
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2011-07-22

Modeling Wireless Networks for Rate Control
David C. Ripplinger
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Ripplinger, David C., "Modeling Wireless Networks for Rate Control" (2011). All Theses and Dissertations. 2827.
https://scholarsarchive.byu.edu/etd/2827

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2827?utm_source=scholarsarchive.byu.edu%2Fetd%2F2827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Modeling Wireless Networks for Rate Control

David C. Ripplinger

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Sean Warnick, Chair
Daniel Zappala
Mark Clement

Department of Computer Science

Brigham Young University

December 2011

Copyright c© 2011 David C. Ripplinger

All Rights Reserved

ABSTRACT

Modeling Wireless Networks for Rate Control

David C. Ripplinger
Department of Computer Science, BYU

Master of Science

Congestion control algorithms for wireless networks are often designed based on a
model of the wireless network and its corresponding network utility maximization (NUM)
problem. The NUM problem is important to researchers and industry because the wireless
medium is a scarce resource, and currently operating protocols such as 802.11 often result in
extremely unfair allocation of data rates. The NUM approach offers a systematic framework
to build rate control protocols that guarantee fair, optimal rates. However, classical models
used with the NUM approach do not incorporate partial carrier sensing and interference,
which can lead to significantly suboptimal performance when actually deployed.

We quantify the potential performance loss of the classical controllers by developing
a new model for wireless networks, called the first-principles model, that accounts for partial
carrier sensing and interference. The first-principles model reduces to the classical models
precisely when these partial effects are ignored. Because the classical models can only de-
scribe a subset of the topologies described by the first-principles model, the score for the
first-principles model gives an upper bound on the performance of the others. This gives us
a systematic tool to determine when the classical controllers perform well and when they
do not. We construct several representative topologies and report numerical results on the
scores obtained by each controller and the first-principles optimal score.

Keywords: wireless networks, rate control, modeling, partial carrier sensing, partial interfer-
ence

ACKNOWLEDGMENTS

Thanks go to Christopher Grant in the BYU Math Department for his help with

developing the theorems and definitions for uniform random sets.

Table of Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 The Maximal Clique Model 5

2.1 Constraints . 5

2.2 Objective . 7

2.3 Solution and Controller Design . 9

3 The Partial Interference Model 13

3.1 Constraints . 13

3.2 Objective . 15

3.3 Solution and Controller Design . 15

3.4 Comparison to the Maximal Clique Model: Numerical Results 17

3.4.1 Performance Metric . 17

3.4.2 Results . 18

4 The First-Principles Model 23

4.1 A Simple Example . 25

4.2 Union of Uniform Random Sets . 26

4.3 Constraints . 28

4.4 Objective . 31

iv

5 Reduction of the First-Principles Model to the Classical Models 33

5.1 Reduction to the Maximal Clique Model . 33

5.2 Reduction to the Partial Interference Model 35

6 Solution to the First-Principles Optimization Problem 37

6.1 Tightening the Upper Bound . 39

6.2 Implementation . 42

7 Performance of the Classical Controllers: Numerical Results 45

7.1 Two-Link Topologies . 46

7.2 Three-Link Topologies . 47

7.3 Partial Interference Topologies . 51

7.4 Partially Dependent Interferers . 52

7.5 Chain Topology . 54

7.6 Mesh Topology . 56

7.7 Summary of Results . 57

8 Conclusion 59

A Branch and Bound Code 63

References 85

v

List of Figures

2.1 An example wireless network and its contention graph 6

3.1 Topologies used to compare classical controllers 19

3.2 Performance of classical controllers with I interferers on one link 19

3.3 Performance of classical controllers with N contenders with one interferer . . 20

3.4 Performance of classical controllers with I interferers and N contenders . . . 21

4.1 Example of the first-principles model, random overlap 25

6.1 Example decision tree for the branch and bound method 38

7.1 Two-link topologies . 46

7.2 Optimality CDFs of the classical controllers for the two-link topologies . . . 48

7.3 Infeasibility CDFs of the classical controllers for the two-link topologies . . . 48

7.4 Three-link topologies varied over interference 48

7.5 Optimality CDFs for the three-link topologies varied over interference 49

7.6 Three-link topologies varied over contention 50

7.7 Optimality CDFs for the three-link topologies varied over contention 50

7.8 Optimality CDFs for the partial interference topologies 51

7.9 Maximal clique controller performance for partial interference topologies . . 52

7.10 Partial interference controller performance for partial interference topologies 53

7.11 Topologies with partially dependent interferers 53

7.12 Optimality of classical models for partially dependent interferers 54

7.13 Chain topology . 54

vi

7.14 Mesh topology . 56

vii

List of Tables

2.1 Notation used in the maximal clique model 5

3.1 Notation used in the partial interference model 13

4.1 Notation used in the first-principles model 24

7.1 Parameters in the mesh topology . 57

viii

Chapter 1

Introduction

Wireless networks are often used as a low-cost alternative to wired infrastructure,

while also accommodating mobile users. The most prevalent medium access control (MAC)

protocol used in wireless networks is defined in the IEEE 802.11 standard. However, research

has shown that when the wireless network is extended to multiple hops, the 802.11 MAC

is plagued with serious fairness and efficiency problems, sometimes completely starving one

data flow in favor of another [1, 2, 3]. This is in part due to the fact that sharing resources

in a wireless network is a fundamentally different problem than in a wired network, and

requires some theoretical understanding to solve.

As a result of these problems, rate allocation in wireless networks to achieve maximum

network utilization and fairness has become a popular area of research. Seminal research

in this area includes [4, 5] for wired networks, and has been readily extended to wireless

networks in [6, 7, 8, 9, 10, 11, 12]. See [13] for a survey on this and other active research

topics for wireless networks.

Some research seeks to improve the capacity of a mesh network by introducing multi-

ple radios operating on different frequencies, or by manipulating the transmission power of

the radios in order to reduce contention [14, 15]. We view this work as complementary to

ours. We limit the scope of our research area to designing transmission rate controllers for

either communication flows or links, where algorithms manipulating routes, radio frequen-

cies, antenna direction, or transmission power are already employed, and such algorithms

are quasi-static with respect to the rate controller.

1

In this thesis, we will answer the following question: When do certain classical con-

trollers behave poorly due to partial carrier sensing and interference effects? Congestion

control algorithms are often designed based on a model of the wireless network and its corre-

sponding network utility maximization (NUM) problem. In the network utility maximization

(NUM) approach, an objective function for the network is defined, typically a sum of utility

functions for each link’s or flow’s sending rate, where the form of the utility function defines

a particular notion of fairness. Next, a set of constraints is used to model the unique char-

acteristics of the wireless network, such as carrier sensing or interference constraints. The

solution to this optimization problem will then yield a set of rates that maximize network

utility for the links or flows. These rates can then be used as input to a rate controller that

sits on top of (or inside) the MAC protocol, limiting the packet transmission rate for each

flow or link. When the optimization problem is convex, it can often be translated into a

distributed rate control algorithm, making it practical to deploy in a wireless network.

Our focus is on the constraints used to model the wireless network, as this is the

critical piece in the NUM approach. If the model is inaccurate, then the optimization

problem may not yield an accurate or optimal solution. We limit our study to stationary,

multi-hop wireless networks that use carrier sense multiple access (CSMA), such as the 802.11

MAC. CSMA protocols work by each node listening to see if the medium is occupied before

sending data, as opposed to working out a precise schedule with other nodes of which times

to send. This broadly characterizes the most widely-used wireless networks in the field, often

referred to as mesh networks.

We present a first-principles model of wireless networks for the rate control or NUM

problem. By first-principles, we mean that the most basic assumptions are made of how multi-

hop wireless networks with CSMA operate. In this model, perceived times that the medium is

occupied are represented as a random set. Our model may also be classified as a measurement

based model, as it takes as inputs the probabilities of links carrier sensing or interfering with

each other. Such an approach is more realistic than physical layer modeling, such as the

2

various signal fading models with SINR thresholds, and has been used to model wireless

networks for various purposes [16, 17, 18, 19, 20, 21, 11]. A combination of measurement

based modeling and physical layer modeling is used in [18] to determine probabilities of

carrier sensing and interference between pairs of nodes. Kashyap, et al [20] extends this idea

to also model probabilities of carrier sensing and interference of groups of nodes in order to

determine the capacity of a wireless link. We note specifically that their approach is very

similar to ours, modeling the states (transmitting, deferring, idle) of a node as random sets.

However, they also model specific aspects of the 802.11 MAC as opposed to generic CSMA,

and their model predicts an uncontrolled environment, where there is no rate controller other

than the 802.11 MAC. In the future, we hope to combine the qualities of ours and Kashyap’s

models to achieve further accuracy for rate control problems.

We show that, under limiting conditions, our model reduces to previously proposed

models in the literature. Specifically, with the assumption of binary, symmetric sensing,

our model reduces to the common maximal clique model used by seminal research in this

area [6, 10]. Likewise, with the assumption of no carrier sensing between interfering links,

our model reduces to the partial interference model developed by Niculescu [21] and later

employed in [12].

Because the first-principles model induces a non-convex NUM problem, it is too

complex to deploy an efficient, distributed rate controller that solves it. However, we can

solve it offline using a branch and bound method on several constructed network topologies

that are representative of scenarios that often occur in real wireless networks. The objective

function of our first-principles NUM problem can serve as a scoring mechanism for various

rate inputs that any controller may compute, and the optimal solution will be an upper

bound on the performance of the classical NUM-based rate controllers. We implement a

branch and bound algorithm to solve the problem, and we compare its solution (the upper

bound) on several representative topologies with the scores achieved by the classical NUM-

3

based controllers. In this way, we determine under what kinds of topologies partial carrier

sensing and interference adversely affect the performance of the classical controllers.

Some interesting scenarios were found in which the classical controllers performed as

low as 33% of the optimal. The maximal clique controller was found to perform poorly in

many small scenarios, especially those in which there was much partial (and little binary)

carrier sensing or interference. Much fewer cases were found when the partial interference

controller performed poorly. These were primarily limited to cases of significant partial

carrier sensing (with little or no interference in the network), and of very heavy interference

by several links that perfectly carrier sensed each other. We also computed the performance

of the classical controllers on a chain topology and a mesh topology, which were larger

and more typical of real networks than the toy topologies we explored. In both cases, the

maximal clique controller performed above 86% and the partial interference controller above

97% of the optimal. We believe that these results are a strong indication that the partial

interference model is good enough in most networks for rate control. Furthermore, we now

have a method of detecting poor performance in a network, along with motifs that are easy

to isolate as the culprits.

4

Chapter 2

The Maximal Clique Model

The maximal clique model is the most widely used model for rate optimization in

wireless networks [6, 10]. The notation used in this model is given in Table 2.1.

2.1 Constraints

Figure 2.1 shows how a contention graph is inferred from a wireless network. This graph

has a vertex representing each active link, and each edge signifies that two links contend,

or cannot send at the same time. The maximal cliques are then identified. A clique is a

subgraph such that each pair of its vertices share an edge. A maximal clique is a clique such

that no other vertex in the parent graph could be included to form another clique. For each

maximal clique j, its links’ sending rates s must sum to at most some clique capacity, which

for our purposes will always be 1:

∑

i∈L(j)

si ≤ 1, ∀j ∈ C. (2.1)

si Sending rate of link i.
L Set of links.
C Set of maximal cliques.
L(j) Set of links in maximal clique j.
C(i) Set of maximal cliques containing link

i.

Table 2.1: Notation used in the maximal clique model.

5

Figure 2.1: An example wireless network and its corresponding contention graph with the maximal cliques
circled. Links 1, 2, and 3 contend because they share node B. Links 4 and 5 contend because sending nodes D
and F are within carrier sensing range of each other. Assuming RTS/CTS is enabled, links 3 and 4 contend
because sending node D is within carrier sensing range of receiving node C, which sends out CTS signals.
This model infers that links in a maximal clique have sending rates summing to at most some clique capacity.

6

The constraints specific to Figure 2.1 are

s1 + s2 + s3 ≤ 1, (2.2)

s3 + s4 ≤ 1, (2.3)

s4 + s5 ≤ 1. (2.4)

Allowing non-unity values for clique capacities is a technique to account for less than

ideal usage of the medium and indirect scheduling conflicts. The latter is demonstrated in

[6] by showing a ring contention graph of 5 links, where (2.1) with clique capacities of 1 is

inaccurate, predicting that each si = 1/2. This allocation causes a scheduling conflict. If

links 1 and 3 send during the first half of a block of time, and links 2 and 4 send during

the second half, link 5 cannot send at all, since it contends with link 1 during the first half

and link 4 during the second half. Measuring clique capacities less than one would allow the

model to constrain the sending rates only to those such that a feasible schedule exists.

One of the advantages of building the contention graph is that contention can be

interpreted mathematically as a simple sum of rates being constrained, no matter the reason

for contention. The most common reasons for contention are that two links share the same

sending node or their sending nodes are within carrier sensing range of each other. Note,

however, that any reason for two links contending can be appropriately modeled by the

contention graph. For example, in Figure 2.1, links 3 and 4 contend because RTS/CTS

(request-to-send/clear-to-send) is enabled, so that sending node D is within carrier sensing

range of receiving node C. Node C will send out CTS signals to B, but D will overhear the

CTS signals and defer the medium.

2.2 Objective

The objective function in the optimization problem must yield high throughput while also

providing fairness between flows. It is well known that these two goals are conflicting for

7

wireless networks — to provide fairness, some flows may need to sacrifice throughput. A

systematic way of achieving a balance between the two is by constructing the objective

function as a sum of rate utility functions, which are concave and strictly increasing. The

type of fairness is determined by the utility function’s degree of concavity. Several notions

of fairness and their corresponding utility functions are well established in the literature

[22, 23].

The two most common notions of fairness are max-min fairness and proportional

fairness. Max-min fairness can be understood as the rates achieved by increasing all the

sending rates from zero simultaneously until a constraint is active. Then continue to increase

the sending rates for those links that still have not been affected by some active constraint

until the next constraint becomes active, repeating the process until all links have been

maximized. These rates are achieved in the NUM problem by choosing the utility function

U(si) = s−α
i /α, α → ∞, (2.5)

which can be approximated by choosing a large α. Proportional fairness seeks to achieve

equal rates among links, but it allows for one link to lower its rate somewhat if it allows for

multiple other links to then increase their rates a significant amount. It is achieved in the

NUM problem by choosing the utility function

U(si) = ln si. (2.6)

For this and subsequent models, we will only consider proportional fairness for two

reasons. First, max-min fairness often results in significant lost overall bandwidth in the

network. Second, while there exists a distributed solution to the maximal clique NUM prob-

lem for any notion of fairness, the logarithms in proportional fairness allow decoupling of

variables in subsequent models, so that a distributed solution exists for the partial interfer-

8

ence NUM problem, and a tighter upper bound on the first-principles NUM problem can be

calculated.

