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ABSTRACT

Gene Network Inference and Expression Prediction Using Recurrent

Neural Networks and Evolutionary Algorithms

Heather Y. Chan

Department of Computer Science

Master of Science

We demonstrate the success of recurrent neural networks in gene network inference
and expression prediction using a hybrid of particle swarm optimization and differential evo-
lution to overcome the classic obstacle of local minima in training recurrent neural networks.
We also provide an improved validation framework for the evaluation of genetic network
modeling systems that will result in better generalization and long-term prediction capa-
bility. Success in the modeling of gene regulation and prediction of gene expression will
lead to more rapid discovery and development of therapeutic medicine, earlier diagnosis and
treatment of adverse conditions, and vast advancements in life science research.

Keywords: genetic network modeling, gene network inference, gene expression prediction,
recurrent networks, evolutionary algorithms, time series prediction
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Chapter 1

Introduction

Gene regulatory network modeling is an important area of computational biology

because it increases understanding of biological systems in terms of both function and re-

sponse to external stimuli. Gene expression data has become abundant through the recent

development of DNA microarray technology, facilitating research in this area. However, the

complexity of gene interactions makes it difficult to determine relationships through static

measurements alone; computational models capable of processing time series expression data

thus prove to be essential tools in uncovering meaning in vast amounts of data.

1.1 Background

Genes are sections of DNA that encode information for protein production. Each gene

consists of a DNA nucleotide sequence that is transcribed by RNA polymerase into an

mRNA nucleotide sequence. The mRNA is then translated by ribosomes into an amino

acid sequence, which folds into a protein. Proteins play a central role in living organisms by

participating in every cellular process. Some catalyze biochemical reactions that are essential

for metabolism; some have structural and mechanical functions; some are responsible for cell

signaling and immune responses.

Expressed proteins may regulate other genes through activation or inhibition. In acti-

vation, the presence of the regulating compound causes increased expression of the regulated

gene. In inhibition, the presence of the regulating compound causes decreased expression of

the regulated gene. The coexistence of numerous positive and negative regulatory relation-
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ships among a set of genes results in a complex gene regulatory network that governs how

the cell reacts to various events. Knowledge of this type of network is essential in order to

develop drugs to counter adverse effects.

Drug discovery and development

Despite rapidly advancing technology and continually growing understanding of biological

systems, the process of drug discovery and development for therapeutic medicine remains a

time-consuming, expensive undertaking. According to the website for Pharmaceutical Prod-

uct Development, Inc., the discovery and development of a single new drug takes an average

of 10 to 15 years and can cost anywhere from $800 million to more than $1 billion [25]. Drug

candidates can sometimes be identified using knowledge about the pharmacological prop-

erties of known substances, but many effective drug compounds have only been discovered

through random collection and screening of data, which is both costly and inefficient. Since

drug candidate identification can be quite difficult and is often purely accidental, enhanced

methods to automate and expedite drug screening are absolutely essential to achieve cost

reductions and enable higher throughput in the drug development process.

Microarray technology and in silico methods

With the advent of microarray technology, researchers are able to collect many times more

genetic data than ever before over a relatively short period of time. A single microarray

chip contains thousands of wells of genetic material that can be simultaneously tested and

measured using fluorescent tagging, image capture, and image processing algorithms. How-

ever, the process of constructing and evaluating hypotheses to describe these large amounts

of data is an extremely difficult problem that continues to perplex researchers.

Due to the high dimensionality of microarray data and relative sparsity of underlying

biological relationships that govern it, there are infinitely many hypotheses that can be

constructed to fit the data. Exhaustive exploration and isolated testing of all possible genetic
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Figure 1.1: Simple gene regulatory network represented as a directed graph

relationships in a lab setting is prohibitively time- and cost-intensive as it would involve

thousands of dead-end experiments and excessive waste of costly genetic materials.

In contrast to experiments conducted in vivo and in vitro, methods designated as

in silico are run entirely in computer simulation and are intended to take advantage of the

abundant data that has already been collected. In silico methods seek to find patterns

within existing data and do not have the same demands on time and resources as their “wet

lab” counterparts, nor do they carry the latter’s risks of contamination, erroneous errors

and operator-related variability. These benefits highlight in silico methods as an important

supplementary technique in genetic regulatory network discovery that is significantly less

expensive and time-consuming.

The challenges of genetic network modeling

A gene regulatory network can be represented as a directed graph, where nodes represent

genes and arcs represent regulatory influences between genes. For example, Fig. 1.1 de-

picts a gene regulatory network of three genes G1, G2, and G3, where G1 influences G2

and G2 influences G3. Depending on the desired representational power, this graph can

be mathematically expressed by a set of Boolean functions, as a joint Bayesian probabil-

ity distribution, by a set of linear differential equations, stochastic equations, or rule-based

formalisms, among several other mathematical formalisms that have been employed in this

context [9]. The choice of representation determines whether the model can describe contin-

uous expression levels, whether it can represent linear and nonlinear dynamics, and whether

it can account for directed and cyclic relationships.

3



As in all types of modeling, significant tradeoffs exist among representational power,

scalability, and interpretability. It is paramount that the chosen model have the expressive

capability necessary to describe real biological networks, else no amount of training and

datasets can possibly produce an adequate hypothesis. However, for relevancy to real-world

problems involving hundreds to thousands of genes, the model must also be highly scalable

and store information in an easily interpretable format. In addition, the hypotheses that it

produces must be biologically plausible.

Another challenge that arises in genetic network modeling is that there are infinitely

many hypotheses that can be constructed to fit the data. Hence, one of the foremost priorities

in the design of an inference system is the choice of reliable evaluation criteria to assess the

fitness of a solution and place many equally well-fitting hypotheses into a ranked order. For

example, one way to distinguish the merit of a set of solutions is to compare their consistency

with existing knowledge of the biological network. Another is to take advantage of the fact

that biological networks tend to be relatively sparse, making it likely that sparser networks

are more plausible than dense networks.

Time series data and gene expression prediction

The end goal of gene regulatory network inference is an understanding of the underlying

interactions of genes, and thus the ability to determine the behavior of the network when

changes occur in the concentration levels or transcription rates of the various gene products.

For example, once the network is reconstructed, one can hypothesize what would be likely

to occur if a new compound was introduced into the system.

If time series data is available, then gene expression prediction can be used as another

way to evaluate how good a candidate solution is. For example, if the chosen model can

describe the dynamics of genetic expression, a novel set of initial conditions should produce

the correct trajectories and arrive at the correct steady state. On the other hand, network

inference systems that do not take dynamics into account cannot take advantage of temporal
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clues and may fall into the trap of overfitting to noise and defects in the training data.

