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ABSTRACT

Outdoor Scenes for Data Visualization

Benjamin A. Hillery
Department of Computer Science, BYU

Master of Science

Recent cognitive research indicates that the human brain possesses special abilities for
processing information relating to outdoor scenes. Simulated outdoor scenes are presented as an
effective method of displaying higher dimensional data in an efficient and comprehensible manner.
We demonstrate novel methods of using outdoor objects and scenes to display multidimensional
content in a way that that is intuitive for humans to understand, and to exploit various cues commonly
found in scenes from the natural world to communicate the values of multiple variables.

Keywords: data visualization, natural scenes, graph comprehension, visual cognition
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Chapter 1

Introduction

Multivariate data visualization presents a significant challenge, in part due to the limits of

human perception. There is a finite number of attributes that our visual systems are capable of

extracting from a given image1. We encounter difficulty when we want to show more variables than

we have attributes to display them with. Since three variables represents somewhat of a barrier to

what is known to be unambiguously representable in a distance-preserving presentation, throughout

this work we use the term multivariate to mean “having more than three variables.”

One might be tempted simply to avoid using multivariate data by suppressing variables

or by avoiding sets that do not map well to the natural dimensions of human visual perception.

Unfortunately, the collection of problems involving multivariate data is vast and growing in a way

that makes finding an elegant solution both interesting and desirable (Nowell, 2011). An example of

a data set that includes many variables of simultaneous interest is found in the context of geographic

information systems, since there are many geographic traits that map to the same two-dimensional

space. Population density, earthquake risk, average rainfall, temperature, altitude, barometric

pressure, bedrock type, native vegetation cover, and pollution content all represent variables that

could be associated with a single location on a map. It would be desirable to be able to show all of

the information in a single presentation and in a way that allows us to interpret, relate, and analyze

it efficiently.

There are several proposed solutions to the problem of higher dimensional information

presentation, some more effective than others. Common techniques include having the computer

abstract away certain details that might confuse a human viewer, unfolding dimensions so that they

1We entertain a more detailed discussion of these attributes in chapter four
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all appear simultaneously, or even re-encoding the data as a shape or object more recognizable to a

human observer. A summary of the most important of these techniques is included in the related

works section.

The varied success of the different proposed methods invites the question, “What makes

a good visualization method?” Since humans are the end consumers of information, the human

visual system is a critical part of the visualization process. Despite this, it is unusual for authors

introducing new visualization techniques to attempt to explain how a technique functions from a

cognitive standpoint. Indeed, not one of the visualization technique papers cited in the related works

section contains a reference to the cognitive science literature. The traditional approach defers to

the reader’s tacit understanding of human vision by showing demonstration images and having the

reader subjectively evaluate their qualities.

Perceptual benchmarking has been proposed as a more rigorous alternative to direct subjec-

tive evaluation of visualization methods (Ward and Theroux, 1997). However, benchmarking with

human test subjects is tedious and time consuming, making it difficult to use in the the development

of new techniques and completely impractical when creating new visualization instances. While it

is conceivable that a visualization system with objective human-based feedback could converge on

a solution to a new problem through trial-and-error, the time and expense of this “1000 monkies”

design approach are prohibitive. In the case of either direct subjective or perceptual benchmarking

methodologies, we are left without the ability to predict the quality of a visualization system’s

output prior to showing it to an actual human.

To avoid these pitfalls, we diverge from tradition and attempt to explain the cognitive

basis for our visualization technique. Our aim is to provide insight and direction in addition to

the traditional visual confirmation. Our approach is to combine established principles of graph

comprehension with the latest research in human cognition.In this thesis, we investigate the use

of outdoor scenes to display multivariate data. We begin with a review of relevant prior research,

then move on to discuss the fundamentals of data visualization. We then present our justification

for using outdoor scenes to visualize multidimensional data, and discuss recent cognitive and

2



neurological research into scene perception. After presenting possible methods for constructing

scene visualizations, we compare our proof-of-concept examples to examples produced by similar

existing methods. We demonstrate that given certain constraints, outdoor scenes can be an effective

visualization technique.
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Chapter 2

Related Work

2.1 Multidimensional Visualization Techniques

Higher dimensional data visualization is a long-standing problem investigated by researchers from

a multitude of disciplines. Many techniques have been proposed but all have deficiencies, especially

for datasets where there are many independent variables that need to be analyzed simultaneously. In

this chapter, we detail the most important of these approaches and the tradeoffs involved in their

use.

Higher-dimensional visualization techniques can be classified into two groups: methods that

reduce the displayed dimensionality to less than what is in the original data set, and methods that

attempt to preserve all of the original variables. Since many visualizations use a combination of

methods, any given presentations may include elements from both categories.

2.1.1 Dimension-Reducing Methods

A common dimension-restricting technique is to project the data from a higher dimensional space

onto a lower one. Examples of projection-style techniques include volume rendering (Drebin

et al., 1988; Levoy, 1988; Sabella, 1988; Upson and Keeler, 1988; Schneider and Westermann,

2003), draftsman’s plots (Tukey and Tukey, 1981), and star coordinates (Kandogan, 2001). In

volume rendering, data with three or more dimensions is projected onto a two-dimensional plane. In

draftsman’s plots1, pairs of variables are plotted against one another in an array of two-dimensional

graphs. Star coordinates assigns a two-dimensional vector to each of the variables that are contained

1Draftsman’s plots are sometimes called scatterplot matrices
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in a data point, then scales each vector by the data values before summing them to acheive a resulting

point in two-dimensional space.

The biggest advantage of projection-style techniques is that they preserve at least some

spatial configuration of the data, allowing the user to draw conclusions about relationships within

the data set. For datasets orignating from a spatial domain such as geographical or medical imaging,

this allows the information to be viewed within the original context. For non-spatial data, similar

points appear close together in the resulting projections, facilitating cluster analysis.

A significant problem in general with dimension-reducing techniques is that explicit infor-

mation from the original dataset often is lost in the transformation. The many-to-one nature of

dimension-reducing methods means that each point in the output space could have come from any of

several points in the input space. The most common negative consequence is that dissimilar points

in data space appear to be close together in the visualization. Occlusion is an extreme case of this,

where multiple distinct data points are rendered indistinguishable in the output. Such ambiguitiy is

inevitable if the output space is smaller than the input space.

2.1.2 Dimension-Preserving Methods

Dimension-preserving techniques typically work by “unfolding” or “unstacking” extra dimensions

so that they all can be viewed simultaneously. In three dimensions, these techniques are analogous

to unfolding a box and flattening it to provide an unambiguous view of all six sides. Flat data

presentation techniques include tables, glyphs, parallel axes, and bar graphs. Figure 2.2 shows

examples of several of these methods.

A typical table might present data points as rows of numerical values with the variables

organized in columns. While tables preserve the individual values as well as any technique, they do

not lend themselves well to the detection of patterns, relationships, or exceptions.

Introduced by Anderson (1960), glyphs are graphical data display objects designed to

represent points in n-dimensional space. We define glyphs as graphical objects, representing single

points in a k-dimensional sample space, which possess k visible attributes varying independently

6



(a) Draftsman’s Plot (b) Volume Rendering

(c) Star Coordinates

Figure 2.1: Dimension-Reducing Methods
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(a) Anderson Glyphs (b) Chernoff Faces

(c) Pile (d) Parallel Axes

Figure 2.2: Dimension-Preserving Methods
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with the k data parameters (Ward, 2002). While some authors use the term “glyph” to refer

specifically to Anderson’s work, it has come be used more generally for any technique that meets

this definition. Glyphs thus encompass a variety of multidimensional display techniques such as

star plots (Chambers et al., 1983), piles (Melville and Burton, 1997), and Chernoff faces (Chernoff,

1973).

Star plots consist of a number of lines radiating outward from of a central focal point, with

a polygon encircling it whose vertexes coincide with the line endpoints (Chambers et al., 1983).

The distance of each vertex down the line indicates the value of a given variable along that axis.

Star plots are used to qualitatively compare various data points and to identify groups of similar and

dissimilar points.

Piles extend star plots into three dimensions so that the stars appear closer together in the

presentation, thereby making relationships between individual point more apparent (Melville and

Burton, 1997). However, since star plots have now been brought into the three-dimensional domain,

occlusion problems may require interactive visualization to resolve.

Chernoff faces are glyphs that uses human facial features as the visual elements (Chernoff,

1973). The faces are intended to exploit the capability of the human visual system to intuitively

and rapidly detect even small variations in facial features. However, Chernoff faces have several

significant deficiencies. They tend to perform badly in perceptual benchmarking studies (Lee et al.,

2003; Morris et al., 2000) and have a reputation for a relatively unprofessional appearance (Cluff

et al., 1991), perhaps due to a problem common to many computer-generated faces known as the

“uncanny valley”. The uncanny valley refers to a level of unnaturalness that some synthetic faces

and bodies have that makes them uncomfortable for humans to view (Mori, 1970).

