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ABSTRACT

Packing Virtual Machines onto Servers

David Wilcox
Department of Computer Science

Master of Science

Data centers consume a significant amount of energy. This problem is aggravated
by the fact that most servers and desktops are underutilized when powered on, and still
consume a majority of the energy of a fully utilized computer even when idle This problem
would be much worse were it not for the growing use of virtual machines. Virtual machines
allow system administrators to more fully utilize hardware capabilities by putting more than
one virtual system on the same physical server.

Many times, virtual machines are placed onto physical servers inefficiently. To address
this inefficiency, I developed a new family of packing algorithms. This family of algorithms
is meant to solve the problem of packing virtual machines onto a cluster of physical servers.
This problem is different than the conventional bin packing problem in two ways. First, each
server has multiple resources that can be consumed. Second, loads on virtual machines are
probabilistic and not completely known to the packing algorithm.

We first compare our developed algorithm with other bin packing algorithms and
show that it performs better than state-of-the-art genetic algorithms in literature. We then
show the general feasibility of our algorithm in packing real virtual machines on physical
Servers.
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Chapter 1

Introduction

Servers and desktops use an enourmous amount of energy. In 2005, data centers in the
United States accounted for 1.2% of all U.S. energy consumption spending $2.7 billion [12].
One major problem exacerbating this is that most servers are in use only 5-15% of the time
they are powered on, yet most x86-based hardware consumes 60-90% of the energy required
by a fully utilized server even when idle [4].

Data center costs can be reduced by utilizing virtual machines. Using virtualization,
system administrators can put multiple virtual machines with associated operating systems
on the same physical machine in order to exploit hardware capabilities more fully. Virtual-
ization increases the amount of feasible work that can be done in data centers.

System administrators can consolidate many virtual machines on the same physical
machine, saving money on hardware and energy costs. To maximize the savings, administra-
tors should place as many virtual machines onto a server as possible while satisfying certain
performance criteria. Using virtual machines, businesses can more fully utilize increasing
capabilities of hardware. In order to disambiguate between virtual machines and physical
machines, we refer to physical machines as servers.

The problem of packing virtual machines onto servers can be formulated as a special
case of the bin packing problem. The bin packing problem is defined as follows: Given a
set of items, each with its own weight, find the assignment of items to bins under which the

number of bins used is minimized without violating capacity constraints [3].



The problem of packing virtual machines onto servers is not as simple as the conven-
tional bin packing problem. Packing virtual machines is different from the traditional bin

packing problem in the following ways:

e In the normal bin packing problem, each item has only one weight and each bin has
only one capacity. In the problem of packing virtual machines, each bin has multiple
capacities or resources that are independent of one another. Each virtual machine will
add an amount of load to the various resources of the server (RAM, CPU, etc.). An
algorithm solving this problem must be able to balance loads with respect to all the

resources on the server.

e In the normal bin packing problem, weights on items are certain and known ahead of
time. However, in the problem of packing virtual machines onto servers, the weights on
each item are uncertain. During the packing process, an algorithm solving this problem
has only a probabilistic distribution which it uses to model the loads of a particular
virtual machine. The future load on each of the resources of the virtual machine can
be represented by a probability distribution. This probability distribution can be used

both to predict future load as well as sample future load.

There are many different resources available to virtual machines on a server. A virtual
machine can slow down or even be brought to a halt if all of any particular resource it needs
is already allocated. Therefore, separate load distributions should be developed for each

resource o1n a server.

1.1 Related Work

This section will investigate related work in three parts. First, the bin packing problem, some
of its properties, and heuristics for solving it will be discussed. Second, the prior research

done in genetic algorithms will be investigated. Third, load balancing will be discussed.
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Figure 1.1: One way to visualize a virtual machines in a server.

1.1.1 Bin Packing

The bin packing problem is formulated as follows. Given a finite set of n items [ =
{1,2,...,n} with corresponding weights W = {wy, ws,...,w,} and a set of identical bins
each with capacity C, find the minimum number of bins into which the items can be placed
without exceeding the bin capacity C of any bin. A solution to the bin packing problem is
of the form B = {by,bs,...,b,}, where each b; is the set of items assigned to bin 7, and is

subject to the following constraints:

1. Vi3 j such that ¢ € b; (Every item has to belong to some unique bin.)

2. Yy Znebj w, < C (The sum of the weights of items inside any bin cannot be greater

than the bin capacity.)