For our purposes then, the objective function for the maximal clique model is

f(s) =
∑

i∈L

ln si. (2.7)

2.3 Solution and Controller Design

Here we show how the maximal clique NUM problem can be solved distributively and the

high-level considerations in deploying a controller to implement it. The development is

adapted from [10]. It is implicit in this and all problems in this thesis that rates are con-

strained to be non-negative.

The problem is

maximize
∑

i∈L

ln si

subject to
∑

i∈L(j)

si ≤ 1, ∀j ∈ C.
(2.8)

To solve it, we write the Lagrangian, which is constructed by adding to the objective function

a linear combination of the constraint functions:

L(s, λ) =
∑

i∈L

ln si +
∑

j∈C

λj



1−
∑

i∈L(j)

si



 . (2.9)

Each λj can be thought of as a price for maximal clique j, or the per-unit cost of breaking

constraint j. They are also called the Lagrange multipliers. Note that maximizing the

Lagrangian over s can be thought of as a relaxation of the original problem. Instead of

breaking the constraints being infinitely bad, one only incurs a finite cost. Before moving

on, we first rearrange the terms in (2.9) to get

L(s, λ) =
∑

i∈L

(ln si − Λisi) +
∑

j∈C

λj , (2.10)

9

where Λi =
∑

j∈C(i) λj is the sum of prices for each clique that link i belongs to.

Next we construct the dual function, which is simply the Lagrangian maximized over

s:

D(λ) = max
s

∑

i∈L

(ln si − Λisi) +
∑

j∈C

λj . (2.11)

The max can be brought inside the sum to get

D(λ) =
∑

i∈L

max
si

(ln si − Λisi) +
∑

j∈C

λj . (2.12)

The function

ρ(si, λ) = ln si − Λisi (2.13)

being maximized over si is concave and not monotonic, so that a unique maximizer s̄i(λ) is

guaranteed. We can solve for it analytically by taking the derivative and setting it equal to

zero:

s̄i(λ) = Λ−1
i . (2.14)

Substituting this into (2.12) results in

D(λ) =
∑

i∈L

(

ln Λ−1
i − 1

)

+
∑

j∈C

λj. (2.15)

The dual function, for any non-negative λ, gives an upper bound on the original

objective function in (2.8). In order to tighten this upper bound, we solve the dual problem,

which is to minimize the dual function over λ:

minimize
∑

i∈L

(

ln Λ−1
i − 1

)

+
∑

j∈C

λj

subject to λj ≥ 0, ∀j ∈ C.

(2.16)

When the optimal score for both the primal problem and the dual problem are equal, it is

said that they have strong duality. For convex problems, strong duality holds when Slater’s

10

condition is met, that is, there exists a feasible point in the relative interior of the domain.

Slater’s condition holds for all problems in this thesis. We thus have strong duality for (2.8)

and (2.16), and the corresponding optimal sending rates are s∗ = s̄(λ∗), where λ∗ are the

optimal prices.

The dual problem is solved using the gradient descent method. From Danskin’s

Theorem [24], we know that

∂D

∂λj
= 1−

∑

i∈L(j)

s̄i. (2.17)

Using a step size γ in the negative direction of the gradient gives the algorithm

λj(k + 1) = max







0, λj(k)− γ



1−
∑

i∈L(j)

s̄i(λ(k))











. (2.18)

Each link in a maximal clique can share with each other their current values of s̄i, which is

only local information, and then compute the next λj . The convergence of the algorithm is

well established in the literature, even when it is asynchronous [5].

There are some difficulties with actually implementing this controller. It is well

known that discovering all maximal cliques in a graph is NP-hard, so it would be necessary

to approximate the set of maximal cliques. Also, if non-unity clique capacities are used in the

model in order to make it more accurate, these capacities would have to be remeasured each

time the optimization problem would need to be solved. Finally, the gradient descent method

is frequently subject to slow convergence depending on the particular problem and choice of

step size, in comparison to Newton-based methods. An implementation was deployed on a

real network in [10], which had convergence rates on the order of tens of seconds.

11

12

Chapter 3

The Partial Interference Model

The partial interference model supplements the maximal clique model with constraints

on the receiving rates [12]. The model is based on an empirical study of carrier sensing and

interference in a wireless mesh network [21]. The notation used in this model is given in

Table 3.1.

3.1 Constraints

In the partial interference model, an interfering node may corrupt a fraction of the packets

received at a remote node. Partial interference is not represented in the contention graph,

but is instead represented in a directional, weighted interference map or matrix, and is

incorporated as a constraint on receiving rates. To model partial interference accurately,

we separate contention constraints from interference constraints. Contention is represented

as an undirected edge between two vertices (links), and interference is modeled as a direc-

si Sending rate of link i.
ri Receiving rate of link i.
di Delivery ratio of link i.
aij Receiving interference probability of link j interfering

with link i.
L Set of links.
Li Set of all links in L except i.
C Set of maximal cliques.
C(i) Set of maximal cliques containing link i.
L(j) Set of links in maximal clique j.

Table 3.1: Notation used in the partial interference model.

13

tional, weighted edge from the interfering link to the receiving link that is affected by the

interference.

The constraint on each receiving rate is

ri = disi
∏

j∈Li

(1− aijsj), ∀i ∈ L, (3.1)

where the delivery ratio di implies inherent loss over the link. In Figure 2.1, assume RTS/CTS

is disabled so that node D can corrupt some packets received at C. The contention graph

of Figure 2.1 would then be modified by replacing the edge between links 3 and 4 with a

directional edge with weight a34. Then (2.3) is dropped and in its stead we have

r3 = d3s3(1− a34s4). (3.2)

The partial interference model is less conservative than the maximal clique model

because more links are assumed to transmit concurrently. For example, consider links 3 and

4 in Figure 2.1, and suppose link 4 corrupts 40% of packets received at link 3. If both links

transmit at the clique capacity 1, then the sum of their effective receiving rates becomes

1 + (1 − 0.4) = 1.6. In the maximal clique model, these links cannot transmit at the same

time because they are in the same clique, resulting in a total effective receiving rate of 1.

The partial interference model thus allows for significantly higher utilization of the network

in certain scenarios.

It is important to recognize that even complete interference cannot be accurately

modeled as contention. That is, a link j will not become a contender to a remote link i

even if the interference factor aij = 1. Consider again the relationship between links 3

and 4 in Figure 2.1. Suppose a34 = 1. If interference is modeled as contention, then

both links will transmit at a rate of 0.5. However, the total effective receiving rate will be

r2 + r3 = (0.5)(0.5) + 0.5 = 0.75. With the partial interference model, it is easy to see that

link 3 should send at the full rate regardless of link 4’s rate. If link 4 continues to send at a

14

rate of 0.5, then the total effective receiving rate will be (1)(0.5)+ 0.5 = 1. Thus the partial

interference model will result in higher utility.

3.2 Objective

This leads to modifying the objective function. Note that we now care about receiving rates

instead of sending rates. Therefore, the objective function for the partial interference model

is

f(r) =
∑

i∈L

ln ri. (3.3)

Here we also see why choosing proportional fairness is helpful mathematically. If ri

in the objective function is replaced by (3.1), each term in the product converts to a sum of

logarithms, so that each term in the summation is dependent on only one variable in s.

3.3 Solution and Controller Design

The partial interference NUM problem can be solved distributively almost identically to the

method for the maximal clique NUM problem. The development is adapted from [12].

Noting that delivery ratios d only add a constant to the objective function (3.3) when

written as a function of s, we will simply assume from this point on that di = 1 for all i.

Rearranging the log terms on each si in the objective, the primal problem is

maximize
∑

i∈L

(

ln si +
∑

j∈Li

ln(1− ajisi)

)

subject to
∑

i∈L(j)

si ≤ 1, ∀j ∈ C.

(3.4)

Just as with the maximal clique NUM problem, we solve (3.4) by constructing the Lagrangian:

L(s, λ) =
∑

i∈L

(

ln si +
∑

j∈Li

ln(1− ajisi)

)

+
∑

j∈C

λj



1−
∑

i∈L(j)

si



 . (3.5)

15

We again rearrange the terms to get

L(s, λ) =
∑

i∈L

(

ln si +
∑

j∈Li

ln(1− ajisi)− Λisi

)

+
∑

j∈C

λj , (3.6)

where Λi =
∑

j∈C(i) λj as before.

We next construct the dual function:

D(λ) = max
s

∑

i∈L

ρ(si, λ) +
∑

j∈C

λj (3.7)

=
∑

i∈L

max
si

ρ(si, λ) +
∑

j∈C

λj, (3.8)

where

ρ(si, λ) = ln si − Λisi +
∑

j∈Li

ln(1− ajisi). (3.9)

Note that this development only differs from the maximal clique model’s development by

changing ρ(si, λ) from (2.13) to (3.9), so that

s̄i(λ) = argmax
si

ρ(si, λ) (3.10)

produces a different answer by incorporating a cost for each time link i interferes with another

link. It is difficult to solve (3.10) analytically, but it is easy to do numerically, for example

with Newton’s method.

The dual problem is

minimize
∑

i∈L

ρ(s̄i(λ), λ) +
∑

j∈C

λj

subject to λj ≥ 0, ∀j ∈ C.

(3.11)

Again, we use (2.18) to solve the dual problem, and the optimal rates are given by s∗ = s̄(λ∗),

where λ∗ are the optimal prices.

16

3.4 Comparison to the Maximal Clique Model: Numerical Results

We seek to determine in what situations the partial interference controller outperforms the

maximal clique controller, and by how much. We use MATLAB to numerically compute

solutions to the rate optimization problem for several different wireless networks. We use

network topologies that represent basic situations — these can be thought of as building

blocks out of which larger topologies can be formed.

We introduce three strains of the maximal clique controller that we compare with

the partial interference controller. The interference-as-contention (IC) controller replaces

any interference mappings with contention, no matter how small the interference factor a.

The interference-ignored (II) controller simply ignores any interference mappings and models

only contention. The adaptive contention (AC) controller follows the IC controller or the II

controller, depending on which controller has higher performance. Thus the AC controller

gives the maximal clique model the benefit of the doubt — it ignores interference when this

provides good performance and models it as contention otherwise.

3.4.1 Performance Metric

To compare these different controllers, we define a performance metric that is based on the

objective function of the partial interference model, using receiving rates. To make the

performance metric intuitive, we use the geometric mean of the receiving rates, as this is a

monotonic transformation of the partial interference objective function:

P (r) = ef(r)/|L| (3.12)

The comparison should be made between the performance observed with receiving

rates r∗ derived from the partial interference controller and the receiving rates r′ actually

obtained by the other controller from its sending rates s′, according to the partial interference

constraint on receiving rates. In other words, one of the maximal clique controllers comes up

17

with some sending rates s′ that it considers optimal. We take that s′ and substitute it into

(3.1) to get r′. Then we substitute both r′ and the partial interference controller’s solution

r∗ into (3.12) to get their respective scores P .

For ease of interpretation, we consider the ratio R of performances P , that is,

R = P (r∗)/P (r′). (3.13)

Thus, the comparison will simply read that the partial interference controller outperforms

the maximal clique controller R times.

3.4.2 Results

We consider three generic network topologies, shown in Figure 3.1 (the two topologies shown

and a hybrid), and plot R for each topology and for each strain of the maximal clique con-

troller being compared with the partial interference controller. Each topology is represented

in the figures as a combined contention graph and interference map, where solid lines denote

contention and dashed arrows denote the link at the arrow’s tail interfering with the link at

the arrow’s head.

In all cases, the IC controller never does as well as the partial interference controller

because modeling interference as contention is too conservative. For low values of interference,

it is better to let links send at faster rates and suffer some packet loss. At high values of

interference, it is better to have the interfered link send at a faster rate than the interferer,

to provide better throughput and fairness. However, modeling interference as contention is

often better than ignoring it when interference is high. Thus in most cases, the hybrid AC

controller follows the II controller for low values of interference and follows the IC controller

for high values of interference.

Figure 3.1(a) shows the first topology, where I links interfere with a single link with

a common interference factor a, but do not interfere with each other. Figures 3.2(a), 3.2(b),

18

0

1

2

I

a

(a) I links interfering with a
single link.

0

1

2
N

Clique

a

(b) N contenders in a clique
with one interferer.

Figure 3.1: Topologies used to compare the performance of the partial interference controller and the
maximal clique controller.

0

0.5

1

0

5

10
1

1.2

1.4

1.6

1.8

2

aI

R

(a) Ratio R of performance
between the partial inter-
ference controller and the
IC controller.

0

0.5

1

0

5

10
1

1.2

1.4

1.6

1.8

2

aI

R

(b) Ratio R of performance
between the partial inter-
ference controller and the
II controller. The dotted
line marks where R begins
to be greater than one.

0

0.5

1

0

5

10
1

1.2

1.4

1.6

1.8

2

aI

R
(c) RatioR of performance be-

tween the partial interfer-
ence controller and the AC
controller. The dotted line
marks where R begins to
be greater than one.

Figure 3.2: Numerical results for the performance of classical controllers with I interferers on one link.

and 3.2(c) plot R for this topology for the partial interference controller against the IC,

II, and AC controllers, respectively. The dotted lines show where R begins to be greater

than one. Interestingly, the partial interference controller and the II controller perform

exactly the same for values of a below 0.59. This is because, for low values of a, the cost

of interference is offset by the gain of the interferer sending at full capacity. Thus, both the

partial interference controller and the II controller calculate sending rates at full capacity for

each link. For larger values of a and I, the partial interference controller outperforms the

maximal clique controllers more than 1.5 times.

19

0

0.5

1

0

5

10
1

1.2

1.4

1.6

1.8

2

aN

R

(a) Ratio R of performance
between the partial inter-
ference controller and the
IC controller.

0

0.5

1

0

5

10
1

2

3

4

5

aN

R

(b) Ratio R of performance
between the partial inter-
ference controller and the
II controller. The dotted
line marks where R begins
to be greater than one.

0

0.5

1

0

5

10
1

1.2

1.4

1.6

1.8

2

aN

R

(c) RatioR of performance be-
tween the partial interfer-
ence controller and the AC
controller. The dotted line
marks where R begins to
be greater than one.

