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ABSTRACT

Packing Virtual Machines onto Servers

David Wilcox

Department of Computer Science

Master of Science

Data centers consume a significant amount of energy. This problem is aggravated
by the fact that most servers and desktops are underutilized when powered on, and still
consume a majority of the energy of a fully utilized computer even when idle This problem
would be much worse were it not for the growing use of virtual machines. Virtual machines
allow system administrators to more fully utilize hardware capabilities by putting more than
one virtual system on the same physical server.

Many times, virtual machines are placed onto physical servers inefficiently. To address
this inefficiency, I developed a new family of packing algorithms. This family of algorithms
is meant to solve the problem of packing virtual machines onto a cluster of physical servers.
This problem is different than the conventional bin packing problem in two ways. First, each
server has multiple resources that can be consumed. Second, loads on virtual machines are
probabilistic and not completely known to the packing algorithm.

We first compare our developed algorithm with other bin packing algorithms and
show that it performs better than state-of-the-art genetic algorithms in literature. We then
show the general feasibility of our algorithm in packing real virtual machines on physical
servers.
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Chapter 1

Introduction

Servers and desktops use an enourmous amount of energy. In 2005, data centers in the

United States accounted for 1.2% of all U.S. energy consumption spending $2.7 billion [12].

One major problem exacerbating this is that most servers are in use only 5-15% of the time

they are powered on, yet most x86-based hardware consumes 60-90% of the energy required

by a fully utilized server even when idle [4].

Data center costs can be reduced by utilizing virtual machines. Using virtualization,

system administrators can put multiple virtual machines with associated operating systems

on the same physical machine in order to exploit hardware capabilities more fully. Virtual-

ization increases the amount of feasible work that can be done in data centers.

System administrators can consolidate many virtual machines on the same physical

machine, saving money on hardware and energy costs. To maximize the savings, administra-

tors should place as many virtual machines onto a server as possible while satisfying certain

performance criteria. Using virtual machines, businesses can more fully utilize increasing

capabilities of hardware. In order to disambiguate between virtual machines and physical

machines, we refer to physical machines as servers.

The problem of packing virtual machines onto servers can be formulated as a special

case of the bin packing problem. The bin packing problem is defined as follows: Given a

set of items, each with its own weight, find the assignment of items to bins under which the

number of bins used is minimized without violating capacity constraints [3].

1



The problem of packing virtual machines onto servers is not as simple as the conven-

tional bin packing problem. Packing virtual machines is different from the traditional bin

packing problem in the following ways:

• In the normal bin packing problem, each item has only one weight and each bin has

only one capacity. In the problem of packing virtual machines, each bin has multiple

capacities or resources that are independent of one another. Each virtual machine will

add an amount of load to the various resources of the server (RAM, CPU, etc.). An

algorithm solving this problem must be able to balance loads with respect to all the

resources on the server.

• In the normal bin packing problem, weights on items are certain and known ahead of

time. However, in the problem of packing virtual machines onto servers, the weights on

each item are uncertain. During the packing process, an algorithm solving this problem

has only a probabilistic distribution which it uses to model the loads of a particular

virtual machine. The future load on each of the resources of the virtual machine can

be represented by a probability distribution. This probability distribution can be used

both to predict future load as well as sample future load.

There are many different resources available to virtual machines on a server. A virtual

machine can slow down or even be brought to a halt if all of any particular resource it needs

is already allocated. Therefore, separate load distributions should be developed for each

resource on a server.

1.1 Related Work

This section will investigate related work in three parts. First, the bin packing problem, some

of its properties, and heuristics for solving it will be discussed. Second, the prior research

done in genetic algorithms will be investigated. Third, load balancing will be discussed.

2
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Figure 1.1: One way to visualize a virtual machines in a server.

1.1.1 Bin Packing

The bin packing problem is formulated as follows. Given a finite set of n items I =

{1, 2, . . . , n} with corresponding weights W = {w1, w2, . . . , wn} and a set of identical bins

each with capacity C, find the minimum number of bins into which the items can be placed

without exceeding the bin capacity C of any bin. A solution to the bin packing problem is

of the form B = {b1, b2, . . . , bm}, where each bi is the set of items assigned to bin i, and is

subject to the following constraints:

1. ∀i ∃! j such that i ∈ bj (Every item has to belong to some unique bin.)

2. ∀j
∑

n∈bj wn ≤ C (The sum of the weights of items inside any bin cannot be greater

than the bin capacity.)

However, the bin packing problem discussed here is different from the conventional bin

packing problem. One way to visualize it can be seen in Figure 1.1. The vertical dimension of

3
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Figure 1.2: An inefficient virtual machine packing solution.

Figure 1.1 refers to the total amount of RAM capacity on a particular server. The horizontal

dimension of Figure 1.1 refers to the total amount of CPU capacity on a server. Items are

placed on each corner to show that the sum of the weights for any one type has to be less

than the corresponding bin capacity. The sum of the CPU taken by all virtual machines

must be less than the corresponding CPU capacity of the server. Likewise, the sum of the

RAM taken by all virtual machines must be less than the corresponding RAM capacity of

the server. This is true if system administrators wish to maintain a reasonable performance

criteria, which is an assumption we make here.

As with the conventional Bin Packing Problem, the objective is to minimize the

number of bins. Figures 1.2 and 1.3 illustrate this principle. Figure 1.3 packs the exact

same items as are found in Figure 1.2 in three bins instead of four. In the Virtual Machine

Assignment Problem, this means one fewer server in utilization.
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Figure 1.3: An efficient virtual machine packing solution.

1.1.2 Genetic Algorithms

Bin packing problems can also be solved with Genetic Algorithms (GAs). There is no rigorous

definition for GAs [15]. GAs derive much of their inspiration from Darwinian biological

processes. In GAs, individuals represent candidate solutions to the problem. These candidate

solutions explore the solution space by undergoing processes similar to those of biological

organisms. The simplest form of a genetic algorithm involves three types of operators:

• Selection–Individuals in the population are selected for crossover with other individ-

uals. Usually, selection is based on elitism, where the more fit individuals are selected

more often than less fit individuals.

• Crossover–Two individuals in the population exchange subsections of their candidate

solution with each other to create new offspring.

5



• Mutation–After crossover, each individual has a probability of having their candidate

solution modified slightly.

These three operators act on the candidate solutions in the population in order to

improve the population [15].

1.1.3 Load Rebalancing

Load rebalancing has traditionally been thought of as, given a suboptimal assignment of

jobs to processors, reassign jobs reducing the load on the heaviest processor. This is done

by migrating jobs from the heaviest-loaded processor to a less loaded processor [9].

Aggarwal et al.[2] gave a taxonomy of different load rebalancing problems and many

proofs about load rebalancing. In general, their theorems show that load rebalancing is an

NP Hard problem [2].

Even though the conventional load rebalancing problem is interesting, the problem

addressed here is different in two ways. First, our problem does not assume any type of initial

assignment of virtual machines to servers, but rather generates an initial assignment. For

example, this assignment may be made at the beginning of a business day for an e-commerce

web site when loads on virtual machines are low and administrators have more liberty to

migrate virtual machines. After the day has started, system administrators may not be able

to move around virtual machine as freely because servers need to be dedicated to processing

customer transactions, and not performing VM migrations between servers.

The second way that our problem is different is that the optimization criterion of

our algorithm is different. The load rebalancing problem minimizes the load on the heaviest

server. Instead, we minimize the number of servers in utilization, while assuring that all

virtual machines maintain sufficient performance.This difference can also be thought of in the

following way. Conventional load rebalancing algorithms swap processes in order to minimize

the load on servers with the goal to increase throughput. Instead of measuring throughput,

we minimize energy consumption throughout the entire system by turning off servers while

6



assuring that no server becomes overloaded. Turning off servers is equal to minimizing the

number of bins in the bin packing problem. We have found no other algorithms in the

literature whose goal is to solve this new variant of load rebalancing.