The parallel axes technique is similar to star plots, except that instead of using polygons to

represent data points, polylines are used instead (Inselberg, 1985). The individual variables of a

data point are represented as vertical, parallel lines, and the values of the variables are points along

those lines. A data point is then represented as a polyline that connects the points on the vertical

lines. To visualize a given dataset, the data points in the set are all plotted onto the same vertical
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lines (parallel axes) so that they can be compared and analyzed. Parallel axes’ drawbacks include

low information density and lack of intuitive feel. The technique has been extended in the form of

parallel planes (Xiaoxi and Burton, 1992) and parallel volumes (Xun and Burton, 1997).

A general disadvantage of dimension-unfolding is that the configuration of the original space

is no longer preserved. Like a cubist painting, seeing all sides of everything laid out flat provides

a distorted perspective. Data points that are close together in data space may appear far apart

in the presentation, making interrelationships between points more difficult to determine. These

inter-spatial relationships form a set of implicit information that may be important to understanding

the data set within the context of its target domain. Of course, the implicit information could be

recovered by mapping the data back to the original space, but to do so usually requires significant

mental effort. This effort limits flat presentations to smaller datasets, typically consisting of a few

hundred points or less. Additionally, since the structure of the source space is not preserved, the

structure of the output depends entirely on how the unfolding takes place. A single point, “unfolded”

in two different ways using the same technique, can produce two entirely different representations.

The star plot for a given point may appear alternately spiky or lopsided, depending on how the

variables are assigned. Variable assignment is therefore a critical consideration when using any of

these techniques.

Despite this, not all domains are spatial, or can be mapped to a spatial domain in any

meaningful way. An example of such a domain would be the various parts of speech in the English

language. Since there is no standard measure of the distance between parts of speech, it is difficult

to form a non-arbitrary spatial relation between them. Forming such a relation is akin to asking how

far a verb is from a noun. For information from non-measurable domains, which we call categorical

information, a significant disadvantage of dimension-unfolding essentially vanishes.

10



2.2 Other Important Related Research

2.2.1 Statistical Dimension-Reducing Methods

Another way of reducing data dimensionality is by analyzing the statistical properties of the data

set in an attempt to find an alternative set of variables that compresses the data set into fewer

dimensions while retaining most of the relevant information. Techniques of this style include

principal component analysis, multidimensional scaling, and correlation methods. The drawback of

these methods is that any statistical analysis must make assumptions about the structure of the data

set, assumptions which will not hold for arbitrary data sets (Jacoby, 1998).

2.2.2 Statistical Cluster Analysis

Another statistical method for reducing data complexity is cluster analysis, which classifies groups

of datapoints into clusters according to statistical similarities. The clusters then represent a new

meta-dataset with fewer datapoints than the original. Cluster analysis can be thought of as the dual

of statistical dimension reduction, where the number of variables remains the same but the number

of datapoints is reduced. The drawbacks to cluster analysis are similar to those with dimension

reduction. Most clustering methods rely on distance metrics that make assumptions about the data

structure that may not be correct for all situations. Further information on cluster analysis can be

found in Kaufman (2005) and Tan et al. (2005).

11



12



Chapter 3

Mental and Visual Representations

Connecting external visual representations with our internal mental models is the funda-

mental purpose of data visualization. By better understanding how this happens, we can better

understand how to improve it. In this chapter, we discuss foundational aspects of data visualization

in preparation for the more involved discussions surrounding scene visualization. We start by

introducing the concept of mental representation, our internal mental model of the world around us.

We then talk about how humans have extended their representational abilities with external tools,

before moving on to the more specific topics of visual representation and graphical comprehension.

3.1 Mental Representation

The mental ability to focus on certain stimuli while ignoring others is known as attention, and is

recognized as an important cognitive faculty. In order to make rational decisions in a complex

environment with limited mental resources, it is necessary to be able to discern the important

information from the unimportant. Attended stimili are integrated into a mental model of the

surrounding environment.

This model, a mental abstraction of an external system, is known as mental representation

(McNamara, 1999; O’Brien and Opie, 2004). Representation, in a general sense, consists of three

parts: a represented object, the vehicle representing that object, and an interpretation connecting the

two (Eckardt, 1993). In the case of mental representation, the object can be anything imaginable1,

the interpretation is provided by the conscious mind, and the vehicle is our mental model.

1We mean this in the most literal sense. The target domain of mental representation is defined only by the limits of
human comprehension.

13



Our mental model is constantly updated based on the information we observe, and retained

for use when we are not observing it. This is akin to taking a photograph in a dark room using a

large-format film camera and a bright, narrow-beam flashlight. Although the beam is too narrow to

expose the entire photographic plate at once, a complete exposure can be formed by directing the

beam of the flashlight around the room. Different parts of the film become exposed until eventually

the plate contains an image of the whole environment. This “spotlight” analogy to directing attention

was introduced by LaBerge (1983), while describing attributes of human visual attention.

3.1.1 Mental Representation Versus Indication

While a detailed discussion of the issues surrounding mental representation is outside the scope of

this work, the distinction between representation and indication is a fine point we must address2.

In the mind, representation and indication are related, yet distinct phenomena. Both representa-

tions and indications are internal mental constructs which can be created in response to external

stimuli. However, representations are source-independent, transformable, and share properties with

represented objects, whereas indications are source-dependent, non-transformable, and portable

(Cummins and Poirier, 2004).

We say that representation is source-independent because any number of sources can result

in the same model. For example, you might know the route from home to work because you drove

a car along it, but you may just as easily have consulted a map or have listened as another person

described it to you. However you received it, the meaning and content of the representation is the

same.

Representations are transformable, allowing you to manipulate them in your mind to make

inferences and gain new insight from past observations. You are able to reconstruct a response

to a question to which you did not immediately know the answer because of your ability to

mentally manipulate your perspective of the model and thereby draw conclusions from it.Mental

2The terms representation and indication are used in this work following the convention established by Cummins
and Poirier Cummins and Poirier (2004), but terminology in the cognitive science literature varies on this topic. For
example, O’Brien and Opie O’Brien and Opie (2004) describe what we term indication as a form of representation
grounded in causation.
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representations share common attributes with their target objects because they structurally resemble

them at an abstract level.

Indicators are not transformable because they do not resemble the condition that caused

them, but merely indicate the fact that the condition occurred. Indicators convey state information

rather than structure. It is impossible to draw inferences from an indicator without an awareness of

the context surrounding it. This is also why we say indication is portable, because the same stimulus

can be made to signify different things depending on the situation.

3.2 Visual Representations

Visual descriptions are external representations that preserve information in a visual format. They

can serve many purposes, but in the context of data visualization we focus on just two: exploration

and communication. In the case of exploration, there is some class of objects we wish to understand.

We don’t have a specific enumeration of the objects in question, but we do know at least some

of their properties. To conduct an exploration, we choose a description style that we hope will

enable the human visual system to detect and identify those types of objects we want to find. In

communication, there is a known set of objects that we hope to convey to others. The objects are

explicitly enumerated and their properties are well understood. We construct visual descriptions of

these objects to more efficiently communicate them to others.

The reason we create visual descriptions is because vision is a primary way that humans

gather information about the world, and we know that humans are very good at solving visual

problems. By creating visual representations of abstract informational content, we hope to apply

human visual search and recognition abilities to arbitrary domains. In this sense, data visualization

is a tool for exploring and expressing information from arbitrary domains in a human-compatible

format.

The objective of data visualization is to enable humans to swiftly construct inner repre-

sentations of the objects represented by the data. More precisely, we define data visualization as

any process that uses a visual description to facilitate human mental representation of a system

15



resembled by a data vehicle. To understand data visualization, it is useful to know why we have

visualizations, how they are made, and how they are understood.

3.2.1 Construction of Visual Descriptions

Visualizations are constructed by transforming data into visual forms that are intended to be pro-

cessed by the human visual system into a mental representation of some desired target system. This

is typically done by encoding the relevant information and corresponding relationships into symbols

and symbolic relationships. Symbols are visual objects with properties that scale in accordance

with data parameters. To facilitate interpretation of symbol properties, many visualizations include

non-data scale objects such as coordinate axes and legends.

3.2.2 Comprehension of Visual Descriptions

The process by which humans use visual descriptions to construct internal representations is known

as graph comprehension. While details in the literature vary, most accounts of graph comprehension

include the common themes of encoding, detection, identification, and interpretation (Winn, 1994;

Pinker, 1990; Cleveland, 1993). The comprehension process starts when the visual system encodes

the visual array into discrete elements, then detects the presence of objects and discriminates among

them. The objects are then identified and their meaning is interpreted, eventually resulting in a

detailed mental representation.

