
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2011-10-11

Improving Multi-label Classification by Avoiding
Implicit Negativity with Incomplete Data
Derrall L. Heath
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Heath, Derrall L., "Improving Multi-label Classification by Avoiding Implicit Negativity with Incomplete Data" (2011). All Theses and
Dissertations. 2844.
https://scholarsarchive.byu.edu/etd/2844

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2844?utm_source=scholarsarchive.byu.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Improving Multi-label Classification by Avoiding Implicit Negativity

with Incomplete Data

Derrall Heath

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dan Ventura, Chair
Tony Martinez

Scott Woodfield

Department of Computer Science

Brigham Young University

December 2011

Copyright c© 2011 Derrall Heath

All Rights Reserved

ABSTRACT

Improving Multi-label Classification by Avoiding Implicit Negativity
with Incomplete Data

Derrall Heath
Department of Computer Science, BYU

Master of Science

Many real world problems require multi-label classification, in which each training
instance is associated with a set of labels. There are many existing learning algorithms
for multi-label classification; however, these algorithms assume implicit negativity, where
missing labels in the training data are automatically assumed to be negative. Additionally,
many of the existing algorithms do not handle incremental learning in which new labels
could be encountered later in the learning process. A novel multi-label adaptation of the
backpropagation algorithm is proposed that does not assume implicit negativity. In addition,
this algorithm can, using a näıve Bayesian approach, infer missing labels in the training data.
This algorithm can also be trained incrementally as it dynamically considers new labels.
This solution is compared with existing multi-label algorithms using data sets from multiple
domains and the performance is measured with standard multi-label evaluation metrics. It is
shown that our algorithm improves classification performance for all metrics by an overall
average of 7.4% when at least 40% of the labels are missing from the training data, and
improves by 18.4% when at least 90% of the labels are missing.

Keywords: implicit negativity, multi-label classification, thesis

ACKNOWLEDGMENTS

I’d like to thank Dan Ventura, my fantastic advisor, who helped me to become a

better writer and researcher; David Norton, a fellow lab member, who helped me polish many

of my ideas and solutions; and Tony Martinez as a committee member. I’d also like to thank

my family for their constant encouragement.

Contents

Contents iv

1 Introduction 1

2 Related Work 4

2.1 Problem Transformational Methods . 4

2.2 Algorithm Adaptation Methods . 5

2.3 Implicit Negativity . 6

2.4 Inferring Missing Labels . 8

2.5 Incremental Learning . 9

3 Methods 10

3.1 Avoiding Implicit Negativity . 10

3.2 Inferring Missing Labels . 12

3.3 Incremental Learning . 14

4 Experimental Setup 16

4.1 Data Sets . 16

4.2 Algorithms . 18

4.3 Evaluation Metrics . 18

5 Results 22

5.1 Artificially Removing Labels . 22

5.2 The DARCI Data Set . 27

5.3 Only One Positive Label . 29

iv

5.4 Incremental Learning . 32

5.5 Comparing with the Bayesian Model . 35

6 Conclusions and Future Work 37

References 39

v

Chapter 1

Introduction

Traditionally, many classification problems have dealt with single-label classification,

meaning each training instance is associated with only one class or label. In single-label

classification, the task is to learn some target function f : X → L that predicts the correct

label for each new instance. However, in multi-label classification, each training instance can

be associated with more than one label. The task is to learn some target function f : X → 2L

that predicts the correct set of labels (of unknown size) for each new instance.

There are many interesting problems that require multi-label classification. For

example, in gene classification, genes can perform more than one function [1]. In text

categorization, a document can contain multiple topics such as outdoors, sports, and recreation

[2]. Images can be labeled by the multiple objects they may contain [3]. Web sites can be

given several labels for the different topics they represent [4]. Music and movies can belong

to more than one genre [5]. The list of multi-label classification problems continues to grow

and it is imperative that we have good multi-label classification solutions for these various

problems.

The existing methods for multi-label classification follow two main strategies: problem

transformational methods and algorithm adaptation methods [6]. Problem transformational

methods involve transforming a multi-label classification problem into one or more single-label

classification problems. Algorithm adaptation methods involve modifying specific learning

algorithms to directly handle multi-label problems. Much research has been done to show

that many of these methods are successful in solving various multi-label problems.

1

However, all these multi-label learning algorithms assume that each training instance

will have all the correct positive labels provided and that any label not listed is negative.

We call this assumption implicit negativity. We will define our set of multi-label data to

be {xi, Yi}, i = 1...m, where Yi ⊆ L is the set of all correct positive labels for xi and

L = {λj : j = 1...q} is the set of all possible labels. Let Y ′
i be the provided set of positive

labels for a training instance xi. Existing multi-label learning algorithms assume that Y ′
i = Yi,

or that the provided set of positive labels is always equal to the true set of all positive labels

for a training instance xi. In reality, this is not always the case. Gathering training data is

constantly an issue in machine learning and getting training data with all the correct positive

labels listed can be very difficult in many domains. Often Y ′
i is only a subset of Yi and is

therefore missing positive labels. Algorithms that assume implicit negativity struggle with

these incomplete positive label sets because it is automatically implied that those missing

positive labels are negative and the model is trained incorrectly. It should be noted that

there is also the case involving noise, where λj ∈ Y ′
i but λj /∈ Yi. However, dealing with noise

is beyond the scope of this thesis.

Removing the assumption of implicit negativity helps to avoid training the model

incorrectly when positive labels are missing. However, eliminating this assumption requires

negative labels, in addition to the positive labels. This can potentially create a class imbalance

problem between the positive and negative examples of each label because negative labels are

generally even harder to acquire than positive labels. One approach to dealing with this is to

have the learning algorithm take advantage of label correlations in the data to infer what the

missing positive and negative labels are for each training instance. Let Ȳi be the true set of

all negative labels for a training instance xi and let Ȳ ′
i be the provided set of negative labels

for a training instance xi. When the learning algorithm encounters a new training instance

xi with positive labels Y ′
i and negative labels Ȳ ′

i , it should be able to infer Yi and Ȳi.

Another issue to consider in multi-label learning is that during incremental training,

often the complete set of all possible labels L may not be known a priori. In these situations,

2

the learning algorithm must be able to dynamically account for new labels as they are

encountered. Let L′ be the set of all possible labels that are known at the start of training.

When the learning algorithm encounters a new label λ /∈ L′, it should be able to dynamically

add λ to L′ and start learning this new label without disrupting what has previously been

learned.

We propose a novel variation of the backpropagation algorithm called the BAIN

(Backpropagation for Avoiding Implicit Negativity) algorithm that does not assume implicit

negativity. The BAIN algorithm only trains the output nodes explicitly labeled (as positive or

negative) in the training data, while ignoring the labels not mentioned. The BAIN algorithm

can also dynamically add new output nodes for previously unseen labels during incremental

training. Since the BAIN algorithm does not assume implicit negativity, it is now reliant on

explicitly given negative and positive labels. The BAIN algorithm uses a näıve Bayes method

to infer missing positive and negative labels in the training data.