However, the bin packing problem discussed here is different from the conventional bin

packing problem. One way to visualize it can be seen in Figure 1.1. The vertical dimension of
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Figure 1.2: An inefficient virtual machine packing solution.

Figure 1.1 refers to the total amount of RAM capacity on a particular server. The horizontal
dimension of Figure 1.1 refers to the total amount of CPU capacity on a server. Items are
placed on each corner to show that the sum of the weights for any one type has to be less
than the corresponding bin capacity. The sum of the CPU taken by all virtual machines
must be less than the corresponding CPU capacity of the server. Likewise, the sum of the
RAM taken by all virtual machines must be less than the corresponding RAM capacity of
the server. This is true if system administrators wish to maintain a reasonable performance
criteria, which is an assumption we make here.

As with the conventional Bin Packing Problem, the objective is to minimize the
number of bins. Figures 1.2 and 1.3 illustrate this principle. Figure 1.3 packs the exact
same items as are found in Figure 1.2 in three bins instead of four. In the Virtual Machine

Assignment Problem, this means one fewer server in utilization.
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Figure 1.3: An efficient virtual machine packing solution.

1.1.2 Genetic Algorithms

Bin packing problems can also be solved with Genetic Algorithms (GAs). There is no rigorous
definition for GAs [15]. GAs derive much of their inspiration from Darwinian biological
processes. In GAs, individuals represent candidate solutions to the problem. These candidate
solutions explore the solution space by undergoing processes similar to those of biological

organisms. The simplest form of a genetic algorithm involves three types of operators:

e Selection—Individuals in the population are selected for crossover with other individ-
uals. Usually, selection is based on elitism, where the more fit individuals are selected

more often than less fit individuals.

e Crossover—Two individuals in the population exchange subsections of their candidate

solution with each other to create new offspring.



e Mutation—After crossover, each individual has a probability of having their candidate

solution modified slightly.

These three operators act on the candidate solutions in the population in order to

improve the population [15].

1.1.3 Load Rebalancing

Load rebalancing has traditionally been thought of as, given a suboptimal assignment of
jobs to processors, reassign jobs reducing the load on the heaviest processor. This is done
by migrating jobs from the heaviest-loaded processor to a less loaded processor [9].

Aggarwal et al.[2] gave a taxonomy of different load rebalancing problems and many
proofs about load rebalancing. In general, their theorems show that load rebalancing is an
NP Hard problem [2].

Even though the conventional load rebalancing problem is interesting, the problem
addressed here is different in two ways. First, our problem does not assume any type of initial
assignment of virtual machines to servers, but rather generates an initial assignment. For
example, this assignment may be made at the beginning of a business day for an e-commerce
web site when loads on virtual machines are low and administrators have more liberty to
migrate virtual machines. After the day has started, system administrators may not be able
to move around virtual machine as freely because servers need to be dedicated to processing
customer transactions, and not performing VM migrations between servers.

The second way that our problem is different is that the optimization criterion of
our algorithm is different. The load rebalancing problem minimizes the load on the heaviest
server. Instead, we minimize the number of servers in utilization, while assuring that all
virtual machines maintain sufficient performance.This difference can also be thought of in the
following way. Conventional load rebalancing algorithms swap processes in order to minimize
the load on servers with the goal to increase throughput. Instead of measuring throughput,

we minimize energy consumption throughout the entire system by turning off servers while



assuring that no server becomes overloaded. Turning off servers is equal to minimizing the
number of bins in the bin packing problem. We have found no other algorithms in the

literature whose goal is to solve this new variant of load rebalancing.

1.2 Thesis Statement

Genetic algorithms can be adapted to the problem of packing virtual machines tightly onto
servers such that unused physical machines can be turned off, saving energy, while assuring
that no server becomes overloaded. Primarily, we are interested in answering the following
question: “How can the Bin Packing Problem be extended to packing virtual machines onto
servers?”

In order to solve this problem, we assert that If VM loads are probabilistic, different
estimates from the VM probability distribution can be taken to make VM packing conform

to the Bin Packing Problem.

1.3 Thesis Format

We divide the rest of this thesis into four separate papers. In the first paper, we investigate a
new type of Bin Packing Problem that can be applied directly to packing virtual machines to
servers. Along with this new Bin Packing Problem, we present a genetic algorithm with ac-
companying operators specifically meant to solve this type of bin packing problem. We show
that our new genetic algorithm outperforms state-of-the-art genetic algorithms in literature
on the conventional Bin Packing Problem and show the genetic algorithm’s applicability in
packing virtual machines onto servers.