Graph comprehension is often described as having two phases. The first phase, called the

preattentive phase, is where the visual system recognizes the existence of, establishes relationships

among, and differentiates between the various symbols in a visualization. These processes are

called preattentive because they can operate in the absence of any attentive activity. They occur

rapidly and in parallel, independent of the conscious mind. The preattentive phase can be viewed as

a sort of preprocesser for conscious thought, detecting important graphical objects and establishing

relationships between those objects. Preattentively established relationships presuppose subsequent

processes to certain interpretations, and can have a strong influence on attentive performance.
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The attentive phase is where graphical objects are integrated into the into the system of mental

representation. Attentive processes all require some level of focus or concentration, and occur one

at a time in a serial manner. This demand placed on the conscious mind makes the attentive phase a

cognitive bottleneck in the visual comprehension pathway.

The first step in the preattentive phase is encoding. Encoding happens early in the visual

system, where the retinal image is deconstructed into constituent parts by bundles of neurons that

respond to specific visual features. Neurons have been found that respond selectively to visual-field

attributes like edges, size, orientation, and movement. These neurons can be thought of as indicators

for low-level image features, and the types of stimulus that elicit their response effectively define

the limits of visual perception.

Recognizing the presence of an object, or detection, is the next step in the preattentive phase.

A visual object is any collection of visual elements for which attention is not divided. Detection of

objects occurs very quickly, on the order of 100ms or less, and is a prerequisite for any attentional

processing. Undetected features are essentially invisible to the conscious mind.

Accompanying detection are the steps of discrimination, establishing precedence, and con-

figuration. Discrimination is the ability to discern differences between visual elements, establishing

precedence is recognizing hierarchies within the visualization, and configuration is where groups

and patterns emerge. The visual system discriminates objects by comparing their detected sub-

elements. Objects that have similar subcomponents will be perceived to be identical unless the

differences can be detected. Precedence and configuration together establish relationships between

objects. Objects are detected in a progressive hierarchy starting with the most prominent object first,

the object’s most important features second, the important sub-features third, and so on. Between

two objects, the one that gets detected first is said to have the highest precedence. Relationships are

also established by configuring objects into patterns or groups. Objects are seen as a group when

they are visually close together, are located within a visual boundary, or share symmetry. The rules

by which object relationships are established are known as the Gestalt laws of grouping.
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The outputs of the preattentive processes feed the later attentive operations. Parts of the

attentive phase include identification, interpretation, and comprehension. Identification is the process

of connecting an object in the visual field to a corresponding stored representation. Objects are

thought to be identified when the subcomponents identified in the encoding phase correlate strongly

with an existing representation. Unrecognized objects are iteratively re-identified and reconfigured

until identification is achieved. After identification, the meaning of the object is interpreted by

comparing it to known representations. Through interpretation, the conscious mind can either

integrate the information into a known schema or adapt an existing schema to accommodate it.

Comprehension is the end state of visualization, and occurs when all of the relevant information in

the graphic has been integrated as an appropriate mental representation.

3.3 Discussion

The fundamental purpose of data visualization is to foster meaningful mental representation of a

target group or class of objects. With reference to the principles of graph comprehension, an effective

visualization is one that facilitates swift, accurate formation of robust, transformable representations.

Greater speed allows us to process more information in a shorter amount of time, higher accuracy

permits greater confidence in our conclusions, and more detailed representations enable more

complicated transformations and deeper insights into the target domain. Speed, accuracy, and detail

are the primary qualities that we use to define visualization performance.
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Chapter 4

Scenes and Data Visualization

In this chapter, we discuss the motivations and cognitive basis for using naturalistic scenes

as representational vehicles for digital information. We draw a connection to Chernoff faces, a

closely related technique, and examine the recent research into face and scene perception.

4.1 Motivation for Scene Visualizations

Humans are especially capable at certain visual tasks such as size, motion, and orientation detection

recognition (Snowden et al., 2006). These abilities all correspond to task-specific cerebral structures

which help reduce the load on the conscious mind. For example, in a natural environment, objects

that take up the largest proportion of the visual field are likely to be the most important, being either

close to the observer or very large and distant. Rather than to have to attentively assess the size of

every object in the field before concentrating on the most important, it would make sense for the

visual system to quickly identify those areas that are most important and direct attention towards

them. In a series of Nobel-prize winning experiments, Hubel and Wiesel (1959) identified cells

in the visual cortex that respond selectively to the orientation of lines in the visual field . Similar

studies have found structures that respond to color (Hadjikhani et al., 1998), motion (Movshon

and Newsome, 1992), and distance (Pettigrew, 1972). These hard-wired groups of cells all aid in

the rapid, parallel processing of visual information, operating preattentively and independent of

conscious mental faculties.

Many visualization methods correlate well with these known strengths of the human visual

system. Interpreting a bar graph requires judging the relative sizes of adjacent rectangles. Line
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graphs are useful for showing trends because line orientation is related to slope, and measuring

slope is equivalent to differentiation.

Looking towards multidimensional data, elementary attributes like size and orientation have

the capacity to encode only a single variable. To encode multivariate data, some combination of

elementary attributes has to be used. However, mechanisms for doing so in an effective manner

can be elusive. The use of many elementary attributes simultaneously tends to lead to a crowded

presentation that is difficult to interpret. Many overlapping elements lead to ambiguities.

What we need is a coherent way of integrating many elementary attributes into a single

multidimensional presentation. There are statistical methods that compress multidimensional data

into the fewest relevant dimensions, easing the transition to lower-dimensional visualizations, but

using these methods may be just forestalling the inevitable. There will invariably be a dataset with

too much relevant information to compress.

Another possibility is finding a better way of presenting data to the human visual system. We

would like to enable the visual system to simultaneously integrate properties of multiple low-level

attributes to provide a single coherent representation of multiple variables. Such a mechanism

would contradict traditional feature-integration theory, which asserts that processing combinations

of elementary attributes must always require attentive processing (Treisman and Gelade, 1980).

Despite this, if feature-integrational mechanisms did in fact exist, we could significantly improve

the rate of visualization comprehension by bypassing serial attentive processing.

Encouragingly, certain areas of the preattentive visual system have been identified that

may possess the qualities we desire. These domain-specific regions in the visual cortex respond

selectively to certain configurations of multiple elementary attributes. In 2006, Downing et al.

published the results of a study empirically confirming the existence of these domain-specific areas.

To conduct their experiment, they flashed images on a monitor in front of a human test subject and

observed the resulting neural response using functional magnetic resonance imaging (fMRI). In

analyzing their results, they found three distinct regions of the primary visual cortex, each of which

corresponds to a specific non-elementary class of visual stimulus. These regions, corresponding
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to faces, bodies, and outdoor scenes, are termed the fusiform face area (FFA), extrastriate body

area (EBA), and parahippocampal place area (PPA), respectively. The identified regions all lie in

the occipitotemporal pathway, the structure of the visual cortex most commonly associated with

categorizing objects in the visual field into predefined schema.

Since faces, bodies, and outdoor scenes all contain multiple visual attributes, these types of

objects present tempting candidates for visualization techniques. If the mind is able to preattentively

form robust representations from these types of visual content, they could potentially revolutionize

data visualization. Indeed, the facial processing aspect was investigated for visualization purposes

by Chernoff (1973). While his work predates the major research into face perception, Chernoff cited

anecdotal evidence that humans have a remarkable ability to detect and discern small differences

in facial features. He reasoned that it could be useful to use this ability to aid comprehension

of multidimensional information. Bodies have likewise been investigated for use in visualization

(Perry and Donath, 2004), but we are unaware of any attempts to explicitly use cognitive scene

processing abilities for the purpose of data visualization.

Being relatively unexplored, scenes may be a fruitful area in which to investigate new

visualization techniques. In addition to the anticipated feature-integrational benefits, there are

a number of other reasons why outdoor scenes merit consideration as a visualization technique.

Outdoor scenes offer the potential for a high density of information due to the large number of

possible symbols that can be represented. They may be able to avoid some of the aesthetic and

implementation issues issues with Chernoff faces, while retaining the same intended benefits. These

predictions are the primary motivations for this study, and balance of this work focuses on evaluating

them.

4.2 Cognitive Research into Domain-Specific Areas

Before we entertain further discussion of scene visualizations, we need to more firmly establish our

cognitive basis for doing so. By understanding the mental processes involved with the PPA, EBA,
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and FFA, we can gain better insight into any potential benefits and pitfalls of using them for data

visualization.

We can start by defining more precisely the capabilities of the domain-specific brain regions

we hope to exploit. Of the abilities in question, face processing has been the most studied topic,

possibly because science has been aware of its special nature for the longest time. For this reason,

we begin our discussion with a review of the issues surrounding faces and their use as visual

representational vehicles. This will allow us to frame our later discussion on the less-studied nature

of scene perception.