BAIN is compared to popular multi-label learning algorithms, including BP-MLL

[1], Binary Relevance [6] and ML-kNN [7]. Four experiments with two different types of

data sets are outlined. Standard multi-label evaluation metrics such as Hamming loss,

accuracy, precision, recall, one-error, coverage, and ranking loss [2, 1] are used to evaluate

the effectiveness of our new BAIN algorithm compared to existing multi-label algorithms.

It is shown that the BAIN algorithm is robust to missing labels in the training data and

outperforms existing multi-label learning methods as the amount of missing data increases.

3

Chapter 2

Related Work

Problem transformational methods and algorithm adaptation methods are the two

main strategies for handling multi-label classification. Here we review a few of the most

popular methods. For a more comprehensive review of problem transformational and algorithm

adaptation methods, there are several excellent surveys on multi-label classification [8, 6, 9].

In addition, we will consider other work that has been done to solve the specific problems of

implicit negativity, inferring missing labels, and incremental learning.

2.1 Problem Transformational Methods

Problem transformational methods involve transforming a multi-label classification problem

into one or more single-label classification problems. One approach is to treat each unique

set of labels in the training data as an additional label in the set of all possible labels L [6, 9].

For example, given a data set with the possible labels L = {A,B,C,D} and training set:

x1 → A
x2 → A,B
x3 → A,C,D
x4 → D

The set of possible labels becomes L = {A,B,C,D, {A,B}, {A,C,D}} and the problem is

now a single-label classification problem and any standard learning algorithm can be used.

This method does not work well when there are a large number of possible labels because it is

difficult to get enough data to support every combination of labels that might be encountered.

4

Another strategy is to split this problem into several binary classification problems,

one for each label [6, 9]. So the data set mentioned previously becomes four new data sets:

LA = {A, Ā}
x1 → A
x2 → A
x3 → A
x4 → Ā

LC = {C, C̄}
x1 → C̄
x2 → C̄
x3 → C
x4 → C̄

LB = {B, B̄}
x1 → B̄
x2 → B
x3 → B̄
x4 → B̄

LD = {D, D̄}
x1 → D̄
x2 → D̄
x3 → D
x4 → D

This method is called Binary Relevance and any standard binary classifier can now be used

for each label. A common criticism of this method is that, rather than a single model,

multiple learning models are needed. This can be inefficient for problems with large label

sets. Another common criticism is that as labels are separated, correlations between labels

are not considered which can weaken the system’s expressive power [1].

2.2 Algorithm Adaptation Methods

Algorithm adaptation methods involve modifying specific learning algorithms to directly

handle multi-label problems. One of the first algorithms to be adapted to multi-label

classification was the C4.5 algorithm [10]. The C4.5 algorithm was modified to allow multiple

labels in the leaves of the tree and the entropy formula was changed to consider both the

class membership and non-class membership of each label. The AdaBoost algorithm was

extended for multi-label classification resulting in the Adaboost.MH and the Adaboost.MR

algorithms [2]. Adaboost.MH focuses on label classification, while Adaboost.MR focuses on

label ranking.

ML-kNN is a multi-label classification algorithm adapted from the kNN algorithm [7].

This adaptation uses the kNN algorithm independently for each label; so fundamentally it is a

problem transformational method. However, it differs from a normal problem transformational

method because it makes use of prior and posterior probabilities as it recombines the results.

There also exists an SVM algorithm adapted for multi-label classification that is also in

5

reality a problem transformational method [11]. This SVM adaptation does, however, use a

kind of meta-learning strategy to consider the dependencies among the different labels.

BP-MLL (Backpropagation for Multi-Label Learning) is a modified version of the

backpropagation algorithm [1]. The error function is modified to consider label correlations

where labels belonging to an instance should be ranked higher than those not belonging to that

instance. ML-RBF is an extension of the RBF neural network algorithm that handles multi-

label classification [12]. ML-RBF selects hidden nodes by conducting a clustering analysis on

instances of each possible label. Information encoded in the hidden nodes corresponding to

all classes is exploited to optimize the weights corresponding to each label.

Multi-label classification can be thought of as a specific case of structured output

learning. Structured output learning is a classification task for in which the output space

consists of structured objects, such as trees, strings, sequences, or graphs. The goal is to

learn the entire structure of the output, where multiple instances are inter-related. There

are several structured learning algorithms that have been used for multi-label classification

[13, 14, 15]. These methods combine the advantages of kernel-based and probabilistic classifiers.

The kernel-based component can deal with high dimensional feature spaces and provides

strong generalization guarantees, while the probabilistic component is able to represent label

correlations and exploit problem structure. A more comprehensive review of structured

output learning can be found here [16].

2.3 Implicit Negativity

Most of these multi-label classification methods work well for the specific tasks they were

developed for. However, each of these methods assume implicit negativity, and will likely

perform poorly when applied to tasks where not all the correct positive labels are provided.

The Weakened Implicit Negatives (WIN) algorithm was proposed in order to deal with

the issue of implicit negativity for backpropagation [17]. The WIN algorithm uses a separate

probabilistic neural network component that learns a target output value for each output

6

node in the network. When a label is missing for a given training instance, the WIN algorithm

uses the learned target output value during error calculation instead of assuming it to be zero.

Training time is alternated between learning the network weights and learning the target

output values. How often each component alternates must be provided as a parameter. This

method was shown to be effective at learning toy problems and a few real world problems with

incomplete data; however, the algorithm was not compared to any of the standard multi-label

algorithms nor with any of the standard multi-label evaluation metrics. Additionally, using a

separate probabilistic neural network on top of backpropagation increases the computational

complexity, which could be problematic for problems with large numbers of labels. Finally,

the WIN algorithm was designed for the specific case where |Y ′
i | = 1 and |Ȳ ′

i | = 0. In other

words, there is exactly one positive label provided for each training instance and all other

labels are unknown.

In the broader field of structured output learning, there exists several methods that

deal with missing labels for sequence labeling and part of speech tagging [18, 19, 20]. Each

method uses a probabilistic model for which the parameters must be optimized to match the

training data. They deal with missing labels by marginalizing out the the unknown labels

so as to maximize the likelihood of a set of possible label structures which are consistent

with the given data. These methods are only applied to sequence labeling and part of speech

tagging and it is unclear how they would adapt to multi-label classification.

However, a multi-label active learning algorithm was proposed that is based on similar

probabilistic ideas [21]. This method avoids the tedious process of labeling thousands of

images with possibly hundreds of labels by using a Bayesian error bound to actively annotate

only a subset of labels and then later deal with the missing labels. This approach then uses

the Maximum Entropy Method to learn a function that can classify new instances [22]. This

method handles missing labels by integrating out the unlabeled part yielding the marginal

distribution of the labeled part. This technique was shown to be effective with small data

7

sets. However, this algorithm is computationally inefficient for problems with large sets of

possible labels.

2.4 Inferring Missing Labels

Removing the assumption of implicit negativity helps to avoid training the model incorrectly

when positive labels are missing. However, to compensate, negative labels are needed in

addition to the positive labels. Inferring those missing positive and negative labels is needed

to help fill in the gaps in the training data. That is to say, when the learning algorithm

encounters a new training instance xi with a set of incomplete positive labels Y ′
i and negative

labels Ȳ ′
i , it should be able to infer the true set of positive labels Yi and negative labels Ȳi.