1.2 Thesis Statement

Genetic algorithms can be adapted to the problem of packing virtual machines tightly onto

servers such that unused physical machines can be turned off, saving energy, while assuring

that no server becomes overloaded. Primarily, we are interested in answering the following

question: “How can the Bin Packing Problem be extended to packing virtual machines onto

servers?”

In order to solve this problem, we assert that If VM loads are probabilistic, different

estimates from the VM probability distribution can be taken to make VM packing conform

to the Bin Packing Problem.

1.3 Thesis Format

We divide the rest of this thesis into four separate papers. In the first paper, we investigate a

new type of Bin Packing Problem that can be applied directly to packing virtual machines to

servers. Along with this new Bin Packing Problem, we present a genetic algorithm with ac-

companying operators specifically meant to solve this type of bin packing problem. We show

that our new genetic algorithm outperforms state-of-the-art genetic algorithms in literature

on the conventional Bin Packing Problem and show the genetic algorithm’s applicability in

packing virtual machines onto servers.

In the second paper, we investigate a formal model for packing virtual machines onto

servers, along with how system administrators can adapt algorithms to this packing problem.

We recognize that VM loads can be described probabilistically. One problem in extending the

Bin Packing Problem to the Virtual Machine Assignment Problem is that items in bins have

a deterministic weight, but VM loads are probabilistic. Estimations from the probability

7



distribution of VMs can be used to determine a deterministic number for item weights in

the Bin Packing Problem. If loads can be represented with a probabilistic distribution, then

system administrators can use probabilistic distributions to pack virtual machines efficiently.

We show how system administrators can use these probabilistic distributions to carry out

packings.

In the third paper, we investigate the effect of variance on these load distributions.

We show that RGGA performs well for problems where virtual machines have low variance

in their loads and outperforms other benchmarks. However, for problems where virtual

machines have high variance in their loads, RGGA performs similarly with other algorithms.

Lastly, the research presented in this thesis focuses on predictively packing virtual

machines onto servers, given distributions of loads on virtual machines. However, it is

also possible, to some extent, to retrospectively pack virtual machines onto servers. Live

migration allows a server administrator to move a running virtual machine or application

between different physical machines without disconnecting the client or application. In the

last part of this thesis, we wish to investigate the place live migration has with the problem

of predictively packing virtual machines onto servers. We include a fourth chapter that

investigates how live migration could affect the results presented in this thesis. We show

that even though for some configurations, even if live migration is an option and swaps are

cost-free, it still is important to do a good initial packing.
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Chapter 2

Solving the Multi-Resource Bin Packing Problem with a Reordering Grouping

Genetic Algorithm

To be submitted to GECCO-2011.

Data center energy costs, totalling $2.7 billion in the U.S. in 2005, can be reduced by

utilizing virtual machines (VMs). Using virtualization, multiple operating system instances

can be run on the same physical machine thus saving the power and associated cost of running

separate server hardware for each service provided in a data center. To maximize the savings,

administrators should pack as many VMs as possible onto a server while satisfying resource

constraints. The packing of a set of VMs onto a set of available hardware can be seen as a

type of bin packing problem.

We formally define multi-resource bin packing, a generalization of conventional bin

packing, and develop an algorithm called Reordering Grouping Genetic Algorithm (RGGA)

to assign VMs to servers. We first test RGGA on conventional bin packing problems and

show that it yields excellent results but much more efficiently. We then generate a multi-

constraint test set, not solvable by current methods, and demonstrate the effectiveness of

RGGA in this context.
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2.1 Introduction

In 2005, data centers in the United States accounted for 1.2% of all U.S. energy consumption,

costing $2.7 billion [12]. Part of the problem is that most servers and desktops are in use

only 5-15% of the time they are powered on, yet most x86 hardware consumes 60-90% of

normal workload power even when idle [26, 4].

Data center costs can be reduced by utilizing virtual machines (VMs). Using vir-

tualization, multiple operating system instances can be put on the same physical machine

in order to more fully exploit hardware capabilities. System administrators can consoli-

date many VMs on the same physical machine, saving money. To maximize the savings,

administrators should pack as many VMs as possible onto a server while satisfying certain

performance criteria. We refer to this problem as Virtual Machine Packing.

VM packing can be seen as a type of bin packing problem. The bin packing problem

is defined as follows: Given a set of items, each with its own weight, find the assignment of

items to bins under which the number of bins used is minimized, without violating capacity

constraints [3]. However, VM packing is not as simple as the conventional bin packing

problem. Packing VMs onto servers is different in that each server has multiple types of

constrained resources which the VMs consume. Each VM will add a set amount of load

to different resources of the server, such as memory, disk space and CPU. Virtual machine

packing is an example of one class of bin packing problems where each bin has multiple

capacities and each item has multiple weights. The sum of the weights for any given resource

must be less than or equal to the corresponding capacity. We call this the Multi-Capacity

Bin Packing Problem (MCBPP) and define it formally in Section 2.2.1. We propose that the

Multi-Capacity Bin Packing Problem can potentially be used to model the Virtual Machine

Packing Problem.

Bin Packing is NP Hard [3]. Because of the difficulty of the problem, numerous

approximation algorithms have been proposed including genetic algorithms (GAs).
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We propose a new genetic algorithm to solve the MCBPP. Our new algorithm, the

Reordering Grouping Genetic Algorithm (RGGA) is based on multiple representation of

individuals in the GA. Multiple representations for each individual in the population are

used in order to take advantage of an assortment of genetic operators. This modification

allows RGGA to increase production of promising solutions and waste less time producing

infeasible solutions.

Our paper is outlined as follows. Section 2.2 describes the bin packing problem and

heuristics for solving it, including the first fit heuristic. Section 2.2.1 describes the MCBPP.

Section 2.3 then describes how RGGA works with its new combination of genetic operators.

In section 2.4, we will discuss our experimental setup. Finally, section 2.5 will discuss and

analyze the results of our experiments.

2.2 Bin Packing

Definition 1. The bin packing problem is formulated as follows. Given a finite set of n items

I = {1, 2, . . . , n} with corresponding weights W = {w1, w2, . . . , wn} and a set of identical

bins each with capacity C, find the minimum number of bins into which the items can be

placed without exceeding the bin capacity C of any bin. A solution to the bin packing

problem is of the form B = {b1, b2, . . . , bm}, where each bi is the set of items assigned to bin

i, and is subject to the following constraints:

1. ∀i ∃! j such that i ∈ bj (Every item has to belong to some unique bin.)

2. ∀j
∑

n∈bj wn ≤ C (The sum of the weights of items inside any bin cannot be greater

than the bin capacity.)

Definition 2. An optimal packing B to the bin packing problem is one where the particular

assignments of items to bins minimizes the number of bins |B|.
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Figure 2.1: The two-capacity bin packing problem. The items in each bin are packed re-
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Figure 2.2: The conventional two-dimensional bin packing problem. The position and ori-
entation of items in a bin matter.
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2.2.1 Multi-Capacity Bin Packing

The Multi-Capacity Bin Packing Problem (MCBPP) is different from the conventional multi-

dimensional bin packing problem, where the arrangement of items within a bin makes a

difference in the end solution. In MCBPP, each dimension is associated with a specific

resource; weights are summed independently in each dimension and cannot exceed any re-

source limit [24, 13]. An example of the two-capacity bin packing problem can be found in

Figure 2.1 in contrast to the two-dimensional bin packing problem in Figure 2.2.

Definition 3. The Multi-Capacity Bin Packing Problem has the same definition as the

conventional bin packing problem in Definition 2.2 with some variations. The capacity is a

d-dimensional vector C = 〈C1, C2, . . . , Cd〉 where d is the number of resources. The weights

are redefined so that the weight of item i is a d-dimensional vector wi = 〈wi,1, wi,2, . . . ,

wi,d〉.

