
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2011-05-20

Accelerated Large-Scale Multiple Sequence
Alignment with Reconfigurable Computing
G Scott Lloyd
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Lloyd, G Scott, "Accelerated Large-Scale Multiple Sequence Alignment with Reconfigurable Computing" (2011). All Theses and
Dissertations. 2729.
https://scholarsarchive.byu.edu/etd/2729

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2729?utm_source=scholarsarchive.byu.edu%2Fetd%2F2729&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Accelerated Large-Scale Multiple Sequence Alignment

with Recon�gurable Computing

G. Scott Lloyd

A dissertation submitted to the faculty of
Brigham Young University

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

Quinn O. Snell, Chair
Mark J. Clement

Michael J. Wirthlin
Sean C. Warnick
Parris K. Egbert

Department of Computer Science

Brigham Young University

June 2011

Copyright © 2011 G. Scott Lloyd

All Rights Reserved

ABSTRACT

Accelerated Large-Scale Multiple Sequence Alignment
with Recon�gurable Computing

G. Scott Lloyd
Department of Computer Science, BYU

Doctor of Philosophy

Multiple Sequence Alignment (MSA) is a fundamental analysis method used in bioin-
formatics and many comparative genomic applications. The time to compute an optimal
MSA grows exponentially with respect to the number of sequences. Consequently, produc-
ing timely results on large problems requires more e�cient algorithms and the use of parallel
computing resources. Recon�gurable computing hardware provides one approach to the ac-
celeration of biological sequence alignment. Other acceleration methods typically encounter
scaling problems that arise from the overhead of inter-process communication and from the
lack of parallelism. Recon�gurable computing allows a greater scale of parallelism with many
custom processing elements that have a low-overhead interconnect. The proposed parallel al-
gorithms and architecture accelerate the most computationally demanding portions of MSA.
An overall speedup of up to 150 has been demonstrated on a large data set when compared
to a single processor. The reduced runtime for MSA allows researchers to solve the larger
problems that confront biologists today.

Keywords: communication network, communication protocol, computer architecture, in-
terface, modules, dynamic programming, �eld-programmable gate array, FPGA, sequence
alignment, recon�gurable hardware, traceback

ACKNOWLEDGMENTS

Returning to graduate school was a decision we made as a family. I would like to

thank my wife Susan and our children Sarah, Anna, Maxwell, Natalie, and Sadie for their

faith, encouragement and support through the years to realize our goal. Even with the

challenges, they remained true and committed. I appreciate their tolerance while living in

the limited space of student housing. Susan says she conducted her own research about

thriving in a small space. I am also thankful for the maintenance sta� in student housing

and their timely response to support calls.

I am grateful for the assistance and support of my adviser Dr. Quinn Snell. He has

always made sure that I have everything necessary to conduct research, including equipment

and software. Dr. Snell's experience with parallel processing and high-performance comput-

ing has been fundamental to this research. I appreciate the trust that was shown by giving

me the freedom to specify the needed hardware within our budget constraints.

Dr. Mark Clement and Dr. Mike Wirthlin, in conjunction with Dr. Snell, have given

appreciated guidance and direction. They have provided valuable feedback on my thesis topic

and dissertation writing. Additionally, they have guided the scope of the research to allow

completion in a reasonable time. Work within the research area has required expertise from

other disciplines. Dr. Snell and Dr. Clement have provided mentorship in molecular biology

and Dr. Wirthlin has brought invaluable experience with FPGA hardware and recon�gurable

computing. Dr. Sean Warnick and Dr. Parris Egbert have also been exemplary committee

members in sharing their time and o�ering constructive comments.

Special thanks go to my parents Bud and JoAnn. Their continual prayers in my

behalf have been felt. They have championed me through the process, and even though my

father passed away before I could �nish, his hope for me continues to o�er strength.

I am indebted to my Father in Heaven for His unconditional support. When searching

for answers to research problems, key insights were revealed. When wrestling with con�dence,

assurance was given. Often, the divine response was delivered through the great individuals

mentioned above.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Potential Impact and Importance . 2

1.2 Pairwise Sequence Alignment . 3

1.3 Multiple Sequence Alignment . 4

1.3.1 Progressive Alignment . 6

1.4 Acceleration . 8

2 Related Work 11

2.1 Acceleration Challenges . 12

2.2 Parallel MSA . 14

2.2.1 Progressive Methods . 15

2.2.2 Progressive-Iterative Methods . 21

3 Thesis statement 25

4 A Packet-Switched Network Architecture

for Recon�gurable Computing 27

4.1 Introduction . 28

4.1.1 Bene�ts and Challenges . 28

4.1.2 Requirements . 30

iv

4.2 Background and Related Work . 30

4.2.1 Communication . 31

4.2.2 Architecture . 31

4.3 Qnet . 32

4.3.1 Network Components . 34

4.3.2 Network Protocol . 35

4.4 Distributed Access Protocol . 36

4.4.1 Three-Party Communication . 36

4.4.2 Access Patterns . 37

4.4.3 Programming Interface . 40

4.5 High-Level Example . 41

4.6 Experimental Setup . 44

4.7 Results . 45

4.8 Conclusion . 47

5 Hardware Accelerated Sequence Alignment with Traceback 49

5.1 Introduction . 50

5.2 Related Work . 51

5.3 Algorithm . 54

5.4 Architecture . 57

5.4.1 Qnet Components . 58

5.4.2 System Modules . 59

5.4.3 System Parameters . 64

5.5 Timing Model . 65

5.6 Experimental setup . 66

5.7 Results . 69

5.8 Conclusion . 72

v

6 Accelerated Large-Scale Multiple Sequence Alignment 73

6.1 Introduction . 74

6.2 Related Work . 75

6.3 Discrete Pro�le Alignment . 78

6.3.1 Sample Points . 80

6.3.2 Substitution Table . 83

6.3.3 Reduction . 83

6.3.4 Example . 85

6.4 Methods . 85

6.5 Results . 89

6.6 Conclusion . 95

7 Summary 97

7.1 Contributions . 98

7.1.1 Recon�gurable Computing Architecture 99

7.1.2 Accelerated Pairwise Alignment . 100

7.1.3 Discrete Pro�le Alignment . 101

7.2 Future Work . 102

References 105

vi

List of Figures

1.1 Example multiple alignment . 2

1.2 The three stages of progressive alignment . 7

1.3 Example multiple alignment and derived pro�le 9

2.1 Proportion of time spent in the stages of ClustalW and MUSCLE 13

2.2 Myers and Miller subdivision algorithm . 17

2.3 MUSCLE Algorithm . 22

4.1 Example Qnet system . 33

4.2 Qpacket header . 35

4.3 Example of three-party communication . 37

4.4 Qnet packet format . 39

4.5 Example accelerator code . 42

4.6 Example transfer request . 43

4.7 Qnet benchmark systems . 44

4.8 Qnet performance . 46

5.1 Example pairwise alignment . 50

5.2 Forward scan and traceback . 55

5.3 Algorithm for TracePartial . 57

5.4 System architecture . 58

5.5 Qpacket header . 59

5.6 Pairwise alignment module . 60

vii

5.7 Processing element architecture . 61

5.8 Symbol �ow and the corresponding DP matrix wavefront 62

5.9 The traceback matrix and pointers . 63

5.10 FPGA �oorplan . 67

5.11 Global alignment execution time . 69

5.12 Timing model compared with actual FPGA performance 70

6.1 Example multiple alignment and derived pro�le 78

6.2 Pro�le space . 79

6.3 Sample point determination . 81

6.4 Planes parallel to pro�le space . 82

6.5 Pro�le reduction before alignment . 84

6.6 Example pro�le calculation and reduction for sequences 1 and 2 86

6.7 Example pro�le calculation and reduction for sequences 3 and 4 86

6.8 Example pro�le alignment . 87

6.9 Near neighbors in pro�le space . 88

6.10 Alignment quality on the BRAliBase data set 91

6.11 Alignment quality on the MDSA data set . 92

6.12 Alignment run time comparison with stages 94

viii

List of Tables

4.1 Sample of Access Patterns . 38

4.2 Qnet Resource Usage . 47

5.1 Resource usage . 68

5.2 Speedup between implementations . 68

6.1 Comparison of MUSCLE and MUDISC alignment quality 93

6.2 Alignment program run times and overall speedup 93

ix

x

Chapter 1

Introduction

Searching and comparing biological sequences in genomic databases are essential processes in

molecular biology. Fueled by new sequencing technology, the collection of genetic sequence

data is increasing exponentially each year and consists mostly of nucleotide (DNA/RNA)

and amino acid (protein) symbols. The comparison of hundreds or thousands of genomic

sequences presents a signi�cant computational challenge. The large data sets under anal-

ysis require high-performance computing methods to produce timely results. Some of the

larger problems encountered by biologists today can not be adequately addressed by current

methods.

Biologists and other researchers use sequence alignment as a fundamental analysis

method to �nd similarities between sequences, predict protein structure, identify important

genetic regions, and facilitate drug design. For example, sequence alignment is used to

derive �u vaccines [56] and is used by the nation's BioWatch [29] program in identifying

DNA signatures of pathogens. Alignment is also used in comparative genomic applications

such as whole genome alignment [11] and whole genome phylogeny [14]. Sequence alignment

consists of matching characters between sequences and positioning them together in a column

(see Figure 1.1). Gaps may be introduced in columns where matches do not occur to re�ect

an insertion or deletion evolutionary event. Pairwise alignment involves two sequences and

multiple alignment considers three or more sequences.

The computational cost for an optimal sequence alignment increases exponentially

with the number of sequences. Finding an optimal multiple sequence alignment (MSA) is NP-

1

10 20

s1

s2

s3

s4

- -T -T C T - -T - -T AG AT T C - -T C A -AC -

C C T -T C T AC TG C T A -C T T C - -T C A -AG -

C C T -T C T AC TG - - - - - - -G - -T C A -AT -

-C TG T -T A ATG A A - - - - -G C T T T AG ATG

Figure 1.1: Example multiple alignment

hard in complexity [22, 96], which means that the exact solution to the problem is intractable

for data sets with more than a few sequences. This complexity poses a challenge for sequence

alignment programs to return results within a reasonable time period as biologists compare

greater numbers of sequences. Consequently, many MSA approaches use heuristics to arrive

at a sub-optimal solution in a reasonable time. Even with current heuristic methods, an

alignment program may run for days or even weeks depending on the number of sequences

and their length.

1.1 Potential Impact and Importance

In some cases, getting a result from a MSA is time critical. For instance, molecular diag-

nostic designers commonly align all the available large bacterial genomes and would like a

result within a couple of hours. There are now dozens of genomes available for many bac-

terial species, and this will soon be hundreds or thousands. Currently, the best methods

available require days for the larger alignment tasks. The contributions of this work will let

researchers supporting biodefense or public health agencies react quickly to pathogen out-

breaks or attacks by signi�cantly reducing the time to solve this large-scale MSA problem.

Rapid identi�cation of a biothreat with accelerated MSA will allow subsequent diagnostic or

countermeasure design e�orts to begin promptly.

New parallel algorithms and a new architecture are presented to accelerate the most

computationally demanding portions of large-scale MSA with recon�gurable computing.

This work advances the state of the art in MSA by overcoming the scaling problems typically

2

encountered in current methods and by reducing the time required to compute an alignment

by up to two orders of magnitude compared to a desktop computer on data sets consisting

of hundreds or thousands of sequences. One example viral data set from the family Her-

pesviridae has 142 sequences with an average length of 167 kb. Current MSA programs take

about one week to align this data set on a desktop computer, while the contributions of this

work allow estimated execution to complete within 12 minutes.

1.2 Pairwise Sequence Alignment

Global and local alignment are the most common pairwise alignment problems. Global

alignment [65] considers sequences from end to end and �nds the best overall alignment. A

variation known as semiglobal alignment �nds the best overlap between sequences and allows

unmatched ends to extend without penalty (free end gaps). Local alignment [82] identi�es

the sections with greatest similarity and only aligns the subsequences.

A more formal de�nition of global alignment follows. Given a pair of sequences

A = a1a2...am and B = b1b2...bn of length |A| = m and |B| = n from the �nite alphabet Σ, a

pairwise sequence alignment is obtained by inserting gap characters �-� into A and B. The

aligned sequences A′ and B′ from the extended alphabet Σ′ = Σ ∪ {�-�} are of equal length

such that |A′| = |B′|.

An alignment score provides a metric to assess the quality of an alignment and rep-

resents a measure of similarity between sequences. For pairwise alignment, it is the sum of

similarity values for each pair of aligned characters. Characters that match have a positive

value while those that mismatch have a lower or negative value. Any character aligned with a

gap also contributes a negative value to the alignment score. In practice, the similarity value

comes from a substitution matrix that re�ects the probability of substituting one character

for another. Let the function s : Σ× Σ→ Z determine the similarity of two characters and

3

let l denote the length of an alignment. The pairwise scoring function is then given by

FPW (A′, B′) =
∑
1≤i≤l

s(a′i, b
′
i).

The goal is to �nd an optimal pairwise alignment of A and B such that for all pos-

sible alignments, the score is maximal. Pairwise alignment is typically solved with dynamic

programming (DP), which �lls a two-dimensional matrix with score values. Let H denote

the DP matrix and the element H[i, j] the similarity score of sequences a1a2...ai and b1b2...bj.

Let α represent the cost of inserting or deleting a gap. An optimal alignment is obtained by

maximizing the score in each element of H. The values of H are determined by the following

recurrence relations for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

H[0, 0] = 0,

H[i, 0] = H[i− 1, 0] + α,

H[0, j] = H[0, j − 1] + α,

H[i, j] = max


H[i− 1, j − 1] + s(ai, bj),

H[i− 1, j] + α,

H[i, j − 1] + α.

The matrix �ll occurs in a forward scan from upper left to lower right because of

dependencies from neighboring elements. This dependency limits the amount of parallelism

that is achievable in computing the matrix to the elements along the scan wavefront. Fol-

lowing a forward scan, traceback starts from a designated lower right position and follows a

path to upper left, thereby determining the best alignment.

1.3 Multiple Sequence Alignment

The de�nition of a multiple sequence alignment is a generalization of pairwise alignment.

Given an ordered set of sequences S = 〈s1, s2, ...sn〉, a multiple sequence alignment (MSA)

4

A = 〈a1, a2, ...an〉 is obtained by inserting gap characters "-" into si such that the aligned

sequences ai ∈ A are of equal length with |ai| = k.

To determine the quality of a MSA, a more complex scoring function than the one

for pairwise alignment is needed. Various assumptions about the relationship between mul-

tiple sequences lead to several possible scoring methods. The weighted sum-of-pairs (WSP)

method is popular among MSA programs. It assumes that sequences are related by an

evolutionary tree and that sequence weights are derived from this tree. The WSP method

calculates a total score from the weighted pairwise score of all sequences. Let FWSP : A→ Z

be a WSP scoring function for an MSA A such that

FWSP (A) =
∑

1≤i<j≤n

wi,j

∑
1≤l≤k

s(ai[l], aj[l])

where n is the number of sequences, k is the length of aligned sequences, wi,j is the weight

given to a pair of sequences, and the function s : Σ × Σ → Z determines the similarity of

symbol ai[l] with aj[l].

The choice of scoring method inherently a�ects the nature of the alignment algorithm.

After choosing a scoring function, a suitable algorithm is determined to maximize the score

and thereby produce an optimal alignment. More speci�cally, the MSA problem is to �nd an

alignment A given a set of sequences S such that for all possible alignments of S, the score

FWSP (A) is maximal. Several scoring methods and MSA algorithms have been proposed and

are described in a thorough review by Gotoh [33].

The DP solution to pairwise alignment may be extended to multiple alignment with

an N -dimensional scoring matrix where N is the number of sequences. However, because

of exponential time and space scaling problems, optimal alignment algorithms like DP are

limited to a small number of sequences. Even with restricted search space strategies [8],

exact algorithms are limited in the number of sequences.

5

1.3.1 Progressive Alignment

The most common heuristic algorithm used to solve the MSA problem is progressive align-

ment [27, 68, 88]. Other heuristic algorithms have been studied, but they generally provide

poorer quality or su�er from greater computational cost with limited improvement in align-

ment quality [67]. Progressive algorithms are also robust in that they converge to a solution

even with divergent input sequences. Since progressive alignment is a greedy strategy, mis-

takes in placing gaps at early stages will remain throughout the process. To compensate

for early mistakes, iterative re�nement algorithms have been developed that repeat certain

stages of the process a �xed number of times or until there is no improvement in the align-

ment quality [19, 32, 36, 40].

Progressive algorithms successively perform pairwise alignment on the most similar

sequences and groups of sequences, until all sequences are aligned. A progressive alignment

is accomplished in three main stages.

Stage 1: All sequences are compared pairwise with each other and the score is stored in a

similarity matrix.

Stage 2: A guide tree is constructed from the similarity matrix, with the leaves of the tree

representing the sequences.

Stage 3: Following the branches of the guide tree from the leaves to the root, sequences and

groups are pairwise aligned.

The guide tree indicates the order of combining groups with each node specifying a pairwise

alignment of the left and right groups (see Figure 1.2).

The execution time for the �rst stage of progressive alignment typically dominates

the overall computation and increases exponentially as more sequences are aligned. Using

an optimal pairwise sequence alignment algorithm, the �rst stage complexity is O(N2L2),

where N is the number of sequences and L is the length. Hence, more recent large-scale

MSA algorithms use less-costly sequence comparison methods in the �rst stage to reduce the

6

sa

sb

sc

sd

sa sb sc sd sb sc sa sd

(a) (b)

(c)

sb sc sa sd

Similarity
Matrix

Guide
Tree

sb sc

pa,d

pb,c

pa,d

Progressive Alignment

b,a

c,a

d,a

c,b

d,b d,c

Figure 1.2: The three stages of progressive alignment: (a) compare all sequences to form a
similarity matrix; (b) use the similarity scores and a clustering method to build a guide tree;
and (c) progressively align sequences si and groups of sequences pi,j,... in an order guided by
the tree.

7

overall computation time. For example, Kalign2 [43] uses approximate string searching [63],

MAFFT [40] and MUSCLE [19] use an alignment-free comparison method based on word

counts [94], and MAVID [6] avoids the �rst stage entirely and uses a random guide tree for

the �rst iteration of progressive alignment.

The second stage groups the most similar sequences together on terminal branches

of the guide tree. Common clustering methods for tree construction include UPGMA [83]

and neighbor-joining (NJ) [79]. In addition to tree topology, these methods provide branch

lengths that re�ect a measure of sequence divergence at each level of the tree. Individual

sequence weights may be derived from branch lengths that lie in a path to the root.

In the third stage, instead of aligning two groups of sequences directly, pro�les are

often created �rst. A pro�le is derived from the aligned sequences below a branch of the

guide tree. Figure 1.3 shows an example pro�le derived from a group of aligned sequences.

Individual sequence weights and position speci�c weights may be applied in the pro�le calcu-

lation based upon tree branch lengths and local patterns in the sequences. Once two pro�les

are created, they are aligned with a DP algorithm in a similar way to sequences. Gaps

inserted into the pro�les are inserted into the corresponding columns of the groups. When

a single sequence is aligned with a group of sequences, it is treated like a simple pro�le.

1.4 Acceleration

One method of addressing the computational demand of MSA is with supercomputers that

use parallel processors to speed up the computations. While supercomputers are somewhat

e�ective at accelerating MSA, they may only be available to larger institutions because of

their signi�cant cost. Even if a supercomputer is available, waiting in a queue for a shared

resource limits accessibility. Furthermore, supercomputer approaches for progressive MSA

begin to show scaling problems beyond 32 processors [86] because of inter-process com-

munication overhead and a lack of parallelism. The best published speedup on a cluster

system is 40 with 80 processors [104]. The desire for a solution with greater performance

8

fgap

fT

fG

fC

fA

001010

¼¼0¼0¾

00000¼

½00¾00

¼¾0000

s4

s3

s2

s1

AAT-TG

CATCT-

CATCT-

--TCT-

position 1 2 3 4 5 6

(a)

(b)

Alignment

Profile

Figure 1.3: Each position in a pro�le consists of a vector with character frequencies fN
for the corresponding column in a group of aligned sequences. (a) Multiple alignment of
sequences si. (b) Pro�le derived from the alignment.

and accessibility has motivated research into hardware acceleration methods using Graphics

Processing Units (GPUs), the Cell Broadband Engine (Cell BE), and recon�gurable com-

puting with Field-Programmable Gate Arrays (FPGAs). For MSA applications, acceleration

methods have demonstrated a desktop solution with up to 42 times the performance of a

single workstation.

Some challenges must be overcome to realize the bene�ts of acceleration methods.

The increased performance comes at a price that is usually in the form of greater design

complexity and longer development times. Acceleration methods require a deep understand-

ing of the system's memory and communication architecture to obtain the best performance.

Parallel portions of applications must be identi�ed and matched with appropriate hardware

resources. Consequently, this exposure to architecture detail leads to greater di�culty in

developing application programs.

Acceleration of sequence alignment with recon�gurable computing has demonstrated

a performance advantage over other methods. The most signi�cant reason is that the FPGA's

con�gurable logic operates with �ne-grained parallelism, which allows hundreds or thousands

9

of operations to occur in parallel within the chip. The FPGA acts as a coprocessor to

accelerate repetitive or parallel portions of an application. These portions are programed

into the FPGA's logic and execute at hardware speed on data supplied from the host. For

many applications, recon�gurable computing has the potential to deliver supercomputing

performance to a desktop computer for about the same cost as an additional computer.