This is similar to the class imbalance problem because there will likely be fewer negative

examples of each label compared to positive examples of each label.

A common solution to class imbalance is to either oversample the minority class

or under-sample the majority class [23]. This solution is not the most effective because

over-fitting becomes a problem with oversampling and loss of crucial data is a problem

with under-sampling. Another method is to use data generation strategies where new data

instances for the minority class are generated by interpolating between the existing data

instances [24, 25]. In multi-label classification, class imbalance has been studied [26]. However,

the research does not deal with class imbalance between positive and negative examples

caused by missing data. Rather, the research deals with class imbalance between different

labels when one label is more rare than another.

There is little research that deals with inferring missing labels for multi-label problems.

The active annotation algorithm mentioned in the previous section indirectly infers missing

labels as part of the training process [21]. However, there is no algorithm that we are aware

of that explicitly tries to predict missing labels in the training data by considering label

correlations in the data that is provided.

8

2.5 Incremental Learning

Most of these multi-label learning algorithms are not incremental learners and specifically do

not deal with the case of the complete set of all possible labels being unknown a priori. There

are learning algorithms that deal with incremental learning for neural networks and handle

the issue of new incoming labels [27, 28]. However, these incremental algorithms are not

designed for multi-label classification. There is an active annotation algorithm that claims to

be the first incremental multi-label algorithm [29, 21]. This algorithm allows for introducing

new labels and is able to dynamically update the model to account for these new incoming

labels. This solution is similar to our approach, except our solution is a backpropagation

solution, while theirs is a Bayesian model.

9

Chapter 3

Methods

Multi-label learning is a complicated problem with many potential issues. This thesis

proposes a novel variation of the backpropagation algorithm called the BAIN (Backpropagation

for Avoiding Implicit Negativity) algorithm that addresses multi-label learning and deals

with the issues previously mentioned. Specifically, the BAIN algorithm:

• Does not assume Implicit Negativity

• Uses label correlations in the training data to infer missing labels

• Can learn incrementally and dynamically incorporate previously unseen labels

These issues are nontrivial when it is difficult to get data with all the correct labels for each

training instance or when new data is being gathered and additional labels could appear.

The BAIN algorithm is implemented by taking the initial set of training data and building

a standard feed-forward neural network with each output node representing a label. The

neural network is then trained using standard backpropagation with a few key differences.

3.1 Avoiding Implicit Negativity

When certain labels are encountered in the training data, only the weights of the outputs

nodes corresponding to those labels are trained, while the other output nodes are ignored. The

assumption of implicit negativity is simply not made. Negative examples must be explicitly

labeled as negative in the training data. For example, given a data set with the possible

labels L = {A,B,C,D} and training set:

10

x1 → A, C̄
x2 → A,B
x3 → A, B̄, C,D
x4 → B̄,D

When training the neural network on x1, only the weights corresponding to output nodes A

and C are trained, while B and D are ignored. For x2, only the weights corresponding to

output nodes A and B are trained, while C and D are ignored.

This is done by changing how the error term is calculated for each network output

node. Let ok, tk, and δk be the actual output value, target output value, and error term

respectively for the kth output node. In standard backpropagation, the error term δk is

calculated for each output node k as follows:

δk ← ok(1− ok)(tk − ok)

The error term δh for each hidden node h can then be calculated:

δh ← oh(1− oh)
∑

k∈outputs

wkhδk

Where oh is the output value for hidden node h and wkh is the weight between hidden node

h and output node k. The network weights are then updated as follows:

wji ← wji + ηδjxji

Where η is the learning rate, xji is the input value to node j from unit i, and wji denotes the

corresponding weight.

11

In the BAIN algorithm, the assumption of implicit negativity is removed by changing

how the error term δk is calculated:

δk ←

 0, if tk is unknown

ok(1− ok)(tk − ok), otherwise

When using standard backpropagation for multi-label classification, tk is automatically

assumed to be zero when its value is unknown. However, by setting δk to zero when tk is

unknown, the weights that connect each hidden node to the kth output node are prevented

from changing due to multiplication by zero. The kth output node is also prevented from

affecting the error term for each hidden node. In this way the kth output node is ignored

when there is no explicitly given label for that node.

3.2 Inferring Missing Labels

The goal is to take advantage of label correlations in the data to infer the missing positive

and negative labels for each training instance. To do this, a näıve Bayes approach is used to

infer the missing labels. Näıve Bayes is simple and fast, which may be needed to avoid long

computations that could take longer than training the actual multi-label model. The näıve

Bayes classifier takes the form:

classify(w1, w2, ..., wn) = argmax
c

p(C = c)
n∏
j=1

p(Wj = wj|C = c)

In our case, C is the missing label we are trying to infer, which can be either positive

or negative. wj is the set of labels λ ∈ Y ′
i ∪ Ȳ ′

i or all the provided labels (both positive and

negative) for a given training instance xi. The missing label is inferred only when there is

confidence in the prediction. This means that the argmax is only taken when the difference

is larger than a certain threshold θ, otherwise the label is left unknown. Hence, our method

12

to infer a missing label C can be defined as follows:

C =

1, if f(1, Y ′

i , Ȳ
′
i)− f(−1, Y ′

i , Ȳ
′
i) > θ

−1, if f(−1, Y ′
i , Ȳ

′
i)− f(1, Y ′

i , Ȳ
′
i) > θ

unknown, otherwise

where

f(c, Y ′
i , Ȳ

′
i) = p(C = c)

∏
λ∈Y ′

i

p(λ|C = c)
∏
λ∈Ȳ ′

i

p(λ̄|C = c)

This method is applied to each missing label C in each training instance xi. The probabilities

can be calculated from the training data based on the assumption that there exist other

training instances that are not missing the label C.

For example, given a data set with the possible labels L = {A,B,C,D} and training

set:

x1 → A,B, C̄, D̄
x2 → Ā, B̄, C,D
x3 → A, C̄, D̄
x4 → Ā, B̄, C,D
x5 → A,B,C, D̄

Information about B is missing from x3 and must be inferred. For training instance x3,

Y ′
3 = {A} and Ȳ ′

3 = {C,D}, hence f(1, Y ′
3 , Ȳ

′
3) and f(−1, Y ′

3 , Ȳ
′

3) can be calculated as follows:

f(1, Y ′
3 , Ȳ

′
3) = p(B)p(A|B)p(C̄|B)p(D̄|B)

f(−1, Y ′
3 , Ȳ

′
3) = p(B̄)p(A|B̄)p(C̄|B̄)p(D̄|B̄)

The probability terms on the right hand side of each equation are calculated by counting

the occurrences of each label in the training set. For instance, p(B) = 0.5 because positive

B occurs twice out of the four total times B occurs. p(A|B) = 1.0 because every time B is

positive, so is A. By counting occurrences in this manner, the rest of the probability terms

13

if λj /∈ L′ then
L′ ← L′ ∪ λj
oj = createOutputNode(λj)
outputNodes← outputNodes ∪ oj
for all h ∈ hiddenNodes do
addWeight(h, oj)

end for
end if

Figure 3.1: Psuedocode for dynamically incorporating a new label into the neural network
during incremental training.

are calculated: p(B̄) = 0.5, p(C̄|B) = 0.5, p(D̄|B) = 1.0, p(A|B̄) = 0.0, p(C̄|B̄) = 0.0, and

p(D̄|B̄) = 0.0. The equations can then be evaluated as follows:

f(1, Y ′
3 , Ȳ

′
3) = 0.5 ∗ 1.0 ∗ 0.5 ∗ 1.0 = 0.25

f(−1, Y ′
3 , Ȳ

′
3) = 0.5 ∗ 0.0 ∗ 0.0 ∗ 0.0 = 0.0

If (0.25− 0.0) > θ, then it can be safely inferred that the missing label B is positive.