1. ∀i ∃! j such that i ∈ bj (Every item has to belong to some unique bin.)

2. ∀j ∀k
∑

nk∈bj wn,k ≤ Ck (The sum of all the weights for any capacity for any bin must

be less than the corresponding capacity for that bin.)

2.2.2 Solutions to the Bin Packing Problem

There have been numerous approximation algorithms to the conventional bin packing prob-

lem. In this section, we will cover the first fit heuristic, genetic algorithms, and other solutions

for bin packing.

The first fit algorithm for bin packing is one of the most common heuristics for the

problem. The algorithm processes items in arbitrary order. For each item, it attempts to

place the item in the first bin that can accommodate the item. If no bin is found, it opens a

new bin and puts the item within the new bin. One strength of the first fit heuristic is the

running time. It is guaranteed to run in O(n ∗ log(n)) where n is the number of items to be

packed.
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Permutation Pack (PP) attempts to find items in which the largest w components

are exactly ordered with respect to the ordering of the corresponding smallest elements in

the current bin [13]. For example, if d = 2 and C1 < C2, then we look for an item such that

w1 < w2. If no item is found, the requirements are continually relaxed until one is found.

One of the weaknesses of Permutation Pack is the running time. If all permutations are

considered, it runs in O(c!n2) where c is the number of capacities and n is the number of

items to be packed. We refer the reader to Leinberger et al. [13] for further description of

the algorithm. In our experiments, we will use Permutation Pack for comparison.

Genetic Algorithms (GAs) offer another solution to the Bin Packing Problem. There

is no rigorous definition for GAs [15]. GAs derive much of their inspiration from Darwinian

biological processes. In GAs, individuals represent candidate solutions to the problem. These

candidate solutions explore the solution space by undergoing processes similar to those of

biological organisms. The simplest form of genetic algorithm involves three types of opera-

tors:

• Selection–Individuals in the population are selected for crossover with other individ-

uals. Usually, selection is based on elitism, where the more fit individuals are selected

more often than less fit individuals.

• Crossover–Two individuals in the population exchange subsections of their candidate

solution with each other to create two offspring.

• Mutation–After crossover, each individual has a probability of having their candidate

solution modified slightly (mutated).

These three operators act on the candidate solutions in the population in order to

improve the population [15].

Radcliffe et al. [17] proposed six design principles of good representations for individ-

uals in a genetic population. One of the design principles discussed was avoiding redundancy.
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Avoiding redundancy in the representation allows the GA to search a wider space of pos-

sible candidate solutions with fewer computations. Falkenauer [7] discussed that for some

types of problems, grouping genetic algorithms (GGAs) avoid redundancy well. In GGAs,

the chromosome represents groups. GGAs have been used to solve many types of grouping

problems, such as bin packing and graph coloring. One example of a GGA to solve the bin

packing problem is Rohlfshagen et al’s [18] exon shuffling genetic algorithm.

Other approaches to the bin packing problem include BISON [19], MBS′, and VNS.

The first algorithm, BISON, applies a first fit decreasing strategy to the bins followed by a

branch and bound procedure [19]. MBS′ attempts to find a set of items (packing) that fits

the bin capacity as much as possible [8]. VNS explores increasingly distant neighborhoods

of the current solution and jumps from there to a new one if and only if an improvement has

been made [8].

Alvim et al. [3] developed a highly successful heuristic to the bin packing problem

which combines multiple algorithms. Their algorithm, HI BP, uses reduction techniques to

eliminate some items and to fix the items in some bins. Afterward, lower bounds and upper

bounds are computed. The algorithm halts at this stage if the lower and the upper bounds

are equal. Next, a greedy algorithm is applied to build a solution using exactly the number

of bins returned by the lower bound (this solution many times will be infeasible). If the

solution that was constructed is not feasible, load redistribution strategies are employed.

Next, if the solution still is not feasible, a tabu search heuristic is used to attempt to knock

down capacity violations. If at this point, the solution is feasible, then the algorithm stops.

If the solution is still not feasible, the algorithm adds 1 to the lower bound, and goes back

to the reconstruction phase.

As noted by Rohlfshagen et al. [18], Alvim et al.’s approach “relies on several pre-

processing steps and undergoes multiple phases exploiting several mathematical properties

of the bin packing problem.” This approach would not directly extend well to the MCBPP.

15



2.3 Reordering Grouping Genetic Algorithm

To solve MCBPP, we propose the Reordering Grouping Genetic Algorithm (RGGA). Because

RGGA relies heavily upon the behavior of first fit packing, we prove here that there exists a

first fit ordering which will produce an optimal packing for every instance of the bin packing

problem. Note that the first fit algorithm as defined works for both the conventional bin

packing problem and MCBPP.

Definition 4. A packing B is any feasible solution to a bin packing problem.

Definition 5. Given a packing B a packing sequence 〈i1,1, i1,2, . . . , i1,n1 , i2,1, i2,2, . . . , i2,n2 ,

. . . , ik,1, ik,2, . . . , ik,nk
〉 is a sequence of items formed by a nested iteration over:

• all bins of B in arbitrary order

• and all items within each bin in arbitrary order.

This sequence is not unique—there may be many packing sequences for any given packing.

Definition 6. A first fit packing is obtained by executing the first fit algorithm on a packing

sequence.

Theorem 2.3.1. If B is a packing with |B| bins, and S is any packing sequence of B with

corresponding first fit packing B, then |B| ≤ |B|, i.e. B has no more bins than B.

Proof. Let Sk = 〈i1,1, i1,2, . . . , i1,n1 , i2,1, i2,2, . . . , i2,n2 , . . . , ik,1, ik,2, ik,nk
〉 be the subsequence of

S corresponding to the first k bins. Let Bk = {β1, β2, . . . βk} be the first fit packing of Sk.

The first fit algorithm will assign S1 in order into bins in B. Items i1,1, i1,2, . . . , i1,n

will fit into bin β1 because these items were in a single bin in the packing B. Therefore,

|B1| ≤ 1.

By way of induction, suppose that the first fit packing of Sk uses at most k bins

i.e. |Bk| ≤ k. We will show that the first fit packing of Sk+1 uses at most k + 1 bins i.e.
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|Bk+1| ≤ k + 1. The first fit algorithm applied on Sk+1 will start by assigning the items in

order from Sk into the first |Bk| bins of C. The remaining items ik+1,1, ik+1,2, . . . , ik+1,nk+1

may also fit into extra space in the first |Bk| bins. In any case, they will require at most

one additional bin because they all fit in a single bin, specifically βk+1 in the packing B.

Therefore, |Bk+1| ≤ |Bk|+ 1 ≤ k + 1.

By induction, |B| ≤ |B|.

Corollary 2.3.2. For any solvable bin packing problem instance, there exists a packing

sequence whose first fit packing is optimal.

Proof. Let B∗ be an optimal packing for the packing sequence, let S∗ be any packing sequence

of B∗, and let B∗ be the first fit packing of S∗. By Theorem 2.3.1 |B∗| ≤ |B∗|. Because B∗

is an optimal packing, |B∗| = |B∗| and B∗ is optimal.

Because there exists some first fit packing for every optimal packing, we can reduce

MCBPP to a search for a packing sequence with an optimal first fit packing.

2.3.1 Algorithm Overview

Even though Radcliffe et al. [17] proposed that representations of individuals should avoid

redundancy, and Falkenauer showed that GGAs represent the problem well, strictly following

a grouping genetic algorithm approach is not flexible enough for MCBPP. For example, as

will be seen in Section 2.5, the conventional grouping mutation operators do not perform

well for MCBPPs. Rohlfshagen et al. [18] proposed a grouping mutation operator that, with

equal probability, swaps two items in different bins or moves an item in one bin to another.