Figure 3.3: Numerical results for the performance of classical controllers with N contenders with one
interferer.

Figure 3.1(b) shows the second topology, where a single link has interference factor

a on N links that contend in a single clique. Figures 3.3(a), 3.3(b), and 3.3(c) plot R for

this topology for the partial interference controller against the IC, II, and AC controllers,

respectively. The dotted lines show where R begins to be greater than one. The partial

interference controller starts performing better than the II controller at much lower values of

a when N is large. This is due to the fact that the contending links already have small rates as

a consequence of sharing the medium. Utilities are lowered much more by interference when

sending rates are small. Thus, even for low values of a, the partial interference controller

does not calculate sending rates at full capacity. However, for higher values of a and N , the

partial interference controller outperforms the IC controller only about 1.1 times. The AC

controller consequently does relatively well across all values.

To demonstrate the worth of the partial interference model, we consider a topology

combining features of the first two, where I links have a fixed interference factor a = 0.4

on N links that contend in a single clique. Figures 3.4(a), 3.4(b), and 3.4(c) plot R for

this topology for the partial interference controller against the IC, II, and AC controllers,

respectively. Experimental results in [21] show that it is typical for interference factors to

20

2
4

6
8

10

2
4

6
8

10
1

1.2

1.4

1.6

1.8

2

IN

R

(a) Ratio R of performance
between the partial inter-
ference controller and the
IC controller.

2
4

6
8

10

2
4

6
8

10
1

1.5

2

2.5

3

IN

R

(b) Ratio R of performance
between the partial inter-
ference controller and the
II controller.

2
4

6
8

10

2
4

6
8

10
1

1.2

1.4

1.6

1.8

2

IN

R

(c) RatioR of performance be-
tween the partial interfer-
ence controller and the AC
controller.

Figure 3.4: Numerical results for the performance of classical controllers with I interferers and N con-
tenders, with a = 0.4.

range anywhere between zero and one in a real network, with usually at least one interferer

on a link having a factor of at least a = 0.8, so choosing a = 0.4 in this topology is a

reasonable comparison. The combined effect of several interferers and several contenders

causes the partial interference controller to perform significantly better than the maximal

clique controllers.

21

22

Chapter 4

The First-Principles Model

The design of the maximal clique and partial interference models (which we will

refer to as the classical models) raises some questions. How do we know that mutually

contending links (maximal cliques) implies that their rates must sum to at most 1 (or the

clique capacity)? How can the maximal clique model be logically extended to consider the

case of partial carrier sensing, where there is a continuous range of probabilities that nodes

can sense each other, and the notion of cliques is immediately destroyed? Why, in the

partial interference model, is the effect of each interfering link multiplicative? We seek to

answer these questions by developing a model from a more theoretical standpoint by using

random sets to represent observed times the medium is occupied. The notation used in the

first-principles model is given in Table 4.1.

The following elementary assumptions are made:

• Discretization of time. Time is divided into large blocks of time that are further divided

into equally sized slots. During each time slot, each link is either sends or doesn’t.

• Partial carrier sensing. Due to carrier sensing, there exists a fixed probability cij that

if link j is sending during a time slot, then the slot is not available for link i to send,

when all other links are not sending.

• Partial receiving interference. There exists a fixed probability aij that if links i and

j send during a time slot, then link i does not successfully receive the data, when all

other links are not sending. Also, due to inherent loss, there exists a fixed probability

23

si Sending rate of link i.
ri Receiving rate of link i.
di Delivery ratio of link i.
aij Receiving interference probability of link j interfering with

link i.
cij Carrier sensing probability of link j being sensed by link i.
Si Effective sending rate of all other links as observed by link i.
Ri Effective (receiving) interference rate at link i due to all other

links.
Ki Set of links that contend with link i.
|p| Number of elements in set p.
p1\p2 Set of elements in p1 but not in p2.
P(p) Set of all subsets of p except the empty set.
Pz(p) Set of all subsets of p with |p| = z.
fi(p) Sending rate product of links in p at link i.
f ′
i(p) Interference rate product of links in p at link i.
gi(p) Free space term of links in p at link i.
h(p) Independence of links in p.
φi(p) Transparency of link i to links in p.

Table 4.1: Notation used in the first-principles model.

di that if link i sends data during a time slot, then it will be successfully received, when

no other link is sending.

• Uniform random selection. For each time block T , each link has a set F ⊂ T of

available time slots in which to send, and a set X ⊂ F when it does send. Each t ∈ F

has an equal probability of being in X .

• Negligible indirect scheduling. Using the notation from the above assumption, if link i

carrier senses links j and k sending during Xj , Xk ⊂ T , respectively, then dependencies

of Xj ∪Xk on the sending times of any link l 6= i, j, k is negligible.

When considering the effective rate of links j and k as perceived by link i, realistically

there may be some other link l (or even a set of other links) that cause the rates of j and k

to overlap more or less than usual, which could in turn affect how much link i can send. The

last assumption simply states that these effects are negligible. We recognize that it could

24

Contention graph

Overlapping rates

Figure 4.1: The contention graph of an example network, where one link in the middle contends with two
outer links. If links 1 and 3 have rates of 1/2, and send at random times, then their effective rate or union
will be 3/4 on average.

have some impact on the accuracy of the model, but fine tuning the model in this way will

not be addressed in this thesis.

4.1 A Simple Example

Here we present a simple example to illustrate the design concepts behind the first-principles

model. Consider the contention graph in Figure 4.1. Let us assume that at time k the rates

are set at s1[k] = s3[k] = 1/2 and s2[k] = 0. What is the effective rate S2 of links 1 and 3, as

measured by link 2? The maximal clique model (2.1) suggests that S2 = max(s1, s3) = 1/2.

This implies that signals s1 and s3 overlap perfectly. If they didn’t overlap at all, then

S2 = s1 + s3 = 1. In reality, there is some random overlap between the two. If we assume

that the slots within the time block k during which 1 and 3 send are chosen at random, then,

on average, half of the slots chosen by 1 will also be chosen by 3. Thus they overlap 1/4 of

the total time, and the effective rate is S2 = 3/4.

In general, the effective rate S2 actually depends on how much link 2 is sending, since

it limits the available space over which links 1 and 3 can choose random sending times. It

should be easy to see that as s2 increases, s1 and s3 will overlap more, which lowers S2. The

25

resulting formula is

S2[k] = s1[k] + s3[k]−
s1[k]s3[k]

1− s2[k]
. (4.1)

If we assume some kind of delay of link 2 affecting how much the others overlap, the dynamic

system would behave according to

s2[k + τ] ≤ 1− S2[k] (4.2)

for some delay τ . The equilibrium constraint is

s2 + S2 ≤ 1. (4.3)

4.2 Union of Uniform Random Sets

A link’s sending rate is restricted by how much it senses that others are sending, in other

words, their effective rate. Our goal is to find a formula for this effective rate by calculating

the union of each random set representing a link’s sending times. We begin by defining a

uniform random set:

Definition 1. Let T and F ⊂ T be finite sets. Also let ξt : Ω → {0, 1} for all t ∈ T be a

collection of i.i.d. random variables on the probability space (Ω,A, P). Then X : Ω → 2T ,

where

X(ω) = {t ∈ F : ξt(ω) = 1} , (4.4)

is a uniform random set on F . Moreover, if F is a random set, then

X(ω) = {t ∈ F (ω) : ξt(ω) = 1} (4.5)

also defines a uniform random set on F . The set F is called the parent of X.

26

The deterministic set T can be considered as the entire time block. If link i sends at

rate si, link j hears cjisi of T being occupied. Thus the cijsj that link i hears must be a

random set chosen from a subset of T , namely during which j did not hear i. For this reason

we include in the definition of a uniform random set a parent set, or free space F , to which

it is restricted.

Now consider another link k adding to the effective rate that i senses. The effective

rates of j and k by themselves overlap in the total effective rate a certain amount depending

on how much they sense each other. In this sense, the above definition still does not fully

explain the interaction of uniform random sets. We thus define the independence of uniform

random sets:

Definition 2. Let X be a collection of uniform random sets with parents F, enumerated by

N = {1, . . . , n}. Then their independence is

h(N) = Et∈∩F

[

Pr(t ∈ ∩X)
∏

i∈N Pr(t ∈ Xi ∩ F)

]

, (4.6)

where E denotes the expected value.

Let | · | denote the expected size of a random set. Averaging over all t in ∩F, we have

from (4.6) that

Pr(t ∈ ∩X) = h(N)
∏

i∈N

Pr(t ∈ Xi ∩ F),

| ∩ X|

| ∩ F|
= h(N)

∏

i∈N

|Xi ∩ F|

| ∩ F|
.

But |Xi ∩ F| is found by multiplying |Xi| by the probability that an element in Fi is also in

∩F:

|Xi ∩ F| =
| ∩ F|

|Fi|
|Xi|

27

so that

| ∩ X| = h(N)| ∩ F|
∏

i∈N

|Xi|

|Fi|
. (4.7)

We can now invoke the inclusion-exclusion principle

∣

∣

∣

∣

∣

⋃

X∈X

X

∣

∣

∣

∣

∣

=
∑

p∈P(X)

(−1)|p|−1

∣

∣

∣

∣

∣

⋂

X∈p

X

∣

∣

∣

∣

∣

(4.8)

to find the size of the union of many uniform random sets.

Theorem 1. Let X be a collection of uniform random sets with parents F, enumerated by

N = {1, . . . , n}. Then

|∪X| =
∑

p∈P(N)

(−1)|p|−1

(

∏

i∈p

|Xi|

)

∣

∣

∣

⋂

i∈p Fi

∣

∣

∣

∏

i∈p |Fi|
h(p). (4.9)

Proof. The result follows from (4.7) and (4.8).

4.3 Constraints

The sending constraint is given by

si + Si ≤ 1, ∀i ∈ L, (4.10)

where

Si =
∑

p∈P(Li)

(−1)|p|−1fi(p)gi(p)h(p), (4.11)

fi(p) =
∏

j∈p

cijsj, (4.12)

gi(p) =
φi(p)

∏

j∈p φi(j)
, (4.13)

28

φi(p) = 1− si
∑

p′∈P(p)

(−1)|p
′|−1
∏

j∈p′

cji, (4.14)

and the independence is given by

h(p) =
∏

{i,j}∈P2(p)

(1− cij − cji + cijcji). (4.15)

The receiving constraint is given by

ri = di(1− Ri)si, (4.16)

where

Ri =
∑

p∈P(Li)

(−1)|p|−1f ′
i(p)h(p) (4.17)

and

f ′
i(p) =

∏

j∈p

aijsj . (4.18)

Note that (4.15) is an approximation of (4.6). If one link carrier senses another link

completely (cij = 1) then their random sets do not intersect. If any two random sets in p do

not intersect, then the intersection of p is empty, which means that h(p) should equal zero.

Only when all random sets are independent should it equal one.

The formulas for Si and Ri follow immediately from Theorem 1. In the case of Ri,

since there is no intermediary correlating link for the interferers, F is the entire space with

size 1. However, for Si, we need to derive gi(p), which corresponds to the term of free spaces

F in the theorem.

Link j observes a free space Fj of size 1− cjisi, in which link i observes an occupied

space Xj of size cijsj. The free space Fj consists of a portion during which link i is not

sending, denoted Γ, and a portion during which link i is sending but not heard by j, denoted

29

Ψj . Their sizes are given by

|Γ| = 1− si

and

|Ψj | = (1− cji)si.

Let F (p) = ∩j∈pFj and Ψ(p) = ∩j∈pΨj. Then, since every Ψj is an independent uniform

random set within a common space of size si, we have by way of (4.7),

|Ψ(p)| =

∏

j∈p |Ψj|

s
|p|−1
i

= si
∏

j∈p

(1− cji).

Thus

φi(p) := |F (p)| = |Γ|+ |Ψ(p)|

= 1− si + si
∏

j∈p

(1− cji)

= 1− si
∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji.

We call this function the transparency of i to p, and use it to simplify the notation in gi(p).

As a side note, it is straightforward to incorporate flow constraints into the model as

well, by introducing mappings t(·) from the hop number in the flow to the index of the link

considered. Then

st(m) ≤ rt(m−1) (4.19)

for each hop m and each flow mapping t ensures that no subsequent hop sends more than it

receives.

30

4.4 Objective

The objective function for the first-principles model is again the sum of the log of receiving

rates, as in (3.3) for the partial interference model.

31

32

Chapter 5

Reduction of the First-Principles Model to the Classical Models

We must prove that the first-principles model reduces to the classical models. This is

necessary to guarantee that the more general first-principles model can yield the exact same

constraints as the classical models when there is no partial carrier sensing or interference,

and thus perform at least as well as these models.

5.1 Reduction to the Maximal Clique Model

The first-principles model reduces to the maximal clique model when carrier sensing is binary

and symmetric. In other words, cij = cji ∈ {0, 1}. We prove this by showing that the set of

feasible sending rates in one model is equivalent to the feasible set in the other model.

We first formally define the two sets of feasible rates based on each model:

Definition 3. Given a contention graph (L,C), the set S1 consists of all vectors of sending

rates s that satisfy (2.1).

Definition 4. Given a contention graph (L,C), the set S2 consists of all vectors of sending

rates s that satisfy (4.10), where

Si =
∑

p∈P(Ki)

(

−1

1− si

)|p|−1

h(p)
∏

j∈p

sj

and

h(p) =















0, ∃i, j ∈ p : i ∈ Kj ,

1, otherwise.

33

Theorem 2. Given a contention graph (L,C), S1 = S2.

Proof. First, note that S1 is equivalent to the set of s satisfying

si +max {Si(j) : j ∈ C(i)} ≤ 1, ∀i ∈ L,

where Si(j) =
∑

l∈L(j)\i sl. To show that S1 = S2, it suffices to show that, for any i ∈ L, the

constraint boundary is equivalent in S1 and S2. Thus, letting

si = 1−max {Si(j) : j ∈ C(i)} ,

we seek to show that Si = max {Si(j) : j ∈ C(i)}.

Without loss of generality, let i = 0 and K0 = {1, . . . , n}, where L(1) = {1, . . . , m}

is the most constraining maximal clique and S0(1) =
∑m

j=1 sj . Then

S0 =
∑

p∈P(K0)

(

−1

S0(1)

)|p|−1

h(p)
∏

j∈p

sj

=
n
∑

z=1





∑

p∈Pz(K0)

(

−1

S0(1)

)z−1

h(p)
∏

j∈p

sj





=
n
∑

j=1

sj +
n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj





= S0(1) +
n
∑

j=m+1

sj +
n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 .