When applied to MSA, recon�gurable computing with FPGAs has the potential to

overcome the scaling problems that result from a lack of parallelism and from high com-

munication overhead. Processing elements that wait idle on communication reduce the

parallelism and performance of an application. Recon�gurable computing supports many

custom processing elements and a local interconnect that provides communication with very

low overhead when compared with commodity processors. Accurately aligning thousands of

genomic sequences becomes feasible in a reasonable time period with su�cient parallelism

provided by recon�gurable hardware. With the current exponential increase in available

sequence data, an accelerated system capable of reducing the time for large-scale MSA by

two or more orders of magnitude compared to a desktop computer would greatly bene�t the

bioinformatics community.

10

Chapter 2

Related Work

Most e�orts to accelerate bio-sequence applications with hardware have focused solely on

database searches and have employed a pairwise local comparison algorithm. Ramdas and

Egan [77] discuss several FPGA based architectures in their survey. Other pairwise compar-

ison accelerators have also been described in [25, 50, 84]. Given a query sequence, an entire

genetic database is scanned to �nd other sequences that are similar. Searching a genetic

database for matches with a bio-sequence is similar in nature to an Internet search that

returns hits sorted by relevance. Most of the search acceleration occurs on the forward scan

of a DP-based algorithm when the query is compared with the database sequences. Only

the highest-scoring matches are retained for later alignment, which requires an additional

traceback procedure. Since the matches are relatively short and few in number, traceback

acceleration provides little bene�t to database searches; therefore, it is absent from most

implementations.

A few methods to accelerate MSA with hardware have been demonstrated. Existing

acceleration methods fail to use all the available parallel resources in every stage of MSA;

consequently, performance is reduced in some stages with idle processors. Greater perfor-

mance may be achieved, however, with more parallelism and by accelerating additional stages

of the algorithm.

11

2.1 Acceleration Challenges

Among the accelerated MSA approaches, some or all of the stages of progressive alignment

are parallelized with varying amounts of success. Figure 2.1a shows the proportion of time

spent in each stage of the well-known ClustalW [88] program for several problem sizes. The

�rst stage receives the most attention since it usually dominates the computation time and

it is easily parallelized by independently comparing all of the sequences. The second stage

receives little attention since it requires the least computation time of all the stages for

a small number of sequences. However, the third stage still takes a signi�cant amount of

computation time and warrants acceleration.

Without accelerating the third stage of progressive MSA, Amdahl's law [1] limits the

overall speedup. For example, if the third stage takes 5% of the computation time, the

overall speedup is limited to about 20 even if the other stages are in�nitely fast. If the time

in Stage 1 is reduced with faster comparison techniques, then the acceleration of Stage 3

becomes more critical. Newer programs like MUSCLE and MAFFT use a faster alignment

free comparison method; therefore, the third stage dominates the computation time (see

Figure 2.1b). Even though these newer methods show greater performance, most of the

related work has still focused on accelerating ClustalW where the �rst stage dominates the

run time.

Many of the acceleration methods struggle to �nd enough parallelism in the third

stage of progressive alignment where the DP data dependencies restrict the parallel calcula-

tions to a wavefront. Each process associated with a cell or block of cells along the wavefront

must communicate with three neighbors. Because of frequent and small communication be-

tween these processes, �ne-grained parallelism with low-latency communication is required

to e�ciently compute the wavefront. Without access to �ne-grained resources, many meth-

ods will take a coarse-grained approach and traverse branches of the guide tree in parallel

or use a recursively parallel version of the Myers-Miller [64] pairwise alignment algorithm.

Nevertheless, parallelism in the guide tree may be poor if the tree is not balanced. Further-

12

ClustalW 1.83 – Alignment of Influenza A HA (~1.7 k b)
Stage 1: Pairwise, Stage 2: NJ, Stage 3: Myers–Mill er

10 37 82 144 227 312 417 547 694 841

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

Number of sequences

P
er

ce
nt

ag
e

of
 to

ta
l t

im
e

Stage 3
Stage 2
Stage 1

(a)

MUSCLE – Alignment of Influenza A HA (~1.7 kb)
Stage 1: K-mer, Stage 2: UPGMA, Stage 3: DP

0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.1 1.3 1.4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

Number of sequences

P
er

ce
nt

ag
e

of
 to

ta
l t

im
e

Stage 3
Stage 2
Stage 1

(b)

Figure 2.1: The proportion of time spent in the stages of ClustalW and MUSCLE is depicted
for the In�uenza data set. Only one iteration of MUSCLE was run for the comparison. The
total time for an alignment in minutes is shown at the top of each column. This data set is
comparable in size to those used in related work.

13

more, both of these strategies have limited parallelism at the root of the tree and in the �rst

steps of recursion.

Recon�gurable computing with FPGAs has demonstrated a performance advantage in

accelerating the DP solution to pairwise alignment with a systolic array of custom processors

in programmable logic. However, this advantage has not previously been demonstrated for

the third stage of progressive alignment because of the extra complexity associated with

aligning pro�les. This work is unique in that it addresses the acceleration of pro�le alignment

in Stage 3 with recon�gurable computing and demonstrates an overall speedup of up to 150

on large data sets. The next section describes some related examples of parallel MSA in

more detail.

2.2 Parallel MSA

Parallel MSA algorithms can be classi�ed into several di�erent categories depending on

the underlying solution strategy. Some common classi�cations include optimal, progressive,

iterative, stochastic, and hybrid. Only progressive and progressive-iterative methods will be

discussed because of their relevance to this work. Within each section, the parallel examples

are organized by the system type and include a description of the parallel approach. The

examples discussed show a contribution in either overall performance or in the application

of a parallel algorithm.

Parallel algorithms are often categorized by their granularity, which refers mainly to

the frequency of communication between parallel tasks. A coarse-grained algorithm typically

has fewer, larger tasks that communicate every second or less, while a �ne-grained algorithm

may have many, smaller tasks that communicate more frequently. The classi�cation is not

rigid, and some examples may not properly �t one category or the other.

14

2.2.1 Progressive Methods

Almost all of the parallel MSA examples referenced in this section are based on the popular

ClustalW program [88]. Several reasons for this popularity exist. First of all, the method

has been trusted by biologists for almost two decades with quality that is still comparable

to more recent algorithms. The trust is gained with alignment results that are similar to

biologists expectations. Even though newer methods may have better performance or quality,

ClustalW has become a recognized benchmark standard. The algorithm provides fairly

good alignments across a diverse range of sequence types. Also, the alignment algorithm

is relatively fast, simple, and understandable. The source code is freely available and well

supported, which provides broad access to biologists and allows researchers to experiment

with algorithmic variations without starting from scratch.

Vector. The �rst published attempt to parallelize MSA was described by Tajima [85]. Only

the DP calculations were vectorized on a FACOM VP-200 vector supercomputer. However,

accelerating DP calculation with vector parallelism is problematic because vector machines

typically do not include a table lookup vector operation that is needed to return the similarity

score between two characters. To avoid a table lookup, the implementation by Tajima returns

zero if symbols are equal and one otherwise. Parallelism was introduced with a FORTRAN

77/VP compiler that vectorizes DO loops when possible for a speedup of 4 on sequence-to-

sequence alignment and a speedup of 2�3 on sequence-to-group alignment. A more recent

attempt to use vector parallelism was reported by Chaichoompu and Kittitornkun [10] with

only a speedup of 1.23 on ClustalW. The Intel C++ compiler was used with the /QxP option

to generate Streaming SIMD Extensions (SSE) instructions for a Pentium processor.

Multiprocessor. Mikhailov et al. [60] parallelized all three stages of ClustalW on a shared-

memory SGI Origin machine to demonstrate a speedup of 10 with 16 processors. The �rst

stage is easily parallelized since each of the pairwise comparisons can be executed inde-

15

pendently and the results stored in a similarity matrix without any con�ict. Mikhailov

introduced coarse-grained, task-level parallelism with OpenMP [72] directives. Since the

�rst stage typically dominates the run time of ClustalW, most of the speedup comes from

parallelizing this stage. The degree of parallelism with this method is limited to the number

of all-to-all pairwise comparisons, which is N(N − 1)/2.

A notable feature of Mikhailov's e�ort is the parallelization of the guide tree cal-

culation in the second stage, whereas it is often overlooked in many other implementations

because it requires the least computation time of all the stages. The clustering algorithm used

in the second stage repeatedly �nds a minimum element in the similarity matrix. Mikhailov's

method searches each row of the matrix in parallel for the minimum element and then reduces

the row-wise results to �nd the overall minimum. In this case, the parallelism is limited to

the number of rows in the similarity matrix.

Since Mikhailov uses loop-level parallelism, only a portion of the available parallelism

was realized in the third stage. During group-to-group alignment, ClustalW calls a function

to determine the score for aligning two pro�le positions. A pro�le is derived from a group of

sequences and consists of the character frequencies for each column in a group. A temporary

matrix with dimensions equal to the length of each pro�le can be used to store the scores.

Mikhailov's method precalculates each element of the scoring matrix in parallel.

Using message passing on a distributed-memory system, Li [45] also parallelized all

the stages in ClustalW-MPI for an overall speedup of 14.6 on a 16 processor cluster. The test

data consisted of 500 protein sequences with a length of 1100. Li used a �xed-size bundling

strategy in the �rst stage to schedule 80 pairwise alignments to processors in a batch, thus

reducing the frequency and overhead of communication. Li was the �rst to publish more

sophisticated parallel methods for the third stage of progressive alignment. One method

computes alignments at terminal nodes of the guide tree in parallel (see Figure 1.2c). The

problem with this method is that an unbalanced tree can severely limit the number of

16

Figure 2.2: Myers and Miller subdivision algorithm. Eugene W. Myers and Webb Miller,
Optimal alignments in linear space, Computer Applications in the Biosciences : CABIOS,
1988, Vol. 4, No. 1, p. 14, by permission of Oxford University Press.

parallel tasks. Furthermore, even a balanced tree will have limited parallelism near the root.

In practice, the guide tree is usually unbalanced.

Another parallel method used by Li is based on the recursive Myers-Miller DP algo-

rithm [64]. The Myers-Miller algorithm solves the pairwise alignment problem by dividing

the DP matrix in half and then scanning from opposite corners towards the middle (see

Figure 2.2). Where the two scans meet, an optimal midpoint in the traceback path is de-

termined. This point becomes the corner of two subblocks which are in turn divided and

scanned for midpoints. The recursion continues until a trivial alignment is encountered. The

forward and backward scans can occur brie�y in parallel, but must join before determining

the midpoint. Each time a midpoint is found, two new subtasks can be spawned for the

subblocks. Similar to guide-tree parallelism, recursive parallelism is also limited in the �rst

steps. Using both guide-tree and recursive parallelism, Li only achieved a speedup of 4.3 on

16 processors in the third stage, while the �rst stage realized a customary linear speedup of

15.8.

The best performance reported for ClustalW using multiprocessors was by Tan et

al. [86] with an overall speedup of 35 on an SMP-cluster system with 40 nodes and 80

17

processors. A speedup of 80 and 9.2 was obtained for the �rst and third stages respectively.

In the third stage, Tan's method also distributes group-to-group alignments to system nodes

using a method similar to Li that is based upon guide-tree and recursive parallelism. The

main contribution comes from computing the forward and backward DP scans in parallel on

processors within a node.

Load balancing strategies can improve the parallel e�ciency in the third stage. Luo

et al. [55] proposed a dynamic scheduling algorithm that estimates the execution time and

communication cost for each task. Since the input for a node in the guide tree is dependent on

a prior node, task costs are dynamically estimated after each task completes. The scheduler

considers these costs and the current workload of the processors when making scheduling

decisions. A peak e�ciency of 0.75 is achieved with a speedup of 6 on 8 processors. In a later

work, Tan et al. [87] also proposed a load balancing strategy based on tree accumulation. A

speedup of 18 was achieved with 32 processors when aligning 3998 protein sequences. The

small speedup achieved in the third stage, which is under 10 in most cases, limits the overall

speedup of progressive algorithms on multiprocessor systems.

Cell. Sachdeva et al. [78] ported the ClustalW application to the Cell platform for a Stage 1

speedup of 6.51 compared with a Xeon (Woodcrest) processor, but the overall performance

was slower by a factor of 1.58. The signi�cance of their e�ort comes from being the �rst to

experiment with the Cell as a MSA accelerator and illuminating the challenges that must

be overcome to achieve a performance improvement. Most of the speedup in the �rst stage

comes from vectorizing the pairwise alignment computations and executing them in parallel

on the Cell's eight Synergistic Processing Units (SPUs). However, vector performance is

challenged on the SPUs with multiple branches in the DP code and also with table lookups

for the similarity score. The second and third stages were executed on the Cell's single,

64-bit Power Processing Unit (PPU). The lower performance of a PPU compared with a

Xeon processor explains the overall performance degradation.

18

Vandierendonck et al. [93] accelerated ClustalW on two Cell BEs by a factor of 8 when

compared with a 2.13GHz Intel Core2 Duo processor running a single thread. Stage 1 is

parallelized by vectorizing DP matrix calculations and scheduling the independent pairwise

alignment tasks across the 16 available SPUs. Vandierendonck applied loop unrolling and

loop skewing optimizations to compute the DP scan with diagonal vector operations. These

optimizations are also applied to the group-to-group DP calculations in the third stage.

Vandierendonck discovered that a signi�cant portion of the third stage is spent calculating

the similarity score between two pro�le positions. When comparing pro�le positions, all

the character and gap frequencies must be considered. Similar to Mikhailov, these scores

are precalculated in parallel, but in Vandierendonck's case, a more sophisticated scheme is

proposed to pass precomputed scores from producer tasks through queues to consumer tasks.

The PPU executes the sequential portions of ClustalW and load balances worker threads

across SPUs with a dynamic scheduler.

Using a Playstation3, Wirawan et al. [100] achieved a peak speedup of 108 for the

�rst stage when compared to a 3.0GHz Pentium 4. The data set consisted of 1000 protein

sequences with an average length of 446. Only the �rst stage was accelerated, and no overall

speedup was reported. Wirawan used a sequence comparison algorithm that di�ers from

ClustalW and has been previously demonstrated on FPGA [69] and GPU [49] accelerators. A

count of matching characters is normally determined from an alignment, but in this algorithm

the number of identical characters is computed directly by the recurrence relations during

the forward scan of DP. By avoiding a full alignment, which requires a traceback procedure,

better performance is realized.

GPU. Weiguo Liu et al. [49] were the �rst to publish MSA acceleration on GPUs and

achieved a Stage 1 speedup of 11.7 compared with a 3.0GHz Pentium 4 processor. Stages 2

and 3 were executed sequentially on the Pentium processor for an overall speedup of 7.2. A

single GPU card (GeForce 7800 GTX) was programmed with OpenGL Shading Language

19

(GLSL). The sequence comparison algorithm uses the same recurrence relations demon-

strated on FPGA [69] and Cell [100] accelerators to assist in calculating the number of

identical characters.

Yongchao Liu et al. [51] demonstrated an overall peak speedup of 41.53 on 1000

sequences of average length 858 with 1 GPU card (GeForce GTX 280) when compared

with a 3.0GHz Pentium 4. All three stages of ClustalW are accelerated by the GPU, with

the parallel portions programmed using CUDA. When pairwise-alignment and guide-tree

parallelism is low, cells of DP matrix calculations are computed in parallel. Since CUDA

does not support recursion, a stack-based iterative version of the Myers-Miller algorithm

was developed. This new version was used for both pairwise-alignments and group-to-group

alignments. A separate paper [52] describes the parallel algorithm for the second stage.

The neighbor-joining algorithm [79] is accelerated by computing the two innermost loops in

parallel. Threads that compute minimum elements for square blocks of the distance matrix

are scheduled on the GPU. The best speedup obtained in each of the three stages is 47.13,

11.08, and 5.9 respectively. Again, the small gain in the third stage limits the overall speedup.

FPGA. Recon�gurable computing approaches accelerate the �rst stage of MSA by com-

puting pairwise alignments with a pipeline of processing elements (PEs). This linear systolic

array operates with �ne-grained parallelism along a wavefront of cells in the DP matrix. The

ClustalW algorithm does not use the score obtained from a pairwise alignment directly. In-

stead, the number of identical characters in an alignment are used to compute the fractional

identity. Oliver et al. [70] accelerates the �rst stage of ClustalW, but leaves the second and

third stages for execution on the host processor. Rather than actually aligning the sequences,

a custom algorithm on the accelerator counts the number of identical characters during the

forward scan without performing traceback. The best overall speedup was 13.3 compared

to ClustalW running on a 3.0GHz Pentium 4. For Stage 1, a PCI-based accelerator board

reached a peak speedup of 50.9 with 92 PEs in a Xilinx XC2V6000.

20

In another approach, Lin et al. [47] demonstrated an overall speedup of 34.6 using

10 Altera Stratix PEIS30 with a total of 3072 PEs. For the �rst stage, a speedup of 1697.5

was achieved when compared with a 2.8GHz Xeon. The number of identical characters is

deduced from the comparison score returned from the accelerator and the sequence lengths.

Even with the impressive speedup in the �rst stage, the overall speedup is still limited by

the third stage. Greater performance may be achieved, however, by accelerating the third

stage of progressive alignment.

2.2.2 Progressive-Iterative Methods

Iterative re�nement algorithms have been developed to correct mistakes induced by the

greedy strategy of progressive alignment. Most commonly, the iterative algorithms repeat

subgroup alignment in the third stage to remove misplaced gaps. A more recent version of

ClustalW now includes an iteration option to improve alignment quality, but this quality

comes at the expense of more run time. To compensate for the lengthened run time, parallel

methods have been introduced to some of the iterative applications. A few programs other

than ClustalW have gained enough acceptance to warrant a parallelization e�ort.

MUSCLE. The iterative approach of MUSCLE starts with two rounds of basic progres-

sive alignment and then repeats tree-guided group-to-group alignments until convergence is

reached. As shown in Figure 2.3, a round consists of the three stages that are familiar to pro-

gressive alignment. The �rst two rounds derive pairwise similarity scores during Stage 1 in

di�erent ways, wherein the �rst round uses a faster alignment-free method based on k-mers

and the second round uses the multiple alignment from the prior round.

Deng et al. [15] parallelized MUSCLE for a speedup of 15.2 on a 16 processor SMP

system using OpenMP. The target data set consists of 50�150 proteins of average length

330. In the �rst and second rounds, group-to-group alignment following the guide tree is

executed in parallel. A queuing module is used to schedule the tasks and make sure children

21

Figure 2.3: MUSCLE Algorithm. Robert C. Edgar, MUSCLE: multiple sequence alignment
with high accuracy and high throughput, Nucleic Acids Research, 2004, Vol. 32, No. 5, p.
1793, by permission of Oxford University Press.

22

nodes are aligned before parent nodes; however, as discussed before, this tree-based method

has limited parallelism, and consequently, poor performance is reported for this stage with

a speedup between 1 and 2. Most of the speedup comes from parallelizing and executing

independently the all-to-all pairwise comparisons in the second round. Deng opted to use a

more compute intensive probabilistic sequence comparison algorithm in the second round;

therefore, most of the execution time was spent in this stage.

PRALINE. The progressive method of PRALINE has a pairwise sequence alignment stage

and a progressive pro�le alignment stage that correspond to Stages 1 and 3, but the guide

tree formation of Stage 2 is avoided. Instead of following a guide tree to align sequences

and groups, PRALINE repeatedly chooses the next highest scoring pair to align until all

sequences and groups are aligned to produce the �nal alignment. The highest scoring pair

is determined by comparing all sequences with each other at �rst, and then comparing the

aligned pair with the remaining sequences after each iteration.

A parallel implementation of PRALINE by Kleinjung et al. [42] realized a speedup of

10 with 25 processors on a distributed system using a set of 200 random sequences that are

200 residues in length. The pairwise sequence alignment stage is parallelized in the usual way

by distributing pairwise alignments tasks to separate processors. In the progressive pro�le

alignment stage, only the comparison of sequences and groups is parallelized. This occurs

in a similar way to the �rst stage by distributing the comparison tasks, but each iteration

must collect the results before selecting the highest score.

T-Co�ee. While T-Co�ee follows a progressive strategy, the �rst stage consists of a few

extra steps that generate a library of pairwise alignments. This library is later used in the

third stage to score alignments with a consistency-base objective function. After a round

of basic progressive alignment, T-Co�ee can iteratively re�ne the multiple alignment as an

option. Each sequence is removed in turn from the multiple alignment and realigned with

the remaining sequences.

23

Zola et al. [104] implemented a parallel version of T-Co�ee using a master-worker

architecture and message passing to obtain an overall speedup of about 40 on a system with

80 CPUs. Most of the parallelism comes from distributing pairwise alignment tasks with

dynamic scheduling for a near linear speedup during library generation. In the progressive

alignment stage, a sophisticated dynamic scheduling strategy is used that follows the guide

tree, but almost no speedup is seen in this stage with more than 16 CPUs.

24

Chapter 3

Thesis statement

The strengths of a host microprocessor and an FPGA accelerator are applied to MSA accel-

eration. New parallel algorithms and a new high-performance architecture are proposed that

bring these strengths together to accelerate MSA on a recon�gurable computing system. A

main component of the proposed work accelerates the third, progressive-alignment stage of

MSA by quantizing the pro�les before they are aligned on the FPGA.

Through �ne-grained parallelism provided by an FPGA accelerator, a progressive

MSA application can produce comparable quality alignments in less time than currently

known methods.