Overfitting precludes generalization and undermines confidence in the inferred relationships.

With few clues to go on for network inference other than existing biological knowledge

and the tendency for biological networks to be relatively sparse, we assert that evaluation

of gene expression prediction is a significant and valuable method to further narrow the

hypothesis space and increase the likelihood that inferred models will approach truth.

1.2 Problem Description

Given a set of N genes and time series data reflecting changes in their expression levels over

time, we infer a model that accurately describes and reflect the dynamics of the regulatory

network formed by those genes. In order to do this, our model learns a temporal relationship

between the current expression levels of each gene and the expression levels of each gene at

a future point in time. In addition to modeling the temporal behavior of the genes, we are

also able to extract meaningful information from our model in the form of directed causal

relationships between genes, such as activation and inhibition.

The existence of infinite possible hypotheses consistent with a particular set of gene

expression data demands network inference methods that can sift through and keep only

the most biologically plausible hypotheses. We have thus devised a method to incorporate

existing biological knowledge into our model as a means of restricting the hypothesis space

to more biologically valid solutions. We also use evaluation of gene expression prediction to

further eliminate hypotheses that fit the data but cannot generalize to novel conditions.

Finally, our model is able to make accurate and usable predictions of gene expres-

sion time series data. Although most current network inference models are not capable

of extended time series predictions without severely adverse influences of noise and drift,

we consider it a highly important to be able to predict longer-term trends. This type of

prediction will allow for in silico perturbation tests on genetic networks, where new initial

conditions or modifications to gene dependencies will result in new behavior over time. These
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types of tests will be useful in the study of reactions to new compounds and hence crucial

to the facilitation of in silico drug pre-screening.

1.3 Thesis Statement

Recurrent neural networks are capable of modeling genetic network dynamics in real bi-

ological systems with better generalization and long-term prediction accuracy than other

state-of-the-art methods. They achieve their best performance and scalability when trained

with genetic algorithms to avoid the pitfalls of local minima and complex derivatives in

gradient descent algorithms. Long-term gene expression prediction accuracy is crucially in-

dicative of the plausibility of an inferred genetic network model and can be measured using

magnitude squared coherence.
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Chapter 2

Related Work

In order to illustrate the rationale behind our choice of model, we present an overview

of numerous model representations that have been employed by other researchers in this field

along with their strengths and weaknesses. We also discuss the particular computational

challenges of genetic network modeling as well as recent attempts to address them.

2.1 Representations of Genetic Networks

The earliest methods for gene regulatory network inference consisted of gene clustering based

on similarity of expression profiles. This approach was motivated by the hypothesis that

genes showing similar expression profiles are likely to be co-regulated. However, clustering

methods are not able to describe causal relationships between gene clusters, limiting their

usefulness in this context. Several mathematical formalisms have since been employed to

describe and represent gene regulatory networks from an interactional standpoint.

Boolean networks

Boolean networks describe regulatory network structure by representing genes as nodes in

a network and modeling the state of each node as either ON or OFF. The current state of

each node is described by a Boolean function of the outputs of the other nodes. This discrete

representation facilitates computation and inference of relationships between genes and has

been widely employed by many researchers. However, the representation of gene expression

as a binary state is a somewhat crude assumption, and a Boolean representation of gene
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expression may not possess the full representative power required for the inference prob-

lem. Probabilistic Boolean networks have been employed to address this by probabilistically

modeling network dynamics while retaining the rule-based advantages of Boolean networks

[27]. However, many have turned to more complex models in order to capture the complex

behavior of gene network dynamics.

Bayesian networks

Bayesian approaches have been used to infer gene interactions using data from multiple ex-

pression measurements [13] and to construct probabilistic gene regulatory networks while

focusing on network connectivity [42]. Bayesian networks effectively deal with noise, incom-

pleteness, and the stochastic nature of gene expression, and their graph representation is

intuitive. However, Bayesian networks, like Boolean networks, generally do not consider dy-

namics or incorporate temporal information. Dynamic Bayesian networks attempt to address

this through unrolling of time steps in order to take advantage of sequential data points. An

influence scoring method for dynamic Bayesian networks has been shown to improve results

when combined with limited observational data [41].

Differential equations

Differential equations, in contrast to the other methods mentioned so far, are quite capa-

ble of capturing and modeling complex network dynamics. For small networks, differential

equations have been used to model gene inhibition and activation according to engineering

paradigms from control theory. However, it remains unknown whether genetic interactions

bear any resemblance to manmade equations. Also, differential equations, which must be for-

mulated by hand, quickly become very complex and are hard to construct for large networks

(upwards of thousands of genes), making them unwieldy for larger applications.
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Probabilistic and stochastic models

Robustness and scalability are essential features of a usable model. Shmulevich et al. and

Tian and Burrage address robustness by introducing probabilistic and stochastic elements

into their systems to account for uncertainty [27, 31]. Bock and Gough use learned decision

functions to predict interactions for similar species, which may prove useful for generalization

of interactions based on species similarity and therefore scalability [4]. Wang et al. (2006)

explore the possibility of using parallel processing to reduce computational load and increase

scalability [35].

Neural networks

Neural networks are one of the most promising methods for gene regulatory network infer-

ence; they are able to model complex network dynamics and can be automatically trained

and decomposed into smaller units to take advantage of parallel processing speed boosts.

They have both the necessary representational power that differential equations possess and

a modest degree of scalability. Neural networks have been used to model the dynamics of

gene expression, some methods modeling transcription and translation independently [32].

Stochastic neural networks have also been used to describe intermediate regulation for large-

scale gene networks, using fluctuation variables as a way to study robustness and stability

properties through simulation [31]. The largest disadvantages of neural networks are their

slow training time and the difficulty of interpreting the learned weights into useful biological

information. However, recent developments have begun to address these issues with some

success, most notably the use of evolutionary algorithms to reduce training time [39], the

development of statistical methods to extract relationships from network weights [24], and

the incorporation of fuzzy rules into neural networks to improve readability [20].
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Recurrent neural networks

Recurrent neural networks have the complex representational power and decomposability

of standard feedforward neural networks, but they are additionally able to represent tem-

poral dependencies and cyclic relationships such as self-activation and self-inhibition. Until

recently, recurrent neural networks were not a competitive option for genetic network model-

ing due to the difficulty of training them. While feedforward neural networks are commonly

trained using backpropagation, a gradient-descent learning algorithm that iteratively refines

the weights on each node in the network to approximate the behavior of the training data,

standard backpropagation cannot be applied to recurrent networks because of the presence

of cycles in the network. There is version of backpropagation for recurrent networks called

Backpropagation Through Time (BPTT) and described and outlined by Paul Werbos (1990),

but BPTT has the tendency to get stuck in local minima and has not proved effective in this

application. However, new training methods have emerged that make it possible to apply

recurrent neural networks to gene network modeling.