We therefore must determine that

n
∑

j=m+1

sj +
n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 = 0. (5.1)

34

Note that h(p) = 0 for any p that has at least two elements from L(1)\{0}, so that

∑

p∈Pz(K0)

h(p)
∏

j∈p

sj = S0(1)
∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj +
∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj.

This is substituted into the argument of the second sum of (5.1) to obtain

(

−1

S0(1)

)z−1
∑

p∈Pz(K0)

h(p)
∏

j∈p

sj =

−
(−1)z−2

S0(1)z−2

∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj +
(−1)z−1

S0(1)z−1

∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj.

The second term above for some z cancels with the first term in the corresponding z + 1

equation, and the first term for z = 2 cancels with
∑n

j=m+1 sj . We need only check that the

second term for z = n goes to zero. By inspection,

∑

p∈Pn(K0\L(1))

h(p)
∏

j∈p

sj = 0,

because |K0\L(1)| < n. Thus, S0 = S0(1) and S1 = S2.

5.2 Reduction to the Partial Interference Model

We now show that when interferers of link i do not contend with each other, (4.16) and

(4.17) from the first-principles model reduce to (3.1) in the partial interference model. To

do this, we present a simple arithmetical theorem:

Theorem 3. For some set L of indices,

∏

j∈L

(1− xj) = 1−
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj . (5.2)

Proof. Without loss of generality, let L = {1, . . . , n}. We prove by induction. The base case

n = 1 holds trivially. Assuming (5.2) holds for n, we need to show that it holds for n + 1.

35

Defining N = L\(n+ 1),

∏

j∈L

(1− xj) = (1− xn+1)
∏

j∈N

(1− xj)

= (1− xn+1)



1−
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj





= 1−
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj − xn+1 +
∑

p∈P(N)

(−1)|p|−1xn+1

∏

j∈p

xj

= 1−
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj .

Applying this result to (3.1) is straightforward, replacing xj with aijsj. Since under

the limiting condition of no contending interferers we have h(p) = 1, we see that (4.16) does

indeed reduce to (3.1).

36

Chapter 6

Solution to the First-Principles Optimization Problem

Again assuming that d is always unity, the first-principles NUM problem is

P : maximize
∑

i∈L

ln ri

subject to ri = (1−Ri)si, ∀i ∈ L,

si + Si ≤ 1, ∀i ∈ L.

(6.1)

Instances of this problem are frequently non-convex, due to the addition and subtraction

of several rational functions in Si, and due to similar reasons in Ri. A branch and bound

solution solves the problem by successively dividing the hypercube in which the feasible set

resides into smaller regions, and evaluating lower and upper bound functions for the optimal

value in each region. The bounds on each region allow one to conclude that some regions

need not be divided further. A good tutorial on branch and bound appears in [25]. Figure 6.1

shows an example decision tree for the branch and bound method.

To implement branch and bound, we need only develop efficient upper and lower

bound functions for each sub-problem of P. Let Pk be the k-th sub-problem of P in the

algorithm. A standard interior point solver Φ operating on Pk is sufficient to get a lower

bound and the corresponding feasible point. To get an upper bound, we need to formulate

a new, convex problem P′ such that its solution is an upper bound to the solution of P.

To begin, we wish to replace the constraint on si in (6.1) with something that is

convex and will enclose the old constraints. This is done by replacing the effective rate Si

with something smaller, since this will leave more room for si to increase. Because Si is the

37

Figure 6.1: An example decision tree for the branch and bound method. Each node adds its extra constraint
to the parent node’s problem. Then lower and upper bounds are calculated. If the upper bound of a node is
lower than the greatest lower bound, it is pruned and the subtree does not need to be considered. The bold
node is the only one at this point that must continue to be partitioned, since all others are pruned.

size of the union of several sets with sizes cijsj, it follows that Si ≥ max cijsj. Finally the

new constraint

si +max
j∈Li

cijsj ≤ 1

is equivalent to the family of constraints

si + cijsj ≤ 1, ∀j ∈ Li,

which are all linear.

Now we must modify the constraint on ri in (6.1). First, note that replacing it with

ri ≤ (1−Ri)si

38

does not change the solution to the problem, since choosing r that does not achieve equality

produces a lower score, and increasing r has no effect on s. We next introduce the variable

yi = ri/si

so that the inequality becomes

yi +Ri ≤ 1.

Then, Ri is replaced in the same manner that Si was replaced, which yields the family of

constraints

yi + aijsj ≤ 1, ∀j ∈ Li.

The change of variables from (s, r) to (s, y) also modifies the appearance of the ob-

jective function to
∑

i∈L

(ln si + ln yi) .

The new, convex problem that bounds P is

P′ : maximize
∑

i∈L

(ln si + ln yi)

subject to yi + aijsj ≤ 1, ∀i, j ∈ L, i 6= j,

si + cijsj ≤ 1, ∀i, j ∈ L, i 6= j.

(6.2)

Let P′
k be the k-th sub-problem of P′ in the algorithm. Then Φ operating on P′

k is sufficient

to get an upper bound. Thus the branch and bound method, supplemented with the bound

functions of Φ(Pk) and Φ(P′
k), solves P with efficient computation at each step.

6.1 Tightening the Upper Bound

The number of nodes that needs to be traversed is limited by pruning those that have upper

bounds lower than the greatest lower bound. Hopefully, the relaxations introduced in P′ are

sufficiently tight that pruning will occur often. Although branch and bound with the upper

39

bound defined thus far is guaranteed to eventually converge, it will still take an exponential

number of iterations, and the pruning may not occur frequently enough to converge in a

reasonable amount of time.

As an example, we implemented the algorithm in MATLAB and ran it on a somewhat

dense topology with 8 links, using a standard PC. We reported the geometric mean of the

receiving rates (3.12) as our performance. After the first iteration, we obtained a lower

bound of 0.13 and an upper bound of 0.41. After approximately 60,000 iterations and 16

hours, the lower bound was still 0.13, and the upper bound was lowered to 0.21. Several

other runs on different topologies also yielded similar results of a long convergence time, a

large gap between the upper and lower bounds, and a lower bound that never moved.

These results revealed two important things about our branch and bound solution.

First, the upper bound was searching over a feasible set much larger than that of the original

problem. Tightening the upper bound could give much smaller gap at the first iteration, and

result in more frequent pruning. Second, using a standard interior point method on the

original non-convex problem might often find the optimal point or a near-optimal point.

Although it is not a proof, the fact that the lower bound is not moving is a good indication

that the non-convex problem is well behaved enough that we can frequently trust the initial

lower bound as the optimal solution.

In order to speed the branch and bound algorithm, and to improve our confidence in

our solution by tightening the gap between the upper and lower bounds, we now explore how

to improve the constraints in P′. First, note that although it is common for real wireless

networks to have cases of partial carrier sensing, most networks will still have a great amount

of binary carrier sensing, especially because many links will share the same sending node.

Thus it is common to still find maximal cliques with c = 1 in the contention graph. The

effective rate Si is larger than the effective rate of any one maximal clique in Li, and the

effective rate of a maximal clique is simply the sum of their perceived rates. Consequently,

40

we can replace the constraint on si in P′ with

si +
∑

j∈Li(k)

cijsj ≤ 1, ∀k ∈ C, (6.3)

where C is the set of strict (c = 1) maximal cliques and Li(k) is the set of all links in clique k

except i.

The same can be done with the constraint on yi in P′. However, even more can

be done. The effective interference Ri is larger than the effective interference of any one

group of independent maximal cliques. A group v of independent maximal cliques is defined

such that, for any two distinct cliques k, l ∈ v, and for any links i ∈ L(k) and j ∈ L(l),

cij = cji = 0. Let V be the set of all groups of independent maximal cliques, and let Ri(v)

be the effective interference of independent cliques in v on link i. From Theorem 3, we know

that

1− Ri(v) =
∏

k∈v



1−
∑

j∈Li(k)

aijsj



 .

We then have

ln yi ≤ ln (1− Ri)

≤ ln (1− Ri(v)) , ∀v ∈ V

= ln
∏

k∈v



1−
∑

j∈Li(k)

aijsj





=
∑

k∈v

ln



1−
∑

j∈Li(k)

aijsj



 ,

so that the constraint

σi −
∑

k∈v

ln



1−
∑

j∈Li(k)

aijsj



 ≤ 0, ∀v ∈ V (6.4)

41

is convex, where σi = ln yi.

The modified problem for the upper bound is then

P′ : maximize
∑

i∈L

(ln si + σi)

subject to σi −
∑

k∈v

ln

(

1−
∑

j∈Li(k)

aijsj

)

≤ 0, ∀i ∈ L, v ∈ V,

si +
∑

j∈Li(k)

cijsj ≤ 1, ∀i ∈ L, k ∈ C.

(6.5)

We implemented this algorithm in MATLAB and ran it on the same topology of 8 links.

After the first iteration, we obtained a lower bound of 0.13 and an upper bound of 0.18.

After approximately 6,000 iterations, the lower bound was still 0.13, and the upper bound

was lowered to 0.17. Although we still suspect the convergence time to be largely affected by

the exponential nature of the search, the initial upper bound achieved is much better than

the original algorithm’s final bound after 60,000 iterations.

6.2 Implementation

In this section, we describe how the branch and bound solution was implemented in Python

and MATLAB. This should not be confused with an implementation of a controller to be de-

ployed in a real wireless network. Such a controller would require a distributed solution with

fast convergence, which we do not have. The major code fragments appear in Appendix A.

The file solve.py is the master program that formulates and solves the problem. It

takes as input a directory in which it expects to find a text file named a (no extension)

which contains the interference factors and another named c which contains the contention

coefficients. The format of each file is whitespace delimited rows, having the appearance of

matrix form. The program produces as output a file in the same directory named matlab.txt.

Below is an example matlab.txt file:

1 First -principles :

2 s = 0.210103 0.140290 0.136273 0.130772 0.132108 0.136342 0.140366 0.215762

3 r = 0.156821 0.133438 0.109429 0.114612 0.110562 0.109800 0.133591 0.155834

42

4 score = 0.126681

5 bound = 0.180474

6 difference = 0.053793

7 threshold = 0.010000

8 certainty = 0.003897

9 radius of uncertainty = 0.154620

10 active regions = 1596

11 initial s = 0.210103 0.140290 0.136273 0.130772 0.132108 0.136342 0.140366 0.215762

12 initial r = 0.210103 0.140290 0.136273 0.130772 0.132108 0.136342 0.140366 0.215762

13 initial score = 0.126681

14 difference b/t initial and best score = 0.000000

15 initial bound = 0.182169

16 difference b/t initial and best bound = 0.001695

17 distance b/t initial and best s = 0.000000

18 iterations = 10000

19 time = 00 : 50 : 41.8

20 time in secs = 3041.779740

21 exit status = -1

22

23 Partial interference:

24 predicted s = 0.177833 0.137870 0.134096 0.122698 0.122698 0.133114 0.136833 0.183827

25 true s = 0.177833 0.137870 0.134096 0.122698 0.122698 0.133114 0.136833 0.183827

26 predicted r = 0.139483 0.131733 0.111183 0.109780 0.105590 0.110560 0.130795 0.140705

27 true r = 0.135809 0.131666 0.109756 0.109780 0.105590 0.109165 0.130730 0.136132

28 predicted score = 0.121720

29 true score = 0.120413

30 difference from optimal = 0.006268

31 distance b/t predicted s and optimal s = 0.016765

32 infeasibility = 0.000000

33

34 Maximal clique :

35 predicted s = 0.216174 0.131616 0.131616 0.110874 0.110874 0.131616 0.131616 0.216174

36 true s = 0.216174 0.131616 0.131616 0.110874 0.110874 0.131616 0.131616 0.216174

37 predicted r = 0.216174 0.131616 0.131616 0.110874 0.110874 0.131616 0.131616 0.216174

38 true r = 0.165112 0.125306 0.106377 0.096907 0.092528 0.106377 0.125306 0.160418

39 predicted score = 0.142745

40 true score = 0.119719

41 difference from optimal = 0.006962

42 distance b/t predicted s and optimal s = 0.011617

43 infeasibility = 0.000000

43

The vectors s and r are the sending and receiving rates. The score and bound are

the lower and upper bounds, respectively, to the solution to the optimization problem. The

threshold is the cutoff at which the branch and bound method stops iterating, that is, when

bound − score < threshold. The certainty is the normalized volume of the hypercube

that has been pruned. The radius of uncertainty is the distance between the best s

found and furthest s reported by the upper bound function among the still active regions.

This distance, as well as the distance between the best s and the initial s, is normalized by

the length of the diagonal of the hypercube. The exit status is 1 for normal, 2 for when

the maximum number of iterations is reached, and -1 for when an error occurred (such as a

particular run of the interior point method not finding a feasible point).

The sections in the output on the classical controllers report both a predicted and

a true value for s, r, and score. The predicted values are those reported by the classical

models, and the true values are estimates of what they would actually obtain if the predicted

s was infeasible. This was estimated by finding the point along the line segment from the

origin to the predicted s at which it crosses the boundary of the feasible set. Then this true

s was used in (4.16) to obtain true r, and consequently true score. The infeasibility

is the fraction of the previously mentioned line segment that lies beyond the boundary of

the feasible set.

The solve.py program creates the necessary constraint functions for MATLAB’s

fmincon optimization tool, and then opens a MATLAB session to run the solve.m script.

This MATLAB script contains the branch and bound algorithm, and also calculates the

information for the classical controllers. A granularity of 1/16 in each dimension of the

vector space was used in the branch and bound algorithm as a cutoff to decide not to search

any deeper in the decision tree. Also, if the upper corner of a region was feasible, its score

was set as both the upper and lower bound. The upper and lower bounds were recorded up

to 6 decimal places.

44

Chapter 7

Performance of the Classical Controllers: Numerical Results

The performance of the classical controllers was compared numerically against the

performance predicted by the first-principles NUM problem for several kinds of topologies.

To do so, we define the optimality of a classical controller as

O = P ′/P ∗, (7.1)

where P ′ is the performance (geometric mean of receiving rates) of the classical controller

and P ∗ is the performance (lower bound) reported by the first-principles NUM problem.

Note that O is simply the inverse of the performance ratio R defined in (3.13). Thus an

optimality of 1 equates to no performance loss despite the inaccuracies in the model with

respect to partial carrier sensing or partial interference.