3.3 Incremental Learning

In incremental learning, all the possible labels that might be encountered during training are

not always known a priori. Recall that L′ is the set of all possible labels that are known at

the start of training. If a previously unknown label λ is encountered where λ /∈ L′, then there

would be no output node in the network that corresponds to that label. To accommodate a

new incoming label, a new output node is simply added to the output layer that corresponds

to that label. The weights to the hidden layer are initialized randomly and the model can

now begin learning this new label. Pseudocode for accommodating new incoming labels is

shown in Figure 3.1.

As an example, if the initial training set had the possible labels L′ = {A,B,C,D},

then the network would have four output nodes, one corresponding to each label. If a new

14

Figure 3.2: Dynamically adding a new label to the neural network during incremental training.

label E is encountered during incremental training, E would be added to L′ and a fifth

output node would be dynamically created in the network with randomly initialized weights

as shown in Figure 3.2. The BAIN algorithm can now train the network as if that output

node had been known from the start. In fact, the resulting solution will be identical to the

solution obtained if label E was known from the beginning. This is because no assumption

of implicit negativity is made and that output node would have been ignored if the training

instances did not explicitly mention E.

15

Chapter 4

Experimental Setup

Four experiments are designed to validate our proposed solution. The first experiment

involves several well known multi-label data sets that have been used in other studies and are

publicly available [30]. These data sets do not have missing labels; however, this enables us

to artificially remove both positive and negative labels from the data sets and then compare

the results with the complete data sets. The percentage of labels that are removed can be

adjusted, which allows us to evaluate how the algorithm performs with different numbers

of missing labels. The second experiment involves the DARCI data set [31], which is a real

world data set with a large percentage of missing labels. This second experiment shows how

our solution performs with actual problems that have missing labels. The third experiment

involves the specific case where there is only one positive label provided for each instance.

This allows us to compare BAIN with the WIN algorithm [17], which is a multi-label learning

algorithm that deals with that specific case. The fourth experiment tests how well our

algorithm can learn incrementally. Using the data sets from the first set of experiments,

we explicitly leave out labels and training instances from the training data and then later

introduce them. The final result is then compared to a model that is trained with all the

training data from the start.

4.1 Data Sets

Eight of the ten data sets used in the experiments are publicly available as part of the

open source Mulan project [30]. These data sets represent a variety of domains and a

16

Table 4.1: Data sets that are used for experimentation.

Data Set Domain Instances Nominal Numeric Labels Cardinality Density
Attributes Attributes

corel5k text 5000 499 0 374 2.028 0.009
medical text 978 1449 0 45 1.245 0.028
emotions music 593 0 72 6 1.859 0.311
eron text 1702 1001 0 53 3.378 0.064
genbase biology 662 1186 0 27 1.252 0.046
mediamill video 43907 0 120 101 4.376 0.043
scene images 2407 0 294 6 1.074 0.179
yeast biology 2417 0 103 14 4.237 0.303
triclass artificial 1500 0 2 8 3.00 0.375
classoverlap artificial 1500 0 2 8 1.578 0.197
DARCI images 2101 0 102 211 3.535 0.017
Average 5706.09 375.91 63.18 77.55 2.506 0.143

range of statistical properties. The remaining two data sets (triclass and classoverlap) are

simple artificially generated toy problems [17]. The attributes of each data set can be seen

in Table 4.1. The table introduces two potentially unfamiliar terms used for quantifying

properties of multi-label data sets. Cardinality, or label cardinality, refers to the average

number of labels per instance. Density, or label density, is equivalent to the label cardinality

divided by the number of possible labels. This metric gives an indication of how often labels

are used throughout the data set.

The DARCI data set consists of 2,101 images that are labeled with adjectives that

describe each image. The DARCI data set has 102 numerical features and currently 211

possible labels with a cardinality of 3.535 and density of 0.017. Each image has, on average,

only 4.7% of both positive and negative labels; the rest are unknown. Additionally, data is

continually being collected, and new labels (or adjectives) are continually being added. This

makes the DARCI data set ideal for testing our solution as it is a real world example of the

problems we are trying to solve.

17

4.2 Algorithms

For a baseline comparison in the first three experiments, popular multi-label algorithms

which include BP-MLL [1], Binary Relevance [6] and ML-kNN [7] are used. Two versions

of the BAIN algorithm are also compared. The first is the full algorithm as described in

Chapter 3. The second is a version that does not infer missing labels and is referred to as

BAIN nopred. This allows us to evaluate how effective our method is at inferring missing

labels, as opposed to only removing the assumption of implicit negativity. Additionally, an

untrained model that is random in it’s label predictions will be used to provide an overall

baseline for comparison.

The number of k-nearest neighbors for the ML-kNN algorithm is the same for each

data set at k = 5. The binary relevance method uses standard single-label backpropagation

as its base algorithm. The various parameters used by each neural network based algorithm

for each data set can be seen in Table 4.2. These parameters are not necessarily optimal for

each algorithm; reasonable parameters were chosen based on simple trial runs with each data

set. The neural network parameters were calibrated with the BPMLL algorithm and then

used for all neural network based algorithms.

4.3 Evaluation Metrics

Empirically evaluating multi-label problems is more complicated than evaluating single-label

problems, as there are different degrees of correctness. Multi-label evaluation metrics fall into

two main categories: prediction-based and ranking-based. Prediction-based metrics evaluate

how well the algorithm predicts the actual set of correct labels for each instance. Ranking-

based metrics evaluate how well the algorithm ranks the labels relative to one another. The

correct labels should be ranked higher than the incorrect labels. The same notation as

established in Chapter 1 will be used to formalize our evaluation metrics. In addition, given

an instance xi, the set of predicted labels is denoted as Zi, while the predicted rank of a

18

Table 4.2: Parameters used for the neural network based algorithms BAIN, BPMLL, WIN,
and binary relevance. The number of hidden nodes for binary relevance are shown as hidden
nodes per model, where the number of models is equal to the number of possible labels in
the data set.

Number of Hidden Nodes
Epochs Learning BAIN, WIN, Binary

Data Set Rate BP-MLL Relevance
corel5k 100 .01 256 2
medical 100 .01 128 10
emotions 100 .01 96 10
eron 100 .01 128 10
genbase 100 .01 256 10
mediamill 100 .01 128 10
scene 100 .01 96 10
yeast 100 .05 96 10
triclass 100 .10 16 2
classoverlap 100 .10 16 2
DARCI 200 .01 128 10

label λ is denoted as ri(λ). We will use the following standard multi-label prediction-based

evaluation metrics [8] with 10-fold cross validation as we compare each algorithm:

Hamming Loss is the average percentage of correct labels not predicted and incorrect labels

predicted.