The new algorithms are incorporated into an existing MSA program to demonstrate

accelerated large-scale MSA. Portions of the MSA application still execute on the host com-

puter since it is e�cient at executing serial code with dynamic data structures. The highly-

parallel portions of the application are optimized with SSE instructions or accelerated on

recon�gurable hardware.

25

The work consists of the following components with corresponding contributions that

are fundamental to accelerating MSA. The next three chapters correspond with these com-

ponents.

� A recon�gurable computing architecture

� An accelerated pairwise alignment algorithm

� A discrete pro�le alignment algorithm for the third stage of MSA

As a foundation to the other proposed components, the recon�gurable computing

architecture provides a modular framework and an interconnect standard for program devel-

opment on the FPGA. The modular framework helps developers partition complex FPGA

resources (e. g. processors, memory, I/O devices) into manageable units that are connected

with a high-performance network. Without an e�cient communication architecture, parallel

computational resources are limited in performance. This architecture has been published

as �A Packet-Switched Network Architecture for Recon�gurable Computing,� ACM Trans-

actions on Embedded Computing Systems, 9, 1, Article 7 (October 2009), 17 pages.

Accelerated pairwise alignment is used in the third stage as a part of the discrete

pro�le alignment algorithm. A novel aspect of the pairwise alignment algorithm is the

ability to handle long sequences of DNA. This algorithm has been published as �Hardware

Accelerated Sequence Alignment with Traceback,� International Journal of Recon�gurable

Computing, vol. 2009, Article ID 762362, 10 pages, 2009. For pairwise alignment, a speedup

of 300 has been demonstrated when compared to a 2.4GHz Core2 processor.

The contributions of the new discrete pro�le alignment algorithm in conjunction with

the pairwise alignment algorithm advance the capabilities and performance of MSA. This

work is the �rst known to accelerate the third stage of progressive alignment on recon�gurable

hardware.

26

Chapter 4

A Packet-Switched Network Architecture

for Recon�gurable Computing

Published in

ACM Transactions on Embedded Computing Systems,

Vol. 9, No. 1, Article 7 (October 2009).

Abstract

A packet-switched network architecture named Qnet and programming interface is pre-

sented that simpli�es the integration of recon�gurable computing modules within a �eld-

programmable gate array (FPGA). Qnet provides an abstraction layer to the designer of

FPGA accelerator modules that hides the complexities of the system, while supporting a

high degree of parallelism and performance. The architecture facilitates system design with

pluggable, reusable modules. A network protocol is described that supports a three-party

communication scheme between an initiator, a sender and a receiver. This protocol allows a

master device to manage the state of other devices and the data �ow within the system. An

example using a high-level language is given. The Qnet architecture opens the computational

power of FPGAs to computer scientists and software developers.

27

4.1 Introduction

The need for greater computational performance pervades many disciplines. In addition,

embedded system designers must balance power consumption, cost and other factors to meet

application requirements. As microprocessors reach limitations on clock frequencies, parallel

solutions are used to meet the performance challenge. For example, multiprocessor systems-

on-chips have been successfully employed in many high-performance embedded platforms.

Recon�gurable computing is another approach used to address demanding compu-

tational problems [7, 30]. Field-programmable gate arrays (FPGAs) are commonly used

in recon�gurable systems as coprocessors to accelerate repetitive or parallel portions of an

application. These portions bene�t from the FPGA's con�gurable logic that operates with

�ne-grained parallelism. While FPGAs provide logic as a con�gurable resource, research

is leading to other devices that contain a mix of higher-level con�gurable components; for

instance, processors, �oating-point and integer units, caches, memory interfaces, and on-chip

networks.

4.1.1 Bene�ts and Challenges

For some applications, recon�gurable computing has demonstrated a performance advantage

over microprocessors with gains ranging up to several orders of magnitude. This increase

in performance may be traded for reduced system size, power, and cost. The potential for

these bene�ts motivates ongoing research; however, several challenges remain for wide scale

adoption of recon�gurable computing [21].

Since FPGAs operate at slower clock rates, they must use a high-degree of parallelism

to exceed the performance of commodity processors. Overcoming this challenge often requires

careful analysis to devise or choose a parallel algorithm suitable for the problem.

Managing the �ow of data through an FPGA is another research challenge. For FP-

GAs to e�ectively participate in computations, adequate communication paths are required.

I/O bottlenecks between the processor and FPGA frequently limit recon�gurable systems

28

from greater performance [91]. Given the need for parallelism, scalability, and through-

put, research is converging to on-chip networks as the connection architecture of choice

[13, 39, 57, 74]. As FPGA capacities increase, serial on-chip buses do not scale to handle

the intermodule communication demands; however, on-chip networks do scale to meet the

demands with parallel data paths while still comparing favorably with buses on resource

usage.

Programming recon�gurable systems poses yet another challenge. The FPGA is a vast

array of con�gurable logic. Traditionally, hardware description languages, such as VHDL

and Verilog, have been used to specify FPGA con�gurations. Unfortunately, these languages

are unsuitable for writing algorithms in a way familiar to software developers. A current

trend is to use algorithmic, high-level languages o�ered by a few commercial vendors.

Although languages and design tools ease the development of an FPGA accelerator

module, connecting it to other system resources (processors, memory, I/O devices) remains

tedious. Since each resource has a di�erent hardware interface, system integration often re-

quires hardware expertise. One approach to the problem is to provide platform development

kits with libraries that can be called and linked directly to the accelerator code, but this ties

the resources to the accelerator and restricts other clients from accessing them.

Given the current challenges, a standard communication architecture is needed for

recon�gurable computing. The Message Passing Interface (MPI) [62] and CORBA [71] are

examples of standards that address similar challenges. These standards allow interaction

with resources at remote locations in the computing environment while hiding the com-

plexities of the system. This bene�t and others, such as portability and interoperability,

may also be realized by recon�gurable computing through a standard communication ar-

chitecture. Beyond the standards o�ered by MPI and CORBA, a recon�gurable computing

standard will need to o�er a common framework for both hardware and software components

distributed across chip boundaries.

29

4.1.2 Requirements

A communication architecture meeting the following requirements addresses or mitigates

many of the challenges of recon�gurable computing:

Network: Provide a high-performance, e�cient, communication network that connects

various modules with a standard hardware interface.

Protocol: Provide data transport and access to another module's resources via the net-

work with user-extensible functions, data types, and access patterns.

Interface: Provide a communication abstraction layer or application programming inter-

face to the network for the module designer (e. g. C language binding, VHDL

module).

Methodology: Allow module design and veri�cation in a high-level language of choice with

module connection and system integration assisted by a platform-level tool.

This research introduces a network architecture named Qnet along with a �exible protocol

and a programming interface. Qnet is a packet-switched network that connects modules

within a recon�gurable system. Modules encapsulate sharable devices or resources and may

reside within or be external to an FPGA. In conjunction with Qnet, the Distributed Access

Protocol (DAP) is presented, which o�ers a uni�ed solution to data management. Qnet

provides a highly parallel framework for computationally intensive problems that meets the

prescribed requirements and opens the computational power of FPGAs to computer scientists

and software developers.

4.2 Background and Related Work

The Qnet protocols and architecture build on related work in several areas. The commu-

nication protocols discussed in this section originated with research involving conventional

clustered computing systems. The network interface cards in these systems often provide

30

hardware assistance in packet processing. Qnet generalizes the concept of packing and un-

packing data from each end of a communication channel through the access pattern, which

will be discussed later. Extending work at the hardware level, Qnet provides hardware

assistance to access memory in common patterns through a uni�ed network interface.

4.2.1 Communication

Communication methods are usually classi�ed as one-sided or two-sided. A one-sided method

[95, 2] accesses the memory of a remote processor without direct involvement of the other

processor. The communication activity is transparent to the remote node. Even though only

one side is actively involved in the communication, two parties still participate. A direct

memory access (DMA) engine or a processor under interrupt must transfer the data on the

remote node.

Two-sided communication methods use the Send/Receive paradigm. Both parties are

actively involved in the communication and each speci�es bu�ers of data. Examples of this

paradigm include the sockets interface and MPI.

Each of these methods has strengths and weaknesses; nevertheless, most are memory

centric and not general enough to directly access the functional resources of various FPGA

and host modules. A single, uni�ed protocol is needed that allows modules to initiate data

transfers and operations within the system. Since all user data access patterns can not be

anticipated, the protocol needs to be extensible.

4.2.2 Architecture

With the increase in size of FPGAs, Diniz and Park [16] envision the need for data reorga-

nization engines that o�oad the burden of data management and manipulation in available

memories. Some common memory access patterns are listed (e. g. splitting, padding, merg-

ing, transpose, scatter/gather). A programmable switching network is proposed for managing

31

the �ow of data between memories, but other module types and nonmemory access patterns

are not addressed.

A considerable number of on-FPGA communication architectures have been pro-

posed. Mak et al. [57] presents a taxonomy of on-FPGA communication architectures with

representative examples. Pionteck et al. [74] also gives an overview of several architectures

speci�c to dynamic recon�guration. Most closely related to this work is DIMEtalk [80], a

tool that con�gures a communication network within an FPGA system. Nodes connect user

de�ned hardware to the network through two types of interfaces: RAM and FIFO memory.

Of the known on-chip architectures, none present a single network application pro-

gramming interface for use by both processor-based modules and hardware accelerator mod-

ules. Also, none provide a single application layer protocol for managing operations and

data �ow in the system. The on-chip network architectures only address the packet routing

issues up to the transport and network layers and do not present a programming interface

from the module's perspective.

4.3 Qnet

Qnet satis�es the module interconnect requirement in an FPGA system as speci�ed in Sec-

tion 4.1.2. The module types vary in function and purpose, like those found in typical

bus-based FPGA systems (e. g. processors, memory interfaces, peripherals, accelerators).

Figure 4.1 shows a system constructed from modules connected through a standard hard-

ware interface. Modules designed as initiators access resources in other modules through

the network infrastructure. A layered network protocol allows modules to implement the

functionality needed at the endpoint without imposing unnecessary complexity, whether in

hardware or software. Qnet can also coexist with bus-based modules that do not require the

bene�ts of a network.

The hardware interface standard for Qnet modules is key to ful�lling the methodology

requirement. Modules may be implemented by any method, as long as they conform to

32

Figure 4.1: Example Qnet system

the Qnet interface standard. Compatible modules may be integrated into a system with

the assistance of a platform-level tool, such as XPS in the Xilinx Embedded Development

Kit (EDK) [101]. Through a graphical user interface, modules are selected from a library,

placed, and connected. The tool generates the requisite hardware description �les that bind

the modules, and it automates design rule checks and other tests for miscon�guration.

The main contributions of Qnet address the interface and protocol requirements:

� An application programming interface to interact with other modules in the system.

The interface is the same for both processor based modules and hardware accelerator

modules, and it hides system hardware details opening FPGA resources to software

developers.

� A three-party network communication protocol. This protocol allows a master module

to manage the operation of other modules and the data �ow within the system.

� The generalization of data access patterns that are applied at network endpoints. This

provides the ability to use diverse module resources over the network.

33

� The �exibility to de�ne data access patterns. Users with speci�c needs can de�ne a

new access pattern that operates within the Qnet architecture without de�ning a new

protocol and a new programming interface.

4.3.1 Network Components

The basic network components consist of switches, Qports, and Qlinks. As the central �gure

in the network, the switch provides a communication path to other modules (see Figure 4.1).

Depending on the number of modules in the system, a switch with the appropriate number of

ports is typically used. Qports are the interface between modules and the network and are the

addressable endpoints of a communication. Qports are connected by Qlinks, which consist

of paired, unidirectional, point-to-point communication channels that can be implemented

with varying bit widths (e. g. 8, 16, 32, 64-bits). Qlinks implemented with narrow widths

minimize resources for lower-speed devices, while wider links support higher-speed devices

such as PCI Express [4]. Each Qport has word-based �ow control that will apply back-

pressure on a link, delaying communication until the port is ready to receive. Hence, packets

are not arbitrarily discarded, and the requirement to bu�er an entire packet at the input of

a module is removed while still maintaining performance.

Qnet allows for di�erent designs and implementations of the switch, depending on

the application requirements. For instance, switch ports may have no bu�ering or various

amounts of bu�ering determined by the application packet size and �ow patterns. The

address table size, port priority, and forwarding method are not speci�ed by the architecture.

Switches may be implemented with various port widths and internal data path widths to

meet the bandwidth demands of the application. Latency through the switch can be as low

as one clock cycle.

Accelerator modules often need multiple data paths for high performance. Examples

of this include matrix and vector functions with two operands and a result. These functions

can be implemented as a pipelined accelerator module with streaming data on two Qports.

34

dst ID src ID sequencesrc chdst ch

protocol payload length

byte 0 byte 1 byte 2 byte 3

Figure 4.2: Qpacket header

Since Qlinks are bidirectional, one link can handle operand A and a result, while the other

link handles operand B. The switched architecture of Qnet supports concurrent data paths

to a module when the data comes from separate sources. When both operand streams come

from a common memory source, a multiport memory controller [73, 102] is an option that

can supply the streams on concurrent links up to the available memory bandwidth.

More sophisticated architectures beyond a single switch connecting on-chip modules

can be constructed with Qnet. For instance, modules on multiple FPGAs can be networked

with the appropriate bridge at the chip interface, which may range from simple parallel

signals to a multigigabit serial interface. From a module's perspective, access to remote

network resources is through a simple Qport connection, and the network pathway is invisible

to the programmer.

4.3.2 Network Protocol

The lowest abstraction o�ered by Qnet is the reliable transfer of data packets between

endpoints. Packets consist of a small header (see Figure 5.5) and a payload that ranges in

size up to 16MB. Endpoints are speci�ed by a unique port identi�er and a channel number.

The port identi�er is used to route a packet to a speci�c Qport and the channel number is

a means to address subprocesses within a module, thereby providing virtual channels over a

single Qlink. Normally, if bandwidth and latency are an issue, multiple Qlinks are used in a

module design instead of sharing a Qlink with multiple channels.

Qnet has hardware support for marking the header/payload boundary of a packet.

On receipt of a packet, the boundary marking simpli�es the separation of the header from the

payload, which translates to a simpler protocol stack and better communication performance.

35

The device driver or application �exibly sets the boundary marker, which is implemented

with a sideband signal asserted on a word in a packet.

4.4 Distributed Access Protocol

The Distributed Access Protocol (DAP) enables processors and modules to access data and

functionality in other Qnet modules with a standard abstraction. For instance, memories

of various types distributed through the system can be accessed via the network. When

a processor sends a transfer request message to a memory module using DAP, the module

responds with the data. A data transfer engine in the memory module's Qport reads the

memory in the speci�ed access pattern and forms a packet on the link. The memory type

can be on-chip RAM or o�-chip SRAM/DRAM. Accelerator modules and slave devices im-

plementing I/O functions are accessed through standard and user de�ned messages delivered

over Qnet.

The protocol is generally applicable to any network with reliable delivery at the

transport layer, which allows DAP to be implemented over TCP/IP on a cluster system. In

the context of this article, DAP is implemented in hardware and layered on the basic Qnet

packet as described in Section 4.3.2.

4.4.1 Three-Party Communication

The subjects of three-party communication involve: (i) an initiator, (ii) a sender, and (iii) a

receiver. With three-party communication, the initiator initiates a data transfer, but is not

required to participate in the transfer between the other parties. The transfer is initiated

by sending a short transfer request message to the sender, which completes the request

by transferring data to the receiver (see Figure 4.3). With existing methods, like Active

Messages and RDMA, the initiator is also the sender or the receiver. Within an embedded

system, the three-party communication scheme allows a controller to manage devices and

data �ow within the system without being directly in the data path. Control packets injected

36

Initiator

Switch

Sender Receiver

Request

Reply

Figure 4.3: Example of three-party communication

into the network initiate the movement of data from one module to another. Multiple sources

for control packets are possible in a system.

To visualize the bene�t of three-party communication, take, for example, a case where

a processor is tasked with sending a large block of data from memory to a device. With DAP,

a transfer request from the processor is sent to the memory module specifying the device

as the destination. Data �ows directly from memory to the device. A two-party scheme

requires two transfers, one from the memory to the initiator, and another from the initiator

to the device. Another approach, used by distributed DMA, is for the processor to con�gure

and initiate a DMA transaction on the device, which then performs the data transfer. The

three-party communication scheme provides functionality similar to distributed DMA, but

without the shared-bus limitations.

4.4.2 Access Patterns

An access pattern speci�es a method or a template for processing data at each end of a

communication channel. As an example, Bove et al. [5] use an access pattern to produce

a stream of data to a processor by addressing a multidimensional array in random access

memory. DAP generalizes the access pattern concept to include more than memory centric

patterns. Access patterns are de�ned by a type and a variable number of parameters. At

37

Table 4.1: Sample of Access Patterns

Access Pattern Description

default receiver determines pattern

sequential access sequential addresses

offset access sequential addresses from an o�set

fixed access a �xed location or port

block access a 2-D block of memory

transpose access matrix elements in column major order

modify modify an element in place by an increment

trequest2 initiate a transfer with reply back to initiator

trequest3 initiate a transfer to a 3rd party

message initiate user de�ned functions or send status/control

code execute packet payload as code

the sending end, a packet payload is assembled according to an access pattern, while on the

receiving end, the packet payload is disassembled. DAP supports di�erent access patterns at

the source and destination of the data packet, thus enabling data reorganization through a

transfer. For example, the transpose operation can be performed while moving matrix data

from a distributed memory to an accelerator, thereby avoiding the need for a transposed

copy of the matrix.

DAP access patterns encompass several standard patterns as well as user-de�ned

patterns. A new access pattern is added by de�ning the access pattern type and the cor-

responding parameters. A process to handle the new type is implemented at the endpoint.

The DAP protocol need not change to accommodate a new access pattern. Some access

patterns have parameters of �xed length, others have variable length parameters. A few

standard access patterns are listed in Table 4.1.

Access patterns are �exibly speci�ed at communication endpoints. Packet headers

convey access patterns for use at remote endpoints. The default access pattern serves as a

null pattern that allows a receiver to specify the access pattern, otherwise the access pattern

in the header is used. The sequential access pattern is a fundamental access pattern,

and is similar to the memory copy function. Given a starting address, data is moved to or

from sequentially incrementing addresses up to a maximum length (see Figure 4.4a). More

38

Header Payload

a)

b)

Qheader: dest. endpoint, packet length

DAP Transfer Descriptor: sequential
 address

Header

Qheader: dest. endpoint, packet length

DAP Transfer Descriptor: trequest3
 new header
 source transfer descriptors

...

Figure 4.4: Packet format: (a) sequential write data packet, (b) transfer request packet. The
highlighted portions are the access pattern parameters.

sophisticated processor-in-memory (PIM) functions are feasible with access patterns. For

example, custom code fragments sent in a packet with the code access pattern are executed

near the memory at full bandwidth.

The trequest2 and trequest3 access patterns initiate a transfer at another end-

point. The two-party version assumes the destination of the reply is the initiator, while

the three-party version speci�es another destination. In the three-party case, the destina-

tion endpoint is used in building a new header for the reply packet. The request packet

also has one or more transfer descriptors used to build the reply packet payload (see Fig-

ure 4.4b). Each transfer descriptor contains an access pattern that is applied during payload

construction.

Scatter/gather operations are accomplished by chaining transfer descriptors together

within a transfer request access pattern or through sending separate packets. Under the

control of an initiator, fragments of memory are moved about the system via the network

in a consistent method. These operations bene�t packet processing applications by avoiding

the need to copy data. Other high-performance applications bene�t by e�ciently dispersing

data to parallel processing elements and collecting the results.

39

The generalized access pattern provides the ability to use diverse module resources

over the network, all with a single protocol. Access patterns are applied at each end of

a communication instance to produce and consume packet payloads. When a module is

attached to the network with de�ned access patterns, its resources may be controlled and

accessed via network communication.

4.4.3 Programming Interface

The DAP application programming interface provides a consistent method to access modules

and their resources over the network through a small set of routines, which are used to build

higher-level routines with specialized functionality. The programming interface de�nes data

structures speci�c to DAP. A QPORT is system dependent and provides a reference to a

module's Qnet port. Modules may have more than one Qport. An ENDPOINT consists of an

identi�er and a channel number. A TDESC represents a transfer descriptor, which contains

an access pattern type and length along with �ags and a tag. The �ags specify options such

as completion noti�cation, synchronization control, and packet marker settings, while the

tag is used to match reply packets with a waiting receiver.

A packet is formed by a call to DAP_SendHdr to send the header, followed by

DAP_SendPay to send the packet payload. Likewise, DAP_RecvHdr and DAP_RecvPay are

called to receive a packet. The payload routines are not necessary when a payload does not

exist. As for the header routines, the endpoint parameter speci�es the destination when

sending, and returns the source when receiving. The length parameter speci�es the maxi-

mum packet length on send and returns the packet length on receive. The transfer descriptor

and parameters operate in a similar fashion. The �ags specify packet marker settings and

other options for the local transfers.

For streaming applications, a packet payload may be transferred in segments with

multiple calls to the payload routines DAP_SendPay and DAP_RecvPay, after transferring the

header. Since Qlink �ow control is handled on a word basis, packet data may be transferred

40

one word at a time. This alleviates the need to bu�er a whole packet when the payload

contains a sequence of elements. To avoid bu�ering, elements must be aligned and transferred

in multiples of the link width. Data is available for immediate consumption at the receiving

endpoint without waiting for a complete packet transfer.