4.2.1 A Closer Look at Chernoff Faces

Cognitive tasks involving faces are traditionally grouped into three categories, namely detection,

recognition, and feature-state identification1. Detection is the process of recognizing that an object

within the visual field is a human face, recognition is identifying whose face it is, and feature-state

identification is extracting meaning from the state of the various facial features.

The nature of human visual face detection has been a subject of intensive study. One of

the central questions that scientists have tried to answer is whether or not face detection it is a

preattentive process. An important method for identifying preattentive processes has been the

visual-search paradigm. As established by Treisman and Gelade (1980), preattentively processed

visual elements will tend to “pop-out” of a scene full of dissimilar elements, leading to rapid parallel

visual search. Thus, we can detect whether an element is preattentively processed by measuring the

time it takes a human to search for it. Initial attempts to detect pop-out for faces by Nothdurft (1993)

and Brown et al. (1997) resulted with negative outcomes. However, since these early experiments

used pieces of faces as distractors, there was some debate as to whether the visual-search paradigm

was correctly implemented. More recent experiments by Lewis and Edmonds (2003) and Hershler

and Hochstein (2005; 2006) have succeeded in producing a pop-out effect, but their results have not

been uncontested (VanRullen, 2006).
1The literature has many different terms for these stages. What we call detection, recognition, and feature-state,

some authors call categorization, identification, and emotion, respectively
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Harder to dispute is new evidence being provided by the neuroscience community on the

preattentive nature of face detection. By combing high spatial-resolution imaging techniques like

fMRI with high time-resolution techniques like magnetoencephalography (MEG), researchers can

trace the path of a visual stimulus as it propagates through the brain. Using these tools, several

face-specific temporal signatures have been identified within the FFA (Bentin et al., 1996; Liu et al.,

2002; Bayle and Taylor, 2010). The earliest signature, designated M100, has been correlated with

face detection (Liu et al., 2002) but not attentive activity (Okazaki et al., 2008), indicating that face

detection is preattentive. The results of these imaging studies bolster the case presented by the

psychological experiments in support of preattentive face detection.

Concerning identifying the state of facial features, evidence is mounting that certain facial

expressions are processed holistically in the preattentive phase. Cognitive scientists have long

studied the “face-in-crowd” affect, where a strongly emotional face stands out from a large group.

While psychologists have argued both for (Hansen and Hansen, 1988; Calvo and Nummenmaa,

2008; Williams and Mattingley, 2006) and against (Purcell et al., 1996; Coelho et al., 2009) the

preattentive hypothesis, the more recent neurological evidence tends to support the preattentive

conclusion (Bayle and Taylor, 2010; Liu and Ioannides, 2010).

In contrast to face detection and expression, face identification has not been shown to be a

preattentive process. It is intuitively obvious that face recognition is an attentive endeavor, since

we all know that finding a familiar face in a large crowd is a time-consuming task. Supporting our

intuition, visual-search experiments into face identification indicate serial attentive processing (Tong

and Nakayama, 1999). In corroborating neurological studies, the temporal response signatures

correlated with face recognition (Liu et al., 2002) are modulated by attentional affects (Okazaki

et al., 2008).

Examining these results, a pattern emerges that bears weight for our discussion. While there

are some aspects of face processing that appear to be preattentive, namely detection of faces and

facial emotion, the outputs of the associated tasks are mainly indicational. It is as if the face-specific

regions control a light that turns on whenever a face is present, or an emotion-strength gauge with a
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needle that peaks for angry faces in peripheral visual field. The properties of individual components

of the face are not considered by the on/off nature of the light or the scale of the meter, merely the

presence of a face or some abstract measure of emotion distributed across many features.The one

task that most directly involves representational content, face identification, is not preattentive. That

the preattentive outputs of the face-specific regions of the visual cortex appear to be indicator signals

and not true representations is a major concern for Chernoff faces. Since the primary purpose of

data visualization is data representation, and preattentive processing has been touted as a primary

motivation for face representations of data, the inability to preattentively process representational

face content would seem to be a critical deficiency.

The results of experiments conducted directly on Chernoff faces support this conclusion.

Morris et al. (2000) conducted an experiment to test whether individual facial features could be

discriminated in a preattentive fashion. Chernoff faces were strobed in front of a number of test

subjects a rate known to preclude (most) attentive processing. Although the data represented by the

faces was strictly binary in nature, human judgment of the state of the facial features was measured

to be no better than random chance. The researchers concluded that individual facial features are

not processed preattentively.

Barring preattentive feature processing, Chernoff faces are seemingly left in a position no

better than any other glyph. As ordinary glyphs, faces would be expected to perform sub-optimally

due to the low element scale range and difficulty comparing magnitudes across features. In a study

conducted by Lee, Reilly, and Butavicius, faces were shown to perform poorly when compared to

star glyphs and spatial visualization methods (Lee et al., 2003).

4.2.2 Research on Scene Perception

Having reviewed some of the research on the brain’s face-processing abilities, we must question

whether the same principles apply the other known domain-specific areas of the visual cortex,

especially outdoor scenes. The purpose of these areas may be non-representational as well, possibly

invalidating our pretense for their use in preattentively processing scene representations. Based
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on what we have learned about faces, we can make two main predictions about scenes: first,

that identifying the configuration of individual scene elements is a slow attentive process, and

second, that the preattentive components of scene processing produce indicational rather than

representational content.

While the research on scene perception is less developed than that of face processing, there

is sufficient data to improve confidence in our assumptions. Early experiments into scene perception

showed that humans can perform complicated analysis tasks with a surprisingly brief stimulus.

Most modern accounts of scene perception generally support the standard two-phase paradigm for

visual processing, with well-defined preattentive and attentive tasks.

Aspects of scenes that are processed preattentively are scene vs. non-scene discrimination

(Marois et al., 2004), basic scene-type categorization (Li et al., 2002; Grill-Spector and Kanwisher,

2005), and certain global scene attributes (Greene and Oliva, 2009; Joubert et al., 2007). Global

scene attributes such as naturalness, temperature, navigability, and depth have been shown through

stroboscopic psychological experiments to be identifiable in visual exposures as short as 19ms, and

with a mean minimum exposure time of 34ms (Greene and Oliva, 2009). Other global attributes

such as mean element size, mean object orientation, and scene pleasantness can also be identified

rapidly. Basic scene-type categorization, such as identifying scenes as containing mountains, oceans,

forests, and deserts occurs with exposures well under 100ms (Greene and Oliva, 2009; Evans et al.,

2005).

Elements of the early visual system, in particular the PPA, play an important role in

accomplishing these tasks. The PPA has been shown been shown to respond to scenes in the

absence of attention (Marois et al., 2004), and is known to be involved in processing scene spatial

layout (Epstein and Kanwisher, 1998).

Among attentively processed attributes are scene object position (Tatler et al., 2003; Evans

et al., 2005), object spatial relationships (Tatler et al., 2003), detailed categorizations (Evans et al.,

2005) and full-fledged scene representations (Tatler et al., 2003). Representational detail improves

with increased exposure time as more scene elements are processed serially (Tatler et al., 2003).
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In keeping with our predictions, all of the preattentive scene abilities are non-representational.

Knowing that a scene appears to be hot, contains large objects, and is natural does not imply

knowledge of spatial configurations or specific inter-element relations. While it may be possible to

form a representation given enough such details, doing so would be a strictly attentive endeavor.

4.2.3 Discussion

Looking back at this body of research, we can critically evaluate our motivations for creating scene

visualizations. The fast-processing regions of the brain that we had hoped to use for robust data

representations have turned out to be producing indicator signals instead. Indicator signals, while

useful in a more limited fashion, lack any shared structure with their sources. Indicator outputs are

unable to undergo the transformations necessary to make strong inferences about the events that

initiated them. This seems to cast a disappointing outlook for scene visualizations, especially in

light of the poor performance of Chernoff faces in perceptual benchmarking studies.

While the benchmarking evidence against Chernoff faces may seem particularly troubling,

there is at least one aspect where the studies may be criticized. The experiments in question did

not consider directly the properties of faces that we know to be processed preattentively. Instead,

the studies focused on tasks that required judgment of the state of individual facial features, an

apparently attentive process. In at least one case the authors were aware of this deficiency (see

Morris et al. (2000)), but did not attempt to account for it in their experimental design. We are

therefore left to question whether preattentive abilities like face detection or emotion detection can

be effectively used for data visualization.

To be fair, the researches involved with these studies had good reason to be reluctant to

use detection or emotion in their experiments, as there are significant challenges in using either

effectively. Consider the case of face detection, where the domain-specific hardware in the brain

acts as a detector of an object’s “faceness”. To use the face-detector to encode information, we

would need to modulate the “faceness” of objects, possibly by morphing between a face and

some equivalent non-face glyph. There are a number of obvious implementation issues with this
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approach, from aesthetically dubious results to issues in visually relating face and non-face elements.