Several researchers have recently employed a recurrent neural network approach for

gene network modeling. Dai reports success in modeling the synthetic oscillatory network

of Escherichia coli cells using an echo state network [7]. Hu et al. use a recurrent neural

network to model dynamics of gene networks and learn their parameters, defining positive

and negative regulations by a weight matrix and allowing distinct decaying time constants

for each gene [16]. Lee and Yang establish a cluster-based inference method for recurrent

neural networks and employ feature extraction to deal with scalability, recursively clustering

genes into smaller network components [18]. Xu et al. train their recurrent neural network

with hybrid differential evolution and particle swarm optimization to infer genetic regulatory

networks from time series data [39].

We find that recurrent neural networks are overwhelmingly the approach with the

most potential for working with and taking advantage of the temporal information afforded

by using time series data. They possess rich representational power that can describe the
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dynamics of both directed and cyclic relationships, and they are not constrained or biased

by predefined rule structures found in neurofuzzy networks. Evolutionary algorithms rectify

the problems of slow training and entrapment in local minima, and omission of hidden nodes

allows network weights to be directly read as causal relationships between nodes.

2.2 Current Issues in Genetic Network Modeling

Collection and interpretation of time series expression data

The study and analysis of time series expression data is an extremely important area of re-

search for computational biology, as temporal information serves as an important additional

clue for the inference of causal relationships. Bar-Joseph presented a comprehensive review

of research in time series expression data analysis, outlining the computational challenges in

four analysis levels [1]. He defines these levels as experimental design, data analysis, pattern

recognition, and networks.

First, experimental design introduces the problem of determining sample rates, where

under-sampled results might be an incorrect representation of the activity and miss key

events, and over-sampling is computationally time consuming. Ideally, sampling rates should

be related to transcription and degradation rates of mRNA.

Second, at the data analysis level, the goal is to construct a continuous representation

of all genes over the course of the entire experiment. However, microarray data is very noisy

and there are few replicates, creating barriers to reliable interpolation; in addition, different

organisms may undergo similar processes at very different rates, making it difficult to combine

datasets across experiments.

Third, pattern recognition deals with effective data organization and visualization,

and can benefit from known dependencies in time series data. An important difference when

dealing specifically with time series expression datasets is that the relationships between

clusters are as important as clusters themselves.
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Finally, the networks level is where descriptive and predictive models are built to

explain the behavior of genes. The largest difficulty at this level is the limitation of expres-

sion data, necessitating the addition of biological data to constrain the number of different

hypotheses that are consistent with the data. Another challenge is obtaining perturbation

data, which for regulatory networks consists of gene knockouts under different conditions.

Incorporation of temporal information in model inference

Several recent methods have attempted to utilize the temporal information available only

in time series data. Haverty et al. use data from stimuli responses to identify transcription

factors that regulate gene expression factors, and can predict which genes are regulated by

each transcription factor [15]. Chen et al. propose a differential equation approach model-

ing both feedback loops from translation to transcription and degradation of proteins and

mRNAs; their results suggest that only a minor set of accurate temporal data is required

for model construction [6]. Barker et al. proposed a method to incorporate temporal in-

formation to achieve better predictions on causal network connectivity [2]. Their method

calculates potential influence vectors for each gene based on probability ratios; vectors are

combined and competed against each other to reach a final influence vector for each gene.

The use of recurrence is highly appropriate for studies involving time series data be-

cause of its ability to represent temporal and sequential dependencies. A study using recur-

rent networks for financial time series prediction shows more accurate predictions compared

to traditional statistical and feedforward approaches [40]. Also, results from a comparative

study on backpropagation for feedforward networks versus backpropagation through time

for recurrent networks show that backpropagation through time has superior performance,

being generally more robust to noise and having a faster convergence rate [30]. Werbos, the

first to outline the algorithm for backpropagation through time, describes applications to

pattern recognition for dynamic systems, systems identification, and control [36]. Giles et

12



al. apply recurrent neural networks to financial forecasting, converting data into a symbolic

representation and doing grammatical inference with some success in predictability [14].

The positive results of these studies on recurrent neural networks with respect to

time series data demonstrates their relevancy to the problem of genetic network inference and

expression prediction. The improvement gained by using temporal information is a significant

benefit to systems that seek to describe and predict the behavior of genetic networks.

Gene expression prediction

Ronen et al. were among the first to develop a system for predicting gene expression values

[26]. They demonstrated the usefulness of kinetic parameter estimation in predicting trajec-

tories for several genes with the knowledge of only one gene’s trajectory. Maraziotis et al.

also achieved considerable success in gene expression prediction for a single gene given all

expression levels at the current timestep and the expression levels for all other genes at the

next timestep [21]. They employed a recurrent neurofuzzy network that learned fuzzy rules

to determine the behavior of the gene under study. However, we take this further by using

only information given in the current timestep to predict the next. The significance of this

achievement is the ability to predict long-term trends without relying on knowledge of other

gene products. We view this capability as crucial for in silico drug pre-screening.

Smith et al. demonstrated that neural networks with hidden layers and simple Elman

networks outclass other types of neural networks in terms of prediction accuracy and ability

to settle to steady states [28]. Drawing from their conclusions, we compare our model with

these two types of networks in order to evaluate our model’s prediction accuracy in both the

short term and the long term.

Incorporation of a priori biological knowledge

The ability to account for existing biological knowledge is important because it constrains the

hypothesis space as well as ensuring that results are consistent with biological studies. Wang
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et al. use linear programming to incorporate known biological properties [35], and Barker et

al. allow for the incorporation of known gene relationships prior to training their system [2].

In addition to being consistent with biological studies, it is important in terms of biological

plausibility to achieve sparsity in network models, as sparsity is a strong characteristic of

biological systems. Wang et al. address this by maintaining sparsity throughout the search

for a network structure that is the most consistent with all data [35]. Bhadra et al. do

this similarly by formulating the structure estimation problem as a sparse linear regression

problem [3]. For neural networks without hidden layers, a possible approach to incorporate

existing knowledge is to first infer the connectivity of a network using a separate method,

and then hold all excluded weights to zero. This final method is the one we employ.