For the smaller topologies, the branch and bound algorithm converged to within a

difference of 0.01 performance. However, for some of the larger topologies, the algorithm

took too long to converge. We therefore will also report a certainty measure in these cases

according to (7.1), where P ′ is the branch and bound’s lower bound score and P ∗ is the

upper bound score. This measure tells us how much higher the true optimal score might

be, and thus how much worse the optimality of the classical controllers might be. If the

certainty is not reported for a particular topology, then it was very close to 1.

The binary contention graphs for the classical models were built based on the inde-

pendence approximation (4.15). If two links had an independence greater than 0.5, an edge

was drawn between them. For the maximal clique model, a contention edge also needed

45

Figure 7.1: The partial contention/interference graph of the two-link topologies.

to be drawn for high interference values, as we found in §3.4. This was done by defining

a function mimicking the independence, but using a instead of c. An edge was drawn on

the maximal clique model’s contention graph if the multiplication of the two “independence”

functions (a and c) was greater than 0.5.

When computing results over a range of interference factor values a, we omitted any

topologies such that there existed two links i and j where

aij > 1− cij. (7.2)

This is because such topologies cannot occur due to the relationship between a and c. If two

links carrier sense each other well, their sending rates cannot overlap much and therefore

they cannot interfere with each other much.

7.1 Two-Link Topologies

The optimality and infeasibility were measured on the simplest topologies of interest, with

only two links. The partial contention/interference graph of this class of topologies is given

in Figure 7.1. In this figure and subsequent figures, we let solid arrows denote contention

(where the arrow points to the link that is sensing) and dashed arrows denote interference

(where the arrow points to the link being interfered with). The values of a12, a21, c12, and

c21 were permutated over the range of 0 to 1, with granularity of 0.2, omitting the topologies

that were unrealistic according to (7.2). The CDFs of the optimality for both models appear

in Figure 7.2, and the CDFs of the infeasibility appear in Figure 7.3.

46

The maximal clique controller performs above 0.9 optimality in most cases, but many

cases drop well below that, with the worst performing at 0.648 when c12 = c21 = a12 = 0 and

a21 = 0.6. The partial interference controller, on the other hand, almost always performs

above 0.9 optimality, with the worst performing at 0.776 when c12 = 0.4, c21 = 0.6, and

a12 = a21 = 0.

In Figure 7.3, infeasibilities of zero mean that the controllers chose feasible rates.

The CDFs reveal that, not only do the classical controllers dictate rates that are infeasible

approximately half the time, but the infeasible rates are often a non-negligible distance from

the feasible boundary. It is possible that a controller designed to choose rates that are often

physically impossible to achieve will behave unpredictably when deployed on a real network.

The partial interference controller performs well in most cases despite the fact that it

frequently predicts infeasible rates, since as it attempts to reach those rates, it conveniently

saturates at a near-optimal value. Of course, this is assuming that when the controller

is implemented on a real network and the prescribed rates are infeasible, the controller

will saturate at the predicted point. It is quite possible, especially given different initial

rates other than zero, that the controller traverses unfair rates as it moves toward the new

prescribed rates, and thus saturates at extremely unfair rates. These results show that,

giving the controller implementation the benefit of the doubt, it could perform relatively

well in most scenarios.

7.2 Three-Link Topologies

We tested various three-link topologies by choosing the two-link topology with the worst

optimality for the partial interference controller and adding a link to it. We first tested

over all interference factors a both from and to the third link, with a granularity of 0.2,

and c values involving link 3 set to zero. The partial contention/interference graph of this

class of topologies is given in Figure 7.4. Figure 7.5 shows the CDFs of optimality for these

topologies. For the maximal clique controller, optimality is worst at 0.56 when a13 = 0,

47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(a) Maximal clique controller

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(b) Partial interference controller

Figure 7.2: CDFs of the optimality of the classical controllers for the two-link topologies.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Infeasibility

C
D

F

(a) Maximal clique controller

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Infeasibility

C
D

F

(b) Partial interference controller

Figure 7.3: CDFs of the infeasibility of the classical controllers for the two-link topologies.

Figure 7.4: The partial contention/interference graph of the three-link topologies varied over interference.

48

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(a) Maximal clique controller

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(b) Partial interference controller

Figure 7.5: CDFs of the optimality of the classical controllers for the three-link topologies varied over
interference factors a involving link 3, building off of the partial interference controller’s worst case two-link
topology.

a23 = 0.4, a31 = 0.6, and a32 = 0.2. However, several other topologies scored nearly as low,

with a seemingly arbitrary mix of interference factors. Optimality is close to 1 largely for

the cases where there is high interference (a ≥ 0.8) for most or all parameters.

For the partial interference controller, 95% of all cases are at 0.85 optimality or better.

Optimality is worst at 0.72 when a13 = a23 = 0 and a31 = a32 = 1, in other words, when

links 1 and 2 (which are dependent) send near full capacity and interfere completely with

link 3. There is a strict ordering on the optimality based solely on the values of a31 and a32,

or how much the two dependent links interfere with link 3. Surprisingly, this ordering is not

strictly decreasing values of a. For example, the highest optimalities at 0.99 and above are

achieved when a31 and a32 are equal to 0.6 and 0.8 (either order). It is difficult to ascertain

why this happens because the optimality also takes into account how well the controller

makes up for the partial carrier sensing between links 1 and 2.

We also tested over all contention coefficients c both from and to the third link, with

a granularity of 0.2, and a values involving link 3 set to zero. The partial contention/inter-

ference graph of this class of topologies is given in Figure 7.6. Figure 7.7 shows the CDFs of

optimality for these topologies. The two CDFs are identical because without any interference,

49

Figure 7.6: The partial contention/interference graph of the three-link topologies varied over contention.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(a) Maximal clique controller

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(b) Partial interference controller

Figure 7.7: CDFs of the optimality of the classical controllers for the three-link topologies varied over
contention coefficients c involving link 3, building off of the partial interference controller’s worst case two-
link topology.

the two classical models are identical. Optimality is worst at 0.57 when c13 = 0.2, c23 = 0.4,

c31 = 0.4, and c32 = 0.2. In general, the classical controllers lose significant performance

when there is a significant amount of partial carrier sensing in the network (c values not

close to 0 or 1). However, we have seen in the above results of varying the a parameters that

introducing partial interference into a topology plagued with partial carrier sensing usually

results in much better optimality for the partial interference controller.

50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(a) Maximal clique controller

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimality

C
D

F

(b) Partial interference controller

Figure 7.8: CDFs of the optimality of the classical controllers for the partial interference topologies.

7.3 Partial Interference Topologies

The optimality was measured on the same topologies presented in §3.4, to explore the effect

of partial interference. Since the first-principles model differs from the partial interference

model when the interferers contend, the results both for independent interferers and for

fully contending interferers were obtained. The CDFs of the optimality for both classical

models appear in Figure 7.8. These CDFs make it readily apparent that the maximal clique

controller again has low optimality in very many scenarios, and that the partial interference

controller almost always performs at an optimality very close to 1. We also see, however,

that in the very few scenarios it performs poorly, the optimality can be extremely low, as

low as 0.33. We will explore these particular scenarios in more detail.

We also plot the performance ratio R (the inverse of the optimality) using a 3-D graph

for each topology, similar to Figures 3.2, 3.3, and 3.4. Figure 7.9 shows the results for the

maximal clique model. In many scenarios, the maximal clique model behaves very poorly,

as was already confirmed in §3.4.

Figure 7.10 shows the results for the partial interference model. The ratio only in-

creases non-negligibly in the case of multiple dependent interferers with very high interference

51

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.2

1.4

1.6

aI

R

(a) I independent links inter-
fering with a single link.

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.2

1.4

1.6

aI

R

(b) I dependent links interfer-
ing with a single link.

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.2

1.4

aN

R

(c) N contenders in a clique
with one interferer.

2
4

6
8

2
4

6
8
1

1.5

2

2.5

NI

R

(d) N contenders in a clique
with I independent inter-
ferers, a = 0.4.

2
4

6
8

2
4

6
8
1

1.05

1.1

1.15

1.2

NI

R

(e) N contenders in a clique
with I dependent interfer-
ers, a = 0.4.

Figure 7.9: Numerical results for the performance ratio of the first-principles model to the maximal clique
controller in scenarios with partial interference.

factors a, as seen in Figure 7.10(b). This is because, when there is only binary carrier sensing,

the partial interference model only differs from the first-principles model when multiple in-

terferers are contending. When this occurs, the inaccuracy of the partial interference model

is significantly mitigated by smaller values of a. Note, however, that when this less common

scenario occurs R can be as high as 3, meaning an optimality as low as 0.33.

7.4 Partially Dependent Interferers

Another set of topologies we tested over was with I interferers on one link, with a = 1 and

c = 0.5 between the interferers. Figure 7.11 shows the partial contention/interference graph

for this class of topologies. Figure 7.12 plots the optimality of the classical models across

52

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.05

1.1

aI

R

(a) I independent links inter-
fering with a single link.

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.5

2

2.5

3

aI

R

(b) I dependent links interfer-
ing with a single link.

0.2
0.4

0.6
0.8

2
4

6
8

10
1

1.05

1.1

aN

R

(c) N contenders in a clique
with one interferer.

2
4

6
8

2
4

6
8
1

1.05

1.1

NI

R

(d) N contenders in a clique
with I independent inter-
ferers, a = 0.4.

2
4

6
8

2
4

6
8
1

1.05

1.1

NI

R

(e) N contenders in a clique
with I dependent interfer-
ers, a = 0.4.

Figure 7.10: Numerical results for the performance ratio of the first-principles model to the partial inter-
ference controller in scenarios with partial interference.

Figure 7.11: The partial contention/interference graph of the topologies with partially dependent interfer-
ers. Contention between the I interferers is c = 0.5 and interference on link 0 is a = 1.

53

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Interferers

O
pt

im
al

ity

Partial Interference
Maximal Clique

Figure 7.12: Optimality of classical models for partially dependent interferers on one link with a = 1,
where c = 0.5 among interferers.

Figure 7.13: The network graph of the chain topology.

values of I. Only when I = 2 does the partial interference controller have significantly low

optimality, whereas the maximal clique controller always does poorly. These results show

that when contention between interferers is only partial, the partial interference controller

performs much better in the face of complete interference (a = 1) than it does when interfer-

ers are completely dependent. The negative impact is most significant when I = 2 because

with more interferers, the interferers send and receive at rates closer to that of the link being

interfered with (due to more contention between them). Thus at I = 2 the disparity between

the receiving rate of the heavily interfered link and the interfering links is largest and most

unfair.

7.5 Chain Topology

The chain topology has a network graph of 5 nodes along a line, and active links both ways

between each node, as seen in Figure 7.13. Since many of the links are connected by a node,

there is a significant amount of perfect contention (c = 1), typical of a real network. It is

easier to describe the exact topology of the contention/interference graph by displaying the

54

a and c values in matrix form:

a =













































0.0 0.0 0.0 0.4 0.2 0.4 0.4 0.3

0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1

0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.4

0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2

0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.4

0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0

0.3 0.4 0.4 0.4 0.4 0.0 0.0 0.0













































, (7.3)

c =













































0.0 1.0 1.0 0.6 0.6 0.3 0.3 0.0

1.0 0.0 1.0 1.0 1.0 0.6 0.6 0.3

1.0 1.0 0.0 1.0 1.0 0.6 0.6 0.3

0.6 1.0 1.0 0.0 1.0 1.0 1.0 0.6

0.6 1.0 1.0 1.0 0.0 1.0 1.0 0.6

0.3 0.6 0.6 1.0 1.0 0.0 1.0 1.0

0.3 0.6 0.6 1.0 1.0 1.0 0.0 1.0

0.0 0.3 0.3 0.6 1.0 1.0 1.0 0.0













































. (7.4)

Essentially, values were chosen to reflect the distances between nodes in Figure 7.13. Note

that (due to the proximity ordering chosen for the links) basing the parameters a and c on

distance results in a nearly banded diagonal structure in the matrices.

The maximal clique controller achieved an optimality of 0.861. The partial interfer-

ence controller achieved an optimality of 0.978. It is possible that the true optimalities are

much worse, since the certainty of the first-principles branch and bound solution is only

0.709. However, based on the lengthy runs of the branch and bound algorithm as discussed

in §6.1, we believe it is unlikely that the true optimal score is closer to the upper bound,

55

Figure 7.14: The network graph of the mesh topology. Vertices are network nodes or routers. The
numbered directed edges are the active links in the network at some given moment. This network was
constructed based on the positioning of nodes on one floor of a real mesh network deployed in a building. It
can be thought of as a multi-hop Internet access network for users, where nodes X and Y are the access points
to the cloud. Note that just about any subset of the pairs of nodes could be the links that are simultaneously
active, and the choice for this particular problem is somewhat arbitrary. Keep in mind also that, although
with the depicted active links it appears to be two adjacent networks, they do indeed contend and interfere
with each other.

and may very well be precisely at the lower bound. The branch and bound algorithm ran

on this topology for approximately 16 hours and 60,000 iterations.

7.6 Mesh Topology

Finally, we created a scenario that could be viewed as a typical flow of traffic through a

mesh network providing Internet access to users, depicted in Figure 7.14. The constructed

parameters of c and a between nodes are reported in Table 7.1, in the format cMN for how

much node M senses node N , and aQMN for how much node Q interferes with transmissions

from M to N . Values not shown are zero. We report contention and interference on a per-

node basis for this network because it is more compact and it is actually the measurements

one would obtain on a real network if following the methodology in [21]. With these values,

56

cDA = 0.97 cAD = 0.97
cAX = 1.00 cXA = 1.00
cXE = 0.98 cEX = 0.98
cY H = 0.90 cHY = 0.93
cDX = 0.64 cXD = 0.84
cDE = 0.88 cED = 0.81
cAE = 0.40 cEA = 0.33
cEH = 0.08 cHE = 0.21
cEY = 0.40 cY E = 0.55
aXDA = 0.16 aEDA = 0.10
aEAX = 0.60 aYAX = 0.22
aDXE = 0.16 aYXE = 0.71
aHXE = 0.04 aAEF = 0.07
aYEF = 0.05 aHEF = 0.18
aXHY = 0.31 aEHY = 0.50
aEYH = 0.28 aYHG = 0.03
aEHG = 0.45 aHY C = 0.04
aEY C = 0.26 aXY C = 0.21
aXYB = 0.83 aEY B = 0.40

Table 7.1: Parameters in the mesh topology.

and with the facts that two links with the same sending node contend perfectly and cannot

interfere, the appropriate c and a values between links are implied.