This programming interface is available to accelerator modules written in a high-level

language, such as Handel-C [58], and also to programs running on a host machine written

in C/C++. In the latter case, an application may communicate with other Qnet modules

through a host interface, such as PCI Express. From a programmer's perspective, accessing

network resources is accomplished through a Qport with a consistent programming interface.

4.5 High-Level Example

To illustrate the usage of DAP and its programming interface, Handel-C is used to implement

an accelerator for multiplying two matrices. In this tutorial example, the accelerator is

connected to the network through two Qports and receives operand data from two separate

memory modules, which contain the square matrices A and B. Data transfers between

memory and the accelerator are initiated by a third party. The accelerator is designed to

calculate the dot product of two vectors. To implement a matrix multiply, the row vectors

of A and the column vectors of B are sent systematically to the accelerator. The resulting

scalar values are transferred from the accelerator to the �nal locations in C.

The most signi�cant portion of the accelerator code is shown in Figure 4.5, which

depicts the three phases of the dot product routine. The �rst phase demonstrates calls

to DAP_RecvHdr and DAP_RecvPay to acquire the operand vectors A and B. The access

patterns are discarded in this case, since the streams are assumed to supply consecutive vector

elements. The vectors A and B are received in parallel on the two input channels by using

the Handel-C par construct. The second phase performs the dot product producing a scalar

result. Phase three demonstrates sending the result from the accelerator to a destination

memory module with a call to DAP_SendHdr and DAP_SendPay. The destination endpoint

41

void DotProduct(chan QPORT *inA,

chan QPORT *inB,

chan QPORT *outB,

ENDPOINT *dst_ep,

TDESC *dst_tdesc,

unsigned 32 *dst_param,

unsigned n) // elements

{

unsigned 32 A[MAX_ELEM], B[MAX_ELEM];

unsigned 32 result;

unsigned i;

// 1) Receive Operands in Parallel

par {

ENDPOINT epA, epB;

unsigned 8 lengthA, lengthB;

TDESC tdescA, tdescB;

unsigned 32 paramA, paramB;

DAP_RecvHdr(inA, &epA, &lengthA,

&tdescA, ¶mA, 0);

DAP_RecvHdr(inB, &epB, &lengthB,

&tdescB, ¶mB, 0);

}

par {

DAP_RecvPay(inA, A, n*ELEM_SIZE, 0);

DAP_RecvPay(inB, B, n*ELEM_SIZE, 0);

}

// 2) Multiply-Accumulate

result = 0;

for (i = 0; i < n; i++) {

result += A[i] * B[i];

}

// 3) Send Result

DAP_SendHdr(outB, dst_ep, ELEM_SIZE,

dst_tdesc, dst_param,

F_BEGP|F_MARK);

DAP_SendPay(outB, &result, ELEM_SIZE,

F_ENDP);

}

Figure 4.5: Example accelerator code

42

ENDPOINT req_ep;

TDESC req_tdesc;

unsigned 32 req_param[6];

req_ep.id = src_id;

req_ep.ch = src_ch;

req_tdesc.ap_type = APT_TREQUEST3;

req_tdesc.ap_length = 24;

req_tdesc.flags = 0;

req_tdesc.tag = 0;

// destination header info.

req_param[0] = ;// endpoint

req_param[1] = ;// packet length

// destination transfer desc.

req_param[2] = ;// TDESC w/default AP

// source transfer desc.

req_param[3] = ;// TDESC w/sequential AP

req_param[4] = ;// address

req_param[5] = ;// length

DAP_SendHdr(out, &req_ep, length,

&req_tdesc, req_param,

F_BEGP|F_MARK|F_ENDP);

Figure 4.6: Example transfer request

and access pattern arguments are determined prior to calling the dot product routine by

interpreting a transfer request from the initiator. This instructional example can be made

more e�cient by pipelining the multiply-accumulate operations and double-bu�ering the

operands so that computation overlaps communication. Partitioning computation on the

accelerator to perform a submatrix multiply would also improve performance.

The initiator controls the matrix multiply by issuing a series of three-party transfer

requests to the memories and accelerator. For each dot product, two requests to memory are

needed for the operand vectors and one request to the accelerator for the result. Figure 4.6

shows a transfer request for a row of A. A transfer request for a column of B is similar

except a transpose access pattern is used instead of a sequential access pattern. In a transfer

request for the result, the destination access pattern contains the address of an element in

matrix C. The request is delivered to the source of the transfer by assigning the source

ID as the request packet endpoint. The request parameters include three sections: (i) the

destination header information, (ii) the destination transfer descriptor, and (iii) the source

43

ACC

Switcha) b)

BRAM BRAM

PPC

Switch

BRAM BRAM

Figure 4.7: Benchmark systems with (a) PowerPC, and (b) accelerator as initiator.

transfer descriptor. Since the request does not involve a payload, only DAP_SendHdr is called

with all the packet marker �ags.

4.6 Experimental Setup

Two basic systems were implemented to evaluate Qnet performance (see Figure 4.7). A

PowerPC processor initiates transfers with two block RAM memory modules in one system

and a hardware accelerator initiates transfers in the other system. The Xilinx EDK assisted

system construction with component placement, connection, and con�guration through the

graphical user interface. Each component, except for the accelerator module, was written

in VHDL. All components were made available in the EDK IP Catalog. The benchmark

systems were implemented on a Xilinx Virtex-4 FX100 FPGA, which contains two embedded

PowerPC processors and 42,176 slices of con�gurable logic.

Switch. A 4-port switch connects the three other modules using 32-bit Qlinks that run at

200MHz. To minimize resource usage and latency, the implementation uses a �xed address

table, a �xed port priority resolution scheme, and a cut-through packet forwarding method.

Once the switch determines the route, the connection from input port to output port remains

the same for all following words of the packet. The full packet is not bu�ered in the switch.

PowerPC. The Virtex-4 embedded PowerPC is interfaced with Qnet through the On-

Chip Memory (OCM) interface. Two 4KB, dual-port RAMs and a set of control and status

registers are memory mapped into the processor address space. One dual-port RAM is used

44

for transmission and the other is used for reception. The PowerPC runs at 400MHz, while

the OCM interface is clocked at 100MHz. The benchmark application accesses the Qnet

modules through a library written in C and compiled with gcc for the PowerPC.

Accelerator. The accelerator module is written in Handel-C and compiled with the DK

Design Suite [59] to produce an EDIF �le. A stub module, compatible with the EDK,

instantiates the Handel-C accelerator through the standard Qport signals. The Handel-C to

Qnet programming interface is implemented through a library written in Handel-C, and is

callable by the accelerator application.

FPGA Block RAM. The FPGA Block RAM memory module is implemented using

64KB of on-chip block RAM. The module responds to DAP read and write requests, allowing

memory access over the network; and it supports concurrent read and write operations. The

block RAMs use the 200MHz Qnet clock.

4.7 Results

Three benchmarks are run on each of the evaluation systems: (i) A one-sided write from the

initiator to memory, (ii) a three-party communication involving a transfer between memory

modules, and (iii) a one-sided read from memory to the initiator. The initiator in the systems

is either the PowerPC or the Handel-C accelerator. Benchmark timing surrounds a loop that

executes the communication instances 220 times in a streaming fashion. When clocked at

200MHz, the maximum theoretical bandwidth of a 32-bit Qlink is 763MB/s per direction

(1MB = 220 bytes). The theoretical minimum latency for each of the benchmarks is 30 ns,

50 ns, and 80 ns respectively, which is determined only by packet word length.

Table 4.2 shows the modest resource usage of the various Qnet components used by

the benchmark systems. The Qnet components in each system account for about 4% of the

total FPGA slice resources.

45

0

100

200

300

400

500

600

700

800

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Transfer Size - bytes

B
an

d
w

id
th

 -
 M

B
/s

PPC>BRAM
PPC>BRAM>BRAM
PPC>BRAM>PPC
ACC>BRAM
ACC>BRAM>BRAM
ACC>BRAM>ACC

0.010

0.100

1.000

10.000

100.000

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Transfer Size - bytes

La
te

nc
y

-
µs

PPC>BRAM
PPC>BRAM>BRAM
PPC>BRAM>PPC
ACC>BRAM
ACC>BRAM>BRAM
ACC>BRAM>ACC

Figure 4.8: Qnet performance. The legend indicates the parties involved in the transfer
where PPC = PowerPC, ACC = Accelerator, BRAM = Block RAM. Note that accelerator
results are very near theoretical peak values.

46

Table 4.2: Qnet Resource Usage

Qnet Component Slices FPGA Percentage

4-Port Switch 464 1.1%

Block RAM Qport 504 1.2%

PowerPC Qport 189 0.4%

Figure 4.8 shows the Qnet communication performance for the two benchmark sys-

tems. When the PowerPC is the initiator, both reads and writes to block RAM (BRAM)

reach a bandwidth of 756MB/s. Transfers between BRAMs with 64KB packets reach

762MB/s, which is within 1MB/s of the theoretical maximum. The latency for a small

write packet to BRAM is 250 ns. When reading BRAM, a small packet is returned in 480 ns.

The processor interface adds about 200 ns of latency for each packet send or receive.

By avoiding processor overhead, the hardware accelerator module greatly reduces the

one-sided write latency to 40 ns. This is only 10 ns away from the theoretical minimum

latency. The three-party transfer is reduced to 60 ns, and a read takes 120 ns. For larger

packet sizes, the accelerator bandwidth is comparable with the PowerPC.

4.8 Conclusion

Qnet addresses many of the challenges associated with recon�gurable computing. Qnet

encourages parallelism, provides high-performance communication, and supports modular

design with high-level languages. Thus, the Qnet architecture facilitates computer scientists

and software developers in utilizing the computational power of FPGAs.

The key features of Qnet are its modularity and standard interfaces. The hardware

interface enables a platform-level tool to con�gure the system with pluggable components

from a library and to integrate user-developed accelerator modules. The programming inter-

face hides the complexities of the system and facilitates code reuse. Through communication

packets, the Distributed Access Protocol allows any system module to access another's re-

sources. Standard and user-de�nable access patterns direct packet assembly and disassembly

47

at endpoints. With a three-party communication scheme, control packets injected into the

system may initiate data �ow and invoke operations.

The packet-switched architecture of Qnet realizes high performance and e�cient re-

source usage on FPGA technology. For example, a 32-bit Qlink achieves a bandwidth of

762MB/s for large packets and a latency of 40 ns for small packets, which are very near

the theoretical peak values. Also, a 4-port switch requires only about 1% of the FPGA's

resources. In support of parallelism, the switched architecture allows concurrent communi-

cation paths between modules.

48

Chapter 5

Hardware Accelerated Sequence Alignment with Traceback

Published in the

International Journal of Recon�gurable Computing,

Vol. 2009, Article ID 762362

Abstract

Biological sequence alignment is an essential tool used in molecular biology and biomedical

applications. The growing volume of genetic data and the complexity of sequence alignment

present a challenge in obtaining alignment results in a timely manner. Known methods to

accelerate alignment on recon�gurable hardware only address sequence comparison, limit the

sequence length, or exhibit memory and I/O bottlenecks. A space-e�cient, global sequence

alignment algorithm and architecture is presented that accelerates the forward scan and

traceback in hardware without memory and I/O limitations. With 256 processing elements

in FPGA technology, a performance gain over 300 times that of a desktop computer is

demonstrated on sequence lengths of 16000. For greater performance, the architecture is

scalable to more processing elements.

49

--TTCT--T--TAGATTC

CCTTCTACTGCTA-CTTC

Figure 5.1: Example pairwise alignment

5.1 Introduction

Searching and comparing biological sequences in genomic databases are essential processes

in molecular biology. The collection of genetic sequence data is increasing exponentially

each year and consists mostly of nucleotide (DNA/RNA) and amino acid (protein) symbols.

Approximately 3 billion nucleotide pairs comprise the human genome alone. Given the large

volume of data, sequence comparison applications require e�cient computing methods to

produce timely results.

Biologists and other researchers use sequence alignment as a fundamental compari-

son method to �nd common patterns between sequences, predict protein structure, identify

important genetic regions, and facilitate drug design. For example, sequence alignment is

used to derive �u vaccines [56] and by the nation's BioWatch [29] program in identifying

DNA signatures of pathogens. Sequence alignment consists of matching characters between

two or more sequences and positioning them together in a column. Gaps may be inserted in

regions where matches do not occur to re�ect an insertion or deletion evolutionary event. A

count of the matching characters results in a measure of similarity between the sequences.

Pairwise alignment involves two sequences (see Figure 5.1) and multiple alignment considers

three or more sequences. Finding the optimal multiple sequence alignment is NP-hard in

complexity. As a �rst step, multiple alignment algorithms [88, 68] often compute a pairwise

alignment between all the sequences.

Global and local pairwise alignment are the two most common alignment problems.

Global alignment [65] considers both sequences from end to end and �nds the best overall

alignment. Local alignment [82] identi�es the sections with greatest similarity and only aligns

the subsequences. Both alignment problems are typically solved with dynamic programming

(DP), which �lls a two dimensional matrix with score or distance values in a forward scan

50

from upper left to lower right, followed by a traceback procedure. Traceback occurs from a

designated lower right position following a path to upper left, thereby determining the best

alignment.

The computational cost for an optimal sequence alignment increases exponentially

with the length of each sequence and with the number of sequences. This complexity poses a

challenge for sequence alignment programs to return results within a reasonable time period

as biologists compare greater numbers of sequences. Using current methods, an alignment

program may run for days or even weeks depending on the number of sequences and their

length.

Unlike most acceleration methods that focus on sequence comparison, this research

describes and evaluates a space-e�cient, global sequence alignment algorithm and archi-

tecture that includes traceback for implementation on recon�gurable hardware. Given a

pair of sequences, the accelerator returns a list of edit operations constituting the optimal

alignment. A library of accelerator functions is easily incorporated into multiple sequence

alignment programs that run on platforms equipped with recon�gurable hardware.

5.2 Related Work

Most e�orts to accelerate bio-sequence applications with hardware have focused on database

searches. Ramdas and Egan [77] compare several of these architectures in their survey.

Given a query sequence, an entire genetic database is scanned looking for other sequences

that are similar. Searching a genetic database for matches with a bio-sequence is similar in

nature to a search of the web that returns �hits� sorted by relevance. Accelerating a database

search is a simpler problem than alignment. Only the score for the comparison is computed

by hardware in the forward scan, whereas alignment requires traceback in addition to the

forward scan. The sequence comparison problem can be mapped to a linear systolic array of

processing elements (PEs) requiring O(min(m,n)) space, where m and n are the lengths of

51

the sequences. However, global alignment necessitates extra storage for traceback pointers

and a traceback procedure, which are not addressed by sequence comparison solutions.

Traceback support in hardware has the most bene�t when the traceback path spans

a signi�cant portion of the DP matrix. Global alignment applications realize the greatest

performance gain because the traceback path extends across the entire DP matrix, whereas

local alignment applications with a shorter path show less bene�t. After a forward scan in

hardware, any alignment in software must recompute the DP matrix and traceback pointers

for the section of interest before determining an optimal traceback path. For instance, ac-

celerated database search applications may compute an alignment in software only between

high-scoring matches and the query sequence after the comparison phase. These search

applications usually run in acceptable time with relatively short query sequences; however,

comparative genomic applications commonly align long sequences at greater computational

cost and stand to bene�t from accelerated alignment. Examples include whole genome align-

ment [11], whole genome phylogeny [14], and computation of pathogen detection signatures

[81].

The predominant, non-parallel algorithms for global sequence alignment are described

by Gotoh [31] and Myers-Miller [64]. Both algorithms execute in O(mn) time. The algorithm

presented by Gotoh requires O(mn) space, while the algorithm of Myers-Miller needs only

O(logm + n) space, but it incurs a factor of 2 time penalty. Most of the space is used to

hold values of the DP matrix and the traceback pointers. Saving all traceback pointers in

an array requires only one forward scan through the DP matrix followed by one traceback

pass. Otherwise, multiple passes through the DP matrix are required if not saving all the

traceback pointers. The downside of saving all the traceback pointers is the O(mn) space

requirement, which can be signi�cant for longer sequence lengths or prohibitive when limited

by FPGA memory.

A few e�orts propose hardware methods for accelerating pairwise alignment and trace-

back. The work presented by Hoang and Lopresti [37] describes an FPGA architecture which

52

consists of a linear systolic array of PEs that output traceback data. However, the type of

sequences are limited to only DNA and the sequence length is limited by the number of PEs

on the accelerator (a couple of hundred nucleotides). The work by Jacobi et al. [38] and

VanCourt-Herbordt [92] suggest accelerated traceback methods, but with few details. The

sequence length accommodated by their accelerators is also limited by the number of PEs

on the accelerator like the one described by Hoang. Another limitation of the Hoang and

VanCourt methods is that traceback cannot be overlapped with another forward scan since

the systolic array is used for both scan and traceback.

The methods presented by Yamaguchi et al. [103] and Moritz et al. [61] allow longer

sequences by partitioning the sequences through the pipeline of PEs. Nevertheless, the

traceback data must be saved to external memory, since the size of the data exceeds the

amount of available internal FPGA memory. Hence, the traceback performance of both

methods is limited by the FPGA bandwidth to external memory. The design described by

Benkrid et al. [3] also partitions sequences, but the size of FPGA memory ultimately limits

the length of sequences that are aligned with hardware acceleration. Operating at 100MHz,

a systolic array with 256 PEs requires at least 6.4GB/s of memory bandwidth to store 2-bit

traceback data from each PE. As PE densities and clock frequencies increase, the external

memory bandwidth is easily exceeded. Internal FPGA memory has su�cient bandwidth, but

even modest sequence lengths of 16K require 64MB of traceback store, which far exceeds

current FPGA internal memory capacities.

The global alignment algorithm presented in this paper overcomes the memory size

and bandwidth limitations of FPGA accelerators and does not limit the sequence length by

the number of PEs. Long sequences of DNA and protein are accommodated by the algorithm

through a space-e�cient traceback procedure that is accelerated in hardware. Traceback may

occur in parallel with the next forward scan since it is implemented in a separate process

from the systolic array.

53

5.3 Algorithm

The general algorithm is described �rst followed by the FPGA architecture in the next

section. The algorithm is based on dynamic programming (DP), but partitions the problem

into slices for the FPGA hardware. A description of the general sequence alignment problem

is also found in [65, 31].

Given a pair of sequences A = a1a2...am and B = b1b2...bn of length |A| = m and

|B| = n from the �nite alphabet Σ, a sequence alignment is obtained by inserting gap

characters �-� into A and B. The aligned sequences A′ and B′ from the extended alphabet

Σ′ = Σ ∪ {�-�} are of equal length such that |A′| = |B′|. Let the function s : Σ × Σ → Z

determine the similarity of symbol ai with bj, and the constant α represent the cost of

inserting/deleting a gap. Let H denote the DP matrix and the element H[i, j] the similarity

score of sequences a1a2...ai and b1b2...bj. An optimal alignment is obtained by maximizing

the score in each element of H. The values of H are determined by the following recurrence

relations for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

H[0, 0] = 0,

H[i, 0] = H[i− 1, 0] + α,

H[0, j] = H[0, j − 1] + α,

H[i, j] = max


H[i− 1, j − 1] + s(ai, bj),

H[i− 1, j] + α,

H[i, j − 1] + α.

(5.1)

The matrix �ll occurs in a scan from upper left to lower right because of dependencies

from neighboring elements. During the forward scan, a pointer p ∈ {DIAG, ABOVE, LEFT}

indicates the current selection of the max function in Equation 5.1. Given a tie, �xed

priority resolves the selection. The value of p is saved to the traceback matrix T , thus

T [i, j] = p. Following the forward scan, traceback proceeds from T [m,n] to T [0, 0],

54

[i,j] = [0,0]

[m,n]

W = Num PEs Designated
Columns [k,j]A

B

Bseg

Aseg

interchange

Aseg

Bseg

Figure 5.2: Forward scan and traceback

thereby determining the best alignment. The result is a list of edit operations e ∈

{SUBSTITUTE, INSERT, DELETE}.

The scan algorithm presented here builds upon the space-saving concepts described

by Edmiston et al. [20], and the divide-and-conquer scheme of Guan and Uberbacher [35].

Since sequence lengths are often longer than the number of PEs available in a systolic array,

the problem is often partitioned [48]. The forward scan consists of two fundamental scan

procedures ScanPartial and ScanFull. The partial and full descriptors refer to the

amount of traceback data saved by the procedures. ScanPartial partitions the DP matrix

H into slices of width W . The slices are processed iteratively. The result of processing

each slice is a column of traceback pointers R[k, j] that refer to a row in a prior slice (see

Figure 5.2). The designated columns k are given by k ∈ {c | cmodW = 0∨ c = m}. The row

pointers form a partial traceback path through H that link only the right-most columns of

each slice. Given that p indicates the heritage of element H[i, j], the following recurrences

for 1 ≤ i ≤ m and 1 ≤ j ≤ n determine R.

55

if imodW = 1 then

R[i, j] =


j − 1 if p = DIAG

j if p = LEFT

R[i, j − 1] if p = ABOVE

else

R[i, j] =


R[i− 1, j − 1] if p = DIAG

R[i− 1, j] if p = LEFT

R[i, j − 1] if p = ABOVE

Only the designated columns of R are actually stored, which correspond to the right-most

columns of a slice. The values for the other columns are retained temporarily with a vector

variable that follows the wavefront of the scan. In contrast, the ScanFull procedure does

not partition the DP matrix and produces a full matrix T of traceback pointers that refer

to adjacent elements of H.