Dealing with complexity and interpretability

Xu et al. praise the ability of recurrent neural networks to interpret complex temporal

behavior and point out similarities between recurrent networks and gene networks [37, 38, 39].

They also suggest methods for dimensionality reduction, including clustering, interpolation,

adding noisy duplicates, thresholding, and strategies for network training. Some of their most

recent work demonstrates that time demands in training recurrent neural networks can be

greatly reduced by using a hybrid of differential evolution and particle swarm optimization to

train the weights of the networks. This advancement addresses the problem of slow training

in neural networks. Xu et al. also addressed the problem of interpretability by incorporating

the statistical method used by Perrin et al. to extract relationships from the weights of the

network [24]. Maraziotis et al. took another approach, introducing fuzzy rules to produce

a neurofuzzy network retaining the computational power of recurrent networks, yet yielding

interpretable rules [20]. However, due to the bias introduced by fuzzy rule structure, we

prefer the representational power of classic recurrent neural networks.
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Chapter 3

Methodology

3.1 Model

We employ artificial recurrent neural networks to model gene regulatory networks with the

specific goal of being able to predict trends in gene expression. Artificial neural networks

are mathematical tools for nonlinear statistical data modeling. They can model complex,

nonlinear functions, and their modular design allows them to be used in a parallel processing

environment. Artificial neural networks have been widely employed in solving biological

problems such as predicting the secondary structure of proteins. Recurrent neural networks

(RNNs) are a class of neural networks that contain directed cycles between units, allowing

for dynamic temporal behavior (see Fig. 3.1).

Our model contains one input node and one output node for every gene, and the

network is fully connected, i.e. every input node is connected to every output node. In

Figure 3.1: Basic feedforward neural network (a) vs. recurrent neural network (b)
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addition, every output node contains a cycle back to itself. Fig. 3.1(b) is an example of the

network structure for a 3-gene dataset.

Equation (3.1) is the mathematical formula that we use to calculate the output of

each node and is used by Xu et al. [39].

ei(t+ ∆t) =
∆t

τi
× f

 N∑
j=1

wijej(t) + βi

+
(

1− ∆t

τi

)
ei(t), (3.1)

where ei is the gene expression level for the ith gene (1 ≤ i ≤ N , N is the number

of genes in the system), f(·) is a sigmoid function f(z) = 1/(1 + e−z)), wij represents the

effect of the jth gene on the ith gene (1 ≤ i, j ≤ N), τ is the time constant (controlling time

decay), and β is the bias term. Negative values of wij indicate inhibition of the jth gene on

the ith gene, and positive values indicate activation. Zero values indicate no influence.

The quantity f
(∑N

j=1wijej(t) + βi
)

in Equation 3.1 corresponds to the form

f(weight vector · x + bias) that a perceptron, the basic unit of the neural network, uses

to map its input x to an output value; in Fig. 3.2(a), this quantity describes the connections

from the input layer e(t) to the output layer e(t+∆t). If there were no recurrent connections

in the network (as in Fig. 3.1(a)), the equation for the network outputs would simply be

ei(t+∆t) = f
(∑N

j=1 wijej(t) + βi
)
. Equation 3.1 augments this nonrecurrent model with the

previous output value ei(t) to incorporate temporal (recurrent) information; in Fig. 3.2(a),

this describes the cyclic connections in the output layer. The coefficients ∆t
τi

and
(
1− ∆t

τi

)
are used to weight the nonrecurrent and recurrent portions of the equation.

In a study of the effect of hidden nodes in recurrent networks, Equations 3.2 and 3.3

incorporate a layer of nonrecurrent hidden nodes into the Xu model, mapping inputs e(t)

into outputs h(t) and using the mapped values in the Xu equation instead of directly using

the input values. The intention here is to preprocess the inputs and map them into another

space before feeding them into the Xu model. These modifications are shown in Fig. 3.2.
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Figure 3.2: Recurrent neural network without hidden layer (a) vs. with hidden layer (b)

ei(t+ ∆t) =
∆t

τi
× f

 H∑
j=1

wijhj(t) + βi

+
(

1− ∆t

τi

)
ei(t), (3.2)

hi(t+ ∆t) =
∆t

τi
× f

 N∑
j=1

vijej(t) + γi

 , (3.3)

where hi is the output of the ith hidden node (1 ≤ i ≤ H, H is the number of

hidden nodes in the network), wij represents the effect of the jth hidden node on the ith

gene (1 ≤ i ≤ N, 1 ≤ j ≤ H), vij represents the effect of the jth gene on the ith hidden

node (1 ≤ i ≤ H, 1 ≤ j ≤ N), and γ is the bias term for the hidden node.

Table 3.1: Comparison of values of H hidden nodes for SOS dataset

H=0 H=5 H=10 H=15 H=20
Training MSE 0.00183 0.00193 0.00193 0.00309 0.00192
Test MSE 0.00341 0.00323 0.00431 0.00350 0.00851

We have experimented with hidden layers of nodes between the input and output

layers, but have chosen not to use hidden layers for two reasons. First, it is much easier

to extract causal relationships from a simple 2-layer network than one incorporating several

combinations of weights from different nodes. Second, the performance of the recurrent

network does not show noticeable improvement through the addition of hidden nodes (see

Table 3.1, MSE explained in Validation section). One possible explanation for this is that
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the basic recurrent network’s representational power is already sufficient to capture the

complexities of the gene relationships.

3.2 Training Algorithms

Artificial neural networks are commonly trained using backpropagation, a gradient-descent

learning algorithm that iteratively refines the weights on each node in the network to ap-

proximate the behavior of the training data. However, standard backpropagation cannot be

applied to recurrent networks because of the presence of cycles in the network. We could

use the Backpropagation Through Time (BPTT) algorithm as described and outlined by

Paul Werbos [36], but since BPTT has the tendency to get stuck in local minima, we in-

stead employ the hybrid differential evolution and particle swarm optimization algorithm

(DEPSO) used by Xu et al. [39]. Both differential evolution (DE) and particle swarm opti-

mization (PSO) are genetic algorithms that use informed probabilistic behavior to converge

on a solution much faster than classic backpropagation.