When this operator is applied to MCBPP with just two capacities, the mutation operator

described by Rohlfshagen et al. produced infeasible candidate solutions in over 95% of cases

tested. This high percentage of infeasible candidate solutions wastes time and resources when

solving the problem. Even though Falkenauer proposed a different, possibly more successful
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mutation operator, this mutation failed to produce good results when the problem size was

large. None of the grouping approaches to mutation seem to work well for MCBPP.

RGGA represents individuals in the population not only as an assignment of items

to bins, but also as a packing sequence. In order to represent a candidate solution this

way, there must be a function to transform a packing sequence to a packing and vice-versa.

Using these transformations, we represent a candidate solution with multiple representations

and are able to create operators that take advantage of multiple representations. This gives

RGGA the power to use special genetic operators. Not only can RGGA use both ordering

and grouping genetic operators, but it can also use operators that have both ordering and

grouping components.

When an ordering operator is performed, an assignment of items to bins must be

generated. Therefore, the items are first fitted into the solution in order to generate the

assignment. When a grouping operator is performed, a packing sequence must be developed.

We iterate over each bin and over each item inside of each bin, adding each item encountered

to the packing sequence in order.

Because RGGA uses a first fit ordering, it naturally avoids generating infeasible solu-

tions. Other bin packing algorithms need to conduct various searches in order to eliminate

infeasible solutions [3]. Because RGGA’s solutions are defined as the first fit packing of

the list of items, and the first packing will always yield a feasible solution, every solution

returned by RGGA will be feasible. This eliminates the time that would be spent cutting

down infeasibilities.

2.3.2 Fitness Function

Every GA needs a fitness function to evaluate the fitness of an individual in the population.

For the conventional bin packing problem, Falkenauer [7] proposed the following cost function

of a packing B:

fBPP (B) =
1

|B|

|B|∑
j=1

F (bj) (2.1)
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F (bj) =

 1

C

∑
i∈bj

wi

κ

(2.2)

where wi is the weight of item i, C the bin capacity, and κ a constant, 1 < κ ≤ 2. We use

Falkenauer’s suggestion of setting κ = 2.

We adapt this fitness function to MCBPP by incorporating multiple capacities in the

fitness function. We first define Fk(bj) to be the normalized sum of weights if items in bin j

and resource k:

Fk(bj) =

 1

Ck

∑
i∈bj

wi,k

κ

(2.3)

where wi,k is the weight of item i with respect to resource k, Ck the bin capacity for resource

k, and κ a constant, 1 < κ ≤ 2.

We next define fMBPP,j(B) by using equation 2.1 for one single resource:

fMBPP,k(B) =
1

|B|

|B|∑
j=1

Fk(bj) (2.4)

We define fMBPP (B) by summing fMBPP,k(B) for all resources:

fMBPP (B) =
d∑

k=1

fMBPP,k(B) (2.5)

This function, fMBPP (B), is the fitness function of a single individual B in the genetic

population. We must assess whether this metric will always be minimized together with the

optimal packing.

Theorem 2.3.3. Given a multi-capacity bin packing problem, if B∗ is an optimal packing and

B′ is a packing the same items as B∗ such that |B∗| < |B′|, then fMBPP (B∗) < fMBPP (B′).

Proof. The conventional bin packing problem is a special case of the multi-capacity bin

packing problem in that for any fixed k, fMBPP,k is equivalent to fBPP . This, along with a
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theorem in Falkenauer [7], implies that for any k, fMBPP,k(B
∗) < fMBPP,k(B

′). Therefore,

fMBPP (B∗) =
d∑

k=1

fMBPP,k(B
∗)

<
d∑

k=1

fMBPP,k(B
′)

= fMBPP (B′)

2.3.3 Crossover Operator

Crossover in genetic algorithms is where individuals in the population combine traits in

order to generate a new generation. The child theoretically should have good traits from

both parents and hopefully has better fitness.

We choose two parents with probability proportional to the fitness of the individual.

In other words, more fit individuals will reproduce with higher probability than less fit

individuals.

The crossover operator is implemented using an exon shuffling approach similar to

the one described by Rohlfshagen et al. [18]. This approach combines all of the bins from

both parents and sorts the bins by fitness. The more full bins are at the front of the list,

while the less full bins are at the end. The algorithm systematically picks the more full bins

and keeps them intact. If any bin picked contains any item that belongs to a bin that has

already been picked, that bin is discarded. This process will produce a list of bins that may

not include all items. These remaining items that have not been included in any bin are

then sorted in decreasing order and the first fit decreasing heuristic is applied to these items.

Because RGGA uses multiple representations, the resulting assignment of items to

bins must be transformed into a packing sequence for other operators. This packing sequence,

when first fit packed, may generate a different set of bins. By theorem 2.3.1, we know that
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the resulting assignment of items to bins after applying the first fit operation will require

no more bins than was required before. The only case where the structure of the items is

not preserved is in the case where an item from a later bin is packed into an earlier bin. We

consider this a benefit. Because the crossover operator sorts the bins in order of fitness, the

earlier bins are generally more tightly packed than the later bins. If the algorithm is able to

move any items from later, less tightly packed bins to earlier, tighter bins, the change would

be welcome as the later, looser bins now have more space to rearrange.

The operator described here is inherently greedy in that it considers the most tightly

packed bin first. Therefore, in order to escape from local optima, we mimic Rohlfshagen et

al. [18] by adding noise to the fitness of each bin. The noise of each bin is distributed as

a Gaussian with mean µ = 0 and standard deviation σ = C
10

where C is the bin capacity.

When bins have multiple capacities, σ =
∑|C|

i=1Ci/10 where C is the set of all bin capacities

for that bin, and Ci is member i of that set.

2.3.4 Mutation Operator

RGGA’s mutation operator includes three options. First, Falkenauer proposed a mutation

operator where a number of bins are removed from the solution and the items are subse-

quently reinserted into the candidate solution. Second, two items in the packing sequence of

items are swapped. Third, one item is moved to another spot in the packing sequence.

For the second and third genetic operators that work on the packing sequence list,

we use information obtained from the groups to improve the performance of the ordering

genetic operators. For example, we assure that we never swap two items that came from the

same bin. Also, we do not move an item in one bin to the spot of another item from the

same bin. Lastly, for all three genetic operators, we mutate items with probability inversely

proportional to the fitness of the bin that the item comes from. Items from worse bins are

mutated more often than items from better bins. This helps to assure that the structure of

better bins is maintained.
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We will discuss differences in performance between the three mutation operators

in section 2.5. However, for testing RGGA, we settled on applying Falkenauer’s remove

mutation operator with probability 1
3
, swapping two items with probability 1

3
and moving

an item with probability 1
3
.

2.4 Experimental Setup

The GA used for all the experiments was a standard steady-state GA with a population

size of 75. The previously discussed crossover operator was applied with probability 0.8.

In the event that a crossover is not applied, both parents have a uniform probability of

being reproduced asexually. The previously discussed mutation operator was applied with

probability 0.1 to each individual after crossover.

Naturally, any new algorithm needs to be compared against existing algorithms. How-

ever, because MCBPP described in this paper is new, there are no standard benchmark

problems to use for comparison. Therefore, we will test the performance of RGGA in two

parts. First, we specify the number of capacities on MCBPP to be one thus reducing it to a

conventional bin packing problem. This will allow us to test against conventional evolution-

ary approaches. Second, we will evaluate the performance of RGGA on a set of MCBPPs

generated by us.

