation.cfm?id=1085260.1085266.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s reduction semantics for

classes and mixins. In Formal Syntax and Semantics of Java, pages 241–269, London, UK, UK, 1999.

Springer-Verlag. ISBN 3-540-66158-1. URL http://dl.acm.org/citation.cfm?id=645580.658808.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java(TM) Language Specification (3rd Edition).

Addison-Wesley Professional, 2005. ISBN 0321246780.

Matthew Hennessy. Lecture Notes - Chapter 1. 2012. URL https://www.scss.tcd.ie/Matthew.Hennessy/

teaching/2012/slexternal2012/notes/ArithNotes.pdf.

Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. In Proceedings of the

ACM Symposium on Applied Computing, pages 1435–1441, New York, NY, USA, 2006. ACM. ISBN

1-59593-108-2. doi: 10.1145/1141277.1141610. URL http://doi.acm.org/10.1145/1141277.1141610.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for

Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001.

ISSN 0164-0925. doi: 10.1145/503502.503505. URL http://doi.acm.org/10.1145/503502.503505.

Radu Iosif. Exploiting heap symmetries in explicit-state model checking of software. In Proceedings of the

16th IEEE International Conference on Automated Software Engineering, pages 254–261, Washington,

DC, USA, 2001. IEEE Computer Society. URL http://dl.acm.org/citation.cfm?id=872023.872566.

Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A.

McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. Run your research: on the

effectiveness of lightweight mechanization. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 285–296, New York, NY, USA, 2012. ACM.

106

http://dx.doi.org/10.1016/S0164-1212(03)00040-2
http://dx.doi.org/10.1016/S0164-1212(03)00040-2
http://dx.doi.org/10.1016/0304-3975(87)90109-5
http://dl.acm.org/citation.cfm?id=1085260.1085266
http://dl.acm.org/citation.cfm?id=645580.658808
https://www.scss.tcd.ie/Matthew.Hennessy/teaching/2012/slexternal2012/notes/ArithNotes.pdf
https://www.scss.tcd.ie/Matthew.Hennessy/teaching/2012/slexternal2012/notes/ArithNotes.pdf
http://doi.acm.org/10.1145/1141277.1141610
http://doi.acm.org/10.1145/503502.503505
http://dl.acm.org/citation.cfm?id=872023.872566


ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103691. URL http://doi.acm.org/10.1145/2103656.

2103691.

Giovanni Lagorio and Marco Servetto. Strong exception-safety for Java-like languages. In Proceedings of the

12th Workshop on Formal Techniques for Java-Like Programs, pages 3:1–3:7, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0540-2. doi: 10.1145/1924520.1924523. URL http://doi.acm.org/10.1145/

1924520.1924523.

The Coq development team. The Coq Proof Assistant Reference Manual. LogiCal Project, 2010. URL

http://coq.inria.fr. Version 8.3.

Johan Östlund and Tobias Wrigstad. Welterweight Java. In Proceedings of the 48th International Conference

on Objects, Models, Components, Patterns, pages 97–116, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN

3-642-13952-3, 978-3-642-13952-9. URL http://dl.acm.org/citation.cfm?id=1894386.1894392.

Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjoberg, and Brent

Yorgey. Software Foundations. Electronic textbook, 2012.

Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic Pro-

gramming, 60-61:17–139, 2004.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th

Annual IEEE Symposium on Logic in Computer Science, pages 55–74, Washington, DC, USA, 2002. IEEE

Computer Society. ISBN 0-7695-1483-9. URL http://dl.acm.org/citation.cfm?id=645683.664578.

Neha Rungta and Eric Mercer. Slicing and dicing bugs in concurrent programs. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 2, pages 195–198, New York,

NY, USA, 2010. ACM. ISBN 978-1-60558-719-6. doi: http://doi.acm.org/10.1145/1810295.1810328. URL

http://doi.acm.org/10.1145/1810295.1810328.

David A. Schmidt. Denotational Semantics: A Methodology For Language Development. William C. Brown

Publishers, Dubuque, IA, USA, 1986. ISBN 0-697-06849-2.

Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics of Programming Languages: A Labo-

ratory Based Approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,

1995. ISBN 0201656973.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: understanding

object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 17–30, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi:

10.1145/1926385.1926390. URL http://doi.acm.org/10.1145/1926385.1926390.

Rok Strnǐsa, Peter Sewell, and Matthew Parkinson. The Java module system: core design and semantic

definition. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems and Applications, pages 499–514, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-5.

doi: 10.1145/1297027.1297064. URL http://doi.acm.org/10.1145/1297027.1297064.

Alexander J. Summers. Modelling Java requires state. In Proceedings of the 11th International Workshop on

Formal Techniques for Java-like Programs, pages 10:1–10:3, New York, NY, USA, 2009. ACM. ISBN 978-

1-60558-540-6. doi: 10.1145/1557898.1557908. URL http://doi.acm.org/10.1145/1557898.1557908.

107

http://doi.acm.org/10.1145/2103656.2103691
http://doi.acm.org/10.1145/2103656.2103691
http://doi.acm.org/10.1145/1924520.1924523
http://doi.acm.org/10.1145/1924520.1924523
http://coq.inria.fr
http://dl.acm.org/citation.cfm?id=1894386.1894392
http://dl.acm.org/citation.cfm?id=645683.664578
http://doi.acm.org/10.1145/1810295.1810328
http://doi.acm.org/10.1145/1926385.1926390
http://doi.acm.org/10.1145/1297027.1297064
http://doi.acm.org/10.1145/1557898.1557908