Application of facial emotions to visualization is also troublesome. Emotions are correlated with

individual facial features in a highly specific manner. To use emotions effectively, we would need to

somehow detect correlations between variables in a dataset and map them to facial features in a

plausible manner. Although there are statistical methods for detecting such correlations, they cannot

guarantee that the proper configurations exist, and there are drawbacks even when they do. Morris

et al. (2000) cited the difficulty in detecting and applying these correlations as justification for not

doing so.

In light of these issues, scenes have at least ones superficial advantage over faces. The

diversity of valid scene content would seem to provide a broader palette of global features than the

range of valid human facial expressions. For datasets with known correlations, the availability of

more preattentive properties should simplify implementation. In datasets with unknown correlations,

the more diverse nature of scenes should make detecting unknown correlations more likely. These

conclusions could be verified with user studies and perceptual benchmarking, respectively.

While non-representational, it is encouraging that preattentive scene attributes appear to

reflect top-down rather than bottom-up processing. Properties of elements across the entire scene

are integrated to provide a holistic overview, rather than the whole scene being constructed from the

sum of small parts. This multi-element integrational approach means that the properties of many

scene elements can be evaluated in parallel, hopefully facilitating rapid visual search. Using global

scene attributes to integrate element features is essentially a variable-reduction technique, in a vein

similar to statistical methods principal component analysis. The primary difference is that all of the

variables are presented in view for direct examination, where inherent assumptions are less apt to be

obscured by black-box statistical calculations.

In light of the fundamental principles presented in the previous chapter, scene visualizations

can be viewed as a method of enhancing the speed of the graph comprehension process. While

scene visualization may not have the best accuracy or level of detail, its fast-search nature could

serve to complement a slower, more precise format, for those applications that require it.
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Chapter 5

Scene Visualization Construction

Having elaborated the purpose and motivation for scene visualizations, we now confront

the topic of scene construction. Most visualizations are constructed by first selecting specific

visual elements, transforming those elements in relation to the data, and then assembling them

to form a complete presentation. Our concept of scene construction follows a similar pattern.

We begin by presenting a number of visual elements, typical to outdoor scenes, which may be

useful for encoding information. We then discuss methods of integrating elements to form discrete

visual representations. The properties of the resulting scene depend on the properties of the

constituent elements and inter-element relationships. Since we will identify elements with both

dimension-preserving and dimension-reducing properties, scene visualizations have the potential to

accommodate either paradigm. We provide examples from both categories. Style choice will be

dictated by the nature of the application.

5.1 Scene Elements

There are many aspects of outdoor scenes can be used as visual elements for data representation.

Common scene objects, such as mountains, forests, lakes, rivers, and even buildings, all can used to

encode information. Our present concern is how to use these objects to display information.

From our model of data, the types of information we hope to display are quantitative,

categorical, and relational. We now discuss a number of scene elements, and the types of information

they are suitable for representing1.

1It is important to note that computer graphics techniques already exist for modeling and rendering all of the
elements described here. Some data visualization packages even include the capability to integrate many of the elements
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One important consideration is whether we want to display relationships between variables,

the way one variable in our dataset varies in some interesting manner in relation to another variable.

Research has shown that inter-variable relations are unlikely to be noticed in graphical representa-

tions unless at least one of the variables is represented spatially (Pinker, 1990). That is to say that

the relationship between two variables is more likely to get noticed if they are plotted as position and

color rather than orientation and color. This recalls our previous discussion on dimension-preserving

techniques and preserving the “shape” of the variable space. If we want to see the relationship

between two variables, at least one of them needs to be visualized with a relationship-preserving

method.

5.1.1 Element Classes

5.1.1.1 Topography

Geographic elements are useful in scene visualizations in at least three ways. First, they can be used

to display dependent variables in a spatial context. Second, individual geographic elements can

be used as glyphs for representing independent variables. Finally, geography is useful as a neutral

backdrop, providing visual coherence for other scene elements.

In a spatial context, topography can be used to display at least three variables, two inde-

pendent and one dependent. Many datasets resemble mountains, hills, and valleys when one of

the variables is displayed as height when plotted against two other variables. Figure 5.1 contains

examples of data plotted as topographic elements. 5.1a displays the function z =
sin

(√
x2+y2

)
√

x2+y2
,

and 5.1b shows the magnitude of the earth’s magnetic field over a portion of North America. For

comparison to standard computer-generated terrain, 5.1c shows a procedural mountain created

using Vue. Since displaying data in this manner involves creating a three-dimensional surface (and

therefore a four-variable construct), it may suffer some of the drawbacks of a dimension-reducing

technique once the surface is projected into the scene.

we present. We make no claim to be the first to use any of the following elements to display data. We have, in fact
borrowed elements from previous work whenever possible. The novel aspect of our approach is the investigation into
the explicit usage of the recently uncovered domain-specific mental capabilities relating to outdoor scenes.
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(a) sombrero function (b) geomagnetic field (c) procedural terrain

Figure 5.1: Topographic Examples

Scene topography can be used to display discrete variables by selecting individual topo-

graphic elements and manipulating their properties. geographic features can be made into glyph

elements.

As a neutral backdrop, a terrain element can provide a setting in which to place other,

data-representing scene elements, without representing any data itself. As will be discussed in a

later section, plausibility is an important consideration during scene construction, and an outdoor

scene with the ground missing hardly seems plausible.

5.1.1.2 Vegetation

Plants have many attributes that can be used to produce glyph data representations. Plant attributes

can be manipulated at a low-level “micro” level or a high-level “macro” level, both methods having

advantages and drawbacks.

Low-level methods construct plant visualizations from the bottom-up by manipulating basic

plant structures, such as branches, leaves, twigs, and fruit to represent properties of the object

dataset. By combing a number of these low-level components, a complete plant-style representation

can be formed. When constructing plant from basic features, it is important to recognize that

in nature the attributes of these plant structures are not uncorrelated. For example, the size of a

branch farther up a tree depends on the size of the branch it connects to. If these correlations are

not considered, unnatural-appearing plant structures will result. Most methods that use low-level
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(a) Kleiner-Hartigan tree (b) botanical treemap

Figure 5.2: Plant Visualizations

attributes for producing botanical data representations from have a mechanism for preserving these

relationships.

Kleiner-Hartigan trees (Kleiner and Hartigan, 1981) and botanical treemaps (Kleiberg et al.,

2001) are examples of bottom-up plant-style data representations. Kleiner-Hartigan trees use

only the smallest branches in the tree, the “leaf” nodes, to indicate variable values. All of the

sub-branches are used to show the relationships between variables. The tree structure is inferred

from unstructured data by means of a distance measure. The variables with the closest values will

appear closest together in the tree structure, and the most unrelated branches will meet only at the

bottom. The thickness of the lower branches is calculated from the number of variables “above”

them, helping create a botanically plausible appearance. Figure 5.2a, taken from Kleiner’s paper,

shows a tree representation of voting statistics from 48 states in the 1972 United States presidential

election. Each small “twig” at the end of a “branch” is a state, and the distance metric was calculated

from the proportion of Republication votes in each state.

Kleiberg’s botanical treemaps were created to represent an inherently tree-like source,

the directory structure of a computer file system. Figure 5.2b, from Kleiberg’s paper, shows a

representation of the root directory tree from a Unix machine.

High-level plant attributes like size, species, and color are all derived from interrelationships

between various low-level attributes. Using these macro-attributes can be viewed as a top-down

approach to creating plant glyphs. Starting with a nearly-complete digital description of a plant, we
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can alter higher-level properties without interfering with the basic structure of the plant’s primitive

elements. For example, given a polygon mesh describing the structure of a tree, it is possible to scale

the vertices of the mesh to alter the apparent size and proportions of the plant without considering

details such as branch topology or trunk length. Likewise, color-space transformations can be

applied to polygon surface maps to change the color of the plant without altering the texture.

At a yet higher level, properties of groups of plants can convey useful information. Within a

terrain context, variables could be expressed as the spectrum between a few isolated saplings or a

dense thicket. In scene plots, one could use the seasonal range between a leafless winter tree and a

full summer crown of foliage.

5.1.1.3 Weather

Weather elements can be added to an outdoor scene. Discrete weather events, such as tornadoes and

lightning, are potential glyph candidates. The iconic weather map used in local television newscasts

is a familiar example of weather-style glyphs. In the case of scene representations, weather-type

icons could indicate variables not related to meteorology. From a dimension, reducing perspective,

clouds or fog could conceivably be used for volume rendering.

5.1.1.4 Bodies of Water

Bodies of water often occupy the lowest elevation levels in a topographic area. In spatial terrain, we

can use this principle as a sort of thresholding mechanism to obscure elevations that are so low as to

not be of interest, or to provide a division between high and low elevation. In scene plots, water

level can be used to add an extra independent variable to a scene. For example, the water level of a

small stream running through the scene could be used to indicate the value of a variable.