Particle Swarm Optimization

Particle swarm optimization (PSO) represents a set of candidate solutions as a swarm of

particles in solution space. Each particle i represents a set of values for the network parame-

ters, described by its position xi, and travels through solution space with velocity vi. As the

particle travels, it moves toward its best solution and the best solution of the entire swarm

population. Equations 3.4 and 3.5 describe this process.

vi(t) = w × vi(t− 1) + ci × φ1 × (pi − xi(t− 1)) + c2 × φ2 × (pg − xi(t− 1)), (3.4)

xi(t) = xi(t− 1) + vi(t), (3.5)

18



where w is the inertia weight, c1 and c2 are cognitive and social acceleration constants,

and φ1 and φ2 are randomly drawn from a uniform distribution in the range [0, 1].

The algorithm for PSO in this context proceeds as follows [39]:

(i) Initialize a population of particles with random positions and velocities of D(=
N(N + 2)) dimensions. Specifically, the connection weights, biases, and time con-
stants are randomly generated with uniform probabilities over the range [wmin, wmax],
[βmin, βmax], and [τmin, τmax], respectively. Similarly, the velocities are randomly gener-
ated with uniform probabilities in the range [−Vmax, Vmax], where Vmax is the maximum
value of the velocity allowed.

(ii) Calculate the estimated gene expression time series based on the RNN model, and
evaluate the optimization fitness function for each particle.

(iii) Compare the fitness value of each particle Fit(xi) with Fit(pi). If the current
value is better, reset both Fit(pi) and pi to the current value and location.

(iv) Compare the fitness value of each particle Fit(xi) with Fit(pg). If the current
value is better, reset both Fit(pg) and pg to the current value and location.

(v) Update the velocity and position of the particles with Equations 3.4 and 3.5.

(vi) Return to step (ii) until a stopping criterion is met.

We set the fitness Fit(xi) of particle xi equal to MSE(xi). Following the conclusions

of Xu et al. [39], we set w to 1− rand()/2, c1 to 2.5, and c2 to 1.5, which were the optimal

parameter values that they found in their experiments.

Differential Evolution

Differential evolution (DE) works by evolving individual solutions based on differences be-

tween other random solutions selected from the existing population. Evolution causes the

population to draw together to convergence. The mutation operator in differential evolution

is shown in Equations 3.6 and 3.7.

y1j = x4j + γ(x2j − x3j), (3.6)

y1j = x1j, (3.7)
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where j is the dimension that is to be mutated based on the mutation probability pr

and γ is a scaling factor.

The algorithm for differential evolution in this context proceeds as follows [39]:

(i) Initialize a population of M individuals. Set the values of pr and gamma.

(ii) In every generation, for each individual select three distinct individuals randomly
from the remaining population.

(iii) For every dimension/parameter of the individual, if mutation is to take place based
on the probability pr, Equation 3.6 is used; otherwise Equation 3.7 is used to update
the parameter values of the offspring.

(iv) For each parent and its offspring, the individual with the higher fitness is passed
on to the next generation.

(v) Repeat steps (iii)-(iv) until all the individuals have satisfied some convergence
criterion.

Again informed by the work of Xu et al. [39], we set pr to 0.3 and γ to 0.5.

Hybrid Differential Evolution and Particle Swarm Optimization

The hybrid algorithm used by Xu et al. [39] combines PSO and DE as follows:

(i) For every odd iteration, carry out the canonical PSO operation on each individual
of the population by implementing steps (i)-(vi) from the PSO algorithm.

(ii) For every even iteration, carry out the DE operation on every particle to create the
offspring. Once the offspring is created, their fitness is evaluated against that of the
parent. The one with the higher fitness is selected to participate in the next generation.

(iii) The pg and pi of the new population are recalculated.

(iv) Repeat steps (i)-(iii) until convergence.

We define the stopping criteria as MSE falling below 0.001 (normalized) or the algo-

rithm exceeding 1000 iterations, whichever occurs first.

3.3 Predictions

We investigate two types of prediction methods to evaluate the performance our model. First,

we treat each time step as a separate test instance and predict one step into the future using
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Equation 3.1. This is the method most commonly used in the literature [19, 20, 26]. Second,

in order to evaluate long-term prediction and steady states, we input initial conditions to the

model and run it using its own outputs as inputs for subsequent time steps. This method

sheds light on the extent of prediction drift as well as the applicability of the model to

prediction of novel trajectories.

Throughout the remainder of this study, we will refer to the two prediction methods

respectively as ”one-step prediction” and ”long-term prediction”.

3.4 Datasets

We have chosen two datasets from real biological processes in order to evaluate the expressive

power and predictive capability of our model. However, since no true biological networks

are fully known to researchers and real-world measurements tend to be quite noisy, we have

also chosen two synthetic datasets for which we have a “true” solution to compare against.

SOS DNA Repair network in bacterium Escherichia coli

The SOS DNA repair system of Escherichia coli is a well-characterized transcriptional net-

work frequently used in the literature [19, 20, 26]. It is a single input module consisting of

about 30 operons regulated by master repressor LexA (see Fig. 3.4. SOS protein RecA senses

DNA damage and regulates LexA, allowing other genes to be expressed. Once damage has

been repaired or bypassed, RecA’s activation decreases, LexA increases, and all cells return

to their original state.

Data for all of the experiments was taken by irradiating the cultures with UV light

and taking measurements for two cell cycles. Experiments 1 and 2 were irradiated by UV of

5 Jm−2 and experiments 3 and 4 were irradiated by UV of 20 Jm−2. The data is normalized

by the maximal activity for each operon, and graphs of the time series are shown in Fig. 3.3.

We use the data from the peaks onward in order to study recovery from perturbation.
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(a) SOS Experiment 1 (b) SOS Experiment 2

(c) SOS Experiment 3 (d) SOS Experiment 4

Figure 3.3: SOS DNA Repair dataset

Figure 3.4: SOS DNA Repair network
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We have included this dataset to demonstrate our model’s capability to describe real

biological processes and to compare quantitatively against Ronen and Maraziotis.

Stanford Yeast Database

This database contains gene expression measurements taken during the cell cycle of the yeast

Saccharomyces cereviciae [29]. The experiments contain 59 samples collected at various

points in the cell cycle. There are three sets of measurements, named according to the

synchronization method that was used for each: cdc15 arrest (24 samples), cdc28 arrest

(17 samples), and alpha-factor (18 samples). The cdc15 and alpha datasets were generated

using the same experimental setup, while the cdc28 dataset comes from a previous study

[29]. Maraziotis et al. chose a subset of 12 genes identified as highly regulated in previous

biological studies, and they filled in missing samples using an estimation method [20]. Sample

gene behaviors are shown in Fig. 3.5.