2.4.1 Conventional Bin Packing Problem

When comparing RGGA to other conventional bin packing algorithms, we will use a set of

benchmark instances produced by A. Scholl and R. Klein. The third set, labeled HARD0–

HARD9, is a set of triplets. The data set contains 10 problems, each consisting of 200 items

with weights between 20,000 and 35,000 and bin capacities of 100,000. We will focus our

comparison against other bin packing algorithms using this data set as it is deemed the most

difficult. As we will compare RGGA against Exon Shuffling Genetic Algorithm [18], we
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follow Rohlfshagen et al.’s precedent and execute our algorithm 50 times on each instance,

with a maximum limit of 50,000 function evaluations.

2.4.2 Multi-Capacity Bin Packing Problem

The goal of this paper is to develop a solution to MCBPP that can be applied to pack VMs

onto servers. We developed a set of MCBPPs that model the number of VMs normally found

on servers. Based on studies by VMware [27], we generated a test set of MCBPPs that have

close to 9-13 items per bin1. This test set of multi-capacity bin packing instances is intended

to simulate packing VMs onto a cluster of servers. For the purposes of this experiment, we

packed each process according to two different resources: processor time and RAM used. We

assigned loads to VMs such that nine to thirteen of the VMs can fit on a physical server. The

data sets that we used were created such that every item fits perfectly into the set of bins

(there is no free space in any bin). We created 10 different two-capacity problem instances of

differing size. The smallest problem has approximately 500 VMs while the largest problem

has approximately 4500 VMs. An optimal bin packing is extraordinarily difficult to find

because each problem was built to have no free space in any of its bins.

Our algorithm was executed 50 times on each problem instance. We initially used

a maximum limit of 50,000 function evaluations. However, after analyzing the convergence

of the algorithm, we test our algorithm using 7500 function evaluations instead. We report

the average number of bins found in the best solution along with the average, minimum and

maximum number of function evaluations.

2.4.3 RGGA For Virtual Machine Deployments

In order to give validity to this work, we used RGGA to pack real VMs onto servers. We

benchmarked RGGA against the algorithms First Fit and Worst Fit. First Fit has been

described in Section 2.2.2. The Worst Fit algorithm for bin packing considers each item in

1 http://aml.cs.byu.edu/~davidw/rgga/datasets
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Approach Solved

Relaxed MBS’ [8] 2
VNS [8] 2
Perturbation MBS’ & VNS [8] 2
GA [14] 3
BISON [19, 14] 3
Dual Tabu [19, 8] 3
Exon Shuffling GA [18] 8
RGGA 9

Table 2.1: Our algorithm compared with other algorithms on the same 10 hard conventional
bin packing problem instances. These instances are not representative of MCBPP.

order. For each item, it considers only bins that already have at least one item placed in

them. It places the item in the bin into which it fits which has the most amount of free

space. If the item does not fit in any of the bins considered, it is placed into a new bin.

In our experiments, we created VMs which would have known and deterministic load.

We realize that this case does not happen in real deployments, but defer this issue for future

research. We created 50 VMs which exhibited a deterministic load on their respective servers.

We allowed the packing algorithms to see the loads that these machines exhibit. Then, we

used the kvm hypervisor and the qemu monitor to create real VMs on our respective servers.

After the VMs had booted, we assigned loads to these VMs and observed resource utilization.

The hardware that we used for benchmarking contain Intel quad core 2.66 gigahertz

cpus with cache size of three MB and a RAM size of 8 GB.

2.5 Results

2.5.1 Conventional Bin Packing Problem

We intend to show that RGGA performs competitively with the best genetic algorithms

on single capacity bin packing problems and that it performs well on MCBPPs. Table 2.1

shows a comparison of several approaches in recent literature on the same set of 10 benchmark

instances of one-dimensional bin packing.
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instance Opt RGGA Avg. Exon Shuffling Avg

HARD3 55 55.96 56
HARD4 57 57 57.02
HARD5 56 56 56.06
HARD9 56 56 56.02

Table 2.2: Summary of RGGA compared with Rolfshagen et al.’s Exon Shuffling approach.3

0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

Swap Move Remove

P
e

rc
e

n
t 

Im
p

ro
ve

d

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

HARD0 HARD1 HARD4 HARD5 HARD6 HARD7 HARD8 HARD9 

RGGA

Exon 
Shuffling GA

Figure 2.3: The average number of function evaluations for the exon shuffling GA are com-
pared with the function evaluations for RGGA.5

In most respects, RGGA seems superior. RGGA solves HARD3 to optimality 4% of

the time, while exon shuffling genetic algorithm never solves it. For some of the problems

that exon shuffling genetic algorithm did not solve completely all the time, such as HARD5,

RGGA solves to optimality every time.

Even though RGGA performed slightly better in terms of percent of problems solved,

it performed much better in terms of function evaluations. Figure 2.3 shows the average

number of function evaluations for RGGA and exon shuffling genetic algorithm for different

3HARD0, HARD1, HARD2, HARD6, HARD7 and HARD8 are omitted because both algorithms per-
formed equally well on those problems
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instance Avg FE Min FE Max FE

HARD0 2462.9 2488 3394
HARD1 1877.8 2384 2932
HARD2 50000 50000 50000
HARD3 47955.84 8453.0 50000
HARD4 4094.6 6362 6587
HARD5 5337.0 6316 9295
HARD6 2058.6 1924 3502
HARD7 3760.9 2275 5246
HARD8 1934.5 1830 3073
HARD9 4637.8 5070 7977

Table 2.3: The average, minimum and maximum number of function evaluations for RGGA
on the single-capacity data set used.

instance Avg FE Min FE Max FE

HARD0 7177.38 2488 17186
HARD1 5826.58 2384 15996
HARD2 50000 50000 50000
HARD3 50000 50000 50000
HARD4 13474.10 6362 35809
HARD5 15361.15 6316 44610
HARD6 5501.98 1924 10143
HARD7 7899.92 2275 22461
HARD8 5265.58 1830 21475
HARD9 13931.55 5070 30045

Table 2.4: The average, minimum and maximum function evaluations for exon shuffling
genetic algorithm on the single-capacity data set used.

problems. RGGA performs significantly better in this regard. See also Tables 2.3 and 2.4

for more details.

2.5.2 Multi-Capacity Bin Packing Problem

For the multi-capacity problem, we tested RGGA using the multi-capacity data set described

in Section 2.4. Note that no other algorithms discussed in this paper except for the baseline

solve this problem, and therefore cannot be used for comparison. RGGA is meant to solve

MCBPPs like this data set rather than instances of the conventional single-capacity bin

5HARD2 and HARD3 are omitted because of graph scaling. Both algorithms run approximately to the
50000 function evaluation limit. See Tables 2.3 and 2.4
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Opt RGGA Found FFD Found PP Found

59 60.00 61 61.4
112 113.00 121 117.8
191 192.00 207 196.5
216 217.00 234 223.9
241 242.00 262 250.3
267 268.00 296 277.7
320 321.00 353 331.8
371 372.00 412 384.7
425 426.02 465 439.8
481 482.00 541 499.5

Table 2.5: Summary of our experimental results of our algorithm on the multi-capacity
problems.

packing problem. The items in this data set represent VMs and the bins in this data set

represent servers. These problems were meant to be very hard as the optimal packing will

have no free space in any bin. Figure 2.5 shows that RGGA was always one bin away from

the optimal packing in every run, except for one run when the optimal number of bins was

425.

Also, Figure 2.5 shows a comparison of RGGA, Permutation Pack (PP) and the

first fit decreasing (FFD) heuristic for each problem instance. Because MCBPP has multiple

weights for each item, in order to compare two different items in MCBPP, we use the following

scoring, S(i) =
∑k

j=1w
2
i,j where i is a particular item, S(i) is the score of the item, k is the

number of weights belonging to item i, and wi,j is weight j of item i. RGGA significantly

outperforms the first fit decreasing heuristic.