The TracePartial procedure di�ers from TraceFull in that the partial set of

traceback pointers from R are followed instead of the full set from T . The row pointers, from

R[m,n] to R[0, 0] in designated columns, identify waypoints on the optimal path through the

DP matrix. Since the row pointer in R[k, j] refers to a row in a prior slice, a block between

the columns is identi�ed, along with corresponding segments of A and B. The segments of

A and B are passed to ScanFull and TraceFull to determine the full path from [k, j]

back to [kprev, R[k, j]]. The alignment results from each block are concatenated and thereby

form a complete path from [m,n] to [0, 0].

Since the vertical height of a block (the length of a B segment) is unbounded, the

traceback space available to the Full procedures may be exceeded. To avoid this case, a

vertical threshold Y is de�ned such that if exceeded, the Partial procedures are called

instead, with the segments of A and B interchanged in the calls. Figure 5.3 shows the

algorithm, which is central to bounding the memory required for traceback. TracePartial

56

procedure TracePartial(A,B,m, n,R,E)
{

x2 ← m, y2 ← n
while (x2 > 1) do

x1 ← b(x2 − 1)/W c ·W + 1
y1 ← (x1 > 1 ∧ y2 ≥ 1) ?R[x2, y2] + 1 : 1
xlen← x2 − x1 + 1, ylen← y2 − y1 + 1
if (ylen = 0) then

Add xlen DELETE operations to E′

else if (ylen ≤ Y) then
ScanFull(Ax1 , By1 , xlen, ylen, T)
TraceFull(Ax1 , By1 , xlen, ylen, T,E

′)
else // interchange A and B

ScanPartial(By1 , Ax1 , ylen, xlen,R
′)

TracePartial(By1 , Ax1 , ylen, xlen,R
′, E′)

∀e ∈ E′ : replace DELETE ⇔ INSERT
end if

E ← E ∪ E′

x2 ← x1 − 1, y2 ← y1 − 1
end while

}

Figure 5.3: Algorithm for TracePartial

is called recursively a maximum of once. Any segments passed to the Full procedures will

not exceed W and Y in length because of the partitioning done by ScanPartial. In the

worst case, the length of sequence A is bounded by the �rst call to ScanPartial and the

length of B is bounded by the second call.

5.4 Architecture

The global alignment accelerator is implemented using Qnet [53], an open-source packet-

switched network architecture similar to DIMEtalk [80]. Qnet components interconnect the

host and other FPGA accelerator modules in the system. The architecture facilitates system

design with reusable modules that encapsulate sharable devices or resources. Qnet encour-

ages parallelism by o�ering concurrent, high-performance data paths between modules. Fig-

ure 5.4 shows the alignment system constructed with Qnet modules and components. A few

57

PW Alignment

Host Interface

A

Switch

DP FIFO

BC

PCI Express

Figure 5.4: System architecture

speci�cs of Qnet are given before describing the alignment accelerator module and system

operation.

5.4.1 Qnet Components

The basic network components consist of a switch, Qports, and Qlinks. As the central �gure

in the network, the switch provides a path for communicating packets to other modules.

Qports are the interface between modules and the network, and are the addressable endpoints

of communication. Qports are connected by Qlinks, which consist of paired, unidirectional,

point-to-point signaling channels that are each 32-bits wide in this system, but may be

implemented with other bit widths. Each Qport has word-based �ow control that will apply

back-pressure on a link, delaying communication until the port is ready to receive. Hence,

packets are not arbitrarily discarded, and the requirement to bu�er an entire packet at

the input of a module is removed while still maintaining performance. Qnet communication

performance has been shown to be very near the theoretical max bandwidth between modules

on the FPGA while also maintaining latencies very near theoretical minimums.

Qnet reliably transfers data packets between endpoints through a simple protocol that

requires minimal FPGA resources. Packets consist of a small header (see Figure 5.5) and

a payload of variable size. The header speci�es the source and destination endpoints with

58

byte 0 byte 1 byte 2 byte 3

dst ID src ID

protocol

src chdst ch sequence

payload length

Figure 5.5: Qpacket header

unique port identi�ers and also indicates the payload length. When a packet header enters

the switch, the output port is determined from the destination endpoint and remains the

same for all following words of the packet. With a cut-through packet forwarding method,

the full packet is not bu�ered in the switch. Packets that enter the switch simultaneously

with di�erent destinations pass through concurrently. This architecture allows parallel data

transfer on all ports of an accelerator module.

5.4.2 System Modules

Host Interface. The host computer communicates with the FPGA accelerator through

the PCI Express [4] module, which contains DMA engines and translates PCI packets into

Qnet packets. Two ports on this module allow both sequences to be sent in parallel to the

accelerator.

DP Matrix FIFO. If the length of sequence A is longer than the number of PEs in the

accelerator, the DP matrix H must be processed in slices of width W = (num. PEs) as

described in Section 5.3. After processing a slice, the right column of DP matrix values

will exit the pipeline of PEs. These H values are sent in a packet to the DP matrix FIFO

and retained for processing the next slice through the pipeline. Any packet sent to the DP

matrix FIFO will be returned to the originating Qport, as indicated by the packet header,

thus cycling the pipeline output to the input. The FIFO may be implemented with any

memory technology of su�cient bandwidth and size to handle the stream of data from the

PE pipeline. Since only one H value exits the pipeline each clock cycle, the bandwidth

requirement is not excessive.

59

a in

b in

sync
in

FIFO PE pipeline FIFO

A

B,H

len

len

S

A,B,H

config

sync
out

a out

b out

B,H,R

AA

B,H

len
len

R

B,H

R

B,H

FIFO

len Src, Dst ID

Src, Dst ID
Block RAM

2*nPE

32
raddr ren rdata

100 MHz

c io
Traceback
state machine

E

T

Figure 5.6: Pairwise alignment module

Pairwise Alignment Module. The compute intensive portions of the alignment algo-

rithm are performed by the pairwise alignment module, which contains the pipeline of PEs.

This module has three Qports through which the sequences are provided and results are

returned (see Figure 5.4). In parallel, Sequence A is input on port A and sequence B is

input on port B, while the traceback results are returned on port C.

Figure 5.6 shows the internal architecture of the alignment module. The front-end of

the pipeline synchronizes the A and B streams of symbols, and the back-end sends the partial

traceback results R out on port A and the H values on port B. The symbols of sequence B

that �ow through the pipeline are merged with the H values on output, since they will also

be needed in processing additional slices. Merged B and H values that exit the pipeline are

sent in a packet to the DP matrix FIFO. As sequence A is fed into the pipeline, merged B

and H values from the end of the pipeline �ow from the alignment module through the DP

matrix FIFO and back into the front-end of the pipeline at port B. This cycle occurs for

each slice of the scan, except for the last.

Most systems commonly load a segment of A into the pipeline and then shift in B,

whereas this system enters A and B in parallel [24]. Sequence B is shifted in as usual, but

60

ai

bj

s

H[i-1,j-1] H[i,j-1]
R[i-1,j-1] R[i,j-1]

H[i-1,j]
R[i-1,j]

H[i,j]
R[i,j]

Lookup table

diag

left

above

here

+ s(ai,bj)

+ α

+ α

Figure 5.7: Processing element architecture

A is bussed to each PE and latched when the �rst symbol of B reaches a PE in the pipeline

(see Figure 5.7). The recurrence equations described in Section 5.3 are calculated by the

PEs each time a pair of symbols enter the pipeline. As a forward scan proceeds from upper

left to lower right, the pipeline of PEs operate in parallel along an anti-diagonal wavefront

through the DP matrix. Figure 5.8 shows the progression of symbols in the pipeline and

shows the mapping of PEs to DP matrix cells over several cycles.

Both of the forward Scan procedures are implemented by the pipeline of PEs. Scan-

Partial enables the R (partial row pointer) output, while ScanFull enables the T (full

traceback pointer) output. Con�guration bits in the packet header of sequence A determine

which pointer type is enabled. For each slice processed by ScanPartial, a column of R is

returned to the host in a packet. ScanFull will only process one slice, while saving the full

traceback data in FPGA block RAM, which has the bandwidth to store pointers from every

PE in parallel. The vertical threshold Y , as described in Section 5.3, is determined by the

depth of FPGA block RAM allocated to full traceback.

A state machine implements the TraceFull procedure that follows the pointers

saved in block RAM by ScanFull. To initiate a full traceback, a request packet is sent to

Port C of the pairwise alignment module from the host. The results, a list of edit operations

61

T
A

T

GT

C
C

A C G T

C

T

T

(a)

T
A

T

T
C

C
G

A C G T

C

T

T

(b)

A
T
C

T
G

C
T

A C G T

C

T

T

(c)

A C
T
G

T
T

A C G T

C

T

T

C

(d)

Figure 5.8: Symbol �ow and the corresponding DP matrix wavefront for sequential cycles of
the PE pipeline.

62

width W = 4 cells

depth
D = 8
rows

RAM
address

4

8

12

0

16

20

24

28

T [1,1]

T [1,4] T [4,1]

T [4,4]

Left

Diag

Above

Figure 5.9: The traceback matrix T is skewed in memory. The pointers show how to address
neighboring cells during traceback in the skewed matrix.

e ∈ E, are returned to the host from Port C. TracePartial is implemented in software on

the host, but calls the Full procedures for most of the work (see Figure 5.3).

Access to traceback pointers T [i, j] in block RAM requires a skewed addressing scheme

because of the storage method used in the forward scan. Storing a diagonal wavefront of

pointers as a row in block RAM skews the traceback matrix T in memory (see Figure 5.9).

A full traceback begins with a request packet that contains the cell address of T [1, 1] and the

lengths of sequences A and B. The address of T [1, 1] is saved at the start of a full forward

scan and will always be the lowest address in a row (leftmost). From the address of T [1, 1]

and the width W of block RAM in cells, the address of T [m,n] is calculated:

m′ = m− 1,

n′ = n− 1,

addrT [m,n] = addrT [1,1] +W (m′ + n′) +m′.

63

Traceback proceeds from T [m,n] to T [0, 0] following the pointer in each accessed cell. Given

a traceback pointer p from the current cell, the following equation determines the address of

the next cell in block RAM.

addr =


addr − (2W + 1) if p = DIAG

addr − (W + 1) if p = LEFT

addr −W if p = ABOVE

Since block RAM is dual-ported, traceback reads can occur while the next forward

scan concurrently saves pointers in another portion of the traceback memory. Address cal-

culations into block RAM wrap around when the range is exceeded.

5.4.3 System Parameters

Most system parameters are implemented with VHDL generics. For example, symbol width,

number of PEs, traceback memory depth, and various register sizes are all speci�ed at a high

level in the module hierarchy and passed as generics to lower modules. This allows di�erent

con�gurations of the accelerator with minimal changes to the source. Protein sequences

require 5-bit symbols and DNA sequences require at least 2-bit symbols. Mega-length se-

quences may be handled by the architecture and algorithm by setting system constants and

rebuilding a system. The number of PEs is scalable to match the target hardware resources.

Several system parameters a�ect the maximum sequence length Lmax that can be

processed by the accelerator. As mentioned previously, the DP matrix FIFO must be deep

enough to hold the merged B symbols and H values that come from the end of the pipeline.

The FIFO length limit is determined by LF = NFIFO/NBH , where NBH denotes the number

of bytes for a single B-H pair andNFIFO denotes the DP matrix FIFO size in bytes. Also, the

substitution and gap costs combined with the H register size a�ect the maximum sequence

length. Each stage of the pipeline increments an H value by the gap cost α or the result

of the similarity function s(ai, bj). To avoid H register over�ow, the H length limit is

64

LH = (2NH−1 − 1)/Imax, where NH denotes the number of bits in H registers, and Imax

denotes the maximum absolute value of the gap cost α or the similarity function s. In

conjunction with the other parameters, the R register size a�ects the maximum sequence

length. A register for R must hold an index into sequence B without over�ow. Given NR,

the number of bits in R registers, the R length limit is LR = 2NR − 1. From the contributing

length limits, the maximum sequence length is determined by Lmax = min(LF , LH , LR).

5.5 Timing Model

A timing model is presented for the sequence alignment algorithm and architecture described

in Sections 5.3 and 5.4. First, constants for the system are de�ned with the values in paren-

thesis being speci�c to the evaluation system:

W = number of PEs (256)

Y = threshold for length of sequence B (768)

Cpad = cycles to pad pipeline (8)

ts = communication startup (1.5µs)

th = host overhead (3 µs)

tclk1 = period of clock 1 (1/100MHz)

tclk2 = period of clock 2 (1/150MHz)

Timing varies as a function of the following variables:

l = |A′| = |B′| , aligned length

m = |A| , length of sequence A

n = |B| , length of sequence B

Nslice = dm/W e , number of slices

The time for processing a slice is determined by the length of B or the length of the pipeline

plus padding, whichever is greater. Flush time depends on how much of sequence B is left

in the pipeline after processing a slice and is calculated from the length of B minus padding

(zero limited) or the length of the pipeline, whichever is less:

65

tslice = tclk1[max(n,W + Cpad) + 1]

tflush = tclk1 min(W,max(0, n− Cpad))

Based on the previous de�nitions, execution times for the Scan and Trace procedures are:

tscanF = tslice + tflush + 4ts

ttraceF = tclk2(2l + 4) + 2ts

tscanP = Nslice(tslice + ts) + tflush + 4ts

ttraceP = Nslice(tscanF + ttraceF)

Finally, the time to perform a global sequence alignment is given by:

talign =


tscanF + ttraceF + th ifm ≤ W ∧ n ≤ Y

tscanP + ttraceP + th else

This analytical model matches experimental results and predicts the scalability and perfor-

mance of the architecture under various system con�gurations.

5.6 Experimental setup

Application. Three global alignment implementations are tested in the evaluation: (1) as

a baseline, a software-only version of the algorithm presented in this paper; (2) a version

accelerated by the FPGA; and (3) an implementation of the Myers-Miller global alignment

algorithm for an additional point of reference. The host computer is used to evaluate the

software only versions of the algorithms. Seq-Gen [76] produced varying lengths of test

sequences ranging from 128 to 16383 symbols for the evaluation. The applications use a gap

cost of −2, a substitution score of 1, and a match score of 2.

Host. The host platform consists of a desktop computer with a 2.4GHz Intel Core2 Duo

processor running Fedora 6 Linux as the operating system. All benchmark applications

execute in a single thread and are compiled with gcc using -O3 optimization. For accurate

timing, the processor's performance counters are used.

66

256 PEs

4-port Switch

DP FIFO

Traceback

PCI Express Core

Host Interface
(DMA)

PE_0

PE_255

Figure 5.10: FPGA �oorplan

Accelerator. An 8-lane PCI Express add-in card with a Xilinx Virtex-4 FX100 FPGA

provides the hardware acceleration. To conserve FPGA resources, only 4 of the 8 PCI Express

lanes are used in the experimental system. All of the components are implemented in VHDL.

As shown in Figure 5.4, a 4-port switch connects the three FPGA modules using 32-bit Qlinks

that run at 150MHz. For simplicity and minimal latency, the switch is implemented with a

�xed address table and a �xed port priority resolution scheme. The DP matrix FIFO uses

64KB of FPGA block RAM, which is enough to hold 16K entries of B symbols and H values.

Driven by a 100MHz clock, the pipeline consists of 256 PEs placed in a tiled pattern. DNA

and protein sequences are accommodated with 5-bit symbol values. An 8-bit look-up table

that requires one block RAM per PE implements the similarity function s(ai, bj). Each PE

outputs a 2-bit traceback pointer p that is stored in traceback memory, which is instantiated

in 64KB of block RAM with a width of 512 bits and a depth of 1024. The traceback memory

depth determines the Y threshold. Within the system, DP matrix values H and row pointer

values R both require 16-bits.

Through the use of constraints and �oor planning, 90% slice utilization is achieved.

First, an area shape and size constraint for one PE is determined, in this case, by repeated

67

Table 5.1: Resource usage

Component Slices FPGA Percentage

PCI Express 6175 14.6%

Host Interface 1221 2.9%

4-Port Switch 448 1.1%

Traceback 283 0.7%

DP FIFO 192 0.5%

PE (one) 111 0.3%

Table 5.2: Speedup between implementations

Sequence Length tFPGA µs
tMyers

tFPGA

tHost

tFPGA

511 64 131 107

1023 128 171 124

2047 327 264 181

4095 969 357 236

16383 11696 471 304

place and route trials. Then, given this shape and size, a simple (75 line) Perl script tiles

the PEs in a programed pattern by generating area constraints for each PE. Keep-out areas

are also given to the Perl script. The text output from the Perl script is pasted into the user

constraints �le for use by the place and route tools along with the other constraints. Only

slice resources are constrained for the PEs, since the block RAM needed for each PE may

not reside within the area constraint. To meet timing, the �rst and last PEs of the pipeline

are kept closer to the Qport interfaces of the switch and alignment module, which is shown

in Figure 5.10 along with the tiling pattern. The traceback block RAMs are constrained

to a centrally located area of the FPGA to minimize path lengths from distant PEs. For

proximity to the traceback memory, the traceback state machine is also centrally located.

Table 5.1 shows the relative resource usage of the various components.

68

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

0 255 608 1448 3444 8191 16384

Sequence Length

T
im

e
S

ec
o

n
d

s

Myers
Host
FPGA

Figure 5.11: Global alignment execution time

5.7 Results

Figure 5.11 shows the performance of the three global sequence alignment implementations

with varying lengths of sequences and Table 5.2 compares the speedup between the implemen-

tations. The host-only version averages a speedup of 1.6 over the Myers-Miller implementa-

tion and the accelerated version achieves a max speedup of 304 over the host version. During

the forward scan, the accelerator reaches a peak dynamic programming rate of 25.6 × 109

cell updates/s (CUPS). Traceback occurs at a peak rate of 75× 106 pointers/s. Figure 5.12

shows the actual performance compared with the timing model from Section 5.5. For longer

sequences, the actual performance is near the theoretical peak. The timing model suggests

a high degree of scalability for the presented algorithm and architecture. For example, per-

formance predicted by the model gives a speedup of 580 with 512 PEs operating at 100MHz

on a larger FPGA.

69

1E-5

1E-4

1E-3

1E-2

1E-1

0 255 608 1448 3444 8191 16384

Sequence Length

T
im

e
S

ec
o

n
d

s

FPGA - 256 PEs
Model - 256 PEs
Model - 512 PEs

(a)

304

580

0

100

200

300

400

500

600

700

0 255 608 1448 3444 8191 16384

Sequence Length

S
p

ee
d

u
p

FPGA - 256 PEs
Model - 256 PEs
Model - 512 PEs

(b)

Figure 5.12: Timing model compared with actual FPGA performance. The model is nearly
indistinguishable from the FPGA time. (a) sequence alignment execution time, (b) speedup
relative to the host-only version.

70

Supported by the low communication overhead of Qnet, sequences of length 10 or

greater are aligned faster on the accelerator. Sending a single packet from the host to the

accelerator takes minimally 1.5 µs. The demonstration system takes a minimum of 14µs for

an alignment with most of the time being attributed to the overhead of several packets, since

only 2.65 µs is required for a single pipeline �ll and �ush once sequences are ready at the

front-end of the pipeline.

Sequences shorter than W have a lower bound on alignment time, because unused

PEs must be �lled with null symbols. Longer sequences realize greater performance on the

accelerator because the pipeline does not require a �ush between adjacent slices. Adjacent

slices need only 1 cycle of spacing in the pipeline. Longer sequences are also more e�cient

because of proportionately less time spent in the traceback. The average traceback time

relative to the forward scan can be visualized in Figure 5.2 as the area of the sub-blocks

relative to the area of the whole matrix.

Even though the algorithm presented here requires O(mn) space, the traceback mem-

ory is reduced by a signi�cant constant. For example, given sequences with 100K symbols,

saving all the traceback data requires 2.5GB. By saving the partial traceback pointers in a

system with 256 PEs, the traceback data is reduced to 78MB. Perhaps more importantly,

the necessary memory bandwidth to store the partial traceback pointers is reduced to a prac-

tical level that is achievable between the host computer and the FPGA accelerator. With

the pipeline running at 100MHz and 16-bit R values, the partial traceback data rate is only

200MB/s.

Qnet provides communication bandwidth up to 600MB/s per link in each direction

between modules, which exceeds the rate needed by the alignment module to maintain

maximum throughput in the pipeline. With excess bandwidth at each end of the pipeline,

stalls occur infrequently. Sequences enter the alignment module on ports A and B at a rate

of 100MB/s. Concurrently, partial traceback pointers exit port A at 200MB/s destined for

the host, and merged B-H values exit port B at 400MB/s destined for the DP FIFO.

71

Notice that the presented algorithm does not limit the sequence length by the number

of PEs or by the amount of full traceback memory. Matching system parameters, such as

the number of PEs and the size of traceback memory, to the available FPGA resources

maximizes performance. The experimental results and timing model together demonstrate

the scalability of the algorithm without memory bandwidth limitations.

5.8 Conclusion

With the presented algorithm and architecture, long sequences are globally aligned with su-

percomputing performance on recon�gurable hardware. A speedup over 300 is achieved with

the example implementation on FPGA technology when compared to a desktop computer.

The architecture is scalable to larger capacity FPGAs for a further increase in performance.

Beyond sequence comparison, the full alignment of long sequences is accelerated without

memory and I/O bottlenecks through a space-e�cient algorithm. After executing traceback

in hardware, the accelerator returns a list of edit operations to the host, which constitutes

an optimal alignment. Other global alignment acceleration methods only address sequence

comparison, limit the sequence length, or exhibit memory and I/O bottlenecks.