HammingLoss =
1

m

m∑
i=1

|Yi∆Zi|
q

where ∆ is the symmetric difference between the two sets.

Accuracy is the average percentage of true positives out of the total true positives, false

positives, and false negatives.

Accuracy =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

19

Precision is the average percentage of predicted labels that were correct.

Precision =
1

m

m∑
i=1

|Yi ∩ Zi|
|Zi|

Recall is the average percentage of correct labels that were predicted.

Recall =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi|

We will use the following standard multi-label ranking-based evaluation metrics [2, 1]

with 10-fold cross validation as we compare each algorithm:

One-Error is the percentage of top ranked labels that are not in the set of correct labels.

OneError =
1

m

m∑
i=1

δ(argmin
λ∈L

ri(λ))

where

δ(λ) =

 1, if λ /∈ Yi

0, otherwise

Coverage is how far, on average, we need to go down the list of predicted labels in order to

cover all the correct labels. It is normalized between 0 and 1.

Coverage =
1

m

m∑
i=1

ω − |Yi|
q − |Yi|

where

ω = max
λ∈Yi

ri(λ)

20

Ranking Loss is the average percentage of incorrect labels that are ranked higher than correct

labels.

RankingLoss =
1

m

m∑
i=1

1

|Yi||Ȳi|
|{(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi × Ȳi}|

Each of these seven metrics tell us different things about the performance of the

multi-label algorithm. In order to provide a single metric that at least partially captures

all these different aspects, an additional metric is added that averages the previous seven

together. For the metrics that are to be minimized instead of maximized, one minus the

value is done in the averaging. This metric is called the Overall Average.

When comparing one learning model to another, it is important to have confidence that

one model truly outperforms the other. One way to do this is to measure how statistically

significant the difference is between their performance on each metric. This significant

difference can be measured using the paired permutation test. The paired permutation test

outputs a p-value between 0 and 1; the higher the p-value, the less statistically significant

the difference is between two models. It is common convention that a p-value less than

0.05 means that it can be said with confidence that one model outperforms the other. The

paired permutation test can only compare two models at a time; hence, for each metric, the

paired permutation test is only calculated between the BAIN algorithm and the next best

performing algorithm.

21

Chapter 5

Results

This chapter presents the results of the four experiments described in Chapter 4. The

first experiment involves artificially removing an incremental percentage of labels in the

training data. The second experiment uses the DARCI data set, which is a real world problem

with a high percentage of missing labels. The third experiment considers the case where each

training instance has exactly one positive label with all other labels unknown. The fourth

experiment evaluates how well the BAIN algorithm can learn incrementally. Finally, the

on-line multi-label Bayesian algorithm described in Section 2.3 is compared to the BAIN

algorithm.

5.1 Artificially Removing Labels

The first experiment involves the ten data sets described in Section 4.1. Each algorithm is

run on each data set using 10-fold cross validation. For each fold, a certain percentage of

the labels are artificially removed from the training data. The model is trained with this

modified training data and then evaluated using test data that still has all the labels present.

The percentage of labels that are removed changes in 10% increments from 0% to 90%. An

additional run at 95% is also performed because 95% is close to the percentage of missing

labels that exists in the DARCI data set. The results from all ten data sets are averaged

for each algorithm and for each evaluation metric. The results for overall average, accuracy,

precision and recall can be seen in Figure 5.1. The results for Hamming loss, one-error,

coverage, and ranking loss can be seen in Figure 5.2. The paired permutation test was

22

(a) Overall Average (b) Accuracy

(c) Precision (d) Recall

Figure 5.1: Average results of 10 different data sets as the percentage of missing labels
increases (higher is better for these metrics). As more labels are removed, the performance of
the other algorithms decreases rapidly, while the BAIN algorithm appears much more robust
to missing labels and its performance decreases much more slowly.

performed for each of these metrics between the best version of BAIN and the next best

algorithm (non-BAIN). The paired permutation test results for each metric can be seen in

Figures 5.3 and 5.4.

When all labels are present, the BAIN algorithm does well, but is not the best.

However, as labels are removed, the performance of the other algorithms decreases rapidly,

while the BAIN algorithm appears much more robust to missing labels and its performance

decreases much more slowly. In some cases, as with the MLkNN algorithm, when the

percentage of labels missing reaches a threshold it stops predicting any labels as evidenced

by the precision and recall dropping to zero. By the time 95% of the labels are missing, the

BAIN algorithm outperforms all other algorithms in almost every metric, and does so by a

considerable margin with accuracy, precision, and recall as shown in Figure 5.1.

23

(a) Hamming Loss (b) One-Error

(c) Coverage (d) Ranking Loss

Figure 5.2: Average results of 10 different data sets as the percentage of missing labels
increases (lower is better for these metrics). The BAIN algorithm outperforms almost all
other algorithms by the time 95% of the labels are missing.

The paired permutation test results (Figures 5.3 and 5.4) show the best BAIN algorithm

compared to the best non-BAIN algorithm. The red line indicates that the other algorithm is

performing better than BAIN, while the blue line indicates that BAIN is performing better.

When all labels are present, the p-value is below 0.05 and red for all metrics, which means

that the BAIN algorithm starts off performing worse than the next best algorithm. However,

as the percentage of missing labels increases, the p-values also increase, which means there

is less and less confidence in the difference between BAIN and the next best algorithm. At

some threshold the p-values change to blue, indicating that BAIN is now the best performing

algorithm. This transition can be seen in Figures 5.1 and 5.2 when the BAIN algorithm

crosses with the next best algorithm.

24

(a) Overall Average (b) Accuracy

(c) Precision (d) Recall

Figure 5.3: Paired permutation test results between BAIN and the next best algorithm
corresponding to the metrics in Figure 5.1. When 95% of the labels are missing, the p-value
is below 0.05 for accuracy, precision and recall, which means that there is high confidence
that the difference between BAIN and the next best algorithm is statistically significant for
those metrics.

By the time 95% of the labels are missing, the p-values are blue and less than 0.05

for accuracy, precision, and recall. This means that we can confidently say that the BAIN

algorithm outperforms the other algorithms for those metrics. For the ranking-based metrics

and Hamming loss, however, the p-values are still quite high. This means that, even though

the BAIN algorithm is performing better on those metrics, there is still uncertainty in how

significant that difference is. This uncertainty can be expected for ranking-based metrics

because a complete ranking is much more challenging to get correct than the binary prediction

of labels. With coverage and ranking loss, that uncertainty is more prominent, which is why

their p-values take longer to change to blue. With Hamming loss and one-error, the p-values

drop close to 0.05 at around 50% - 60% missing labels with BAIN performing better; however,

25

(a) Hamming Loss (b) One-Error

(c) Coverage (d) Ranking Loss

Figure 5.4: Paired permutation test results between BAIN and the next best algorithm
corresponding to the metrics in Figure 5.2. The p-value is never below 0.05 when BAIN is
better, which means that there is little confidence in how significant the difference is between
BAIN and the next best algorithm for these metrics.

the p-values then go back up. This indicates that, for Hamming loss and one-error, there is a

certain range of missing labels that BAIN confidently performs better at. However, when too

many labels are missing, there is no longer adequate confidence that the BAIN algorithm

truly performs better.