We have included this dataset to further demonstrate our model’s capability to rep-

resent real biological processes and to compare quantitatively against Maraziotis et al.

DREAM3 In-Silico-Network challenge

The fourth challenge of the third Dialogue for Reverse Engineering Assessments and Methods

(DREAM3) competition required participants to infer a genetic regulatory network model

from time series data and steady state values [10]. The time series data was produced by a

synthetic genetic network generated by Daniel Marbach’s GeneNetWeaver [22].

We used the first E. Coli network, which consists of 10 genes each. The data consists

of wild-type steady states, heterozygous knockdown steady states, null mutant steady states,

and four perturbation trajectories for the network. Of these, we were able to use the wild-

type steady states and the perturbation trajectories to infer a model for the network. The

perturbation trajectories are shown in Fig. 3.6.
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(a) SIC1 trajectory, cdc15 dataset (b) CLB5 trajectory, cdc15 dataset

(c) CLB6 trajectory, cdc15 dataset (d) CDC6 trajectory, cdc15 dataset

Figure 3.5: Stanford Yeast Database dataset

(a) DREAM3 E. coli dataset, series 1 (b) DREAM3 E. coli dataset, series 2

(c) DREAM3 E. coli dataset, series 3 (d) DREAM3 E. coli dataset, series 4

Figure 3.6: DREAM3 dataset
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We have included this dataset to study the performance of our system on networks

whose true structures are known but whose dynamics are calculated using a different model

than the one under study. Also, unlike the other datasets, this dataset contains a variety

of initial conditions that produce different qualitative profiles, allowing us to evaluate the

predictive ability of our system.

DREAM4 In Silico challenge

The second challenge of the fourth Dialogue for Reverse Engineering Assessments and

Methods (DREAM4) competition was quite similar to the fourth challenge of the previ-

ous year [10, 11]. There are five synthetic networks, again generated by Daniel Marbach’s

GeneNetWeaver [22] and consisting of 10 genes each. The same types of data are presented

with the addition of multifactorial perturbation steady states, and a bonus round challenges

competitors to predict the steady state values for dual knockout strains (where two genes

are never expressed).

We have included this dataset to again study the performance of our system on net-

works whose true structures are known but whose dynamics are calculated using a different

model than the one under study. We also use it to test prediction of steady states and to

compare quantitatively against DREAM4 competitors.
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Chapter 4

Validation and Results

The greatest challenge to genetic network modeling is that biologists do not know the

entire truth behind any real genetic network. Because no complete topologies are known,

inferred topologies for real biological networks cannot be directly evaluated as correct or

incorrect. Synthetic networks can be used to simulate and evaluate the ability of inference

systems to recover unknown networks, but successful recovery of a synthetic network does

not necessarily translate to success on real biological networks.

Relevancy to drug discovery absolutely demands ecological validity; this motivates

our use of gene expression prediction as an indicator of the validity of a solution. Although

it is impossible to completely and confidently evaluate the topologies generated by a model,

it is quite possible to evaluate future behavior predicted by that model against real data.

4.1 Metrics

We present here our evaluation metrics for model training, comparison to previous methods,

and viable ways to evaluate predictive behavior in a genetic network model.

Mean squared error

Our objective for training the network is minimization of mean squared error (MSE), which

measures how much the network output e(t) differs from the target output d(t). MSE is

defined by Equation 4.1.
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MSE =
1

TN

T∑
t=0

N∑
i=1

(ei(t)− di(t))2 (4.1)

MSE can be interpreted as a measure of how closely our system models the particular

expression values in a particular dataset. As a precaution against overfitting, we limit the

number of training iterations on each dataset.

Mean error

Mean error is similar to MSE, but measures normalized error, shown in Equation 4.2. It is

utilized by both Ronen and Maraziotis to evaluate the success of their models [26, 20, 21].

However, two significant weaknesses of this metric evidenced by Equation 4.2 are its high

sensitivity to very small values and its inability to handle zero values. Microarray data often

contains values that are very close to or equal to zero, and the level of noise that is usually

present in microarray measurements may overwhelm the usefulness of this metric.

MEi =
1

T

T∑
t=0

|ei(t)− di(t)|
di(t)

(4.2)

However, despite the potential flaws in using such a metric, we have elected to measure

mean error on our system for the purpose of comparison with previous methods.

Prediction residuals

In order to evaluate prediction error, we measure the absolute value of the prediction residual

of each gene i as a function of time t using Equation 4.3.

Residi(t) = |ei(t)− di(t)| (4.3)

Plotting prediction residual versus time provides a visual description of prediction er-

ror for both one-step and long-term prediction, and prediction drift for long-term prediction.
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Magnitude squared coherence

While prediction residuals are useful for graphical representation of prediction drift, they do

not satisfy the need for a comprehensive measure of prediction success. We have thus decided

to use magnitude squared coherence as an additional error metric to describe correlation

between predicted time series and target trajectories.

Magnitude squared coherence can be used as a measure of correlation between two

signals and is defined by Equation 4.4, where Pxx is the power spectral density of signal x

and Pxy is the cross-spectral density of signals x and y. From this point forward, we will

refer to magnitude squared coherence simply as coherence.

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(4.4)

Coherence is a phase-independent measure of the cross-correlation between signals

with respect to spectral density. It ranges from 0 to 1, where higher values correspond

to higher correlation between two signals. Coherence values at lower frequencies can be

interpreted as an indicator of how successfully a model captures long-term trends. On

the other hand, coherence in high frequencies indicates how successfully the model captures

short-term details. Because gene expression data is quite noisy due to errors in the collection

process, coherence at high frequencies may not be reliable as a measure of the accuracy of a

long-term prediction.

A simple example of magnitude squared coherence is shown in Fig. 4.1. In Fig. 4.1(a),

we have composed a noisy signal by adding a smooth sine curve (Signal 1) and a signal

generated from a normal distribution with 0.3 standard deviation (Signal 2). Because of the

nature of the composition, Signal 1 is representative of the smooth, long-term trend of the

composite signal, and Signal 2 is representative of the noisy details of the composite signal.