The key features of the algorithm are the bounded space requirement for full traceback

memory and the reduced space for partial traceback memory. These space reductions enable

high-performance alignment of long sequences on a recon�gurable accelerator and are a

match for FPGA memory capacities and bandwidth. Only 64KB of FPGA block RAM is

used for full traceback in the demonstrated implementation. Partial traceback data sent to

the host at a rate of 200MB/s is supported by commodity FPGA boards.

Future work includes combining coarse-grained parallel methods [75] with the �ne-

grained parallelism of this method for multiplied performance gain on recon�gurable com-

puting clusters. Also, the advantages of the presented method are applicable to accelerating

local alignment. A general-purpose accelerated alignment library that consists of both lo-

cal and global methods may be applied to multiple sequence alignment codes with minimal

e�ort.

72

Chapter 6

Accelerated Large-Scale Multiple Sequence Alignment

Submitted to

BMC Bioinformatics

Abstract

Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics

and many comparative genomic applications. Prior MSA acceleration attempts with recon-

�gurable computing have only addressed the �rst stage of progressive alignment and conse-

quently exhibit performance limitations according to Amdahl's Law. This work is the �rst

known to accelerate the third stage of progressive alignment on recon�gurable hardware. We

reduce subgroups of aligned sequences into discrete pro�les before they are pairwise aligned

on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been

demonstrated on a large data set when compared to a 2.4GHz Core2 processor. Our parallel

algorithm and architecture accelerates large-scale MSA with recon�gurable computing and

allows researchers to solve the larger problems that confront biologists today.

73

6.1 Introduction

Biologists and other researchers use multiple sequence alignment (MSA) as a fundamental

analysis method to �nd similarities among nucleotide (DNA/RNA) or amino acid (protein)

sequences. The compute time for an optimal MSA grows exponentially with respect to the

number of sequences. Consequently, producing timely results on large problems requires more

e�cient algorithms and the use of parallel computing resources. Recon�gurable computing

hardware, such as Field-Programmable Gate Arrays (FPGAs), provides one approach to

the acceleration of biological sequence alignment. Other acceleration methods typically

encounter scaling problems that arise from the overhead of inter-process communication and

from the lack of parallelism. Recon�gurable computing allows a greater scale of parallelism

using many �ne-grained custom processing elements that have a low-overhead interconnect.

The most common algorithm used to solve the MSA problem is progressive alignment

[27, 68, 88]. This algorithm consists of three main stages. The �rst stage compares all

the sequences with each other producing similarity scores only. Since this stage is easily

parallelized, it has traditionally been the focus of parallelization e�orts; however, speedup is

limited without accelerating the following stages. The second stage of MSA groups the most

similar sequences together using the similarity scores to form a tree that guides alignment

in the next stage. Finally, the third stage successively aligns the most similar sequences

and groups of sequences until all the sequences are aligned. Groups of aligned sequences are

converted into pro�les before alignment with a pairwise dynamic programming algorithm.

A pro�le represents the character frequencies for each column in an alignment. In Stage 3,

traceback information from full pairwise alignment is required to align groups of sequences.

In this work, a new method for accelerating the third stage is described that reduces

subgroups of aligned sequences into discrete pro�les before they are pairwise aligned on

the accelerator. Our pairwise alignment algorithm [54] produces the required traceback

information and does not limit the sequence length by the number of processing elements

(PEs) or by the amount of block RAM on the accelerator. Other hardware acceleration

74

methods are inadequate for use in the third stage because the sequence length is severely

limited or only similarity scores are computed.

Alignment quality of the new method is assessed with the BRAliBase benchmark RNA

alignment database [99] that consists of 18,990 RNA alignments and with the MDSA data

set [9]. Discrete pro�le alignment is shown to have comparable quality to other popular MSA

programs and an accelerated version of the program demonstrates two orders of magnitude

speedup.

6.2 Related Work

Most e�orts to accelerate bio-sequence applications with hardware have focused solely on

database searches and have employed a pairwise local comparison algorithm. Ramdas and

Egan [77] discuss several FPGA-based architectures in their survey. Other pairwise com-

parison accelerators have also been described in [25, 50, 84]. A few methods to accelerate

MSA with hardware have been demonstrated, but they fail to use all the available parallel

resources in every stage of MSA; consequently, performance is reduced in some stages with

idle processors.

Without accelerating the most time consuming stages of progressive MSA, Amdahl's

law [1] limits the overall speedup. For example, if the third stage takes 5% of the computation

time, the overall speedup is limited to about 20 even if the other stages are in�nitely fast.

If the time in Stage 1 is reduced with faster comparison techniques, then the acceleration of

Stage 3 becomes more critical. Newer programs like MUSCLE [19] and MAFFT [41] use a

faster alignment-free comparison method; therefore, the third stage usually dominates the

computation time. Even though these newer methods show greater performance, most of

the related work has still focused on accelerating ClustalW where the �rst stage dominates

the run time.

75

Multiprocessor-Supercomputer. Most attempts to accelerate MSA have been on

shared-memory or distributed-memory systems using a coarse-grained parallel approach.

Mikhailov et al. [60] shows a 10x speedup with 16 processors by parallelizing all three stages

of ClustalW [88] with OpenMP [72] on a shared-memory SGI Origin machine. A notable

feature of this e�ort is the parallelization of the guide tree calculation in the second stage.

Deng et al. [15] parallelized several stages of MUSCLE [19] to realize a speedup of 15 on a

16 processor shared-memory machine. Several attempts [12, 17, 45, 46] have been made to

parallelize ClustalW on distributed-memory systems using message passing. In these cases,

Stages 1 and 3 were parallelized with the best performance reported by Lin et al. [47] hav-

ing a speedup of 29 on 64 CPUs. Tan et al. [86] achieved a speedup of 35 on a hybrid

multiprocessor-cluster system of 40 nodes with 80 CPUs. In the third stage, Tan's method

distributes group-to-group alignments to system nodes using a method that is based upon

guide-tree and recursive parallelism. The main contribution comes from computing the for-

ward and backward DP scans in parallel on processors within a node. The small speedup

achieved in the third stage, which is under 10 in most cases, limits the overall speedup of

the progressive algorithms.

Cell BE. Recently, the Cell Broadband Engine has received attention as an accelerator for

MSA. Vandierendonck et al. [93] have accelerated ClustalW by a factor of 8 when compared

with a 2.13GHz Intel Core2 Duo processor running a single thread. Stages 1 and 3 were par-

allelized on two Cell BEs by vectorizing DP matrix calculations and scheduling independent

tasks across the 16 available synergistic processing elements. Using a Playstation3, Wirawan

et al. [100] achieved a peak speedup of 108 on the �rst stage when compared with a 3.0GHz

Pentium 4. Overall, a speedup of only 13.7 was observed on 1000 sequences with an average

length of 446. However, the announcement from IBM to discontinue Cell production for

technical computing [26] may diminish further interest in the Cell.

76

GPU. Another popular acceleration technology is the general purpose graphics processing

unit. Its commodity nature has sparked much interest outside of the graphics community as

an acceleration engine. Liu et al. [51] accelerated all three stages of ClustalW on the GPU,

with the parallel portions programmed using CUDA [66]. When independent task and guide

tree parallelism is low, cells of DP matrix calculations are computed in parallel. An overall

peak speedup of 41.53 was demonstrated on 1000 sequences of average length 858 with 1

GPU card (GeForce GTX 280) when compared with a 3.0GHz Pentium 4. The best speedup

obtained in each of the three stages is 47.13, 11.08, and 5.9 respectively. Again, the small

gain in the third stage limits the overall speedup.

FPGA. Recon�gurable computing approaches accelerate the �rst stage of MSA by com-

puting pairwise alignments with a pipeline of processing elements (PEs). This linear systolic

array operates with �ne-grained parallelism along a wavefront of cells in the DP matrix. The

ClustalW algorithm does not use the score obtained from a pairwise alignment directly. In-

stead, the number of identical characters in an alignment are used to compute the fractional

identity. Oliver et al. [70] accelerates the �rst stage of ClustalW, but leaves the second and

third stages for execution on the host processor. Instead of actually aligning the sequences,

a custom algorithm on the accelerator counts the number of identical characters during the

forward scan without performing traceback. The best overall speedup was 13.3 compared

to ClustalW running on a 3.0GHz Pentium 4. For Stage 1, a PCI-based accelerator board

reaches a peak speedup of 50.9 with 92 PEs in a Xilinx XC2V6000. In another approach, Lin

et al. [47] demonstrated an overall speedup of 34.6 using 10 Altera Stratix PEIS30 with a

total of 3072 PEs. For the �rst stage, a speedup of 1697.5 was achieved when compared with

a 2.8GHz Xeon. The number of identical characters is deduced from the comparison score

returned from the accelerator and the sequence lengths. Even with the impressive speedup

in the �rst stage, the overall speedup is still limited by the third stage. Greater performance

may be achieved, however, by accelerating the third stage of progressive alignment.

77

fgap

fT

fG

fC

fA

001010

¼¼0¼0¾

00000¼

½00¾00

¼¾0000

s4

s3

s2

s1

AAT-TG

CATCT-

CATCT-

--TCT-

position 1 2 3 4 5 6

(a)

(b)

Alignment

Profile

Figure 6.1: Each position in a pro�le consists of a vector with character frequencies fN
for the corresponding column in a group of aligned sequences. (a) Multiple alignment of
sequences si. (b) Pro�le derived from the alignment.

6.3 Discrete Pro�le Alignment

The third stage of MSA pairwise aligns pro�les in a similar way to sequences, but it must

also work with the extra information in pro�les. Each position of a pro�le designates a

point in continuous pro�le space with a vector of character frequencies (see Figure 6.1 and

Figure 6.2). Pro�le-based MSA applications typically use �oating-point numbers or scaled

integers to represent these character frequencies. The extra size and dimension of pro�les, in

relation to sequences, adds to the complexity of alignment. Hence, a reduced representation

of pro�les that retains as much information as possible simpli�es alignment. By reducing

pro�les to discrete pro�les�essentially sequences with an extended alphabet�they may be

aligned with a simpler pairwise sequence alignment algorithm.

The concept of discrete pro�le space was introduced by Eskin [23] with application to

DNA motif search, which �nds relatively short patterns in a subject sequence. For instance,

when searching for promoter sequences, query pro�les have a length of about 8�12 positions.

78

1

1

1Z axis

0,0,0

x+y+z=1
profile points

(0.00, 0.25, 0.75)
[YZZZ]T

(0.25, 0.25, 0.50)
[XYZZ]T

(0.50, 0.50, 0.00)
[XXYY]T

X axis

Y axis

Z axis

Figure 6.2: In three dimensions, pro�le space is a triangle on the plane x+y+z = 1; however,
�ve dimensions are required to represent DNA alignments. Points in pro�le space are shown
with coordinates and an aligned column example (transposed). The corners of pro�le space
represent columns of an alignment that contain all the same character.

79

In Eskin's method, a motif is represented as a small, discrete pro�le that contains the prob-

abilities of �nding each nucleotide at the respective positions. A similar work by Wang and

Stormo [97] partitions a four-dimensional continuous pro�le space into 15 subspaces based

upon a supervised learning algorithm. Each dimension corresponds to a nucleotide frequency

fN with the constraint
∑
fN = 1. Any point falling within a partition is then represented

by a discrete pro�le symbol.

For the application of discrete pro�le space to MSA, a few issues and extensions must

be addressed. For example, an additional dimension must be added to pro�le space to ac-

commodate gaps. Also, sample points from pro�le space must be selected for representation

with discrete symbols, and substitution costs need to be calculated between these sample

points. Furthermore, a reduction method from continuous space to discrete symbols must

be devised that can operate e�ciently on genomic-sized pro�les.

6.3.1 Sample Points

Five dimensions in pro�le space are required to represent pro�les that contain nucleotide

and gap character frequencies. Each position of a pro�le can be mapped to a point that

falls on the bounded hyperplane fA + fC + fG + fT + fgap = 1 in Euclidean space where

0 ≤ fN ≤ 1. To reduce the number of possible points, a discrete number of sample points

are selected from continuous pro�le space. These sample points and a corresponding discrete

symbol represent nearby points in pro�le space.

A selection algorithm determines sample points by projecting lattice points p in D-

space onto the pro�le hyperplane according to the parametric equation p
′

= tp, where

t = (1−
∑
pi)/D. Lattice points (see Figure 6.3) are evenly spaced by a distance of 1/L in

each dimension; however, only points that lie in a band near the hyperplane are considered.

Given the sum of lattice point coordinates S =
∑
pi, the considered points fall between

(1− D−1
L

) ≤ S ≤ (1− 1
L

). Intuitively, these lattice points reside on parallel hyperplanes that

are a distance of ε =
√
D/DL from each other (see Figure 6.4). Corners of pro�le space that

80

1

1

1Z axis

0,0,0

x+y+z=1
sample points

lattice points

X axis

Y axis

Z axis

Figure 6.3: Sample points are determined by projecting lattice points onto the pro�le plane.

consist of all one nucleotide are also included as sample points, but the point indicating a

pro�le of all gaps is excluded.

The number of sample points is reduced further by �ltering points that represent

less probable nucleotide frequencies. Nucleotides from the same group, either purine or

pyrimidine, have a higher probability of being aligned, while those from di�erent groups

have a lower probability. Substitution tables re�ect this probability in their cost values and

in�uence alignment algorithms accordingly. Therefore, sample points with a high frequency

of both purines and pyrimidines are eliminated if they meet the condition

(fi + fj > 0.75) ∧ (|fi − fj| < 0.30)

where i ∈ {A,G} and j ∈ {C,T}.

81

0,0,0

1

X axis

1

Y axis

1Z axis

Lattice points in band near profile space

Figure 6.4: Planes parallel to pro�le space are separated by a distance of ε =
√
D/DL. For

this example, D = 3 and L = 4.

82

6.3.2 Substitution Table

After sample points in pro�le space are selected, the substitution cost between these rep-

resentative points can be determined. Instead of calculating the cost every time sample

points are compared during alignment, the cost can be computed once and stored in a new

sample substitution table. The discrete symbols associated with each sample point become

the indices into the table and the codebook for a quantization algorithm.

Substitution costs between sample points are computed from the individual nucleotide

frequencies and substitution costs. Since a hardware constrained implementation of the

sample substitution table may only have 4 or 8-bit entries, a scaling factor adapts the range

of computed values to �t within entry size limits. Given the nucleotide substitution table s

of size N × N , an array of sample points c, and a scaling factor β, the substitution cost s′

between each sample point is determined by

s′i,j =

[
N∑

m=1

N∑
n=1

cj,n ci,m sn,m

]
β.

The substitution cost of a gap and a nucleotide is the gap extension cost plus one. This

prevents a gap in one sequence from being followed by a gap in the other sequence during

pairwise alignment of discrete pro�les.

6.3.3 Reduction

For the accelerator to sustain maximum performance, the host system must supply reduced

pro�les at the accelerator's input data rate (see Figure 6.5). Pro�les are reduced to dis-

crete pro�les to support a simpler, higher-performing pairwise alignment algorithm on an

accelerator that only aligns sequences of symbols. A new quantization technique is used

for this reduction on the host to reach the needed performance. For each continuous pro-

�le position, the reduction algorithm searches for a nearby sample point and then returns

the corresponding discrete symbol. Finding a nearby point in less time is preferred to a

83

Profile
Reduce

Pairwise Alignment

Host Side

Profile
Reduce

Discrete
Profile

Discrete
Profile

Edit
Operations

Continuous
Profile

Continuous
Profile

Hardware Accelerator

PE pipeline

Block RAM

Traceback
state machine

Long
Sequences

Figure 6.5: Pro�le reduction before alignment

nearest neighbor search with greater overhead. Also, constraining the search to the pro�le

hyperplane
∑
fN = 1 allows for some optimization.

A near neighbor search �nds a sample point that is close to the given continuous

point, but not necessarily the closest point. This relaxation of proximity allows the search

to proceed in deterministic time, and thereby keep up with the accelerated pairwise align-

ment. Search begins by scaling and truncating each nucleotide frequency to form a partially

quantized point. Then these integral coordinates are used as indices into a lookup table R

that contains references to nearby sample points. The scale factor determines the number of

quantization levels for each coordinate and also the size of the lookup table. As a result of

the search, points in continuous pro�le space are mapped to a small set of symbols that rep-

resent sample points. Not every element of the D-dimensional lookup table requires storage

since the partially quantized points lie within a scaled distance of (D − 1)ε from the pro�le

hyperplane. A ragged array with only the needed locations is used to implement the lookup

table R.

84

6.3.4 Example

An example of discrete pro�le alignment is presented starting with two groups of aligned

sequences. Pro�le formation, reduction, and pairwise alignment of the pro�les are included in

this example. A simpli�ed alphabet Σ′ = {A,C, �-�} is used so that the character frequencies

correspond with the X, Y and Z axes of a depictable three-dimensional pro�le space.

Figures 6.6 and 6.7 show instances of pro�le calculation and reduction. Each pro�le

position is calculated independently and corresponds with a column of aligned sequences.

Given two groups of sequences {s1, s2} and {s3, s4}, continuous pro�les are calculated by

counting the occurrence of characters in each column and dividing by the number of sequences

to produce a vector of frequencies (fA, fC , fgap). Pro�le reduction proceeds by scaling each

vector by 32 and truncating the values to form indices into the three-dimensional reduction

table RA,C,gap. These table lookup values, which are references to nearby sample points, are

used for each position of the discrete pro�les p1,2 and p3,4. Figure 6.9 depicts two points

in pro�le space and the nearby sample points found by lookup in the reduction table R.

Figure 6.8 shows the discrete pro�le alignment process and the �nal alignment of the original

groups. The discrete pro�les p1,2 and p3,4 are aligned with a pairwise algorithm that returns

the edit string E1,2,3,4 composed of the operations ei ∈ {(Mis)Match, Insert,Delete}. The

edit operations also apply to the groups of sequences {s1, s2} and {s3, s4} because of the

position correspondence between alignments and derived pro�les.

6.4 Methods

The following components were incorporated into MUSCLE [19], an open-source MSA pro-

gram, to demonstrate accelerated large-scale MSA.

� SSE accelerated sequence similarity algorithms for the �rst stage of MSA

� A discrete pro�le alignment algorithm for the third stage of MSA

� An FPGA accelerated pairwise alignment algorithm [54]

85

0

0

1

0

0

1

0

1

0

0

1

0

fgap

fC

fA

½½000½

½½1000

00011½

A

A

A

A

C

C

C

C

s2

s1

--CAAA

CCCAA-

6543position 1 2 7 8 9 10

Alignment

Continuous
Profile

Discrete
Profile

p1,2 16161717 331716168

fN = count of character N / count of aligned sequences
fA = 1/2

(fA, fC, fgap)
(0.5, 0.0, 0.5)

S[code] = (sample point in profile space)
S[8] = (0.33, 0.08, 0.58)

scale by 32
(16.0, 0, 16.0)

truncate
(16, 0, 16)

table lookup
R[16][0][16] = 8

Figure 6.6: From the alignment {s1, s2}, a continuous pro�le is derived and then reduced to
form the corresponding discrete pro�le p1,2. S is a table of sample points.

0

0

1

0

0

1

0

1

0

0

1

0

fgap

fC

fA

000

10½

01½

A

A

A

A

C

C

C

C

s4

s3

CAA

CAC

6543position 1 2 7

Alignment

Continuous
Profile

Discrete
Profile

p3,4 16161717 171611

fN = count of character N / count of aligned sequences
fA = 1/2

(fA, fC, fgap)
(0.5, 0.5, 0.0)

S[code] = (sample point in profile space)
S[11] = (0.33, 0.58, 0.08)

scale by 32
(16.0, 16.0, 0)

truncate
(16, 16, 0)

table lookup
R[16] [16][0] = 11

Figure 6.7: From the alignment {s3, s4}, a continuous pro�le is derived and then reduced to
form the corresponding discrete pro�le p3,4. S is a table of sample points.

86

Discrete
Profiles

p1,2

p3,4

--171616-17171611p3,4

p1,2 16161717 331716168Aligned
Discrete
Profiles

--CAA-CCAAs4

--CAA-CCACs3

A

A

A

A

C

C

C

C

s2

s1

--CAAA

CCCAA-Aligned
Sequences

Edit
Operations

E1,2,3,4 MDMM DDMMMM

Edit
Operations

E1,2,3,4Pairwise Alignment

(Mis)Match, Insert, Delete

Figure 6.8: A pairwise alignment algorithm treats discrete pro�les as sequences. The result-
ing edit operations E1,2,3,4 indicate the computed alignment between the discrete pro�les p1,2
and p3,4, and the corresponding groups of sequences {s1, s2} and {s3, s4}.

Corresponding code in MUSCLE was replaced with our highly-parallel code that uses SSE

instructions and the FPGA accelerator. Discrete pro�le alignment replaced the �oat-based

alignment used in each step of progressive alignment. Also, sequence similarity calculations

were optimized with SSE instructions. The vectorized code includes the comparison of k-mer

counts and the counting of identical symbols.

Two versions of the modi�ed MUSCLE are used for analysis. One version (MUDISC)

implements our pairwise alignment in software on the host, while the other (MUFPGA)

accelerates pairwise alignment on the FPGA. MUDISC is compared with other popular

MSA programs such as ClustalW [88], Kalign [43], MAFFT [41], MUSCLE [19], and POA

[34]. For those programs that support iterations, a maximum of two are used. The non-

accelerated MSA programs and MUDISC execute only on the conventional processor and

MUFPGA additionally uses the FPGA accelerator. Both alignment quality and program

performance are measured.