5.2 Scene Construction

Having reviewed candidate scene elements, we can now discuss creating complete scenes. One

basic scene visualization method is scene plots. Scene plots are a means of showing discrete
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observations taken from a multidimensional sample space. Intended as improved glyphs, they

directly correspond with the motivation and purpose of Chernoff Faces. As a glyph, they fit under

the category of dimension-preserving visualization methods, and assume the corresponding benefits

and drawbacks. The comparative advantage of scene plots over conventional glyphs is intended to

be in the exploitation of human visual system’s ability to decode outdoor scenes. Scene plots may

be used by themselves as stand-alone visualizations, or in collections of multiple scene instances.

By itself, a single scene can be used to show an overall situational outlook for a large system.

The state of a complex system can be thought of as a point in a multivariate state space. We can

map this point onto a single outdoor scene in order to achieve an integrated representation of all

variables in question.

To realize a scene visualization of a single multidimensional data point, we start by creating

a nominal scene description. To create the nominal scene, we pick a theme for the scene, select

appropriate scene elements, then create a base element arrangement. Element selection, while

constrained by the overall theme, is also guided by the dictates of global element integration

and convention. Global integrational relationships are important for maximizing the potential for

preattentive scene processing. Convention can influence the perception process by biasing humans

towards certain interpretations. The elements we have selected for the nominal scene are then altered

in proportion to the value of the data variables, forming a data-representative scene description.

Using the modified scene description, a visual representation is then rendered and displayed in the

display medium.

5.2.1 Scene Theme and Element Coherence

The first step in creating a nominal scene is choosing an appropriate theme, such as “tropical

island,” “alpine meadow,” or “forest thicket”. Selecting a theme is important because we want

the individual scene elements to be perceptually congruent. Inter-element congruence helps avoid

inconsistencies that could attract disproportionate attention to certain features. An element that

draws a disproportionate level of attention is likely to influence scene interpretation, since attention
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Figure 5.3: Nominal Scene

has a strong influence on comprehension of visual representations. Intuitively, it seems likely that

a cactus depicted in the middle of a frozen arctic tundra would draw more attention than other,

more expected objects, potentially affecting performance. Confirming our intuition, experiments

have shown that objects incongruent with a scene take longer to identify (Joubert et al., 2008) and

attract more attention (Underwood et al., 2008) than congruent objects. A well-chosen theme guides

element selection to maintain uniform attentive consistency across the entire scene, diminishing the

influence of object congruence over interpretation.

In addition to element selection, the theme also guides element placement. Elements in

incongruent locations and configurations can slow detection and processing. Inverted scenes are

more difficult to detect (Walther et al., 2009), as well as objects at unexpected locations within a

scene (Lewis and Edmonds, 2003).

Figure 5.3 shows an example nominal scene. The theme was modeled after the terminal

lakes of the North American great basin region, such as Mono Lake or the Great Salt Lake. The

scene contains three plant elements, two terrain elements, and a water element.

5.2.2 Global Integration Properties

It is critical to consider how each of the chosen scene elements affects the global properties of the

scene. As amply demonstrated by feature-specific experiments conducted on Chernoff faces, any

preattentive advantage of scene visualizations will be lost if the individual elements do not contribute
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to the global perspective in a coherent manner. We can increase the chance that element properties

will integrate globally by examining statistical properties of the target data set and selecting elements

accordingly. If certain correlations between variables are expected or known, scene elements and

their associated attribute manipulations can be assigned such that those correlations manifest

themselves as a given global attribute. For example, if a number of variables are encoded as scene

element sizes, a correlation between those variables is likely to manifest itself in the mean size of

the elements displayed in the scene.

Global properties that are manipulable at the individual-element level include mean element

size, mean element orientation, scene temperature, scene object center of mass, scene openness,

scene naturalness, and many others. Center of mass could be a particularly interesting property

to exploit. By placing scene elements at fixed locations where proximity is related to level of

correlation, then scaling the objects according to their value, we can create a scene where the visual

center of mass indicates where the datapoint sits, within a sort of abstract state-space.

5.2.3 Scene Convention

Graphical conventional is the notion that certain visual configurations, having already been con-

nected to specific interpretations in the past, will presuppose a viewer to those interpretations

when viewing those configurations in the future. While not a preattentive process, conventional

interpretation can have a powerful influence over the speed and accuracy with which a visualization

is comprehended (Winn, 1994). As such, conventional interpretations should be an important

consideration during element selection.

One way convention can improve visualization comprehension is by aiding the application

of graphical rules. Many types of visualizations have an accompanying list of rules that must be

applied in order to properly interpret the graphic, often displayed in the form of a legend. Applying

complicated graphical rules requires time and effort on behalf of the viewer, especially in the case

where the rules are unfamiliar. Use of graphical convention has been shown to reduce or eliminate

the need to consciously apply these rules, improving comprehension efficiency (Winn et al., 1991).
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In the context of scenes, if we know the conventional meanings of the scene elements we have

selected, we can use them to aid in comprehension and guide interpretations.

Many of the discussed scene elements are known to have conventional interpretations. It

has been shown that humans have a generally positive response to plants, and further research

indicates human preference for certain plant colors (Kaufman and Lohr, 2004) and types (Lohr and

Pearson-Mims, 2006). Weather is known to affect human mood (Chotai et al., 2004) and could be

used to add positive or negative connotations to a scene.

Interpretation of graphics has also been shown to be influenced by linguistic patterns. The

direction we read text influences what parts of a graphic we associate with past and future. Most

English speakers will recognize many sayings that attach emotional, quantitative, or qualitative

meaning to outdoor scene elements. Examples include phrases such as “don’t rain on my parade,”

“she has a mountain of work to do,” or “he’s underwater in his mortgage.” We expect that scene

elements are associated with conventional interpretations in many other ways not yet identified in

the formal scientific literature.

5.2.4 Altering Scene Elements to Represent Data

There are many elements that can appear in outdoors, many ways of combining those elements

to create a scene, and many ways of altering those elements to represent data. However, not all

things that could potentially appear in an outdoor scene are equally effective for the purpose of data

visualization. Many issues come in to play when altering elements in proportion to data values,

and some of them are less obvious than others. Compounding factors include perceptual linearity,

dynamic range, and cross-modulation. Before altering the properties of nominal scene elements,

it is important to plan ahead to minimize adverse effects on scene data representations. How the

element is altered is often just as important as what the element is.

In the absence of a formal theory of data visualization it is difficult to describe exactly what

we mean when we say “perceptual linearity,” but in this work we will use the following definition:

A scene element is perceptually self-linear if our interpretation of the element’s value varies in
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proportion to the variable it represents. For example, in a perceptually linear visualization, if scene

A uses the height of a tree to indicate value x, the perceived height of that same tree in scene B

indicating the value 2x will be exactly twice that of the tree in scene A. While linearity is not a

requirement for every visualization, if we can linearize a given element, we can guarantee that a

non-linear representation will be perceived in the way we expect it to.

Perceptual non-linearity can occur in a variety of ways. If an element is scaled so that its

borders do not fit within the window of the presentation, the viewer will be left to guess the size of

the element using less information than from objects that fit completely in view. Linearly scaling

all of an object’s dimensions will produce a quadratic increase in the visible area occupied by the

object. Some non-linear effects occur within the visual system itself. Many of these properties are

commonly used to create optical illusions. To understand and avoid such problems, we refer the

reader to any good book on human vision, such as (Snowden et al., 2006).

Scene element cross-modulation is another linearity issue. Cross-modulation occurs when

changing the value of one scene element affects the perceived value of another element. A simple

example of cross-modulation is occlusion, where one element overlaps the area of another element,

affecting the apparent size of that element. Element cross-modulation can manifest itself in

unexpected ways. For example, suppose we are using a bush to represent two variables, where the

size of the bush represents variable A and the color of the bush represents variable B. If a computer

monitor is used to display the visualization, we may find that if we diminish the size of the bush,

the color appears to darken as well. Surprisingly, object scale and perceived color are not always

independent in computer imaging (Cook et al., 2007). This happens because as the size of the object

decreases, the relative level of detail per unit of screen area increases. The highlights in the image

become averaged with the shadows on a per-pixel basis, resulting in decreased contrast levels and a

dull appearance. In this situation, it may be necessary to linearize the perceived color by boosting

contrast while diminishing size.

Encompassing these linearity issues is relational dynamic range. In signal processing, system

dynamic range is often defined as the ratio of the largest undistorted signal to the smallest signal
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distinguishable from noise. We are concerned about a very similar quantity in our visualizations.