Like the chain topology, the mesh topology has a good mix of partial and binary

contention, with some partial interference. The maximal clique controller obtained 0.924

optimality, the partial interference controller obtained 0.97 optimality, and the branch and

bound algorithm returned a certainty of 0.807 for the optimal score, after running for several

days and approximately 78,000 iterations. As a side note, a certainty of 0.795 was obtained

after only a few minutes, and the lower bound never moved (as was the case for all topologies

in this thesis).

7.7 Summary of Results

The take-home message of all these numerical results is that the maximal clique controller

usually has significant performance loss, whereas the partial interference controller seems to

57

only have significant performance loss in select topologies where the approximations intro-

duced by the partial interference model sometimes cause the controller to either significantly

under-utilize the medium or significantly starve links. Specifically, we have seen that when

a network is plagued with a lot of partial carrier sensing, but also has very little interfer-

ence, the partial interference model treats the partial carrier sensing as full carrier sensing,

and thus under-utilizes the medium. We have also seen that when a network has several

interferers that can carrier sense each other (near) perfectly, and when that interference is

very strong (nearly 1), the partial interference model will make the mistake of having the

clique of interferers send at or close to the full clique capacity, thus starving the link being

interfered with.

Despite these significant failures in specific instances for the partial interference model

(optimalities as low as 0.33), the results on the larger networks of the chain and mesh

topologies indicate that perhaps these dangerous motifs either do not occur frequently, or

their detriment is washed out by the good performance in other parts of the network. In

both topologies, the partial interference controller scored above 0.97. Of course, the results

of the chain and mesh topologies cannot prove such high optimality for other topologies of

similar size—but combined with the near-exhaustive search over the small topologies, it is a

strong indication that the partial interference model is good enough for the purposes of rate

control.

58

Chapter 8

Conclusion

We have addressed the question of when certain classical rate controllers for wireless

networks fail to perform well due to partial carrier sensing and interference. These classical

controllers are developed using the network utility maximization (NUM) approach, where

a sum of utility functions of the rates is maximized, subject to congestion and interference

constraints. The models differ primarily on how the constraints are formulated, based on

some model of how the MAC layer operates. The two classical models we have studied here

are the maximal clique model, which constrains the sum of rates of mutually contending

links, and the partial interference model, which builds off the former by constraining the

receiving rates according to Niculescu’s model of interference [21].

To discover the situations in which these classical controllers perform sub-optimally,

we developed a model of wireless networks, called the first-principles model, that fully in-

corporates partial carrier sensing and interference, and we showed that it reduces to the

classical models precisely when these effects are ignored. Thus the model predicts the same

constraints as the classical models when these effects are not present, and can only be more

accurate to reality when they are present. This provides us with an optimization problem

that, when solved, gives an optimal score against which the sub-optimal scores of the classical

controllers can be measured.

The first-principles model induces a non-convex problem, which requires a branch

and bound method to solve globally. We have presented a particular branch and bound

method, and we ran it for several network topologies. For larger topologies, the gap between

59

the lower and upper bounds was still significant after running the algorithm for a long time

(uncertainty as low as lower/upper = 0.7), but there were strong indications that the lower

bound was very close to or at the optimal. In most small topologies that had a significant

amount of partial carrier sensing or interference, the maximal clique controller performed

poorly. For example, for the simple two-link topology, iterated over every combination of

parameters, it performed below 0.9 optimality nearly 40% of the time, the worst being 0.648.

The partial interference controller, however, only performed below 0.9 approximately 5% of

the time, its worst being 0.776.

There were still other scenarios in which the partial interference controller performed

very badly. The worst, at 0.33, consisted of two interferers on one link, where the two

interferers could carrier sense each other perfectly (were dependent) and the interference

was full. It also performed as badly as the maximal clique controller in scenarios with

significant partial carrier sensing and no interference, since the two models differ from each

other precisely when there is interference. We found indication that these scenarios, however,

are isolated, meaning that small variations would allow the partial interference model to

perform well again. The dependent interferers would lose their impact quickly when the

interference factor was not close to 1. Even a value of 0.6 would be insignificant. Many

partially contending links would still result in high performance for the partial interference

model in many cases when interference was also introduced into the network. Finally, in the

larger network configurations we tested, the partial interference controller performed above

0.97. We therefore conclude that the partial interference controller is likely good enough in

most networks. But most importantly, we now have a tool to find out if a rate controller

is performing sub-optimally (with respect to partial carrier sensing and interference effects),

and we have discovered the motifs that will most likely be the cause of poor performance for

the classical controllers studied here.

The next step for future research in this area is to test the accuracy of the first-

principles model on real wireless networks, to see if the rates predicted are the rates actually

60

acheived. Furthermore, the tests on a real network could benefit in understanding how rate

controllers behave when the desired rates are actually infeasible. In this thesis, it is simply

assumed that the classical rate controllers, when choosing infeasible rates, still remain fair

in a particular sense. However, it would be interesting to find out, for example, if 802.11

might still starve certain links in such cases.

Concerning the first-principles model and its optimization problem, another interest-

ing area for future research would be to explore ways of utilizing the benefits of the model

to produce a distributed rate controller based on some approximation of the original prob-

lem. This would especially be viable if we knew that interior point methods always gave the

optimal answer or close to it. We have already seen indications in our runs of the branch

and bound algorithm that a simple interior point method might be sufficient. In fact, we

did not find a single case where we ran branch and bound for which the lower bound would

move from its initial value. This may also mean that there exists a convex reformulation

of the optimization problem by a change of variables. If such a reformulation is found, it

would mean that the lower bound in the branch and bound method is provably the optimal

score, and even large networks could be solved with 100% certainty in a very short time. Not

only would this allow for possibly using the problem or an approximation of it to develop

a distributed solution, but it would also allow for exploring numerically many more large

topologies to compare the classical controllers against the optimal.

61

62

Appendix A

Branch and Bound Code

In this appendix, we present primary pieces of code used to implement the branch

and bound algorithm for the first-principles NUM problem, as well as the code for setting up

an instance of the problem and finding the solutions that the classical controllers produce.

The code was tested and debugged by checking both the form of the automated constraint

functions, the branching and pruning steps, and the final output for small problems that

could be verified by hand. Also, bad exit flags set by MATLAB’s fmincon were recorded to

notify the user of an invalid run.

solve.py

This Python code sets up an instance of the problem by creating the appropriate constraint

functions, and then calls the MATLAB script to solve the problem.

1 # solve.py

2

3 """

4 Solves for the best sending and receiving rates of a given topology .

5 Uses proportional fairness over links.

6 """

7

8 import sys

9 import os

10 import time

11 import copy

12

13

14

63

15 # returns 2d (square) list of floats from file

16 def getMatrix (filename):

17 matrix = []

18 f = open(filename)

19 lines = f.readlines ()

20 f.close ()

21 n = len(lines)

22 for i in range (n):

23 row = []

24 stringRow = lines[i]. split ()

25 for j in range(n):

26 row .append (float(stringRow [j]))

27 matrix .append (row)

28 return matrix

29

30 # returns list of floats from file

31 def getRowVector(filename):

32 row = []

33 f = open(filename)

34 lines = f.readlines ()

35 f.close ()

36 stringRow = lines [0]. split ()

37 for j in range (len(stringRow)):

38 row.append (float (stringRow [j]))

39 return row

40

41 def powerSet (li , size =0) :

42 P = [] # List of lists. Power set of li

43 for num in range (1, 2** len(li)):

44 subset = [] # List. Subset of li

45 binNum = bin(num) # Convert to binary string

46 binNum = binNum [2:] # Remove the ’0b’

47 if size != 0: # If subset size matters

48 subsetSize = 0 # Initialize

49 for bit in binNum :

50 if bit == ’1’:

51 subsetSize += 1 # Increment

52 if size != subsetSize : # If not prescribed size

53 continue # Skip this subset

54 while len(binNum) < len(li):

55 binNum = ’0’ + binNum # Include trailing zeros

64

56 for i in range(len(li)):

57 if binNum [i] == ’1’:

58 subset .append (li[i]) # Each ’1’ indicates inclusion of element in li

59 P.append (subset)

60 return P

61

62 # returns string of + if size of p is odd , else -

63 def getSign (p):

64 if len(p)%2 == 1:

65 return ’+’

66 else:

67 return ’-’

68

69 def expandClique(clique , c):

70 expandedCliques = []

71 for i in range (clique [-1]+1, len(c)):

72 canAppend = True

73 for j in clique :

74 if c[i][j] == 0:

75 canAppend = False

76 break

77 if canAppend :

78 expandedClique = list(clique)

79 expandedClique.append (i)

80 expandedCliques.append (expandedClique)

81 return expandedCliques

82

83 def subsetOf (testClique , clique):

84 for i in testClique :

85 if i not in clique :

86 return False

87 return True

88

89 def contained (testClique , cliques):

90 for clique in cliques :

91 if subsetOf (testClique , clique):

92 return True

93 return False

94

95 # c is the contention graph (or matrix)

96 def getMaximalCliques(c):

65

97 cliques = []

98 maxCliques = []

99 for i in range (len(c)):

100 cliques .append ([i])

101 while len(cliques) > 0:

102 clique = cliques .pop (0)

103 expandedCliques = expandClique(clique , c)

104 if len(expandedCliques) == 0:

105 if not contained (clique , cliques) and not contained (clique , maxCliques):

106 maxCliques .append (clique)

107 else:

108 for newClique in expandedCliques:

109 cliques .append (newClique)

110 return maxCliques

111

112 # cleans up string representation of float (getting rid of redundant zeros)

113 def formatFloat (x):

114 f = ’%f’ % x

115 if f.startswith (’0.’):

116 f = f[1:]

117 if f.find(’.’) == -1:

118 return f

119 while f.endswith (’0’):

120 f = f[0: -1]

121 if f.endswith (’.’):

122 f = f[0: -1]

123 if f == ’’:

124 return ’0’

125 return f

126

127 # ###

128

129 class Solver :

130

131 def __init__ (self , a, c, path):

132 self.a = a

133 self.c = c

134 self.n = len(a)

135 self.constraintsIndex = 0;

136 self.altConstraintsIndex = 0;

137 self.bensaouConstraintsIndex = 0;

66

138 self.wangConstraintsIndex = 0;

139 self.path = path

140

141 self.contention = self.findContentionGraph ()

142 self.bensaouContention = self. findBensaouContentionGraph ()

143 self.wangContention = self. findWangContentionGraph ()

144

145 self.cliques = self.findMaxCliques()

146 self.bensaouCliques = self. findBensaouMaxCliques ()

147 self.wangCliques = self. findWangCliques()

148

149 self.independentCliqueSets = self.findIndependentCliqueSets ()

150

151 def run(self):

152 self.writeMatlabCode()

153 cmd = ’matlab -nodisplay -nodesktop -nojvm -nosplash -r " solve_no_memory(%d, \’%s\’)

;quit"’ % (self.n, self.path)

154 # os.system (cmd)

155

156 # writes the preliminary m-files

157 def writeMatlabCode(self):

158 self.writeConstraints ()

159 self.writeAltConstraints ()

160 self.writeReceivingRates ()

161 self.writeBensaouConstraints ()

162 self.writeWangConstraints ()

163 self.writeWangReceivingRates ()

164

165 def findContentionGraph (self):

166 contention = []

167 for i in range(self.n):

168 contention .append ([])

169 for j in range(self.n):

170 contention [-1]. append (0)

171 for i in range(self.n):

172 for j in range(i+1, self.n):

173 if self.indep(i, j) == 0:

174 contention [i][j] = 1

175 contention [j][i] = 1

176 return contention

177

67

178 def findBensaouContentionGraph (self):

179 contention = []

180 for i in range(self.n):

181 contention .append ([])

182 for j in range(self.n):

183 contention [-1]. append (0)

184 for i in range(self.n):

185 for j in range(i+1, self.n):

186 if self.indep(i, j)*self.indepRecv (i, j) < 0.5:

187 contention [i][j] = 1

188 contention [j][i] = 1

189 return contention

190

191 def findWangContentionGraph (self):

192 contention = []

193 for i in range(self.n):

194 contention .append ([])

195 for j in range(self.n):

196 contention [-1]. append (0)

197 for i in range(self.n):

198 for j in range(i+1, self.n):

199 if self.indep(i, j) < 0.5:

200 contention [i][j] = 1

201 contention [j][i] = 1

202 return contention

203

204 # get all maximal cliques for the strict contention graph of the first -principles model

205 def findMaxCliques(self):

206 return getMaximalCliques(self.contention)

207

208 # get all maximal cliques for the contention graph of the Bensaou model

209 def findBensaouMaxCliques (self):

210 return getMaximalCliques(self. bensaouContention)

211

212 # get all maximal cliques for the contention graph of the Wang model

213 def findWangCliques(self):

214 return getMaximalCliques(self. wangContention)

215

216 # get all sets of maximal sets of independent cliques for the strict contention graph

217 def findIndependentCliqueSets (self):

218 cliqueSets = []

68

219 maxCliqueSets = []

220 for i in range(self.n):

221 cliqueSets .append ([[i]])

222 while len(cliqueSets) > 0:

223 cliqueSet = cliqueSets .pop (0)

224 expandedCliqueSets = self. expandCliqueSet(cliqueSet)

225 if len (expandedCliqueSets) == 0:

226 if not self.contained (cliqueSet , cliqueSets) and not self.contained (

cliqueSet , maxCliqueSets):

227 maxCliqueSets.append (cliqueSet)

228 else:

229 for newCliqueSet in expandedCliqueSets:

230 cliqueSets .append (newCliqueSet)

231 return maxCliqueSets

232

233 def writeConstraints(self):

234 f = open(’constraints .m’, ’w’)

235 f.write (’function [C,Ceq] = constraints (x)\n\nn = length (x);\ns = x(1:n/2) ;\ny = x(n

/2+1:n);\n\nCeq = [];\n\n’)

236 for i in range(self.n):

237 f.write(self.getSendConstraint(i))

238 for i in range(self.n):

239 f.write(self.getRecvConstraint(i))

240 f.write (’\nfor i = 1: length (C)\nif ~(C(i) < inf)||imag(C(i))~=0\nC(i) = 1000;\ nend\

nend ’)

241 f.close ()

242

243 def writeAltConstraints (self):

244 f = open(’altConstraints.m’, ’w’)

245 f.write (’function [C,Ceq] = altConstraints(x)\n\nn = length (x);\ns = x(1:n/2) ;\ny =

x(n/2+1:n);\n\nCeq = [];\n\n’)