87

1

1

1Z axis

0,0,0

x+y+z=1
sample points

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

profile points

X axis

Y axis

Z axis

Near neighbor

Symbol code

Figure 6.9: Given two pro�le points, nearby sample points and associated symbol codes are
shown.

88

Nucleotide adaptations [9] of the BAliBASE [89] and SMART [44] reference align-

ments are used to compare the quality of the MSA programs. BAliBASE alignments have

been determined to be correct based upon known three-dimensional structure. Another as-

sessment of alignment quality is obtained with the BRAliBase benchmark RNA alignment

database [99] that consists of 18,990 RNA alignments. Unaligned versions of the reference

alignments are realigned to produce test alignments. Reference and test alignments are then

compared with scoring programs to produce an accuracy metric between 0 and 1.

A performance analysis uses a few large-scale, viral data sets as shown in Table 6.2.

Overall program performance for MUSCLE v3.8.31, MUDISC, and MUFPGA is measured

by the wall-clock time needed to align a data set and includes all three stages of progressive

alignment. For accurate timing, the host processor's performance counters are used.

The host platform consists of a desktop computer with a 2.4GHz Intel Core2 Duo

processor running 64-bit Fedora 13 Linux as the operating system. All benchmark applica-

tions execute in a single thread and are compiled with gcc using -O3 optimization. An 8-lane

PCI Express [4] add-in card with a Xilinx Virtex-4 FX100 FPGA provides the hardware ac-

celeration for pairwise alignment. Acceleration occurs on a pipeline of 256 PEs driven by a

100MHz clock. Each PE requires one block RAM to implement the substitution cost s′i,j

as a lookup table. The accelerator supports linear gap costs and up to 64 points in pro�le

space with 6-bit symbol values.

6.5 Results

Alignment quality with BRAliBase 2.1 is depicted in Figure 6.10 for MUDISC and several

other MSA programs. The BRAliScore, which re�ects the alignment accuracy, is plotted in

relation to the average pairwise sequence identity (APSI) of the reference alignment. Identical

sequences have an APSI of 100%. BRAliScore is composed of two independent scores and

is calculated by multiplying the fractional identity (FI) [18] and the structure conservation

index (SCI) [98]. The FI score is based on the fraction of matching characters between the

89

test and reference alignment, whereas the SCI is not based on the reference alignment, but

indicates the amount of secondary structure conserved in the multiple alignment. A local

smoothing of score values is applied with the acsplines option in gnuplot and a weighting

factor of 5e-3. Above 60% APSI, there is little di�erence in the alignment quality between

the programs; however, MUDISC is one of the top performers on data sets below 60% APSI.

A comparison of alignment quality with the MDSA reference sets is reported in Fig-

ure 6.11. The Q score, which is equivalent to the sum-of-pairs score (SPS) score [90], is

shown in relation to the APSI. Unlike the FI, the Q score only considers residue pairs

correctly aligned in the test alignment compared with the reference and does not count

residue-gap pairs. The acsplines smoothing option is again used, but with a weighting factor

of 1e-2. MUDISC is on par with other MSA programs down to about 40% APSI and is still

comparable in accuracy below 40% APSI.

The average alignment quality of MUSCLE and MUDISC is shown in Table 6.1. A

variant of MUDISC that uses the nearest neighbor search method is also shown. According

to the Friedman rank test [28] with an adjustment for ties, the di�erence in quality between

the near and nearest neighbor search method is not signi�cant. Even though the average

scores are very similar, the di�erence between MUSCLE and MUDISC is signi�cant with

MUSCLE ranking higher on BRAliBase and MUDISC ranking higher on the MDSA data

set.

Program run times for MUSCLE, MUDISC, and MUFPGA are reported in Table 6.2.

MUFPGA obtains an overall speedup of 33 relative to MUSCLE on the In�uenza data set

and a speedup of 154 on the HIV data set. Run times on the Corona and Herpes data sets

are estimated since the accelerator currently only supports sequence lengths up to 16K. To

calculate these values, the pairwise alignment time in MUDISC is reduced by a factor of 290,

which is extrapolated from timings on the In�uenza and HIV data sets. Pairwise alignment

in the third stage is accelerated by a factor of 176 on the In�uenza data set and a factor of

283 on the HIV data set.

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

B
R

A
liS

co
re

Reference APSI %

BRAliBase 2.1 Scores for k7

MUDISC
ClustalW
Kalign
MAFFT
MUSCLE
POA

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

B
R

A
liS

co
re

Reference APSI %

BRAliBase 2.1 Scores for k15

MUDISC
ClustalW
Kalign
MAFFT
MUSCLE
POA

(b)

Figure 6.10: MUDISC (the new method) is compared with several alignment programs on
a seven (a) and �fteen (b) sequence RNA reference set from BRAliBase 2.1. A higher score
indicates better quality and is shown in relation to the average pairwise sequence identity
(APSI). MUDISC uses discrete pro�le alignment.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

Q
 S

co
re

Reference APSI %

MDSA Scores for BAliBASE 3.0

MUDISC
ClustalW
Kalign
MAFFT
MUSCLE
POA

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Q
 S

co
re

Reference APSI %

MDSA Scores for SMART

MUDISC
ClustalW
Kalign
MAFFT
MUSCLE
POA

(b)

Figure 6.11: MUDISC (the new method) is compared with several alignment programs on the
MDSA data set which contains nucleotide adaptations of the BAliBASE (a) and SMART (b)
reference alignments. BAliBASE includes reference sets 1�7. MUDISC uses discrete pro�le
alignment.

92

Table 6.1: Comparison of MUSCLE and MUDISC alignment quality

MUSCLE P-value, MUDISC (near) P-value, MUDISC (nearest)
Reference Set Avg. Score Rank Avg. Score Rank Avg. Score

BRAliBase k7 0.6846 1.42e-4, > 0.6851 0.875, > 0.6839

BRAliBase k15 0.6914 1.18e-3, > 0.6819 0.285, < 0.6814

MDSA BAliBASE 0.3125 9.58e-9, < 0.3623 0.806, < 0.3629

MDSA SMART 0.6195 7.46e-3, < 0.6295 0.830, > 0.6316

The average quality scores for MUSCLE and MUDISC are shown on four reference sets. BRAli-
Score is reported for BRAliBase, and Q score is reported for MDSA. A variant of MUDISC that
uses the nearest neighbor search method is also shown. The P-values from a Friedman rank
test indicate the di�erence between two adjacent programs, and the relational symbols indicate
which program ranked higher.

Table 6.2: Overall MSA Speedup: Program run times are in HH:MM:SS.

Data Set Sequences Avg. Length MUSCLE MUDISC MUFPGA Speedup

In�uenza 12,104 1,717 01:25:40 00:20:03 00:02:35 33

HIV 2,144 9,019 02:09:29 01:28:42 00:00:50 154

Corona 400 29,531 03:17:47 02:22:43 00:00:41* 284*

Herpes 142 167,043 136:38:20 52:31:05 00:11:26* 716*

* Estimated

93

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

MUSCLE MUDISC MUFPGA MUSCLE MUDISC MUFPGA

R
un

 ti
m

e
in

 s
ec

on
ds

Program and Data Set

Stage 1 Stage 2 Stage 3

HIVInfluenza

Figure 6.12: Overall program runtimes are shown on the In�uenza and HIV data sets with
a breakdown of time spent in each stage.

Figure 6.12 shows the proportion of time spent in the three stages of alignment on

the In�uenza and HIV data sets. The time for each stage includes both iterations. SSE

acceleration improves the �rst stage run time with a speedup of 31 on the In�uenza data set

and a speedup of 79 on the Corona data set. Notice that the proportion of time spent in

similarity calculations on the In�uenza data set is greater with more sequences and limits the

overall speedup. For pairwise alignment in the third stage, a speedup of 300 is obtainable

on the FPGA accelerator when compared to a 2.4GHz Core2 processor [54]. The pro�le

reduction rate ranges from 44.1 to 98.7MB/s and the reduction time ranges from 5.4 to

11.7% of the pairwise alignment time on the accelerator.

94

6.6 Conclusion

The discrete pro�le alignment algorithm presented here produces alignments with quality

comparable to other leading MSA programs and enables the acceleration of progressive align-

ment. A speedup over 150 is demonstrated when discrete pro�le alignment is combined with

an FPGA accelerator that uses a �ne-grained parallel approach for the DP calculations

of pairwise alignment. Previous coarse-grained approaches are limited by insu�cient par-

allelism, particularly in the third stage of MSA. The discrete pro�le alignment algorithm

in conjunction with a fast pairwise alignment algorithm advance the capabilities and per-

formance of large-scale MSA. A key component of our method is a fast pro�le reduction

algorithm on the host that can supply sequences at a rate comparable to the accelerator's

input data rate. The reduction algorithm uses a near neighbor search in hyper-dimensional

pro�le space to quantize pro�le positions at a rate up to 100Mpos/s on a single core. Since

this rate is su�cient to support the high-end performance of recon�gurable computing, other

acceleration methods based on GPUs or SSE instructions may also be a viable option.

Minimizing the time for sequence similarity calculations in Stage 1 is also important

to achieve signi�cant speedup, especially for data sets with large numbers of sequences.

Using SSE instructions reduces the time for sequence similarity calculations by a factor of

30�80. Thousands of sequences can be aligned in a few minutes when Stage 1 is accelerated

with SSE instructions and Stage 3 is accelerated with recon�gurable computing.

Future work includes the demonstration of discrete pro�le alignment with GPU and

SSE versions of our pairwise alignment algorithm. Another area of investigation is to apply

the coarse-grained parallelism of cluster supercomputers and the �ne-grained parallelism of

recon�gurable computing to multiple sequence alignment. Since this work only uses a single

core and one accelerator, a cluster with recon�gurable computing could provide an estimated

20�30x speedup beyond this work.

95

96

Chapter 7

Summary

Multiple sequence alignment is accelerated with new parallel algorithms and a novel high-

performance architecture on a recon�gurable computing system. The new method produces

alignments with quality comparable to other leading MSA programs and uses the combined

strengths of a host microprocessor and accelerator to reduce the overall run time. Through

�ne-grained parallelism provided by an FPGA accelerator, the time required to compute a

multiple alignment is reduced by a factor of up to 150 compared to a desktop computer on

large data sets. Biologists and other researchers with large-scale alignments can see results

within minutes instead of days through the contributions of this work. The following sections

summarize several contributions that are needed to reach the demonstrated alignment quality

and performance.

97

7.1 Contributions

The contributions of this work are as follows:

� Recon�gurable Computing Architecture

� Access module functionality through the Distributed Access Protocol

� Support user de�ned data access patterns

� Promote developer productivity by partitioning complex FPGA resources

� Accelerated Pairwise Alignment

� Provide traceback capability for alignment of long sequences

� Develop dynamic programming algorithm with bounded space on an accelerator

� Discrete Pro�le Alignment

� First progressive, pro�le alignment accelerated on FPGA

� De�ne pro�le space with gaps

� Develop sample point selection algorithm

� Develop near neighbor search algorithm

� Develop e�cient host data structures and quantization technique

� Sequence Similarity Calculations

� Vectorize the comparison of k-mer counts with SSE instructions

� Vectorize the counting of identical symbols with SSE instructions

98

7.1.1 Recon�gurable Computing Architecture

While recon�gurable computing has demonstrated a performance advantage in some applica-

tions, several challenges must be overcome. Some examples include avoiding I/O bottlenecks

and managing the �ow of data to parallel processing elements. Another challenge is inte-

grating user-developed modules with FPGA system resources like memory and I/O devices.

Nevertheless, these challenges can be mitigated with a standard communication architecture

for recon�gurable computing.

This research introduces a network architecture named Qnet along with a �exible

protocol to address some of the challenges associated with recon�gurable computing. Qnet

is a packet-switched network that connects modules within a recon�gurable system through

parallel high-performance communication channels. Modules with a standard interface sim-

plify system integration and encapsulate sharable devices or resources. In conjunction with

Qnet, the Distributed Access Protocol (DAP) is presented, which o�ers a uni�ed solution to

data management.

The basic network components consist of a switch, Qports, and Qlinks. As the central

�gure in the network, the switch provides a path for communicating packets to other modules.

Qports are the interface between modules and the network, and are the addressable endpoints

of communication. Qports are connected by Qlinks, which consist of paired, unidirectional,

point-to-point signaling channels. Each Qport has word-based �ow control that will apply

back-pressure on a link, delaying communication until the port is ready to receive. Hence,

packets are not arbitrarily discarded, and the requirement to bu�er an entire packet at the

input of a module is removed while still maintaining performance.

Qnet reliably transfers data packets between endpoints through a simple protocol

that requires minimal FPGA resources. Packets consist of a small header and a payload of

variable size. The header speci�es the source and destination endpoints with unique port

identi�ers and also indicates the payload length. When a packet header enters the switch,

the output port is determined from the destination endpoint and remains the same for all

99

following words of the packet. With a cut-through packet forwarding method, the full packet

is not bu�ered in the switch. Packets that enter the switch simultaneously with di�erent

destinations pass through concurrently. This architecture allows parallel data transfer on all

ports of an accelerator module.

The key features of Qnet are its modularity and standard interfaces. The hardware

interface enables a developer to integrate pluggable components from a library with user-

developed accelerator modules. Flexible protocols hide the complexities of the system and

facilitate code reuse. Through communication packets, the Distributed Access Protocol

allows any system module to access another's resources. Standard and user-de�nable access

patterns direct packet assembly and disassembly at endpoints. Qnet also provides a three-

party communication scheme that allows control packets injected into the system to initiate

data �ow and invoke operations.

7.1.2 Accelerated Pairwise Alignment

Unlike most FPGA acceleration methods that focus only on sequence comparison, this work

presents a pairwise, global sequence alignment algorithm and architecture that includes

traceback for implementation on recon�gurable hardware. Given a pair of sequences, the ac-

celerator returns a list of edit operations constituting the optimal alignment. An accelerated

library of alignment functions is easily incorporated into sequence analysis programs.

The presented global alignment algorithm overcomes the memory size and bandwidth

limitations of FPGA accelerators and does not limit the sequence length by the number of

PEs. Long sequences of DNA and protein are accommodated by the algorithm through a

space-e�cient traceback procedure that is accelerated in hardware. Traceback may occur in

parallel with the next forward scan since it is implemented in a separate process from the

systolic array.

The contributions of the algorithm are the bounded space requirement for full trace-

back memory on the FPGA and the reduced space for partial traceback memory on the

100

host. These space reductions enable high-performance alignment of long sequences on a

recon�gurable accelerator and are a match for FPGA memory capacities and bandwidth.

The performance scales almost linearly with more PEs up to the sequence length and is

maximized by increasing the number of PEs and size of traceback memory to match the

available FPGA resources.

7.1.3 Discrete Pro�le Alignment

A new method to accelerate the third stage of progressive alignment reduces continuous space

pro�les into discrete pro�les before they are pairwise aligned on recon�gurable hardware.

By reducing each position of a pro�le to a discrete symbol, the pro�les can be aligned

like sequences with the pairwise alignment accelerator. The novel traceback capabilities of

the pairwise alignment accelerator combined with the extended discrete pro�le formalism

advance the capabilities and performance of MSA.

Five dimensions in pro�le space are de�ned to represent pro�les that contain nu-

cleotide and gap character frequencies. From this space, a selection algorithm determines

a discrete number of sample points and corresponding symbols to represent nearby points.

Since the pairwise alignment of discrete symbols requires comparative weights, a substitution

table is calculated that re�ects the cost of substituting one of these sample points with an-

other. In the case of pairwise sequence alignment, the substitution table re�ects the cost of

substituting one character with another. The discrete symbols associated with each sample

point become the indices into the substitution table and the codebook for a quantization

algorithm.

For the accelerator to sustain maximum performance, the host system must supply

reduced pro�les at the accelerator's input data rate. A new quantization technique is used

for this reduction on the host to reach the needed performance. For each continuous pro�le

position, the reduction algorithm searches for a nearby sample point and then returns the

101

corresponding discrete symbol. E�cient host-side data structures support high-throughput

quantization.

7.2 Future Work

Several Qnet features not explored in this work are worth investigation. For example, Qlinks

are a potential interface to partial recon�guration areas. If Qlink locations are locked,

attached modules could be dynamically recon�gured. The sub-microsecond latency achieved

in the PowerPC benchmark system should be realizable in other processor implementations

with a similar interface design. Since DAP is applicable to distributed systems without

recon�gurable computing, a software implementation of DAP may bene�t scatter/gather

operations on a conventional cluster system. Finally, DAP may deliver graphics commands

to a GPU with better performance and �exibility. Through Qnet and a PCI Express bridge,

the FPGA could o�oad speci�c functions of the graphics application.

The advantages of the presented pairwise alignment method are also applicable to

accelerating local alignment and semiglobal alignment. A general-purpose accelerated align-

ment library that consists of both local and global methods may be applied to bioinformatics

programs with minimal e�ort. Adding support for a�ne gaps and position speci�c gap costs

would extend the usefullness of the library to a greater number of applications. SSE and

GPU versions of the pairwise alignment algorithm would bene�t users without recon�gurable

hardware.

Discrete pro�le alignment could be extended to support proteins that have a larger

alphabet by adding more dimensions to pro�le space. Since proteins have an amino acid

alphabet of 20 characters, instead of 4 like DNA, an alphabet compression scheme would be

necessary to reduce the number of characters and the corresponding dimensionality of pro�le

space to a practical number. Reducing the alphabet to six classes based on physico-chemical

properties, as done in MAFFT, would only require 6 dimensions for the classes plus 1 for

gaps. Another extension which might improve quality involves adding more pro�le space

102

dimensions to support position speci�c gap costs, secondary structure information, residue

chemical properties, or other position speci�c information. Nevertheless, adding too many

dimensions may severely impact performance.

Currently, discrete pro�le alignment uses sample points that are distributed on a reg-

ular grid in pro�le space. However, varying the distribution of sample points may improve

alignment quality or reduce the number of sample points needed to maintain quality. Reduc-

ing the number of sample points is bene�cial because it allows for a more e�cient and higher

performing FPGA implementation. Quality might also be improved during progressive align-

ment by using a di�erent set of sample points for each level of the guide tree. At levels closer

to the root, group-to-group alignment includes a greater number of sequences. Hence, using

more sample points for these levels may improve quality by reducing the quantization error.

The general applicability of discrete pro�le alignment could be demonstrated with

SSE and GPU versions of our pairwise alignment algorithm. Users with only commodity

hardware could then realize the performance bene�ts of discrete pro�le alignment, although

the speedup of these versions is anticipated to be much less than the speedup of the FPGA

version demonstrated here. A performance comparison between SSE, GPU, and FPGA accel-

erated versions would provide insights into the strengths and limitations of each acceleration

method.

Another area of investigation is to apply the coarse-grained parallelism of cluster

supercomputers and the �ne-grained parallelism of recon�gurable computing to multiple

sequence alignment. Since this work only uses a single core and one accelerator, a cluster

with recon�gurable computing could provide an estimated 20�30x speedup beyond this work.

103

104

References

[1] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS '67 (Spring): Proceedings of the spring joint com-

puter conference, pages 483�485, New York, NY, USA, 18-20 April 1967. ACM.

[2] S. Bailey and T. Talpey. The architecture of direct data placement (DDP) and remote

direct memory access (RDMA) on internet protocols. RFC 4296, December 2005.

http://www.ietf.org/rfc/rfc4296.txt.

[3] Khaled Benkrid, Ying Liu, and AbdSamad Benkrid. A highly parameterized and ef-

�cient FPGA-based skeleton for pairwise biological sequence alignment. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 17(4):561�570, April 2009.

[4] Ajay V. Bhatt. Creating a PCI Express interconnect. White paper, Technology and

Research Labs, Intel Corporation, 2002.

[5] V. Michael Bove, Jr., Mark Lee, Yuan-Min Liu, Christopher McEniry, Thomas

Nwodoh, and John Watlington. Media processing with �eld-programmable gate arrays

on a microprocessor's local bus. In Proceedings of SPIE Media Processors, volume

3655, pages 14�20, San Jose, CA, USA, January 1999.

[6] Nicolas Bray and Lior Pachter. MAVID: Constrained ancestral alignment of multiple

sequences. Genome Research, 14:693�699, 2004.

[7] Duncan A. Buell, Je�rey M. Arnold, and Walter J. Kleinfelder, editors. Splash 2:

FPGAs in a Custom Computing Machine. IEEE Computer Society Press, 1996.

[8] Humberto Carrillo and David Lipman. The multiple sequence alignment problem in

biology. SIAM Journal on Applied Mathematics, 48(5):1073�1082, October 1988.

[9] Hyrum Carroll, Wesley Beckstead, Timothy O'Connor, Mark Ebbert, Mark Clement,

Quinn Snell, and David McClellan. DNA reference alignment benchmarks based on

tertiary structure of encoded proteins. Bioinformatics, 23(19):2648�2649, 2007.

[10] Kridsadakorn Chaichoompu and Surin Kittitornkun. Multithreaded ClustalW with

improved optimization for Intel multi-core processor. In International Symposium

105

on Communications and Information Technologies, ISCIT '06, pages 590�594, 18-20

October 2006.