In the second paper, we investigate a formal model for packing virtual machines onto
servers, along with how system administrators can adapt algorithms to this packing problem.
We recognize that VM loads can be described probabilistically. One problem in extending the
Bin Packing Problem to the Virtual Machine Assignment Problem is that items in bins have

a deterministic weight, but VM loads are probabilistic. Estimations from the probability



distribution of VMs can be used to determine a deterministic number for item weights in
the Bin Packing Problem. If loads can be represented with a probabilistic distribution, then
system administrators can use probabilistic distributions to pack virtual machines efficiently.
We show how system administrators can use these probabilistic distributions to carry out
packings.

In the third paper, we investigate the effect of variance on these load distributions.
We show that RGGA performs well for problems where virtual machines have low variance
in their loads and outperforms other benchmarks. However, for problems where virtual
machines have high variance in their loads, RGGA performs similarly with other algorithms.

Lastly, the research presented in this thesis focuses on predictively packing virtual
machines onto servers, given distributions of loads on virtual machines. However, it is
also possible, to some extent, to retrospectively pack virtual machines onto servers. Live
migration allows a server administrator to move a running virtual machine or application
between different physical machines without disconnecting the client or application. In the
last part of this thesis, we wish to investigate the place live migration has with the problem
of predictively packing virtual machines onto servers. We include a fourth chapter that
investigates how live migration could affect the results presented in this thesis. We show
that even though for some configurations, even if live migration is an option and swaps are

cost-free, it still is important to do a good initial packing.



Chapter 2

Solving the Multi-Resource Bin Packing Problem with a Reordering Grouping

Genetic Algorithm

To be submitted to GECCO-2011.

Data center energy costs, totalling $2.7 billion in the U.S. in 2005, can be reduced by
utilizing virtual machines (VMs). Using virtualization, multiple operating system instances
can be run on the same physical machine thus saving the power and associated cost of running
separate server hardware for each service provided in a data center. To maximize the savings,
administrators should pack as many VMs as possible onto a server while satisfying resource
constraints. The packing of a set of VMs onto a set of available hardware can be seen as a
type of bin packing problem.

We formally define multi-resource bin packing, a generalization of conventional bin
packing, and develop an algorithm called Reordering Grouping Genetic Algorithm (RGGA)
to assign VMs to servers. We first test RGGA on conventional bin packing problems and
show that it yields excellent results but much more efficiently. We then generate a multi-

constraint test set, not solvable by current methods, and demonstrate the effectiveness of

RGGA in this context.



2.1 Introduction

In 2005, data centers in the United States accounted for 1.2% of all U.S. energy consumption,
costing $2.7 billion [12]. Part of the problem is that most servers and desktops are in use
only 5-15% of the time they are powered on, yet most x86 hardware consumes 60-90% of
normal workload power even when idle [26, 4].

Data center costs can be reduced by utilizing virtual machines (VMs). Using vir-
tualization, multiple operating system instances can be put on the same physical machine
in order to more fully exploit hardware capabilities. System administrators can consoli-
date many VMs on the same physical machine, saving money. To maximize the savings,
administrators should pack as many VMs as possible onto a server while satisfying certain
performance criteria. We refer to this problem as Virtual Machine Packing.

VM packing can be seen as a type of bin packing problem. The bin packing problem
is defined as follows: Given a set of items, each with its own weight, find the assignment of
items to bins under which the number of bins used is minimized, without violating capacity
constraints [3]. However, VM packing is not as simple as the conventional bin packing
problem. Packing VMs onto servers is different in that each server has multiple types of
constrained resources which the VMs consume. Each VM will add a set amount of load
to different resources of the server, such as memory, disk space and CPU. Virtual machine
packing is an example of one class of bin packing problems where each bin has multiple
capacities and each item has multiple weights. The sum of the weights for any given resource
must be less than or equal to the corresponding capacity. We call this the Multi-Capacity
Bin Packing Problem (MCBPP) and define it formally in Section 2.2.1. We propose that the
Multi-Capacity Bin Packing Problem can potentially be used to model the Virtual Machine
Packing Problem.

Bin Packing is NP Hard [3]. Because of the difficulty of the problem, numerous

approximation algorithms have been proposed including genetic algorithms (GAs).