In order to show that a grouping representation is not desired all of the time for all

genetic operators, we show that the ordering mutations outperform the grouping mutations

for large MCBPPs (the type of problems that this algorithm would encounter when packing

VMs onto servers). In order to show that RGGA’s ordering approach to the mutation

operator is an improvement upon Falkenauer’s grouping approach to mutation for large

multi-capacity problems, we compared the percentage of mutations that led to improved

candidate solutions for the three different types of mutations that RGGA used. Recall that
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Figure 2.4: The average improved solutions for each mutation type for the multi-capacity
problems.

RGGA used three different mutation operators: remove a few bins and reinsert their contents

(remove), move an item in the ordered item list (move), and swap two items in the item list

(swap).

We generated a new test set of multi-capacity bin packing instances of corresponding

to cases with the number of items between 500 and 4500. We performed this test for problems

of varying numbers of items. We show a summary of our findings in Figure 2.4 for MCBPPs.

The graph shows that the move mutation outperformed Falkenauer’s remove mutation. Move

and swap mutations improved their solutions in about 20% of cases. Falkenauer’s remove

mutation improved its solutions in about 16% of cases. A more detailed graph of how each

operator did on each specific problem size can be found in Figure 2.5. As can be seen in

Figure 2.5, all of the mutation operators performed nearly equally well for small data sets.

However, when the size of the data set increases, the performance of Falkenauer’s remove

mutation operator diminishes while the move and swap mutation operators still perform

fairly well.
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Figure 2.7: The amount of energy used in solutions returned by the three different algorithms.

A comparison of each mutation’s performance for single-capacity problems can be

found in Figure 2.6. For single-capacity problems (HARD0–HARD9), the move and swap

mutations did not perform as well in comparison with the multi-capacity problem. The swap

mutation performed worse, but did not perform substantially worse than the move mutation

and Falkenauer’s mutation. It may be that these test problems were small enough that

Falkenauer’s mutation still performed reasonably well.

2.5.3 RGGA For Virtual Machine Deployments

After creating artificial loads on VMs, we observed the total amount of energy used by all

servers used. We show in Figure 2.7 the energy used by the deployments created by the

three different algorithms. The deployment created by RGGA uses much less energy than

the other benchmarks we used. If loads on virtual machines are deterministic and known,

RGGA can take advantage of this, and pack VMs tightly onto servers.

In the Sections 2.5.1 and 2.5.2 we showed that RGGA is very good at finding good

answers. We show here that RGGA also converges very quickly, thus limiting the running
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Figure 2.8: The average number of bins in the best solution for different iteration numbers
for HARD0.

time needed when it is used in data centers. We show in Figure 2.8 the average number

of bins in the best solution in the population at varying iteration numbers when running

RGGA on HARD0. As can be seen, RGGA finds an optimal solution in nearly every case

in fewer than thirty iterations.

We wished to find out how much real time RGGA would take to run in a real-life

situation. We imagine that there may be problem sets which may be harder to optimize than

these problems here, and thus give RGGA a maximum of 100 iterations or 7500 function

evaluations instead of thirty iterations or 2250 iterations. We benchmarked the time RGGA

needed to find come to a solution after 100 iterations for varying sizes of Multi-Capacity Bin

Packing Problems.

We compared the number of servers found for all ten multi-capacity problems used

for 50,000 function evaluations and for 7500 function evaluations. In all ten multi-capacity

problems, there was no difference in the number of servers found in the solution between
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Figure 2.9: The amount of time taken to find a solution for varying sizes of Multi-Capacity
Bin Packing Problems.

50,000 function evaluations and 7500 function evaluations. This gives validity to the data

we show about the practical amount of time taken to solve RGGA.

We show in Figure 2.9 the amount of time needed to solve RGGA on our hardware.

The figure shows RGGA scales linearly as the problem size increases. Moreover, data centers

of even 500 servers can be solved in fewer than 10 minutes on a single core. We imagine

that most data centers with 500 servers could spare a single core for ten minutes without

much trouble in order to optimize the virtual machines more efficiently. This shows that the

running time of RGGA is generally feasible to run in data centers.

Finally, we compared the number of servers found for the different algorithms to

see which algorithms, in general, found solutions with fewer servers. Figure 2.10 shows the

number of servers found for the three different algorithms being compared. Although RGGA

performs better than the other two algorithms, PP also performs well.
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Figure 2.10: The number of servers found by solutions of RGGA, First Fit Decreasing (FFD)
and Permutation Pack (PP).

2.6 Conclusions

A novel genetic algorithm is proposed to solve the bin packing problem. A way to generalize

the genetic algorithm to the bin packing problem is shown. the genetic algorithm is shown

to outperform existing evolutionary approaches in the literature, as well as to perform well

on the new generalization of bin packing. This new Genetic Algorithm has been shown to

perform well on the Virtual Machine Assignment Problem.
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Chapter 3

Probabilistic Virtual Machine Assignment

Accepted to Cluster Computing 2010.

We cast the assignment of virtual machines (VMs) to physical servers as a variant

of the classic bin packing problem. We then develop a probabilistic model of VM load that

can be used to produce assignments of VMs to servers. Using this problem formulation, we

evaluate heuristic solutions to this problem. We evaluate the performance of these solutions

in stochastic load environments. We show that depending on the variance in the loads of

the virtual machines being packed, some algorithms may outperform others.
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3.1 Introduction

One of the major causes of energy inefficiency in data centers is the idle power wasted when

servers run at low utilization [23]. In 2005, data centers accounted for 0.8% of all world

energy consumption, costing $7.2 billion (US) [12]. Part of the problem is that most servers

and desktops are in use only 5-15% of the time they are powered on, yet most x86 hardware

consumes 60-90% of normal workload power even when idle [26, 4, 5].

Data center costs can be reduced by utilizing virtual machines (VMs). Using virtual-

ization, multiple operating system instances can run on the same physical machine, exploiting

hardware capabilities more fully, allowing administrators to save money on hardware and en-

ergy costs. To maximize the savings, administrators should assign as many VMs as possible

to servers given performance requirements. We refer to this problem as the Virtual Machine

Assignment Problem.

The Virtual Machine Assignment Problem (VMAP) is the problem of, given proba-

bilistic distributions over the VM load, find an initial assignment which distributes the load

on the VMs such that all have access to adequate resources and the number of servers used

is minimized.

This type of problem might need to be solved at an e-commerce web site, which

generally have times of lower hardware utilization. During these times of lower utilization,

the web site acquires very few sales and therefore has more liberty to move VMs around.

Once the day begins however, traffic will pick up and administrators will be less able to

move VMs around. A good initial assignment means moving fewer VMs during peak hours

of production. VMAP is not the problem of reassigning load after an initial assignment has

already been made. We address this issue separately.

VMAP can be seen as a type of Bin Packing Problem, the problem of assigning a set

of items into a set of bins, minimizing the number of bins in use [10]. However, VMAP is

not as simple as the conventional Bin Packing Problem. VMAP is different in two important

ways.
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1. Each server has multiple types of constrained resources which the VMs consume. Each

VM adds some amount of load to each resource type provided by the server, such as

memory, disk space and CPU.

2. Loads that VMs exert on servers are probabilistic and not completely known ahead of

time.

Prior research has partially addressed VMAP [21, 24]. One thing that prior research

has not discussed is what happens when loads are probabilistically distributed. Specifi-

cally, we wish to investigate how load distributions can be incorporated into packing virtual

machines onto servers. Prior research has not focused on this specific sub-aspect of VMAP.

This paper presents a novel way of taking expectations on loads of virtual machines.

If system administrators have knowledge about the loads of virtual machines, expectations

can be taken at different points in the probabilistic load distribution. The purpose of this

paper is to present a way that this process can be done and to investigate some consequences

of treating loads probabilistically.