It is important to note that there is little difference in performance by the BAIN

algorithm compared to the BAIN algorithm without the näıve Bayes label prediction

(BAIN nopred). These results show that our näıve Bayes method for inferring missing

labels neither helps nor hurts our performance. In practice, it would therefore be better

to not include the näıve Bayes approach as it requires more processing time, without any

benefit.

26

Figure 5.5: Results of the DARCI data set for overall average, accuracy, precision, and recall
(higher is better for these metrics). BAIN without label prediction performs better on every
metric than all the other algorithms.

5.2 The DARCI Data Set

The second experiment involves the DARCI data set, which is a real world problem that has

missing labels. As mentioned before, approximately 95.3% of the labels are missing in the

DARCI data set. This makes evaluation more challenging because the test sets used at each

fold are also missing labels. The evaluation metrics can only be applied to labels that are

actually known. While this limitation does not give us a complete measure of performance, it

stills gives us general insight into how well each algorithm performs relative to one another.

The results for overall average, accuracy, precision, and recall can be seen in Figure 5.5. The

results for Hamming loss, one-error, coverage, and ranking loss can be seen in Figure 5.6.

The paired permutation test was performed between the best BAIN and the best non-BAIN

algorithm and the results for each metric can be seen in Table 5.1.

The results show that BAIN without label prediction is the clear winner in every

metric. Normal BAIN and BPMLL are the next best and perform equally well overall with

BPMLL doing better on Hamming loss and one-error and BAIN doing better on accuracy

and recall. MLkNN and binary relevance, however, perform no better than random overall.

All algorithms do better than random with Hamming loss and all the ranking based metrics.

The paired permutation test results show p-values less than 0.05 for all metrics, which means

27

Figure 5.6: Results of the DARCI data set for Hamming loss, one-error, coverage, and recall
(lower is better for these metrics). BAIN without label prediction performs better on every
metric than all the other algorithms.

Table 5.1: Paired permutation test results between the best BAIN and the best non-BAIN
algorithm for the DARCI data set corresponding to Figures 5.5 and 5.6. The p-values are
below 0.05 for all metrics, which means that there is high confidence that the difference
between BAIN and the next best algorithm is statistically significant.

Overall Average Accuracy Precision Recall
p-value 0.00098 0.00098 0.00098 0.00098

Hamming Loss One-Error Coverage Ranking Loss
p-value 0.00293 0.00098 0.00098 0.00098

that the difference in performance between BAIN without label prediction and the next best

algorithm is statistically significant.

With the DARCI data set, it appears that inferring missing labels hurts the performance

of the BAIN algorithm, whereas in the previous experiment it didn’t seem to affect the

performance. A reason for this could be due to the previously mentioned limitation of not

having a test set with no missing labels. A full test set may reveal that label prediction

makes no difference for the DARCI data set. A more likely explanation, however, could be

the fact that our näıve Bayes method for inferring missing labels relies on at least some of

the labels being present in order to make any kind of accurate inference on the labels that

are missing. Having only 5% of the labels present in the data simply may not be enough for

an accurate prediction and hence many of the predictions are inaccurate and the resulting

28

performance is worse. There is evidence from the previous experiment to support this. If we

refer back to Figure 5.1 and Figure 5.2, we can see that the performance of BAIN at 95%

missing labels is worse than BAIN without label prediction in every metric except recall.

5.3 Only One Positive Label

The third experiment involves the specific case where each training instance has exactly one

positive label with all other labels being unknown. This allows us to compare the BAIN

algorithm to the WIN algorithm, which was designed for this specific case, in addition to the

other algorithms previously used. Using the same ten data sets from Section 4.1 and 10-fold

cross validation, we artificially remove all labels except for one randomly chosen positive label

from each instance of the training data. The algorithms are then evaluated using the fully

labeled test set. This experiment will only use the version of BAIN without label prediction

as it was shown in the previous two experiments to perform better than BAIN with label

prediction. For further comparison, the BAIN algorithm will also be run on the ten data

sets where a randomly chosen negative label is provided for each instance in addition to the

positive label. The results from all ten data sets are averaged together for each algorithm and

for each metric. The results for overall average, accuracy, precision, and recall can been seen

in Figure 5.7, The results for Hamming loss, one-error, coverage, and ranking loss can be seen

in Figure 5.8. The paired permutation test results between BAIN with one positive label and

the best non-BAIN algorithm can be seen in Table 5.2. The paired permutation test results

between the best non-BAIN algorithm and BAIN with one positive and one negative label

can be seen in Table 5.3.

The results show that the BAIN algorithm, although better than random, performs

worse than the other algorithms for all metrics except for recall. This experiment exposes

BAIN’s main weakness of relying on at least some explicitly given negative labels being

present in the training data. The other algorithms do not suffer from this same weakness

as they automatically assume any missing label to be negative. However, if at least one

29

Figure 5.7: Results for overall average, accuracy, precision, and recall when there is only
one positive label for each training instance (higher is better for these metrics). With the
exception of recall, BAIN performs worse than the other algorithms. However, when BAIN is
given at least one negative label per training instance, it performs comparable to the WIN
algorithm.

Figure 5.8: Results of Hamming loss, one-error, coverage and ranking loss when there is
only one positive label for each training instance (lower is better for these metrics). BAIN
performs worse than the other algorithms. However, when at least one additional negative
label per training instance is given to BAIN, its performance increases to be competitive
with the other algorithms.

30

Table 5.2: Paired permutation test results between BAIN and the best non-BAIN algorithm
corresponding to Figures 5.7 and 5.8. All the p-values are less than 0.05, which means that
there is high confidence that the difference between BAIN and the best non-BAIN algorithm
is statistically significant.

Overall Average Accuracy Precision Recall
p-value 0.00098 0.00684 0.00293 0.00293

Hamming Loss One-Error Coverage Ranking Loss
p-value 0.00098 0.00684 0.00293 0.00293

Table 5.3: Paired permutation test results between BAIN with a negative label and the best
non-BAIN algorithm corresponding to Figures 5.7 and 5.8. With the exception of recall,
none of the p-values are less than 0.05, which means that there is little confidence that
the difference between BAIN with a negative label and the best non-BAIN algorithm is
statistically significant.

Overall Average Accuracy Precision Recall
p-value 0.49902 0.70996 0.21973 0.01660

Hamming Loss One-Error Coverage Ranking Loss
p-value 0.15723 0.10645 0.13184 0.06934

negative label per training instance is present, then the performance of BAIN improves

considerably and is comparable to the WIN algorithm. The paired permutation test results

in Table 5.3 show no significant difference between BAIN with a single negative label and

the best non-BAIN algorithm for all metrics except recall, where BAIN is superior. Adding

an explicit negative label makes no difference to the other algorithms because that label is

already assumed to be negative. In general, explicit negative labels are harder to acquire than

positive labels. However, it may not be unreasonable to require that there be at least one

negative label provided for each training instance when using the BAIN algorithm. This is

because there are usually far more negative labels per instance than positive labels. Table 4.1

shows that the average density of all the data sets we have used is 0.143, which means that

only 14.3% of the possible labels are positive, while the remaining 85.7% are negative.