10



We propose a new genetic algorithm to solve the MCBPP. Our new algorithm, the
Reordering Grouping Genetic Algorithm (RGGA) is based on multiple representation of
individuals in the GA. Multiple representations for each individual in the population are
used in order to take advantage of an assortment of genetic operators. This modification
allows RGGA to increase production of promising solutions and waste less time producing
infeasible solutions.

Our paper is outlined as follows. Section 2.2 describes the bin packing problem and
heuristics for solving it, including the first fit heuristic. Section 2.2.1 describes the MCBPP.
Section 2.3 then describes how RGGA works with its new combination of genetic operators.
In section 2.4, we will discuss our experimental setup. Finally, section 2.5 will discuss and

analyze the results of our experiments.

2.2 Bin Packing

Definition 1. The bin packing problem is formulated as follows. Given a finite set of n items
I ={1,2,...,n} with corresponding weights W = {w;, ws,...,w,} and a set of identical
bins each with capacity C, find the minimum number of bins into which the items can be
placed without exceeding the bin capacity C of any bin. A solution to the bin packing
problem is of the form B = {by, b, ..., by}, where each b; is the set of items assigned to bin

1, and is subject to the following constraints:

1. Vi3 j such that ¢ € b; (Every item has to belong to some unique bin.)

2. Vj Znebj w, < C (The sum of the weights of items inside any bin cannot be greater

than the bin capacity.)

Definition 2. An optimal packing B to the bin packing problem is one where the particular

assignments of items to bins minimizes the number of bins |B].

11
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Figure 2.1: The two-capacity bin packing problem. The items in each bin are packed re-
gardless of order. Resources used by each item are additive in each dimension.

T 92JN0Say

Resource 2

Figure 2.2: The conventional two-dimensional bin packing problem. The position and ori-
entation of items in a bin matter.

12



2.2.1 Multi-Capacity Bin Packing

The Multi-Capacity Bin Packing Problem (MCBPP) is different from the conventional multi-
dimensional bin packing problem, where the arrangement of items within a bin makes a
difference in the end solution. In MCBPP, each dimension is associated with a specific
resource; weights are summed independently in each dimension and cannot exceed any re-
source limit [24, 13]. An example of the two-capacity bin packing problem can be found in

Figure 2.1 in contrast to the two-dimensional bin packing problem in Figure 2.2.

Definition 3. The Multi-Capacity Bin Packing Problem has the same definition as the
conventional bin packing problem in Definition 2.2 with some variations. The capacity is a
d-dimensional vector C = (Cy,Cy, ..., Cy) where d is the number of resources. The weights
are redefined so that the weight of item ¢ is a d-dimensional vector w; = (w;1,w;2,. ..,

wi7d>.
1. Vi3l j such that i € b; (Every item has to belong to some unique bin.)

2. VjVk an eb, Wnk < C% (The sum of all the weights for any capacity for any bin must

be less than the corresponding capacity for that bin.)

2.2.2 Solutions to the Bin Packing Problem

There have been numerous approximation algorithms to the conventional bin packing prob-
lem. In this section, we will cover the first fit heuristic, genetic algorithms, and other solutions
for bin packing.

The first fit algorithm for bin packing is one of the most common heuristics for the
problem. The algorithm processes items in arbitrary order. For each item, it attempts to
place the item in the first bin that can accommodate the item. If no bin is found, it opens a
new bin and puts the item within the new bin. One strength of the first fit heuristic is the
running time. It is guaranteed to run in O(n % log(n)) where n is the number of items to be

packed.
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Permutation Pack (PP) attempts to find items in which the largest w components
are exactly ordered with respect to the ordering of the corresponding smallest elements in
the current bin [13]. For example, if d = 2 and C; < Cj, then we look for an item such that
wy < wsy. If no item is found, the requirements are continually relaxed until one is found.
One of the weaknesses of Permutation Pack is the running time. If all permutations are
considered, it runs in O(c!n?) where ¢ is the number of capacities and n is the number of
items to be packed. We refer the reader to Leinberger et al. [13] for further description of
the algorithm. In our experiments, we will use Permutation Pack for comparison.

Genetic Algorithms (GAs) offer another solution to the Bin Packing Problem. There
is no rigorous definition for GAs [15]. GAs derive much of their inspiration from Darwinian
biological processes. In GAs, individuals represent candidate solutions to the problem. These
candidate solutions explore the solution space by undergoing processes similar to those of
biological organisms. The simplest form of genetic algorithm involves three