[11] Patrick Chain, Stefan Kurtz, Enno Ohlebusch, and Tom Slezak. An applications-

focused review of comparative genomics tools: Capabilities, limitations and future

challenges. Brie�ngs in Bioinformatics, 4(2):105�123, June 2003.

[12] James Cheetham, Frank Dehne, Sylvain Pitre, Andrew Rau-Chaplin, and Peter J.

Taillon. Parallel CLUSTAL W for PC clusters. In Computational Science and Its

Applications, ICCSA 2003, 2003.

[13] William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection

networks. In Proceedings of the Design Automation Conference (DAC'01), pages 684�

689, Las Vegas, Nevada, USA, 18-22 June 2001.

[14] Frédéric Delsuc, Henner Brinkmann, and Hervé Philippe. Phylogenomics and the

reconstruction of the tree of life. Nature Reviews Genetics, 6(5):361�375, May 2005.

[15] Xi Deng, Eric Li, Jiulong Shan, and Wenguang Chen. Parallel implementation and per-

formance characterization of MUSCLE. In 20th International Parallel and Distributed

Processing Symposium, IPDPS 2006, 2006.

[16] Pedro C. Diniz and Joonseok Park. Data reorganization engines for the next genera-

tion of system-on-a-chip FPGAs. In Proceedings of the 10th International Symposium

on Field-Programmable Gate Arrays (FPGA'02), Monterey, California, USA, 24-26

February 2002.

[17] Justin Ebedes and Amitava Datta. Multiple sequence alignment in parallel on a work-

station cluster. Bioinformatics, 20(7):1193�1195, 2004.

[18] Sean R. Eddy. SQUID � C function library for sequence analysis. compalign source,

2009.

[19] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research, 32(5):1792�1797, 2004.

[20] Elizabeth W. Edmiston, Nolan G. Core, Joel H. Saltz, and Roger M. Smith. Paral-

lel processing of biological sequence comparison algorithms. International Journal of

Parallel Programming, 17(3):259�275, 1988.

106

[21] Tarek El-Ghazawi. Is high-performance, recon�gurable computing the next super-

computing paradigm? In Proceedings of the ACM/IEEE SC'06 Conference, Tampa,

Florida, November 2006.

[22] Isaac Elias. Settling the intractability of multiple alignment. Journal of Computational

Biology, 13(7):1323�1339, September 2006.

[23] Eleazar Eskin. From pro�les to patterns and back again: A branch and bound al-

gorithm for �nding near optimal motif pro�les. In Proceedings of the eighth annual

international conference on Resaerch in computational molecular biology, RECOMB

'04, pages 115�124. ACM, 2004.

[24] Philippe Faes, Bram Minnaert, Mark Christiaens, Eric Bonnet, Yvan Saeys, Dirk

Stroobandt, and Yves Van de Peer. Scalable hardware accelerator for comparing DNA

and protein sequences. In Proceedings of the First International Conference on Scalable

Information Systems (INFOSCALE '06), Hong Kong, 29 May-1 June 2006. ACM.

[25] Michael Farrar. Striped Smith-Waterman speeds database searches six times over other

SIMD implementations. Bioinformatics, 23(2):156�161, 2007.

[26] Michael Feldman. IBM cuts cell loose. HPCwire, 24 November 2009.

[27] Da-Fei Feng and Russell F. Doolittle. Progressive sequence alignment as a prerequisite

to correct phylogenetic trees. Journal of Molecular Evolution, 25(4):351�360, 1987.

[28] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. Journal of the American Statistical Association, 32(200):675�701,

December 1937.

[29] Shea N. Gardner, Marisa W. Lam, Nisha J. Mulakken, Clinton L. Torres, Jason R.

Smith, and Tom R. Slezak. Sequencing needs for viral diagnostics. Journal of Clinical

Microbiology, 42(12):5472�5476, December 2004.

[30] Maya Gokhale and Paul S. Graham. Recon�gurable Computing: Accelerating Compu-

tation with Field-Programmable Gate Arrays. Springer, 2005.

[31] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162(3):705�708, December 1982.

[32] Osamu Gotoh. Signi�cant improvement in accuracy of multiple protein sequence align-

ments by iterative re�nement as assessed by reference to structural alignments. Journal

of Molecular Biology, 264(4):823�838, 1996.

107

[33] Osamu Gotoh. Multiple sequence alignment: Algorithms and applications. Advances

in Biophysics, 36:159�206, 1999.

[34] Catherine Grasso and Christopher Lee. Combining partial order alignment and pro-

gressive multiple sequence alignment increases alignment speed and scalability to very

large alignment problems. Bioinformatics, 20(10):1546�1556, 2004.

[35] X. Guan and E. C. Uberbacher. A multiple divide-and-conquer (MDC) algorithm for

optimal alignments in linear space. Technical Report ORNL/TM-12764, Oak Ridge

National Lab., June 1994.

[36] Jaap Heringa. Two strategies for sequence comparison: pro�le-preprocessed and sec-

ondary structure-induced multiple alignment. Computers & Chemistry, 23(3-4):341�

364, 1999.

[37] Dzung T. Hoang and Daniel P. Lopresti. FPGA implementation of systolic se-

quence alignment. In Herbert Grünbacher and Reiner W. Hartenstein, editors, Field-

Programmable Gate Arrays: Architectures and Tools for Rapid Prototyping, pages 183�

191. Springer-Verlag, Berlin, 1992.

[38] Ricardo P. Jacobi, Mauricio Ayala-Rincón, Luis G.A. Carvalho, Carlos H. Llanos, and

Reiner W. Hartenstein. Recon�gurable systems for sequence alignment and for general

dynamic programming. Genetics and Molecular Research, 4(3):543�552, September

2005.

[39] Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin, Henry Barnor,

Michael J. Wilson, Michael Wrighton, and André DeHon. Packet switched vs. time

multiplexed FPGA overlay networks. In The 14th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM'06), 24-26 April 2006.

[40] Kazutaka Katoh, Kazuharu Misawa, Kei ichi Kuma, and Takashi Miyata. MAFFT: a

novel method for rapid multiple sequence alignment based on fast Fourier transform.

Nucleic Acids Research, 30(14):3059�3066, July 2002.

[41] Kazutaka Katoh and Hiroyuki Toh. Recent developments in the MAFFT multiple

sequence alignment program. Brie�ngs in Bioinformatics, 9(4):286�298, 2008.

[42] Jens Kleinjung, Nigel Douglas, and Jaap Heringa. Parallelized multiple alignment.

Bioinformatics, 18(9):1270�1271, 2002.

108

[43] Timo Lassmann, Oliver Frings, and Erik L. L. Sonnhammer. Kalign2: high-

performance multiple alignment of protein and nucleotide sequences allowing external

features. Nucleic Acids Research, 37(3):858�865, 2009.

[44] Ivica Letunic, Richard R. Copley, Birgit Pils, Stefan Pinkert, Jörg Schultz, and Peer

Bork. SMART 5: domains in the context of genomes and networks. Nucleic Acids

Research, 34(suppl 1):D257�D260, 2006.

[45] Kuo-Bin Li. ClustalW-MPI: ClustalW analysis using distributed and parallel comput-

ing. Bioinformatics, 19(12):1585�1586, 2003.

[46] Yiming Li and Cheng-Kai Chen. Parallelization of multiple genome alignment. In

High Performance Computing and Communications, HPCC 2005, volume LNCS 3726,

pages 910�915. Springer-Verlag Berlin Heidelberg, 2005.

[47] Xu Lin, Zhang Peiheng, Bu Dongbo, Feng Shengzhong, and Sun Ninghui. To accelerate

multiple sequence alignment using FPGAs. In Proceedings of the Eighth International

Conference on High-Performance Computing in Asia-Paci�c Region (HPCASIA'05),

page 5, July 2005.

[48] R. Lipton and D. Lopresti. Comparing long strings on a short systolic array. In

Will Moore, Andrew McCabe, and Roddy Urquhart, editors, Systolic Arrays, pages

363�376. Hilger, 1987.

[49] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig. GPU-ClustalW:

Using graphics hardware to accelerate multiple sequence alignment. In High Perfor-

mance Computing, HiPC 2006, volume LNCS 4297, pages 363�374. Springer Berlin /

Heidelberg, 2006.

[50] Yongchao Liu, Douglas L. Maskell, and Bertil Schmidt. CUDASW++: optimizing

Smith-Waterman sequence database searches for CUDA-enabled graphics processing

units. BMC Research Notes, 2(1):73, May 2009.

[51] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. MSA-CUDA: Multiple se-

quence alignment on graphics processing units with CUDA. In 20th IEEE International

Conference on Application-speci�c Systems, Architectures and Processors (ASAP'09),

pages 121�128. IEEE Computer Society, July 2009.

[52] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. Parallel reconstruction of

neighbor-joining trees for large multiple sequence alignments using CUDA. In IEEE

109

International Symposium on Parallel & Distributed Processing, IPDPS 2009, pages

1�8, May 2009.

[53] Scott Lloyd and Quinn Snell. Qnet: A modular architecture for recon�gurable com-

puting. In Proceedings of the 2008 International Conference on Engineering of Recon-

�gurable Systems and Algorithms (ERSA'08), pages 259�265, July 2008.

[54] Scott Lloyd and Quinn O. Snell. Hardware accelerated sequence alignment with trace-

back. International Journal of Recon�gurable Computing, 2009:10, 2009. Article ID

762362.

[55] Jiancong Luo, Ishfaq Ahmad, Munib Ahmed, and Raymond Paul. Parallel multiple

sequence alignment with dynamic scheduling. In International Conference on Infor-

mation Technology: Coding and Computing, ITCC 2005, volume 1, pages 8�13, April

2005.

[56] C. Macken, H. Lu, J. Goodman, and L. Boykin. The value of a database in surveillance

and vaccine selection. International Congress Series, 1219:103�106, October 2001.

[57] Terrence S. T. Mak, Pete Sedcole, Peter Y. K. Cheung, and Wayne Luk. On-FPGA

communication architectures and design factors. In Proceedings of the International

Conference on Field-Programmable Logic and Applications (FPL'06), pages 1�8, Au-

gust 2006.

[58] Mentor. Handel-C Language Reference Manual. Mentor Graphics Corp., 2007.

http://www.mentor.com/.

[59] Mentor. DK Design Suite Software Product Description. Mentor Graphics Corp., 2008.

http://www.mentor.com/.

[60] Dmitri Mikhailov, Haruna Cofer, and Roberto Gomperts. Performance optimization

of Clustal W: Parallel Clustal W, HT Clustal, and MULTICLUSTAL. SGI ChemBio,

Silicon Graphics, Inc., 2001.

[61] Guilherme L. Moritz, Cristiano Jory, Heitor S. Lopes, and Carlos R. Erig Lima. Imple-

mentation of a parallel algorithm for protein pairwise alignment using recon�gurable

computing. In Recon�gurable Computing and FPGA's (ReConFig), pages 99�105.

IEEE, September 2006.

[62] MPI. MPI: A Message-Passing Interface Standard. MPI Forum, November 2003.

http://www.mpi-forum.org/.

110

[63] Robert Muth and Udi Manber. Approximate multiple string search. In Proceedings of

the 7th Annual Symposium on Combinatorial Pattern Matching, volume LNCS 1075,

pages 75�86. Springer Berlin / Heidelberg, 1996.

[64] Eugene W. Myers and Webb Miller. Optimal alignments in linear space. Computer

Applications in the Biosciences : CABIOS, 4(1):11�17, 1988.

[65] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443�453, 1970.

[66] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-

gramming with CUDA. ACM Queue, 6(2):40�53, March/April 2008.

[67] Cédric Notredame. Recent progresses in multiple sequence alignment: a survey. Phar-

macogenomics, 3(1):131�144, 2002.

[68] Cédric Notredame, Desmond G. Higgins, and Jaap Heringa. T-Co�ee: A novel method

for fast and accurate multiple sequence alignment. Journal of Molecular Biology,

302(1):205�217, September 2000.

[69] Tim Oliver, Bertil Schmidt, Douglas Maskell, Darran Nathan, and Ralf Clemens. High-

speed multiple sequence alignment on a recon�gurable platform. International Journal

of Bioinformatics Research and Applications (IJBRA), 2(4):394�406, 2006.

[70] Tim Oliver, Bertil Schmidt, Darran Nathan, Ralf Clemens, and Douglas Maskell. Us-

ing recon�gurable hardware to accelerate multiple sequence alignment with ClustalW.

Bioinformatics, 21(16):3431�3432, 2005.

[71] OMG. Common Object Request Broker Architecture: Core Speci�cation. Object Man-

agement Group, Inc., March 2004. http://www.omg.org/.

[72] OpenMP. OpenMP Application Program Interface. OpenMP Architecture Review

Board, May 2008.

[73] Joonseok Park and Pedro Diniz. An external memory interface for FPGA-based com-

puting engines. In The 9th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM'01), 2001.

[74] Thilo Pionteck, Carsten Albrecht, Roman Koch, Erik Maehle, Michael Hübner, and

Jürgen Becker. Communication architectures for dynamically recon�gurable FPGA

111

designs. In Proceedings of the 21st IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS'07), pages 1�8, March 2007.

[75] Stjepan Rajko and Srinivas Aluru. Space and time optimal parallel sequence align-

ments. IEEE Transactions on Parallel and Distributed Systems, 15(12):1070�1081,

December 2004.

[76] Andrew Rambaut and Nicholas C. Grassly. Seq-Gen: an application for the Monte

Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Ap-

plications in the Biosciences : CABIOS, 13(3):235�238, June 1997.

[77] Tirath Ramdas and Gregory Egan. A survey of FPGAs for acceleration of high per-

formance computing and their application to computational molecular biology. In

TENCON 2005 IEEE Region 10, pages 1�6, November 2005.

[78] Vipin Sachdeva, Michael Kistler, Evan Speight, and Tzy-Hwa Kathy Tzeng. Exploring

the viability of the Cell Broadband Engine for bioinformatics applications. In IEEE

International Parallel and Distributed Processing Symposium, IPDPS 2007, pages 1�8,

March 2007.

[79] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: A new method

for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406�425,

1987.

[80] Craig Sanderson. Simplify FPGA application design with DIMEtalk. Xcell Journal,

Winter(51):104�107, 2004.

[81] Tom Slezak, Tom Kuczmarski, Linda Ott, Clinton Torres, Dan Medeiros, Jason

Smith, Brian Truitt, Nisha Mulakken, Marisa Lam, Elizabeth Vitalis, Adam Zemla,

Carol Ecale Zhou, and Shea Gardner. Comparative genomics tools applied to bioter-

rorism defence. Brie�ngs in Bioinformatics, 4(2):133�149, June 2003.

[82] T. F. Smith and M. S. Waterman. Identi�cation of common molecular subsequences.

Journal of Molecular Biology, 147(1):195�197, March 1981.

[83] Robert R. Sokal and Charles D. Michener. A statistical method for evaluating system-

atic relationships. University of Kansas Science Bulletin, 38(22):1409�1438, 20 March

1958.

[84] Adam Szalkowski, Christian Ledergerber, Philipp Krähenbühl, and Christophe Dessi-

moz. SWPS3 � fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E.

and x86/SSE2. BMC Research Notes, 1(1):107, October 2008.

112

[85] Koji Tajima. Multiple DNA and protein sequence alignment on a workstation and a

supercomputer. Computer Applications in the Biosciences : CABIOS, 4(4):467�471,

1988.

[86] Guangming Tan, Shengzhong Feng, and Ninghui Sun. Parallel multiple sequences

alignment in SMP cluster. In Proceedings of the Eighth International Conference on

High-Performance Computing in Asia-Paci�c Region (HPCASIA'05), July 2005.

[87] Guangming Tan, Liu Peng, Shengzhong Feng, and Ninghui Sun. Load balancing and

parallel multiple sequence alignment with tree accumulation. In Euro-Par 2006 Parallel

Processing, volume LNCS 4128, pages 1138�1147. Springer Berlin / Heidelberg, 2006.

[88] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTAL W: im-

proving the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-speci�c gap penalties and weight matrix choice. Nucleic Acids

Research, 22(22):4673�4680, 1994.

[89] Julie D. Thompson, Patrice Koehl, Raymond Ripp, and Olivier Poch. BAliBASE

3.0: Latest developments of the multiple sequence alignment benchmark. Proteins:

Structure, Function, and Bioinformatics, 61(1):127�136, 2005.

[90] Julie D. Thompson, Frédéric Plewniak, and Olivier Poch. A comprehensive comparison

of multiple sequence alignment programs. Nucleic Acids Research, 27(13):2682�2690,

1999.

[91] Keith D. Underwood, K. Scott Hemmert, and Craig Ulmer. Architectures and APIs:

Assessing requirements for delivering FPGA performance to applications. In Proceed-

ings of the ACM/IEEE SC'06 Conference, Tampa, Florida, November 2006.

[92] Tom VanCourt and Martin C. Herbordt. Families of FPGA-based accelerators for ap-

proximate string matching. Microprocessors and Microsystems, 31(2):135�145, March

2007.

[93] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. Accelerating multiple se-

quence alignment with the Cell BE processor. The Computer Journal, 53(6):814�826,

2010.

[94] Susana Vinga and Jonas Almeida. Alignment-free sequence comparison�a review.

Bioinformatics, 19(4):513�523, 2003.

113

[95] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

Active Messages: A mechanism for integrated communication and computation. In

Proceedings of the 19th Annual International Symposium on Computer Architecture

(ISCA'92), pages 256�266, New York, NY, USA, 19-21 May 1992. ACM.

[96] Lusheng Wang and Tao Jiang. On the complexity of multiple sequence alignment.

Journal of Computational Biology, 1(4):337�348, Winter 1994.

[97] Ting Wang and Gary D. Stormo. Identifying the conserved network of cis-regulatory

sites of a eukaryotic genome. Proceedings of the National Academy of Sciences of the

United States of America, 102(48):17400�17405, November 2005.

[98] Stefan Washietl, Ivo L. Hofacker, and Peter F. Stadler. Fast and reliable prediction

of noncoding RNAs. Proceedings of the National Academy of Sciences of the United

States of America, 102(7):2454�2459, February 2005.

[99] Andreas Wilm, Indra Mainz, and Gerhard Steger. An enhanced RNA alignment bench-

mark for sequence alignment programs. Algorithms for Molecular Biology, 1:19, 2006.

[100] Adrianto Wirawan, Bertil Schmidt, and Chee Keong Kwoh. Pairwise distance matrix

computation for multiple sequence alignment on the Cell Broadband Engine. In Com-

putational Science � ICCS 2009, volume LNCS 5544, pages 954�963. Springer-Verlag

Berlin Heidelberg, 2009.

[101] Xilinx. EDK Concepts, Tools, and Techniques. Xilinx, Inc., 2007.

http://www.xilinx.com/.

[102] Xilinx. Multi-Port Memory Controller (MPMC) Product Speci�cation. Xilinx, Inc.,

2009. http://www.xilinx.com/.

[103] Yoshiki Yamaguchi, TsutomuMaruyama, and Akihiko Konagaya. High speed homology

search with FPGAs. In Proceedings of the Paci�c Symposium on Biocomputing, pages

271�282, 2002.

[104] Jaroslaw Zola, Xiao Yang, Adrian Rospondek, and Srinivas Aluru. Parallel T-Co�ee: A

parallel multiple sequence aligner. In Proceedings of the ISCA 20th International Con-

ference on Parallel and Distributed Computing Systems, pages 248�253, 24-26 Septem-

ber 2007.

114

	Brigham Young University
	BYU ScholarsArchive
	2011-05-20

	Accelerated Large-Scale Multiple Sequence Alignment with Reconfigurable Computing
	G Scott Lloyd
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Potential Impact and Importance
	1.2 Pairwise Sequence Alignment
	1.3 Multiple Sequence Alignment
	1.3.1 Progressive Alignment

	1.4 Acceleration

	2 Related Work
	2.1 Acceleration Challenges
	2.2 Parallel MSA
	2.2.1 Progressive Methods
	2.2.2 Progressive-Iterative Methods

	3 Thesis statement
	4 A Packet-Switched Network Architecture for Reconfigurable Computing
	4.1 Introduction
	4.1.1 Benefits and Challenges
	4.1.2 Requirements

	4.2 Background and Related Work
	4.2.1 Communication
	4.2.2 Architecture

	4.3 Qnet
	4.3.1 Network Components
	4.3.2 Network Protocol

	4.4 Distributed Access Protocol
	4.4.1 Three-Party Communication
	4.4.2 Access Patterns
	4.4.3 Programming Interface

	4.5 High-Level Example
	4.6 Experimental Setup
	4.7 Results
	4.8 Conclusion

	5 Hardware Accelerated Sequence Alignment with Traceback
	5.1 Introduction
	5.2 Related Work
	5.3 Algorithm
	5.4 Architecture
	5.4.1 Qnet Components
	5.4.2 System Modules
	5.4.3 System Parameters

	5.5 Timing Model
	5.6 Experimental setup
	5.7 Results
	5.8 Conclusion

	6 Accelerated Large-Scale Multiple Sequence Alignment
	6.1 Introduction
	6.2 Related Work
	6.3 Discrete Profile Alignment
	6.3.1 Sample Points
	6.3.2 Substitution Table
	6.3.3 Reduction
	6.3.4 Example

	6.4 Methods
	6.5 Results
	6.6 Conclusion

	7 Summary
	7.1 Contributions
	7.1.1 Reconfigurable Computing Architecture
	7.1.2 Accelerated Pairwise Alignment
	7.1.3 Discrete Profile Alignment

	7.2 Future Work

	References