246 for i in range(self.n):

247 f.write(self.getAltSendConstraints (i))

248 for i in range(self.n):

249 f.write(self.getAltRecvConstraints (i))

250 f.write (’\nfor i = 1: length (C)\nif ~(C(i) < inf)||imag(C(i))~=0\nC(i) = 1000;\ nend\

nend ’)

251 f.close ()

252

253 def writeReceivingRates (self):

254 f = open(’receivingRates.m’, ’w’)

69

255 f.write (’function r = receivingRates(s)\n\n’)

256 for i in range(self.n):

257 f.write(’r(%d) = s(%d)’ % (i+1, i+1))

258 R = self.getR(i)

259 if R != ’0’:

260 f.write(’*(1 -(% s))’ % R)

261 f.write(’;\n’)

262 f.close ()

263

264 def writeBensaouConstraints (self):

265 f = open(’bensaouConstraints.m’, ’w’)

266 f.write (’function [C,Ceq] = bensaouConstraints(s)\n\nCeq = [];\n\n’)

267 for clique in self. bensaouCliques:

268 f.write(self.getBensaouSendConstraint (clique))

269 f.close ()

270

271 def writeWangConstraints (self):

272 f = open(’wangConstraints.m’, ’w’)

273 f.write (’function [C,Ceq] = wangConstraints(s)\n\nCeq = [];\n\n’)

274 for clique in self. wangCliques :

275 f.write(self.getWangSendConstraint (clique))

276 f.close ()

277

278 def writeWangReceivingRates (self):

279 f = open(’wangReceivingRates.m’, ’w’)

280 f.write (’function r = wangReceivingRates(s)\n\n’)

281 for i in range(self.n):

282 f.write(’r(%d) = s(%d)’ % (i+1, i+1))

283 for j in range(self.n):

284 if i != j and self.a[i][j] != 0:

285 f.write (’*(1-%s*s(%d))’ % (formatFloat (self.a[i][j]), j+1))

286 f.write(’;\n’)

287 f.close ()

288

289 # independence of two links i and j

290 def indep(self , i, j):

291 return 1.0 - self.c[i][j] - self.c[j][i] + self.c[i][j]* self.c[j][i]

292

293 # independence of two links i and j by receving rates , as measured by a values (not c

values)

294 def indepRecv (self , i, j):

70

295 return 1.0 - self.a[i][j] - self.a[j][i] + self.a[i][j]* self.a[j][i]

296

297 def expandCliqueSet(self , cliqueSet):

298 expandedCliqueSets = []

299 first = 1 + cliqueSet [-1][-1]

300 for i in range(first , self.n):

301 expandedCliqueSet = cliqueSet [:]

302 isCliqueCount = 0

303 canAppend = True

304 for j in range(len(expandedCliqueSet)):

305 clique = expandedCliqueSet[j][:]

306 if self. isDependent (i, clique): # make function

307 isCliqueCount += 1

308 clique .append (i)

309 expandedCliqueSet[j] = clique

310 elif not self. isIndependent(i, clique): # make function

311 canAppend = False

312 break

313 if isCliqueCount > 1:

314 canAppend = False

315 break

316 if not canAppend :

317 continue

318 if isCliqueCount == 0:

319 expandedCliqueSet.append ([i])

320 expandedCliqueSets.append (expandedCliqueSet)

321 return expandedCliqueSets

322

323 def contained (self , testCliqueSet , cliqueSets):

324 li1 = []

325 for c in testCliqueSet:

326 for i in c:

327 li1.append (i)

328 for cliqueSet in cliqueSets :

329 li2 = []

330 for c in cliqueSet :

331 for i in c:

332 li2.append (i)

333 if subsetOf (li1 , li2):

334 return True

335 return False

71

336

337 def getSendConstraint(self , i):

338 self.constraintsIndex += 1

339 S = self.getS(i)

340 constraint = ’C(%d) = -1+s(%d)’ % (self.constraintsIndex , i+1)

341 if S != ’0’:

342 constraint += S

343 constraint += ’;\n’

344 return constraint

345

346 def getRecvConstraint(self , i):

347 self.constraintsIndex += 1

348 R = self.getR(i)

349 constraint = ’C(%d) = -1+y(%d)’ % (self.constraintsIndex , i+1)

350 if R != ’0’:

351 constraint += ’+’ + R

352 constraint += ’;\n’

353 return constraint

354

355 def getAltSendConstraints (self , i):

356 constraints = ’’

357 for clique in self.cliques :

358 constraints += self. getAltSendConstraint(i, clique)

359 return constraints

360

361 def getAltRecvConstraints (self , i):

362 constraints = ’’

363 for cliqueSet in self. independentCliqueSets :

364 constraints += self. getAltRecvConstraint(i, cliqueSet)

365 return constraints

366

367 def getBensaouSendConstraint (self , clique):

368 self.bensaouConstraintsIndex += 1

369 constraint = ’C(%d) = -1’ % self. bensaouConstraintsIndex

370 for i in clique :

371 constraint += ’+s(%d)’ % (i+1,)

372 constraint += ’;\n’

373 return constraint

374

375 def getWangSendConstraint (self , clique):

376 self.wangConstraintsIndex += 1

72

377 constraint = ’C(%d) = -1’ % self. wangConstraintsIndex

378 for i in clique :

379 constraint += ’+s(%d)’ % (i+1,)

380 constraint += ’;\n’

381 return constraint

382

383 # returns true if adding i to clique still makes it a clique

384 def isDependent (self , i, clique):

385 for j in clique :

386 if self.contention [i][j] == 0:

387 return False

388 return True

389

390 # returns true if i is not connected to any element in clique

391 def isIndependent(self , i, clique):

392 for j in clique :

393 if self.contention [i][j] == 1:

394 return False

395 return True

396

397 def getS(self , i):

398 S = ’’

399 for subset in powerSet (self.L(i)):

400 h = self.getH(subset)

401 f = self.getF(i, subset)

402 if h == ’0’ or f == ’0’:

403 continue

404 S += getSign (subset) + f

405 g = self.getG(i, subset)

406 if g != ’1’:

407 S += ’*’ + g

408 if h != ’1’:

409 S += ’*’ + h

410 if S == ’’:

411 S = ’0’

412 return S

413

414 def getR(self , i):

415 R = ’’

416 for subset in powerSet (self.L(i)):

417 h = self.getH(subset)

73

418 fp = self.getFp (i, subset)

419 if h == ’0’ or fp == ’0’:

420 continue

421 sign = getSign (subset)

422 R += ’%s%s’ % (sign , fp)

423 if h != ’1’:

424 R += ’*%s’ % h

425 if R == ’’:

426 return ’0’

427 if R.startswith (’+’):

428 R = R[1:]

429 return R

430

431 def getAltSendConstraint (self , i, clique):

432 S = ’’

433 for j in clique :

434 if j == i:

435 continue

436 if self.c[i][j] == 0:

437 continue

438 if self.c[i][j] == 1:

439 S += ’+s(%d)’ % (j+1,)

440 else:

441 S += ’+%s*s(%d)’ % (formatFloat (self.c[i][j]), j+1)

442 if S == ’’:

443 return ’’

444 self.altConstraintsIndex += 1

445 constraint = ’C(%d) = -1+s(%d)%s;\n’ % (self. altConstraintsIndex , i+1, S)

446 return constraint

447

448 def getAltRecvConstraint (self , i, cliqueSet):

449 logs = ’’

450 for clique in cliqueSet :

451 R = ’’

452 for j in clique :

453 if j == i:

454 continue

455 if self.a[i][j] == 0:

456 continue

457 if self.a[i][j] == 1:

458 R += ’-s(%d)’ % (j+1,)

74

459 else:

460 R += ’-%s*s(%d)’ % (formatFloat (self.a[i][j]), j+1)

461 if R != ’’:

462 logs += ’-log (1%s)’ % R

463 if logs == ’’:

464 return ’’

465 self.altConstraintsIndex += 1

466 constraint = ’C(%d) = log(y(%d))%s;\n’ % (self.altConstraintsIndex , i+1, logs)

467 return constraint

468

469 # returns list of ints from 0 to n-1 excluding i

470 def L(self , i):

471 li = range (self.n)

472 li.pop(i)

473 return li

474

475 # returns string for h function

476 def getH(self , p):

477 pairs = powerSet (p, 2)

478 # iterate through c values , if any c=1, just return ’0’

479 # if all c=0, return ’1’

480 nonzeros = False

481 for (i,j) in pairs:

482 if self.c[i][j] == 1 or self.c[j][i] == 1:

483 return ’0’

484 if (not nonzeros) & (self.c[i][j] != 0 or self.c[j][i] != 0):

485 nonzeros = True

486 if not nonzeros :

487 return ’1’

488 num = 1.0

489 for (i,j) in pairs:

490 num *= self.indep(i, j)

491 return formatFloat (num)

492

493 # returns string for f function

494 def getF(self , i, p):

495 num = 1.0

496 for j in p:

497 if self.c[i][j] == 0.0:

498 return ’0’

499 num *= self.c[i][j]

75

500 f = ’’

501 if num != 1.0:

502 f = formatFloat (num)

503 for j in p:

504 f += ’*s(%d)’ % (j+1,)

505 if f.startswith (’*’):

506 f = f[1:]

507 return f

508

509 # returns string for g function

510 def getG(self , i, p):

511 if len(p) == 1:

512 return ’1’

513 (phi , num) = self.getPhi (i, p)

514 denominator = ’’

515 cancelled = False

516 for j in p:

517 if num == self.c[j][i] and not cancelled :

518 cancelled = True

519 continue

520 if self.c[j][i] != 1.0:

521 denominator += ’(1-%s*s(%d))*’ % (formatFloat (self.c[j][i]), i+1)

522 else:

523 denominator += ’(1-s(%d))*’ % (i+1,)

524 denominator = denominator [0: -1]

525 if cancelled :

526 g = ’1/(%s)’ % denominator

527 else:

528 g = ’(%s)/(% s)’ % (phi , denominator)

529 return g

530

531 # returns string for f prime function

532 def getFp(self , i, p):

533 num = 1.0

534 for j in p:

535 if self.a[i][j] == 0.0:

536 return ’0’

537 num *= self.a[i][j]

538 fp = ’’

539 if num != 1.0:

540 fp = formatFloat (num)

76

541 for j in p:

542 fp += ’*s(%d)’ % (j+1,)

543 if fp.startswith (’*’):

544 fp = fp[1:]

545 return fp

546

547 # returns string for phi function

548 def getPhi (self , i, p):

549 num = 0.0

550 for subset in powerSet (p):

551 product = 1.0

552 for j in subset :

553 product *= self.c[j][i]

554 if getSign (subset) == ’+’:

555 num += product

556 else:

557 num -= product

558 if num != 1.0:

559 phi = ’1-%s*s(%d)’ % (formatFloat (num), i+1)

560 else:

561 phi = ’1-s(%d)’ % (i+1,)

562 return (phi , num)

563

564

565 # ##

566

567 if __name__ == ’__main__ ’:

568 if len(sys.argv) > 2:

569 print ’Usage:’

570 print ’python solve .py [path]’

571 print ’path: relative path in which to find the input files named a and c, also for

output data’

572 print ’a: text file containing receiving interference coefficients’

573 print ’c: text file containing carrier sensing coefficients’

574 print ’Each file must be formatted like a matrix , where each new line depicts a new

row , and each element is delimited by white space.’

575 print ’For n links:’

576 print ’\ta is n x n’

577 print ’\tc is n x n’

578 print ’They must be named a and c, without any file extension .’

579 print ’If no argument is given , the current directory is assumed .’

77

580 print ’Use forward slash (/) for directories , not back slash .’

581 quit ()

582

583 if len(sys.argv) == 1:

584 aPath = ’a’

585 cPath = ’c’

586 path = ’’

587 else:

588 aPath = ’’ + sys .argv [1]

589 cPath = ’’ + sys .argv [1]

590 path = ’’ + sys.argv [1]

591 if not sys .argv [1]. endswith (’/’):

592 aPath += ’/’

593 cPath += ’/’

594 path += ’/’

595 aPath += ’a’

596 cPath += ’c’

597

598 a = getMatrix (aPath)

599 c = getMatrix (cPath)

600

601 if len(a) != len(c):

602 print ’Matrix dimensions must agree.’

603 quit ()

604

605 solver = Solver (a, c, path)

606 solver .run ()

607

608 # ###

609

610 def run_solver (rawpath =’’):

611 if rawpath == ’’:

612 aPath = ’a’

613 cPath = ’c’

614 path = ’’

615 else:

616 aPath = ’’ + rawpath

617 cPath = ’’ + rawpath

618 path = ’’ + rawpath

619 if not rawpath .endswith (’/’):

620 aPath += ’/’

78

621 cPath += ’/’

622 path += ’/’

623 aPath += ’a’

624 cPath += ’c’

625

626 a = getMatrix (aPath)

627 c = getMatrix (cPath)

628

629 if len(a) != len(c):

630 print ’Matrix dimensions must agree.’

631 return -1

632

633 solver = Solver (a, c, path)

634 solver .run ()

635 return 1

solve.m

This is the MATLAB script that has at its heart the branch and bound algorithm. The

algorithm follows the procedure given in [25]. The Region class holds the lower and upper

bound information for a particular region. These lower and upper bounds are calculated by

making calls to the fmincon function in MATLAB’s optimization toolbox.

1 % solve_no_memory.m

2

3 % Does not keep a history of past iterations .

4

5 % N = number of links in network

6 % path = directory (with slash , if not empty string for current directory) to save output

7

8 % When a region is smaller than .1 in every dimension , its upper bound is

9 % set equal to its lower bound , because we don ’t want to search any finer

10 % than that.

11

12 % each iteration does two new regions

13 % each region does one or two calls to fmincon

14

15 % exit status , or flag:

16 % 1 = normal

79

17 % 2 = reached maximum iterations (maxK)

18 % -1 = fmincon produced at least one bad flag

19

20 function solve_no_memory(N, path)

21

22 % user provided parameters

23 eps = 1e-2; % threshold : stop when U - L <= eps

24 maxK = N; % max number of iterations

25 volumeCutoff = 0;

26

27 % start timer

28 tic

29

30 % Bensaou model

31 options = optimset (’Algorithm ’, ’interior -point ’, ’Display ’, ’off ’);

32 [bensaouS , bensaouFval] = fmincon (@bensaouObjective , zeros (1,N), ...

33 [], [], [], [], zeros (1,N), ones(1,N), ...