We outline the paper here for reference. In Section 3.2, we describe our background

research. In Section 3.3, we describe the model that we propose in this paper. In Section

3.4, we describe the assignment algorithms that we will compare. In Section 3.5, we discuss

the metrics to determine success in our results. In Section 3.6, we detail our experimental

setup. Finally, in Section 3.7, we discuss the results of our experiments.

3.2 Background Research

Different aspects of server consolidation have been studied and modeled [22, 20, 25, 1].

Other literature has focused on decreasing power use in virtualized environments [16]. In

this section we review background research in three parts. First, prior research on modeling

server load will be discussed. Second, We will discuss the Bin Packing problem. Third, we

will briefly describe Genetic Algorithms as this is the foundation for one solution technique.
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3.2.1 Virtual Machine Assignment

The problem that we identify in this paper as VMAP takes other names in literature. Stillwell

et al. [24] define ResAlloc, which is a Mixed Integer Linear Program formulation of VMAP. In

their problem formulation, they consider maximizing the yield, which represents the faction

of a job’s achievable compute rate that is achieved, on the server with the minimum yield.

They then identify different solutions and evaluate the solutions on ResAlloc.

Song et al. [21] created RAINBOW, a prototype to evaluate a multi-tiered resource

scheduling scheme on a workload scenario reflecting resource demands of services in a real

enterprise environment. They first define resource flowing as the process in which resources

released by some VMs/services are allocated to others. Their main contributions were a

multi-tiered resource scheduling scheme for a VM-based data center, a model for resource

flowing using optimization theory, and a global resource flowing algorithm.

Something that has not been investigated well in prior research is the fact that virtual

machines are probabilistically distributed. We investigate what happens when we know

something about the probabilistic nature of loads on virtual machines. This paper will

give system administrators knowledge on what they should do, given that they have prior

knowledge of how their virtual machines are distributed.

3.2.2 Conventional Bin Packing

In this paper we build a model that, given a set of VMs, each with a distribution of resource

utilizations, decides how VMs should be assigned to servers. We present our model as a

variant of the Conventional Bin Packing Problem. The Bin Packing Problem is the problem

of finding the assignment of items to bins under which the number of bins is minimized.

Definition 7. The Bin Packing Problem is formulated as follows. Given a finite set of

n items I = {1, 2, . . . , n} with corresponding weights W = {w1, w2, . . . , wn} and a set of

identical bins each with capacity C, find the minimum number of bins into which the items

can be placed without exceeding the bin capacity C of any bin. A solution to the Bin Packing
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Figure 3.2: An efficient Bin Packing solution.

Problem is of the form B = {b1, b2, . . . , bm}, where each bi is the set of items assigned to bin

i, and is subject to the following constraints:

1. ∀i ∃! j such that i ∈ bj (Every item belongs to one unique bin.)

2. ∀j
∑

n∈bj wn ≤ C (The sum of the weights of items inside any bin cannot be greater

than the bin capacity.)

In the Bin Packing Problem, the objective is to assign the set of items into a set of

bins, minimizing the number of bins used. This idea is illustrated in Figures 3.1 and 3.2.

Figure 3.2 shows an assignment that uses the same items as the assignment shown in Figure

3.1, but packs them in fewer bins.

Doing an initial placement of VMs onto servers can be seen as a type of Bin Packing

Problem. In the Bin Packing Problem, a set of items are placed into bins, minimizing the

number of bins. In the problem of placing VMs onto servers, VMs are assigned to servers,

minimizing the number of servers, while assuring that some performance criteria is met.
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Because these two problems are similar in this way, we will model the problem of making an

initial assignment of items to servers as a type of Bin Packing Problem.

The Bin Packing Problem has been shown to be NP Hard [3]. We solve the problem

that Bin Packing is inherently intractable by using approximation algorithms to solve the

problem in our experiments.

One reason why the conventional Bin Packing Problem itself cannot be used to model

the VM Assignment Problem is that there is no way in the conventional Bin Packing Problem

to model multiple resources on one server. For that reason, we defer to prior research and

model this problem using the Multi-Capacity Bin Packing Problem [29]. We will describe

this problem in more detail in Section 3.2.3.

3.2.3 Multi-Capacity Bin Packing Problem

Definition 8. The Multi-Capacity Bin Packing Problem or Vector Packing Problem is sim-

ilar to the conventional Bin Packing Problem that was given in Definition 7, but not iden-

tical. In the Multi-Capacity Bin Packing Problem, the capacity is a d-dimensional vector

C = 〈C1, C2, . . . , Cd〉 where d is the number of resource types. The weights are redefined so

that the weight of item i is a d-dimensional vector wi = 〈wi1 , wi2 , . . . , wid〉 [24, 13].

1. ∀i ∃! j such that i ∈ bj (Every item has to belong to some unique bin.)

2. ∀j ∀k
∑

nk∈bj wnk
≤ Ck (The sum of all the weights for any capacity for any bin must

be less than the corresponding capacity for that bin.)

Note that in the Multi-Capacity Bin Packing Problem the resources consumed by

each VM accumulate, up to some maximum. Items are placed on each corner to show that

the sum of the weights for any one type has to be less than the corresponding bin capacity.

The weights on items in the same bin are additive. For all resources, the sum of all weights

on items of that particular resource must be less than the corresponding resource capacity

on the server.In VMAP, resources used by one VM can not be used by any VM on the same

physical hardware.
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Figure 3.4: An efficient Multi-Capacity Bin Packing solution.
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As with the conventional Bin Packing Problem, the objective is to minimize the

number of bins. Figures 3.3 and 3.4 illustrate this principle. Figure 3.4 packs the exact same

items as are found in Figure 3.3 in three bins instead of four. This means one fewer server

drawing power.

The Multi-Capacity Bin Packing Problem lends itself better to the problem of as-

signing VMs onto servers than the conventional Bin Packing Problem. In the conventional

Bin Packing Problem, there is no way to model the multiple different resources that are

available on a server, such as CPU, RAM and disk bandwidth. Because the Multi-Capacity

Bin Packing Problem lends itself well to modeling the many different resources of a server,

we use this problem formulation in our optimization techniques.

3.2.4 Genetic Algorithms

Bin Packing Problems have been solved with Genetic Algorithms (GAs). There is no rigorous

definition for GAs [15]; they derive much of their inspiration from Darwinian biological

processes. In GAs, individuals represent candidate solutions to the problem. These candidate

solutions explore the solution space by undergoing processes similar to those of biological

organisms. The simplest form of genetic algorithm involves three types of operators:

• Selection–Individuals in the population are selected for crossover with other individ-

uals. Usually, selection is based on elitism, where the more fit individuals are selected

more often than less fit individuals.

• Crossover–Two individuals in the population exchange subsections of their candidate

solution with each other to create new offspring.

• Mutation–After crossover, each individual has a probability of having their candidate

solution modified slightly.
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3.3 Description of Model

As described in Section 3.2, we model VMAP by using the Bin Packing Problem. However,

there are a few differences between the Bin Packing Problem and VMAP which were identified

in Section 3.1. The model that we will use for VMAP is based on the Multi-Capacity Bin

Packing Problem, as discussed in Section 3.2.3, and it also uses probabilistic estimates of

loads, which we will discuss here.

3.3.1 Probabilistic Estimates

The second way that VMAP is different from the conventional Bin Packing Problem is

that the loads VMs exhibit on servers are not known completely when initial assignments

are made. Even though these loads are not completely known ahead of time, probabilistic

estimates can be made for loads on VMs. Therefore, we treat loads as probabilistic. There

are at least two ways in which system administrators can derive probabilistic estimates for

loads on VMs.

1. If the system administrators have reason to believe that VM loads can be character-

ized as a type of known probabilistic distribution, this problem becomes the problem

of parameter estimation. Using data, it is possible to estimate the parameters of a

parametric probabilistic model using known methods such at methods of moment or

maximum likelihood estimation.