Fig. 4.1(b) shows the coherence values between each original signal and the composite

signal. Here, it is evidenced that coherence in the lower frequencies correspond to long-term
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(a) Two signals and their sum

(b) Coherence between each signal and the sum of the two

Figure 4.1: Example of magnitude squared coherence
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Figure 4.2: Actual data from SOS experiment 2 (a) vs prediction of SOS experiment 2 using
Maraziotis recurrent neurofuzzy network (b) [21]

trends while coherence in the higher frequencies correspond to shorter-term details in the

signal. For the application at hand, although high coherence across all frequencies is ideal, we

consider the lower-frequency content to be relatively more significant in evaluating prediction

accuracy than the higher-frequency content.

Butte et al. reported success when using coherence as a measure of similarity between

expression profiles in order to identify co-regulated genes [5]. Their method was able to

recover valid biological relationships between genes that are not found by using MSE or

Pearson’s correlation coefficient due to shifts in phase between the trajectories. These results

motivate our investigation of coherence as a useful evaluation of predicted trajectories.

4.2 Results

Biological modeling capability

Figs. 4.2 and 4.3 show the results of one-step prediction on SOS experiment 2 by both

Maraziotis’ recurrent neurofuzzy network [21] and our implementation of DEPSO-RNN.

Table 4.1 shows the mean error values for each gene and overall mean error for each model.
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Figure 4.3: Prediction of SOS experiment 2 using DEPSO-RNN

Table 4.1: Comparison of mean error for SOS Experiment 1

Gene Ronen Maraziotis Chan
uvrA 0.14 0.090 0.128
lexA 0.10 0.084 0.077
recA 0.12 0.100 0.043
umuD 0.21 0.085 0.147
polB 0.31 0.079 0.261
ruvA 0.22 0.204 0.494
uvrD 0.20 0.172 0.190
uvrY 0.45 0.16 0.388

Average 0.22 0.122 0.216

Table 4.2: Comparison of mean error for SOS Experiment 2

Gene Maraziotis Chan
uvrA 0.115 0.069
lexA 0.105 0.092
recA 0.120 0.041
umuD 0.200 0.094
polB 0.302 0.342
ruvA 0.201 0.267
uvrD 0.195 0.200
uvrY 0.420 0.364

Average 0.207 0.184
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For SOS experiment 1, we achieve lower overall mean error than Ronen et al., whose

method is based on biologically informed kinetic equations. This suggests that our model is

well able to describe real biological behavior. Although our model does not achieve as low

mean error as Maraziotis et al. for experiment 1, Table 4.2 shows that our model is better

able to generalize to experiment 2. This may indicate overfitting in Maraziotis’ model.

Maraziotis et al. did not report their mean error results for SOS experiments 3 and

4, noting that their method was unable to achieve adequate results. This is likely due to

the difference in perturbation magnitude between SOS experiments 3 and 4 and the other

two experiments; experiments 3 and 4 contain values that fall well outside the range of the

training data. However, our method was able to achieve comparable results to experiment

2, which are reported in Table 4.3. The exception to this success was prediction of ruvA,

which resulted in very small values that caused mean error to explode in magnitude.

Table 4.3: Mean error results for all SOS test datasets using DEPSO-RNN

Gene Exp 2 Exp 3 Exp 4
uvrA 0.069 0.103 0.123
lexA 0.092 0.114 0.054
recA 0.041 0.026 0.044
umuD 0.094 0.172 0.171
polB 0.342 0.145 0.117
ruvA 0.267 - -
uvrD 0.200 0.238 0.126
uvrY 0.364 0.320 0.534

Average 0.184 0.160 0.167

Fig. 4.4 shows two examples of trajectories that were learned by our model for the

Stanford Yeast Database training dataset. Although the original data is quite noisy, our

model is able to describe the longer-term trends that it follows. Table 4.4 shows the mean

error values and overall mean error for both our model and Maraziotis’ recurrent neurofuzzy

network on the test datasets. Again, we were able to achieve better overall generalization

than Maraziotis. This gives confidence in the biological modeling capability of our model.
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(a) SIC1 trajectory, cdc15 dataset (b) CDC6 trajectory, cdc15 dataset

Figure 4.4: Learned trajectories for Stanford Yeast Database training set

Table 4.4: Comparison of MSE for Stanford Yeast Database test sets

Gene Maraziotis(alpha) Chan(alpha) Maraziotis(cdc28) Chan(cdc28)
SIC1 0.744 0.117 0.406 0.189
CLB5 0.446 0.166 0.177 0.240
CDC20 0.619 0.115 0.366 0.161
CLN3 0.149 0.192 0.247 0.239
SWI6 0.498 0.072 0.331 0.061
CLN1 0.665 0.465 0.364 0.259
CLN2 0.735 0.709 0.575 0.449
CLB6 0.252 0.528 0.365 0.620
CDC28 0.058 0.216 0.068 0.110
MBP1 0.699 0.090 0.429 0.081
CDC6 0.424 0.155 0.337 0.275
SWI4 0.122 0.359 0.490 0.292

Average 0.451 0.265 0.346 0.248
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Prediction capability

In order to evaluate prediction capability, we used datasets from DREAM3 and DREAM4 to

ensure that true trajectories were known. For the DREAM3 dataset, we trained our model

on the first three trajectories and tested it on the fourth. All four trajectories consisted of

different initial conditions allowing for truly unknown testing data. Based on the work of

Smith et al., who previously concluded that feedforward neural networks with hidden layers

and simple Elman recurrent neural networks achieve the best short-term prediction accuracy

of all simple neural networks [28], we also generated predictions using both a feedforward

neural network with hidden layers and an Elman network. Fig. 4.5 shows the results of both

one-step and long-term prediction for three genes in the fourth trajectory.

In Figs. 4.5(a), 4.5(c) and 4.5(e), the one-step prediction results show comparable

performance among the three models. The residual for some of the prediction points for the

neural network is significantly higher than at others; this is most likely caused by overfitting

to the training data. Because the original data is noisy, the neural network has learned

to predict specific sets of values that may change in completely opposite directions due to

the noise oscillation. The Elman network performs somewhat better due to the element of

recurrence in its structure, which helps to control for sudden changes in value.

One-step prediction does not allow for observation of prediction drift because each

time step is treated as a separate test instance. This is limiting because models that are

sensitive to new initial conditions will appear to do better at subsequent time points. For

example, the neural network does not perform well in the first few data points in Figs. 4.5(c)

and 4.5(e), but gets ”back on track” on later data points. However, in the long-term, initial

errors could potentially cause serious prediction drift later on.