34 @bensaouConstraints , options);

35

36 % partial interference (wang) model

37 [wangS , wangFval] = fmincon (@wangObjective , zeros (1,N), ...

38 [], [], [], [], zeros (1,N), ones(1,N), ...

39 @wangConstraints , options);

40

41 % initialize

42 k = 1;

43 % Note: rectangle formed by lb and ub is in [s r./s] space.

44 lbinit = zeros (1,2*N);

45 ubinit = ones(1,2* N);

46 regioninit = Region (lbinit , ubinit);

47 regioninit = solveLower (regioninit);

48 regioninit = solveUpper (regioninit);

49 regions = regioninit ;

50 L = regioninit .scorelow ;

51 U = regioninit .scorehi ;

52 sBest = regioninit .slow;

53 rBest = regioninit .rlow;

54 sinit = regioninit .slow;

55 rinit = regioninit .rlow;

56 Linit = L;

57 Uinit = U;

80

58 totalVolumePruned = 0;

59 flag = checkFlags (regioninit); % Keeps track if any one fmincon produced a bad flag

60

61 % display progress

62 clc

63 fprintf (’time = %s\n’, secs2hms (toc));

64 fprintf (’iteration = %d\n\n’, k);

65 fprintf (’upper = %f\n’, U);

66 fprintf (’lower = %f\n\n’, L);

67 fprintf (’certainty = %f\n’, totalVolumePruned);

68 fprintf (’regions = %d\n’, length (regions));

69

70 while U-L > eps && k < maxK

71 % branch

72 if totalVolumePruned < volumeCutoff

73 [region , n] = getLargestRegion(regions);

74 if sameVector (region .xlow , region .ub)

75 [region , n] = getNextRegion(regions , U);

76 end

77 else

78 [region , n] = getNextRegion(regions , U);

79 end

80 [reg1 , reg2] = split (region);

81 regions = [regions (1:n-1) , regions (n+1: end), reg1 , reg2];

82 % bound

83 [L, sBest , rBest] = maxScorelow (regions);

84 U = maxScorehi (regions);

85 % prune

86 [regions , volPruned] = prune(regions , L);

87 totalVolumePruned = totalVolumePruned + volPruned ;

88 % check flags

89 flag = min(flag , checkFlags (reg1));

90 flag = min(flag , checkFlags (reg2));

91 % iterate

92 k = k+1;

93 % display progress

94 clc

95 fprintf (’time = %s\n’, secs2hms (toc));

96 fprintf (’iteration = %d\n\n’, k);

97 fprintf (’upper = %f\n’, U);

98 fprintf (’lower = %f\n\n’, L);

81

99 fprintf (’certainty = %f\n’, totalVolumePruned);

100 fprintf (’regions = %d\n’, length (regions));

101 end

102

103 % values to report

104 if k == maxK && flag == 1

105 flag = 2;

106 end

107 s = sBest ;

108 r = rBest ;

109 score = L;

110 bound = U;

111 difference = bound - score;

112 numActiveRegions = length (regions);

113 certainty = totalVolumePruned;

114 [furthestS , radius] = getFurthest (s, regions);

115 initialS = sinit;

116 initialR = rinit;

117 initialScore = Linit;

118 initialBound = Uinit;

119 initialDifference = score - initialScore;

120 distance = norm(s - initialS) / norm(ones(1,N));

121 % Note: distance and radius are normalized by the norm of the 1 vector ,

122 % which is the maximum line distance traversing the unit hypercube (in

123 % s-space).

124 bensaouPredictedS = bensaouS ;

125 [bensaouTrueS , bensaouInfeasibility] = findMaxFeasible(bensaouS);

126 bensaouPredictedR = bensaouPredictedS;

127 bensaouTrueR = receivingRates(bensaouTrueS);

128 bensaouPredictedScore = exp(-bensaouFval /N);

129 bensaouTrueScore = exp(sum(log(bensaouTrueR))/N);

130 bensaouDistance = norm(bensaouPredictedS - s) / norm(ones(1,N));

131 bensaouDifference = score - bensaouTrueScore;

132 wangPredictedS = wangS;

133 [wangTrueS , wangInfeasibility] = findMaxFeasible(wangS);

134 wangPredictedR = wangReceivingRates(wangPredictedS);

135 wangTrueR = receivingRates(wangTrueS);

136 wangPredictedScore = exp (-wangFval /N);

137 wangTrueScore = exp(sum(log(wangTrueR))/N);

138 wangDistance = norm(wangPredictedS - s) / norm(ones(1,N));

139 wangDifference = score - wangTrueScore;

82

140 time = toc;

141

142 % create report

143 txtfile = fopen (strcat (path , ’matlab .txt ’), ’w’);

144 fprintf (txtfile , ’First - principles :\ns =’);

145 fprintf (txtfile , ’ %f’, s);

146 fprintf (txtfile , ’\nr =’);

147 fprintf (txtfile , ’ %f’, r);

148 fprintf (txtfile , ’\nscore = %f\n’, score);

149 fprintf (txtfile , ’bound = %f\n’, bound);

150 fprintf (txtfile , ’difference = %f\n’, difference);

151 fprintf (txtfile , ’threshold = %f\n’, eps);

152 fprintf (txtfile , ’certainty = %f\n’, certainty);

153 fprintf (txtfile , ’radius of uncertainty = %f\n’, radius);

154 fprintf (txtfile , ’active regions = %d\n’, numActiveRegions);

155 fprintf (txtfile , ’initial s =’);

156 fprintf (txtfile , ’ %f’, initialS);

157 fprintf (txtfile , ’\ninitial r =’);

158 fprintf (txtfile , ’ %f’, initialR);

159 fprintf (txtfile , ’\ninitial score = %f\n’, initialScore);

160 fprintf (txtfile , ’difference b/t initial and best score = %f\n’, initialDifference);

161 fprintf (txtfile , ’initial bound = %f\n’, initialBound);

162 fprintf (txtfile , ’difference b/t initial and best bound = %f\n’, initialBound -bound);

163 fprintf (txtfile , ’distance b/t initial and best s = %f\n’, distance);

164 fprintf (txtfile , ’iterations = %d\n’, k);

165 fprintf (txtfile , ’time = %s\n’, secs2hms (time));

166 fprintf (txtfile , ’time in secs = %f\n’, time);

167 fprintf (txtfile , ’exit status = %d\n’, flag);

168 fprintf (txtfile , ’\nPartial interference:\ npredicted s =’);

169 fprintf (txtfile , ’ %f’, wangPredictedS);

170 fprintf (txtfile , ’\ntrue s =’);

171 fprintf (txtfile , ’ %f’, wangTrueS);

172 fprintf (txtfile , ’\npredicted r =’);

173 fprintf (txtfile , ’ %f’, wangPredictedR);

174 fprintf (txtfile , ’\ntrue r =’);

175 fprintf (txtfile , ’ %f’, wangTrueR);

176 fprintf (txtfile , ’\npredicted score = %f\n’, wangPredictedScore);

177 fprintf (txtfile , ’true score = %f\n’, wangTrueScore);

178 fprintf (txtfile , ’difference from optimal = %f\n’, wangDifference);

179 fprintf (txtfile , ’distance b/t predicted s and optimal s = %f\n’, wangDistance);

180 fprintf (txtfile , ’infeasibility = %f\n’, wangInfeasibility);

83

181 fprintf (txtfile , ’\nMaximal clique :\ npredicted s =’);

182 fprintf (txtfile , ’ %f’, bensaouPredictedS);

183 fprintf (txtfile , ’\ntrue s =’);

184 fprintf (txtfile , ’ %f’, bensaouTrueS);

185 fprintf (txtfile , ’\npredicted r =’);

186 fprintf (txtfile , ’ %f’, bensaouPredictedR);

187 fprintf (txtfile , ’\ntrue r =’);

188 fprintf (txtfile , ’ %f’, bensaouTrueR);

189 fprintf (txtfile , ’\npredicted score = %f\n’, bensaouPredictedScore);

190 fprintf (txtfile , ’true score = %f\n’, bensaouTrueScore);

191 fprintf (txtfile , ’difference from optimal = %f\n’, bensaouDifference);

192 fprintf (txtfile , ’distance b/t predicted s and optimal s = %f\n’, bensaouDistance);

193 fprintf (txtfile , ’infeasibility = %f\n’, bensaouInfeasibility);

194 fclose (txtfile);

84

References

[1] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in multihop

wireless ad hoc networks?” IEEE Communications Magazine, vol. 39, no. 6, pp. 130–137,

June 2001.

[2] J. Shi, O. Gurewitz, V. Mancuso, J. Camp, and E. Knightly, “Measurement and model-

ing of the origins of starvation in congestion controlled mesh networks,” in INFOCOM

2008: IEEE International Conference on Computer Communications, April 2008, pp.

1633–1641.

[3] S. Rangwala, A. Jindal, K.-Y. Jang, K. Psounis, and R. Govindan, “Understanding

congestion control in multi-hop wireless mesh networks,” in MobiCom 2008: ACM

International Conference on Mobile Computing and Networking, September 2008, pp.

291–302.

[4] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication networks:

Shadow prices, proportional fairness and stability,” Journal of the Operational Research

Society, vol. 49, no. 3, pp. 237–252, 1998.

[5] S. Low and D. Lapsley, “Optimization flow control—I: Basic algorithm and convergence,”

IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861–874, December 1999.

[6] L. Chen, S. Low, and J. Doyle, “Joint congestion control and media access control design

for ad hoc wireless networks,” in INFOCOM 2005: IEEE International Conference on

Computer Communications, March 2005, pp. 2212–2222.

[7] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference on multi-

hop wireless network performance,” Wireless Networks, vol. 11, no. 4, pp. 471–487,

2005.

[8] Y. Xue, B. Li, and K. Nahrstedt, “Optimal resource allocation in wireless ad hoc net-

works: A price-based approach,” IEEE Transactions on Mobile Computing, vol. 5, pp.

347–364, 2006.

85

[9] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion control, rout-

ing and scheduling design in ad hoc wireless networks,” in INFOCOM 2006: IEEE

International Conference on Computer Communications, April 2006, pp. 1–13.

[10] B. Bensaou and Z. Fang, “A fair MAC protocol for IEEE 802.11-based ad hoc networks:

Design and implementation,” IEEE Transactions on Wireless Communications, vol. 6,

no. 8, pp. 2934–2941, August 2007.

[11] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, and E. Rozner, “Predictable performance opti-

mization for wireless networks,” in SIGCOMM 2008: ACM Conference of the Special

Interest Group on Data Communication, August 2008, pp. 413–426.

[12] L. Wang, D. Ripplinger, A. Rai, S. Warnick, and D. Zappala, “A convex optimization

approach to decentralized rate control in wireless networks with partial interference,” in

CDC 2010: IEEE Conference on Decision and Control, December 2010, pp. 639–646.

[13] I. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE Communications

Magazine, vol. 43, no. 9, pp. S23 – S30, 2005.

[14] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Transactions on

Information Theory, vol. 46, no. 2, pp. 388–404, March 2000.

[15] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification pro-

tocol for IEEE 802.11 wireless networks,” in BROADNETS 2004: International ICST

Conference on Broadband Communications, Networks, and Systems, October 2004, pp.

344–354.

[16] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, and B. Zill, “Estimation of

link interference in static multi-hop wireless networks,” in IMC 2005: ACM SIGCOMM

Conference on Internet Measurement, October 2005, pp. 305–310.

[17] S. M. Das, D. Koutsonikolas, Y. C. Hu, and D. Peroulis, “Characterizing multi-way inter-

ference in wireless mesh networks,” in WiNTECH 2006: ACM International Workshop

on Wireless Network Testbeds, Experimental Evaluation and Characterization, Septem-

ber 2006, pp. 57–64.

[18] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Measurement-based

models of delivery and interference in static wireless networks,” ACM SIGCOMM Com-

puter Communication Review, vol. 36, no. 4, pp. 51–62, 2006.

86

[19] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A general model of wireless

interference,” in MobiCom 2007: ACM International Conference on Mobile Computing

and Networking, September 2007, pp. 171–182.

[20] A. Kashyap, S. Ganguly, and S. R. Das, “A measurement-based approach to modeling

link capacity in 802.11-based wireless networks,” in MobiCom 2007: ACM International

Conference on Mobile Computing and Networking, September 2007, pp. 242–253.

[21] D. Niculescu, “Interference map for 802.11 networks,” in IMC 2007: ACM SIGCOMM

Conference on Internet Measurement, October 2007, pp. 339–350.

[22] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM

Transactions on Networking, vol. 8, no. 5, pp. 556–567, October 2000.

[23] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory of fairness in

network resource allocation,” in INFOCOM 2010: IEEE International Conference on

Computer Communications, March 2010, pp. 1–9.

[24] D. P. Bertsekas, Nonlinear Programming. Belmont, Massachusetts: Athena Scientific,

1995, pp. 598–601.

[25] S. Boyd and J. Mattingley, “Branch and bound methods,” Lecture

notes for EE364b, Stanford University, Winter 2006–07. [Online]. Available:

http://www.stanford.edu/class/ee364b/notes/bb notes.pdf

87

http://www.stanford.edu/class/ee364b/notes/bb_notes.pdf

	Brigham Young University
	BYU ScholarsArchive
	2011-07-22

	Modeling Wireless Networks for Rate Control
	David C. Ripplinger
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 The Maximal Clique Model
	2.1 Constraints
	2.2 Objective
	2.3 Solution and Controller Design

	3 The Partial Interference Model
	3.1 Constraints
	3.2 Objective
	3.3 Solution and Controller Design
	3.4 Comparison to the Maximal Clique Model: Numerical Results
	3.4.1 Performance Metric
	3.4.2 Results

	4 The First-Principles Model
	4.1 A Simple Example
	4.2 Union of Uniform Random Sets
	4.3 Constraints
	4.4 Objective

	5 Reduction of the First-Principles Model to the Classical Models
	5.1 Reduction to the Maximal Clique Model
	5.2 Reduction to the Partial Interference Model

	6 Solution to the First-Principles Optimization Problem
	6.1 Tightening the Upper Bound
	6.2 Implementation

	7 Performance of the Classical Controllers: Numerical Results
	7.1 Two-Link Topologies
	7.2 Three-Link Topologies
	7.3 Partial Interference Topologies
	7.4 Partially Dependent Interferers
	7.5 Chain Topology
	7.6 Mesh Topology
	7.7 Summary of Results

	8 Conclusion
	A Branch and Bound Code
	References