Since not all scene elements are definable in terms of big and small (is red bigger than blue?), we can

also define dynamic range in terms of the ratio of the full linear scale to the smallest distinguishable

gradation. If we want to preserve all of the important information in a variable, we must ensure that

the dynamic range of the associated vehicle element is sufficient for the task.

We can maximize the available dynamic range by carefully choosing how we scale the

selected scene element. In some situations, this may be as simple as scanning the dataset to find the

maximum value, determining the maximum linear extent of the element, and linearly scaling all

datapoints to fit in between. However, if a variable has significant information spread across very

high and very low values, the dynamic range may exceed what is representable with the chosen

element. In this case, it may be necessary to sacrifice linearity by scaling the element with a formula

that stretches dynamic range while preserving some important aspect of the data. Logarithmic

scaling, which preserves monotonicity, is a common scaling method.

Since there is an innumerable number of ways that altering scene elements can have

unintended consequences, their presence will have to be considered on a per-application basis. It

may prove to be impossible to eliminate all non-linear effects in scene perception, as many are

contingent on the properties of the human visual system, and every individual is different. The best

we can do is to be aware of them and adapt as appropriate.

Figure 5.4 shows scenes based on the nominal scene in figure 5.3, with all elements altered

in proportion to a common scale factor. The sizes of three plant elements and the background terrain

element are scaled down from their proportions in the nominal scene, and the hue of the plant

elements is altered in HSV color space. The foreground terrain and water elements are retained as

scene backdrops. Figure 5.4a shows all elements at their respective maximums, 5.4b shows them at

mid-scale, and in 5.4c they are near their practical minima.
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(a) Maximum (b) Mid-Scale (c) Minimum

Figure 5.4: Scene Element Scaling

5.2.4.1 Rendering the Scene

The final step in creating a scene visualization is rendering. Rendering can be done schematically or

photorealistically, using raster of vector methods, and output can be via monitor or paper. There

is a large amount of literature on rendering, and we will not revisit it here. For this study, we

have chosen a moderately realistic rendering with three-dimensional scenes displayed mainly on

computer monitors. We have implemented the majority of the original figures for this project using

python scripts within the Vue software environment. While not marketed as a data visualization

package, Vue is a powerful outdoor scene modeling and rendering tool that incorporates all of the

visual elements discussed here.

5.2.5 Multiple Scene Plots

While we know it is possible to encode any machine-representable dataset as a single point (Godel,

1992; Homer and Selman, 2001), there are situations where representing all points within a single

scene is a disadvantage. Consider the case where the dataset is primarily categorical, such as a

collection of responses from a multiple-choice survey. We can represent categorical data with

categorical scene elements, but we face a problem when placing many such elements within a

single scene. By placing a large amount of categorical information within a spatial context, we risk

implying spatial relationships where none exist.

For situations where a single scene is inappropriate, scene arrays can be used to represent

discrete points from a dataset. Each point can be mapped to a different scene, with multiple points

forming a collection of scenes, allowing comparison of discrete datapoints. The visual boundaries
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within the array serve to break up spatial continuity between the discrete observations. Figure 5.5

shows a collection of scene plots representing various attributes of automobiles.

5.3 Landscape Plots

While glyphs are useful for representing individual datapoints, a drawback is that they are ineffective

at displaying relationships between datapoints across multiple variables. For datasets where such

relationships are important, it is necessary to look beyond glyphs for an effective representation. To

be effective, we need to select scene components that have attributes better suited for displaying

inter-variable relationships. As discussed in Chapter 3, relationships between variables are unlikely

to be noticed visually, unless at least one of the variables is represented spatially. To represent

variables spatially in a scene visualization, we need to use scene elements with a spatial component.

The scene elements that come closest to meeting this criteria are topography and weather. Of the

two, topography seems to offer the simplest path to implementation.

While not displaying any dependent variables by itself terrain, can still provide a way of

indicating relationships between other datapoints by providing spatial context for additional scene

elements. For example, the apparent position of a non-terrain scene element within the terrain could

be used to indicate additional element variables.

The most basic topographic element possible is the plain. While a plain may seem to be

too simple to display useful information, it can be a valuable construct for our purposes. A plain

can be used as the reference surface for allowing glyph-style elements to be compared on a spatial

basis. That is to say, while not containing any dependent variables by itself, a plain can indicate two

independent variables against which to plot another dependent scene element, by including spatial

location among the element’s attributes. The plain allows a viewer to estimate the represented

values by judging the element’s relative position. By applying datapoints to many spatially-mapped

vegetation elements, a “forest” can be created, a sort of scatter plot made of scene elements.

While a plain is useful by itself, more varied terrain offers opportunities for greater variable

density. One way to do this is described in the section on terrain elements, where one of the data
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Figure 5.5: Scene Plots: Cars
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Figure 5.6: Data Landscape: San Francisco Narcotics

variables is applied to the terrain’s surface elevation. To make a plausible-looking terrain, heights

will have to be scaled to an appropriate level and some form of interpolation may be required to fill

in sparsely populated regions.

Another addition is to map an image onto to the topography element. Figure 5.62 shows

a terrain plot of narcotics crime in San Francisco overlaid with a map of the city. The plot is

remarkable in that it allows the viewer to rapidly correlate high crime areas with street-level

geography within the same presentation. Application of the information in the map is similarly

intuitive. For example, to avoid crime-ridden areas, one needs simply to head downhill.

In this application the image overlay is used primarily for position referencing, allowing

the viewer to better estimate the value of position variables over uneven terrain. Its purpose is

therefore most accurately stated as one of disambiguation, as opposed to representing truly unique

information. To represent another variable, a common method is to create an image through tone

mapping, where the variable’s values are mapped to an appropriate intensity scale, then referenced

2Image courtesy Doug McCune. Used with permission.
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against the two corresponding spatially-represented variables. More sophisticated methods for

representing multiple variables are also possible (van Wijk, 1991).

5.4 Discussion

Our initial investigation suggests great diversity in the ways that scenes can be used as representa-

tional vehicles. We have shown single-point, multipoint, and spatially coherent scene construction

paradigms. It can be expected that there are numerous other useful combinations of scene elements.

The greatest concern with scene construction appears to be representational linearity. The

multitude of self-linearity and cross-modulation issues will require careful consideration during

implementation. Unskilled treatment of the method can produce misleading results. Until an

automated system for resolving these problems is devised, the required per-application effort may

limit the general use of scene visualization.
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Chapter 6

Application and Comparison

With an understanding of the basic concepts that guide scene construction, the discussion

now turns to more application-specific issues. We start by describing the types of situations where

scene visualizations are likely to have the most impact. We then examine one of the finest examples

of Chernoff faces, and compare it to an equivalent scene representation. Finally, we compare scene

visualization to surface plots, a method which bears some interesting similarities.

6.1 Applications

The strong points of scene visualizations are preattentive processing of global scene attributes

and conventional interpretation of common scene elements. Applications that can benefit from

these strengths will benefit most from the technique. A dataset ideally suited for scene plots will

have pointwise inter-variable correlations, variable categories that map well to conventional scene

interpretations, and variables with limited or compressible dynamic range. In the case of data

landscapes, it is also useful for the dataset to have two independent variables against which to plot

the others. For scene plots, the size of the dataset should be limited to less than a few hundred points.

Candidate datasets include geographical studies, environmental reports, and demographics. Data

landscapes are useful when the dataset has two independent variables and one or more dependent

variables.
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6.2 Comparison to Other Techniques

In the absence of formal theory, visualization performance measurement is as much art as science.

The current gold standard seems to be perceptual benchmarking, and while such tests may seem

comfortingly objective, the lack of a theoretical standard means that results can be influenced though

experimental design. Human performance testing is also expensive and time-consuming, making

the cost difficult to justify for a preliminary investigation.

Many authors resort to direct subjective comparison with other techniques, using side-by

side examples in the hopes that the results will be obvious to a reasonable human observer. This

work follows a similar pattern. To judge the qualities of our hypothetical visualization method, we

compare two contrasting examples of outdoor scene visualizations side-by-side with respectively

similar techniques. The comparative visualizations were chosen for their alternate similarity in both

intended purpose and in substantive practice in relation to scene visualizations. We start by looking

at Chernoff faces, which were created with similar goals to scene visualizations. We then examine

surface plots, a technique that tacitly exploit principles similar to scene visualizations. Using the

knowledge gleaned from the comparisons, we discuss our success relative to our goals.

6.2.1 Chernoff Faces

Among existing visualization techniques, Chernoff faces is the most similar to outdoor scenes, and

have been a focus of scrutiny throughout this work. For comparative purposes, let us examine one

of the most noteworthy applications of Chernoff faces, Eugine Turner’s “Life in Los Angeles” map

(figure 6.1a). Turner uses Chernoff faces to denote the demographic makeup of the various regions

in the city. As such, the map incorporates a variety of strategies that maximize the potential of

face visualizations. For example, quantitative variables like unemployment rate have been reduced

to categorical ones by sorting them into low, medium, and high categories, alleviating dynamic

range issues. In addition, the number of faces has been kept low by the coarse nature of the city

subdivisions. Most importantly, the map uses correlations in the data to create facial expressions

that influence human interpretation of the data. Theses factors combine for a highly effective
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presentation. The meaning of the map is so intuitively clear that the provided legend is almost

unnecessary.