Figs. 4.5(b), 4.5(d) and 4.5(f) show the effect of prediction drift in long-term pre-

diction. Both the neural network and the Elman network perform significantly worse in

long-term prediction than in one-step prediction due to sensitivity to unseen values and

accumulated errors. However, our model continues to perform quite well in the long-term.
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(a) One-step prediction, gene 3 (b) Long-term prediction, gene 3

(c) One-step prediction, gene 5 (d) Long-term prediction, gene 5

(e) One-step prediction, gene 8 (f) Long-term prediction, gene 8

Figure 4.5: Comparison of one-step (a,c,e) and long-term (b,d,f) prediction
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(a) One-step prediction, gene 3 (b) Long-term prediction, gene 3

(c) One-step prediction, gene 5 (d) Long-term prediction, gene 5

(e) One-step prediction, gene 8 (f) Long-term prediction, gene 8

Figure 4.6: Comparison of coherence for one-step (a,c,e) and long-term (b,d,f) prediction
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In order to capture these observations in a comprehensive metric, we evaluated co-

herence for both one-step and long-term predictions on all three models. The results are

shown in Fig. 4.6. Recall from section 4.1 that higher values of coherence at low frequencies

indicate higher correlation in overall signal shape, and higher values of coherence at high fre-

quencies indicate higher correlation in smaller-scale signal fluctuations. Figs. 4.6(a), 4.6(c)

and 4.6(e) show that coherence is similar for all three models when one-step prediction is

used. This makes sense because even a naive system that predicts no change from one step

to the next would exhibit a coherence of 1 at all frequencies due to the perfect replication

of the trajectory one step shifted. Hence, coherence is not useful for evaluation of one-step

predictions such as those computed by Maraziotis et al.

However, Figs. 4.6(b), 4.6(d) and 4.6(f) show that coherence is a useful description

of the overall prediction performance of a model in the long term. It is able to differentiate

between our model, which adheres to the overall shape of the trajectories, and the other two

models, which suffer from prediction drift in the long term.

For the DREAM4 dataset, we generated a time series for the wild-type steady state

and used it to train our model along with the perturbation trajectories. We then simulated

knockouts by fixing expression values to zero for the genes in question. Table 4.5 show the

results of our steady state predictions compared to other DREAM4 competitors.

Table 4.5: Comparison of MSE in DREAM4 competition

Team MSE overall MSE 1 MSE 2 MSE 3 MSE 4 MSE 5
Team 543 0.015 0.008 0.029 0.025 0.009 0.003
Team 532 0.023 0.021 0.051 0.013 0.009 0.024
Team 548 0.044 0.039 0.035 0.029 0.012 0.104
Team 498 0.044 0.029 0.043 0.078 0.015 0.055

Chan 0.046 0.036 0.044 0.058 0.020 0.076
Team 522 0.053 0.030 0.023 0.071 0.014 0.126
Team 347 0.118 0.152 0.097 0.118 0.072 0.149
Team 236 0.155 0.161 0.179 0.138 0.128 0.168
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Although our model does not show the best performance of the group, it is competitive

with the majority of the teams. This is despite the fact that our model could not utilize

the additional single knockout data that was provided due to the need for time series data.

Our model is additionally able to produce a full time trajectory for arrival at these steady

states, showing not only the change in steady state, but the time scale over which the change

occurs. This is a feature that no other models that we know of have the ability to produce.
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Chapter 5

Conclusion

5.1 Discussion

We have shown that recurrent neural networks are capable of modeling genetic network

dynamics in real biological systems by using it to accurately model both the SOS DNA repair

network in the bacterium Escherichia coli and the cell cycle of the yeast Saccharomyces

cereviciae. In addition, we have shown that it achieves better generalization on unseen

conditions through its ability to attain lower overall mean error on the unseen test sets

than state-of-the-art methods such as kinetic parameter estimation and recurrent neurofuzzy

networks [26, 21].

Our model’s superior long-term prediction accuracy is demonstrated by its ability to

achieve lower prediction residuals and higher coherence than other models on the DREAM3

dataset, which contains significantly differing initial conditions among the trajectories. Our

model outperforms both feedforward neural networks with hidden layers and Elman recurrent

networks, which were shown by Smith et al. to be the best-performing predictive neural

networks in the short term [28]. While the latter two types of models suffer from overfitting

and prediction drift, our model is able to avoid both weaknesses and accurately predict future

behavior. Also, our model is able to compete with other methods in predicting steady state

levels on the DREAM4 dataset.

With all of this evidence brought to bear, we conclude that recurrent neural networks

are the best method today for modeling genetic networks with a view towards application

to drug discovery.
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5.2 Contributions

We have demonstrated that our modification of the DEPSO-RNN paradigm of Xu et al.

[39] is capable of describing real biological systems, generalizing to unseen conditions, and

predicting future behavior. Our system has the advantage of rapid training time, long-term

vision, ability to handle time steps of varying lengths, and avoidance of overfitting to specific

data points. In addition, the absence of hidden layers preserves the interpretability of the

model; weights between nodes can be directly read as causal relationships.

We have also shown that there is a great need for improved validation methods in the

area of genetic network modeling in order to successfully achieve cost and time reduction

in drug discovery and development. To encourage this, we have provided a new valida-

tion framework: we have demonstrated the usefulness of gene expression prediction in the

evaluation of generalization in genetic inference systems; we have drawn a distinction be-

tween the one-step prediction method that is often used throughout the literature and the

long-term prediction method that we advocate for accurate, meaningful evaluation of a pre-

dictive model; and we have called attention to a comprehensive metric, magnitude squared

coherence, to be used as a measurement of the success of long-term predictions.

The relationships among genes are an essential key to unlocking the biological mys-

teries of life. The ability to decipher genetic regulatory networks and predict gene expression

levels in response to outside stimuli will universally impact the quality of life both through

superior health care and through the advancement of life science research. Successful gene

network inference and gene expression prediction will greatly expedite medical diagnosis as

well as drug design and development for therapeutic treatment. Adverse conditions will be

better identified and treated prior to manifestation, and natural, personalized medicines may

someday be engineered to stimulate unbalanced regulatory networks towards self-correction.

Success of this research will improve the quality of life for society worldwide.

In addition to applied medical benefits, successful gene network inference and gene

expression prediction will vastly further the fields of both biology and computer science.
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In biology, the understanding of how gene networks operate will be a treasure trove of

knowledge. Also, with knowledge of underlying network structure, many more experiments

can be conducted in silico and the results quickly processed rather than waiting for weeks

for results from a wet lab. In computer science, many important precedents will be formed

for the difficult problem of choosing and ranking among infinite well-fitting hypotheses and

incorporating prior knowledge in order to help refine the search through hypothesis space.
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