31

5.4 Incremental Learning

The fourth experiment is designed to evaluate the incremental learning capabilities of the

BAIN algorithm and again involves 10-fold cross validation and the ten data sets described

in Section 4.1. The incrementally trained model is compared with a model that was trained

with the entire data set from the start. In order for the performance of the two models to be

comparable, the incrementally trained model is trained so that it eventually sees all the same

data that the other model had from the beginning.

To help illustrate, consider an example with the possible labels L = {A,B,C,D} and

training set:

T =

x1 → A, B̄, C̄, D̄
x2 → Ā, B̄, C,D
x3 → A,B, C̄, D̄
x4 → Ā, B̄, C, D̄

First, the training data is shuffled and split in half.

T1 =

{
x2 → Ā, B̄, C,D
x3 → A,B, C̄, D̄

T2 =

{
x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄

Some labels are randomly chosen and removed from each instance of the first half of the

training data (the same labels are chosen for each fold). (In the actual experiment, we

removed 5 labels).

T1 =

{
x2 → Ā, B̄
x3 → A,B

T2 =

{
x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄

Each instance of the first half of the training data is then added to the second half with only

the removed labels provided. This is to ensure that the model will eventually see the labels

that were removed.

32

Table 5.4: Paired permutation test results between the BAIN that has been trained incre-
mentally and the BAIN that has been trained with all the data from the start corresponding
to Figures 5.9 and 5.10. All the p-values are high, indicating that there is no significant
difference between their performances.

Overall Average Accuracy Precision Recall
p-value 0.55176 0.72363 0.50293 0.31348

Hamming Loss One-Error Coverage Ranking Loss
p-value 0.62402 0.26465 0.55567 0.09277

T1 =

{
x2 → Ā, B̄
x3 → A,B

T2 =

x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄
x2 → C,D
x3 → C̄, D̄

The BAIN algorithm is trained using T1 and is unaware that the removed labels exist. After

initial training, the model is then trained with T2. The removed labels are introduced to the

model at the same time and the model must learn incrementally as described in Section 3.3.

This incrementally trained model is then compared with a model that was trained with

the entire data set from the start. A version of BAIN that does not learn incrementally is also

used as a baseline comparison. Most multi-label learning algorithms that do not handle new

incoming labels will either crash, or ignore the new label. This version of BAIN just ignores

any new labels during training. During evaluation, the removed labels are never predicted

and are always ranked at the bottom. The results from all ten data sets are averaged for

each model. The results for overall average, accuracy, precision and recall can be seen in

Figure 5.9. The results for Hamming loss, one-error, coverage, and ranking loss can be seen

in Figure 5.10. The paired permutation test results between the incrementally trained BAIN

and the BAIN trained with all the data from the start can be seen in Table 5.4. The paired

permutation test results between the incrementally trained BAIN and the non-incremental

baseline BAIN can be seen in Table 5.5.

33

Figure 5.9: Results of incremental training versus non-incremental for overall average, accuracy,
precision, and recall (higher is better for these metrics). The BAIN that has been trained
incrementally performs comparable to the BAIN that has been trained with all the data from
the start.

Figure 5.10: Results of incremental training versus non-incremental for Hamming loss, one-
error, coverage, and recall (lower is better for these metrics). The BAIN that has been trained
incrementally performs comparable to the BAIN that has been trained with all the data from
the start.

34

Table 5.5: Paired permutation test results, corresponding to Figures 5.9 and 5.10, between
the BAIN that has been trained incrementally and the baseline BAIN that cannot handle
new incoming labels. With the exception of one-error and ranking loss, the p-values are
low, which means there is high confidence that the difference between these two models is
statistically significant.

Overall Average Accuracy Precision Recall
p-value 0.03613 0.03223 0.10254 0.08691

Hamming Loss One-Error Coverage Ranking Loss
p-value 0.07324 0.89941 0.00488 0.24707

As expected, the results show little significant difference in performance between the

model that was trained incrementally and the model that was trained with all the data from

the start. The BAIN algorithm can handle new incoming labels during incremental training,

and the resulting model achieves similar performance to a model trained with the new labels

from the beginning. The non-incremental baseline model performs worse than the incremental

model for every metric except one-error. The paired permutation test results for these two

models in Table 5.5 show a significant difference for all metrics except for one-error, ranking

loss, recall, precision, and Hamming loss, although Hamming loss, precision, and recall are

close to 0.05. The reason one-error actually performs slightly better is because one-error only

measures when the top ranked label is a false positive. The five removed labels are never

given the chance to be false positives and are never ranked at the top and hence, never count

against one-error. With the exception of one-error, the results clearly show that accounting

for new incoming labels during incremental training significantly improves the performance.

5.5 Comparing with the Bayesian Model

The on-line Bayesian multi-label learning algorithm [21] discussed in Section 2.3 was not

included in the previous experiments due to its strictly on-line learning method and its

inefficiency on problems with a large number of possible labels. However, in their paper they

use the yeast and scene data sets, which are two of the data sets used in our experiments (see

35

Table 4.1). We can, therefore, compare our results on those data sets with the results they

achieved in their paper. The authors use the F1 score to evaluate their algorithm, which is

defined as:

F1 =
2pr

p+ r

where p and r are precision and recall respectively.

Using their Bayesian active learning approach on the yeast data set, they were able to

achieve an F1 score of 0.58. The BAIN algorithm, using ten-fold cross validation with all the

labels provided, achieved an F1 score of 0.64. However, on the scene data set, they had an

F1 score of 0.91, while the BAIN algorithm only achieved 0.70. Clearly there are trade-offs

between the two algorithms. The results indicate that the Bayesian algorithm may be better

for data sets with a small number of possible labels, while the BAIN algorithm can better

handle problems with a large number of possible labels. The Bayesian algorithm is strictly

an on-line learner, so if the training has to be restarted, then it can become intractable to

retrain the model with the whole training set. The BAIN algorithm is more flexible as it can

learn incrementally or with all the data at once.

36

Chapter 6

Conclusions and Future Work

The BAIN algorithm is successful at improving multi-label classification performance

for problems where the labeling is incomplete. We have shown that, compared to other

common multi-label algorithms, the BAIN algorithm is more robust in performance as the

percentage of missing labels increases. On the DARCI data set, which is a real world problem

that has missing labels, we have shown that the BAIN algorithm successfully performs better

than other multi-label learning algorithms. We have also shown that the BAIN algorithm

can learn incrementally and handle new labels that were previously unknown with hardly

any loss of performance.

The näıve Bayes method to infer missing labels was shown to be ineffective and even

detrimental in the case of the DARCI data set. Either the labels that are inferred are

redundant and make little difference, or there are not enough provided labels to accurately

infer the missing labels. In either case, it is clear that the BAIN algorithm without this label

inference method is the better choice. Further research would be useful in discovering other

methods that could be more effective than the näıve Bayes approach.