Despite the efficiency of Turner’s presentation, it can be difficult to apply the same techniques

in the general case. Not all variables can be categorized so easily, nor can all datasets be made to

have so few data points. A greater issue is the strong data correlations needed to create coherent

facial expressions. Not all data can be assigned easily to an emotion, nor is it always desirable to do

so.

To evaluate whether outdoor scenes provide a viable alternative to Chernoff faces, we have

re-created the map as an outdoor scene (figure 6.1b). The map of Los Angeles is shown covered

in a forest of trees instead of a crowd of face glyphs. Affluence is represented by tree height,

unemployment rate by vegetation density, urban stress by tree color, and ethnic makeup by tree

species1.

Like the Turner map, global integration and convention has been used to influence interpre-

tation. A tall, dense, green forest signifies the most desirable locations in the city, whereas a sparse,

stunted, dry area signals disadvantaged regions. The intuitive nature of the map is retained without

the use of faces, and variable assignment is greatly simplified.

6.2.2 Surface Plots

Many types of graphs were in use prior to the modern era of cognitive science. Line graphs existed

for centuries before the orientation-responsive areas of the visual cortex were discovered. The

creators of these graphs did not know the precise details about why we can interpret such graphics,

they just knew that they worked. They applied their tacit knowledge of human perception to make

to make effective simple, effective visualizations.

If graph-makers were using orientation-detecting cells centuries ago, perhaps an analogous

situation exists for scene visualizations. It is possible that graphics utilizing the same principles as

1Species identification can be difficult for small trees. Shadows provide a valuable cue in this situation.
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(a) Eugene Turner’s “Life in Los An-
geles”

(b) “Life in Los Angeles” as an Outdoor Scene

Figure 6.1: Los Angeles Map Comparison
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Figure 6.2: Surface Plot

scene visualizations have existed for some time, having been created under a tacit understanding of

the human visual system.

One possible tacit analog to outdoor scene visualization is surface plots. Surface plots are

a common way of displaying functions of two variables. Figure 6.2 shows a surface plot of the

sombrero function, used previously as a terrain example.

Like the retina, the functions represented by surface plots have two independent variables and

one dependent variable. These functions therefore could be represented easily and unambiguously

as a direct intensity-level map onto the retina. Paradoxically, the process of creating a surface plot

is considerably more complicated. Creating a surface plot involves representing the dependent

variable as the height of a three-dimensional surface when plotted against the two independent

variables. To do this, the data typically is converted into a polygon mesh whose vertices are then

rotated, scaled, translated, and projected onto the two-dimensional viewing surface. To form a

wire frame visual, the vertices are then connected by drawing lines between them. To form a solid

surface, the polygons must then be shaded by calculating the polygon surface normals and applying

a lighting model.

The elaborate nature of surface plot construction raises some interesting questions. Why

expend so much effort to create a three-dimensional surface, and risk information loss through a

dimension-reducing projection? The answer may be that surface plots have been created in a way

that exploits the human visual system’s ability to process the kind spatial relationships commonly

found in outdoor scenes. It is at least plausible that the same areas of the brain that help process

49



images of mountains and valleys also work to interpret the peaks and grooves in a surface plot. Such

a conclusion could be verified readily with functional magnetic resonance imaging (fMRI).

If this is true, it raises questions about the motivation for using naturalistic scenes in a

visualization setting at all. It may be possible to replace all of the outdoor-themed symbols we have

introduced with analogs that are more efficient and have more predictable interpretations. If we

knew exactly how the brain processes outdoor scenes, we might eliminate extraneous naturalistic

elements and produce a cleaner presentation. Our synthetic scene plot might be more precise

and more comprehensible than a natural scene, and may not look much like an outdoor scene at

all. Outdoor scenes might be an intermediate hurdle in the way of some other, more effective

visualization method.

That said, our choice of the outdoor scene context was not made arbitrarily. Outdoor scenes

elicited the strongest response in the fMRI domain-specificity study (Downing et al., 2006), and

the naturalness of a visual scene is the fastest-detectable global scene property (Greene and Oliva,

2009). There is something fundamental to outdoor scenes that triggers a response very early in the

visual system. While it is presently unclear exactly what about outdoor scenes elicits this response,

it is possible that removing naturalistic elements could somehow affect cognitive performance. At

the very least, the outdoor scene context provides a convenient mechanism for maintaining scene

congruence.

6.3 Discussion

Having experimented with outdoor scenes for data visualization, we can assess the degree of

accuracy in our initial predictions. We anticipated that scene visualizations would have increased

information density, simpler implementation, intuitive interpretation, and decreased attentive pro-

cessing when compared to other techniques.

Relative to our prediction of increased information density, results are mixed. The feature-

integrational nature of scene perception makes it possible to use very large numbers of objects to

display data variables, each object contributing to the overall interpretation. On the other hand, an
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individual tree glyph will likely have less dynamic range than an equivalent schematic glyph.It is

essentially a quantity-accuracy tradeoff, meaning that the provided level of information is contingent

on the metric most relevant to the application.

Implementation difficulty is likewise a mixed bag. Scene element correlations are certainly

easier to manage than facial features, but irregular element geometry complicates scene construction,

and naturalistic elements can be prone to cross-modulation issues. The effect is readily visible in

the Los Angeles map, where all of the palm trees are short and therefore more difficult to identify

than than other tree species. In this case, the value of the affluence variable is altering detection of

the ethnicity variable. It seems likely that a scene composed of schematic glyphs could be created

with fewer linearity problems.

On the count of intuitive interpretation, our approach has significant promise. Many elements

of outdoor scenes can be shown to have conventional interpretations useful for reducing conscious

effort. An untrained viewer of the Los Angeles forest map would likely to be able identify

specific scene traits, such as the most affluent regions, without difficulty. In addition, conventional

interpretations of outdoor scenes appear to be more adaptable to the general case than Chernoff

faces, where individual elements have strong interdependencies, and edge cases create visually

incongruent results.

On the prediction of using the brain’s innate capabilities to speed comprehension, we have

another mixed result. The scene-specific regions of the brain do not appear to produce robust

representations with preattentive efficiency. Despite this, the feature-integrational aspects should

facilitate rapid visual search within multiple-scene presentations.
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Chapter 7

Conclusion and Future Work

7.1 Summary

We have investigated the use of outdoor scenes for data visualization. We considered the nature

of mental representation and the principles of effective data visualization. We elaborated our

motivation and cognitive basis for creating scene visualizations. We introduced scene construction

techniques, including scene elements, scene plots for discrete points and data landscapes for spatial

information. We showed concept images demonstrating the technique, and compared them to

contemporary methods.

7.2 Conclusion

Faster comprehension, higher information density, intuitive interpretation, and simpler implemen-

tation were the predictions that motivated this study. Implementation is simpler for scenes than

for Chernoff faces, but more difficult than for schematic glyphs. Increasing the element count

introduces a quantity/quality tradeoff that limits the maximum information density. Highly intuitive

presentations are possible, and preattentive feature integration enables rapid visual search.

The most significant drawback to scene visualization is linearity. Without a specific formula

for resolving linearity problems, scenes must be crafted on an application-to-application basis. The

effort required to balance linearity issues may tend to limit the application of scene representations.

Despite the varied accuracy of our initial predictions, we find that the prospects for scene

visualization are positive. Intuitive interpretation and preattentive analysis of scene properties are

benefits that cannot be discounted. The “Life in Los Angeles” map demonstrates that the results can
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justify the time invested in scene construction. The key is recognizing those applications where the

strengths of the technique complement the purpose of the visualization.

7.3 Future Work

7.3.1 Practical Implementation

The system we used to create the proofs-of-concepts used scenes hard-coded into Python scripts run-

ning on top of a proprietary software package using data read from a non-standard file format. This

implementation is inadequate for anything but the most technical purposes. More intensive explo-

ration of the scene plot concept will require a more sophisticated implementation. A more efficient

scene creation and manipulation interface will be especially critical for producing visualizations of

more varied data types.

7.3.2 Perceptual Benchmarking of Feature-Integration and Visual Search

While supported by neurological and cognitive evidence, our claims of enhanced visual search

through preattentive scene feature integration remain untested. An objective evaluation through

perceptual benchmarking is warranted. To avoid the pitfalls encountered with similar studies, careful

consideration will be required to ensure that elements used in test scenes contribute to global scene

attributes known to be preattentively processed.
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