The BAIN algorithm was shown to perform poorly when there are no explicitly given

negative labels in the training data. However, one negative label provided per training

instance is enough to significantly increase BAIN’s performance to be competitive with the

WIN algorithm. This requirement may not be unreasonable as there are far more possible

negative labels than positive labels for each training instance. Additional research needs to be

done on multiple real-world data sets with missing labels to better determine how plausible

37

that requirement is. The WIN algorithm performed well when only one positive label was

provided per training instance. Additional research could extend the WIN algorithm to

handle data sets with any number of provided labels, both positive and negative. The BAIN

algorithm could be extended to overcome its weakness of requiring at least some explicitly

given negative labels. However, there would likely be a trade-off because the point of the

BAIN algorithm is to avoid assumptions about missing data.

The BAIN algorithm was shown to have trade-offs compared to the on-line multi-label

Bayesian model. The BAIN algorithm can handle problems with a large number of possible

labels, while the Bayesian model is inefficient on these problems. This is likely because the

Bayesian algorithm explicitly attempts to model the higher order relationships between labels.

While this is a significant advantage on problems with a small number of possible labels (such

as the scene data set), it is too slow for large sets of possible labels. Additional research

needs to be done to see how the BAIN algorithm could benefit from trying to model these

higher order relationships.

Removing the assumption of implicit negativity is effective in improving multi-label

classification performance for the backpropagation algorithm. Other multi-label algorithms,

such as MLkNN, could be modified to remove that assumption, or adapted in other ways to

handle missing labels. Instead of trying to infer the missing labels for each training instance,

active learning approaches could be used to provide additional training instances for the

labels not adequately represented in the current data set. There are many opportunities for

future research in this area; the BAIN algorithm provides a stepping stone as a simple yet

effective solution to problems with missing labels.

38

References

[1] Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional ge-

nomics and text categorization. IEEE Transactions on Knowledge and Data Engineering

18(10) (2006) 1338–1351

[2] Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization.

Machine Learning 39(2/3) (2000) 135–168

[3] Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification.

Pattern Recognition 37(9) (2004) 1757–1771

[4] Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification

in domains with large number of labels. In: Proceedings ECML/PKDD Workshop on

Mining Multidimensional Data. (2008)

[5] Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music

into emotions. In: Proceedings of the 9th International Conference on Music Information

Retrieval. (2008) 325–330

[6] Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International

Journal of Data Warehousing and Mining 3(3) (2007) 1–13

[7] Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label classifi-

cation. In: Proceedings of the IEEE International Conference on Granular Computing.

(2005) 718–721

[8] Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Mining

and Knowledge Discovery Handbook. (2010) 667–685

[9] de Carvalho, Freitas, A.A. In: A tutorial on multi-label classification techniques. Volume

205 of Studies in Computational Intelligence. Springer (2009) 177–195

[10] Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Pro-

ceedings of the 5th European Conference on Principles of Data Mining and Knowledge

Discovery, Springer-Verlag (2001) 42–53

39

[11] Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification.

Advances in Knowledge Discovery and Data Mining (2004) 22–30

[12] Zhang, M.L.: ML-RBF: RBF neural networks for multi-label learning. Neural Processing

Letters 29(2) (2009) 61–74

[13] Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Advances in

Neural Information Processing Systems. (2003) 8–13

[14] Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for

structured and interdependent output variables. Journal of Machine Learning Research

6 (2005) 1453–1484

[15] Bielza, C., Li, G., Larraòaga, P.: Multi-dimensional classification with bayesian networks.

International Journal of Approximate Reasoning 52 (2011) 705–727

[16] Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.:

Predicting Structured Data. The MIT Press (2007)

[17] Whiting, S., Ventura, D.: Learning multiple correct classifications from incomplete data

using weakened implicit negatives. In: Proceedings of the International Joint Conference

on Neural Networks. (2004) 2953–2958

[18] Tsuboi, Y., Kashima, H., Mori, S., Oda, H., Matsumoto, Y.: Training conditional random

fields using incomplete annotations. In: International Conference on Computational

Linguistics. (2008) 897–904

[19] Vishwanathan, A.S., Smola, A.J., Vishwanathan, S.V.N.: Kernel methods for miss-

ing variables. In: In Proceedings of the Tenth International Workshop on Artificial

Intelligence and Statistics. (2005) 325–332

[20] Suzuki, J., Fujino, A., Isozaki, H.: Semi-supervised structured output learning based on

a hybrid generative and discriminative approach. In: Proceedings of the Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning. (2007) 791–800

[21] Qi, G.J., Xian-Sheng, Rui, Y., Tang, J., Zhang, H.J.: Two-dimensional multi-label

active learning with an efficient online adaptation model for image classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence 31 (2009) 1880–1897

40

[22] Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy

method. In: Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, ACM Press (2005) 274–281

[23] Guo, X., Yin, Y., Dong, C., Yang, G., Zhou, G.: On the class imbalance problem. In:

Proceedings of the Fourth International Conference on Natural Computation, IEEE

Computer Society (2008) 192–201

[24] Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data

generation: the DataBoost-IM approach. SIGKDD Explorations Newsletter 6(1) (2004)

30–39

[25] Han, H., Wang, W.Y., Mao, B.H.: Borderline-SMOTE: A new over-sampling method

in imbalanced data sets learning. In Huang, D.S., Zhang, X.P., Huang, G.B., eds.:

Advances in Intelligent Computing. Volume 3644 of Lecture Notes in Computer Science.,

Springer (2005) 878–887

[26] Chen, K., Lu, B.: Efficient classification of multilabel and imbalanced data using

min-max modular classifiers. In: Proceeding of the International Joint Conference on

Neural Networks. (2006) 1770–1775

[27] Bruzzone, L., Fernández Prieto, D.: An incremental-learning neural network for the

classification of remote-sensing images. Pattern Recognition Letters 20 (1999) 1241–1248

[28] Polikar, R., Udpa, L., Udpa, S., Member, S., Member, S., Honavar, V.: Learn++: An

incremental learning algorithm for supervised neural networks. IEEE Transactions on

Systems, Man and Cybernetics (C), Special Issue on Knowledge Management 31(4)

(2001) 497–508

[29] Hua, X.S., Qi, G.J.: Online multi-label active annotation: Towards large-scale content-

based video search. In: Proceedings of the 16th ACM International Conference on

Multimedia, ACM (2008) 141–150

[30] Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java library

for multi-label learning. Journal of Machine Learning Research 12 (2011) 2411–2414

[31] Norton, D., Heath, D., Ventura, D.: Establishing appreciation in a creative system. In:

Proceedings of the International Conference on Computational Creativity. (2010) 26–35

41

	Brigham Young University
	BYU ScholarsArchive
	2011-10-11

	Improving Multi-label Classification by Avoiding Implicit Negativity with Incomplete Data
	Derrall L. Heath
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Related Work
	2.1 Problem Transformational Methods
	2.2 Algorithm Adaptation Methods
	2.3 Implicit Negativity
	2.4 Inferring Missing Labels
	2.5 Incremental Learning

	3 Methods
	3.1 Avoiding Implicit Negativity
	3.2 Inferring Missing Labels
	3.3 Incremental Learning

	4 Experimental Setup
	4.1 Data Sets
	4.2 Algorithms
	4.3 Evaluation Metrics

	5 Results
	5.1 Artificially Removing Labels
	5.2 The DARCI Data Set
	5.3 Only One Positive Label
	5.4 Incremental Learning
	5.5 Comparing with the Bayesian Model

	6 Conclusions and Future Work
	References