2. If system administrators do not know the probabilistic distribution which describes the

load on VMs, a nonparametric model can be used. We will describe nonparametric

distributions in more detail in Section 3.6.

We assume that the probabilistic distribution on the future load for each resource for

each VM is to the algorithm ahead of time. Recall as well that in the Multi-Capacity Bin

Packing Problem, weights are deterministic and known instead of probabilistic and unknown.

This means that if the Multi-Capacity Bin Packing Problem is to be used as a model, some

estimate or expectation of the probabilistic distribution must be given to the algorithm
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Figure 3.5: The pdf, cdf and icdf for the normal distribution with mean µ = 0 and variance
σ2 = 1.

solving VMAP. In this section, we will explore how to make this estimate from probabilistic

distributions of the load.

Recall that the probability density function (pdf) f(X) of a random variable X de-

scribes the relative likelihood of X to occur at a given point in the observation space. Recall,

also, that the cumulative distribution function (cdf) F (X) of a random variable X is defined

for a number χ by:

F (χ) = P (X ≤ χ) =

∫ χ

−∞
f(s)ds (3.1)

where f(s) is the likelihood associated with the random variable X obtained from the pdf f

at s. The pdf for the normal distribution with mean µ = 0 and variance σ2 = 1 is shown in

Figure 3.5.

The cdf of the normal distribution the same distribution with mean µ = 0 and

variance σ2 = 1 is also shown in Figure 3.5. The cdf P (X ≤ χ) is the probability that X
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is less than or equal to χ. It answers the question of “What is the likelihood of getting any

load less than a specified load for a particular resource for a VM?” However, even though

this metric may be useful, a better question to ask may be in the opposite order. “What is

the maximum load y for a given likelihood z, such that F (y) ≤ z?” This question can be

answered by using the inverse cumulative distribution function.

The inverse cumulative distribution function (icdf) or quantile function returns the

value below which random draws from the given cumulative distribution function would fall,

p ∗ 100 percent of the time. That is, it returns the value of χ such that

F (χ) = Pr(X ≤ χ) = p (3.2)

for a given probability 0 < p < 1.

Using the icdf, we can specify a percentile value and obtain a corresponding load

which can be passed to the assignment algorithm. Using the value from a high percentile

will result in a high load being passed to the assignment algorithm, and tend to make the

assignment more robust to random variation. Lower percentiles result in assignments more

likely to become over loaded. Using the quantile function to decide which load to use means

that the algorithm designer can incorporate any level of robustness or aggressiveness into

the algorithm. Figure 3.5 shows the inverse cumulative distribution function for the normal

distribution with mean µ = 0 and variance σ2 = 1. We call the load derived from the icdf

value the derived load. The derived load is the load used by the bin packing algrorithm when

a concrete value must be used.

3.4 Initial Assignment Algorithms

Many companies and organizations do not use a structured approach to the initial placement

of VMs onto servers. Even though a system administrator may view a summarization of the

load for each VM, and place VMs onto servers using that summarization, we have not
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found any formalization of a model for VMAP, nor any algorithm meant to make an initial

placement of VMs to servers. Because this is a new model, and the model derives its roots in

the Bin Packing Problem, we present some well-known algorithms that solve the Bin Packing

Problem for consideration. We will describe and compare four assignment algorithms in

this paper–Worst Fit, First Fit, Permutation Pack [13] and Reordering Grouping Genetic

Algorithm [29].

3.4.1 Worst Fit

The worst fit algorithm for bin packing considers each item in order. For each item, first, it

considers only bins that already have at least one item placed in them. It places the item in

the bin into which it fits which has the most amount of free space. If the item does not fit

in any of the bins considered, it is placed into a new bin.

The worst fit algorithm is considered in this paper because of its tendency to leave a

bit of space in every bin that it uses. This extra space may be helpful when observed loads

on VMs exceed what the assignment algorithm expected.

Finding the emptiest bin is easy to do in the conventional Bin Packing Problem as

each item only has one weight. The sum of the weights of all the items in any one bin can

be used to give a number describing the fullness of a bin. However, finding the emptiest

server in VMAP is not as obvious because each VM has multiple loads which it exerts on the

server. In order to compare the emptiness of one server to another’s, there must be a way

to combine the different loads. We use a Euclidean distance metric to compare the amount

of free space in two different bins.

3.4.2 First Fit

The first fit algorithm for bin packing is a way to place an initial set of VMs on servers. In

the first fit packing algorithm, items are arranged in order (often decreasing order). Bins are
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also arranged in a list. Each item is then considered in order and placed into the first bin

into which it fits.

3.4.3 Permutation Pack

Permutation Pack (PP) attempts to find items in which the largest w components are exactly

ordered with respect to the ordering of the corresponding smallest elements in the current

bin [13]. Let Ri denote the remaining space in the ith capacity of a particular bin. If

d = 2 and R1 < R2, then we look for an item n such that wn1 < wn2 . If no item is

found, the requirements are continually relaxed until one is found. One of the weaknesses of

Permutation Pack is the running time. If all permutations are considered, it runs in O(d!n2)

where d is the number of resource types and n is the number of items to be packed. We refer

the reader to Leinberger et al. [13] for further description of the algorithm.

3.4.4 Reordering Grouping Genetic Algorithm

Reordering Grouping Genetic Algorithm (RGGA) is a genetic algorithm that was developed

for the Multi-Capacity Bin Packing Problem [29]. RGGA has been shown to solve the

Multi-Capacity Bin Packing Problem quickly, developing good solutions. RGGA represents

an instance of the bin packing problem not only as an assignment of items to bins, but also as

a list of items to be first fit packed. RGGA’s crossover operator is an exon shuffling crossover

as defined by Rohlfshagen et al [18]. RGGA uses a mutation operator that swaps two items

in the first fit list 1
3

of the time, moves an item from one spot to another in the first fit list

1
3

of the time, and eliminates a bin, reinserting the contents 1
3

of the time. This last idea is

the mutation operator used by Faulkenauer in his Grouping Genetic Algorithm [7].

RGGA was shown to find optimal solutions to the bin packing algorithm in fewer

iterations than the leading genetic algorithms in literature. As well, RGGA was shown to

generate very good solutions to even large problem sizes of the Multi-Capacity Bin Packing

Problem.
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3.5 Metrics to Determine Success

In this section, we investigate two different metrics to determine the level of success of

an initial VM assignment. These two metrics are total number of servers used and the

proportion of servers over capacity.

3.5.1 Number of Servers Used

The total number of servers used is defined as the number of servers upon which VMs are

placed. This metric is useful in determining the tightness of a particular assignment. An

assignment which places its VMs on fewer servers will likely save energy in the long run.

Aggressive assignment algorithms often maximize this metric.

3.5.2 Proportion of Server Resources Over Capacity

A server resource is over capacity if VMs on the server request more of that resource than

is available on the server. For example, if the sum of the total amount of RAM requested

by all the VMs on a particular server is greater than the amount available on the server,

then the RAM on the server would be considered over capacity. In order to calculate the

proportion of server resources over capacity, we divide the sum of all total server resources

over capacity by the sum of all total server resources. The algorithm for calculating the

proportion of servers over capacity is shown in Equation 3.3.

∑
bi∈B

∑
j∈bi F (

∑
wjk
∈wk

wjk , Ck)∑
bi∈B

∑
j∈bi 1

(3.3)

where F (X, Y ) returns 1 if X is greater than Y and 0 otherwise.

Conservative VM assignment algorithms perform worse with regard to this metric,

because they, on average, have less allocated resources per server. If a particular VM uses

more server resources than was allotted to it, the server might not be over capacity if the
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algorithm chose to leave extra room. Algorithms that are more conservative when assigning

VMs also yield solutions with a greater total number of servers.

3.6 Experimental Setup

Because the contribution of this paper is the model proposed for VMAP, we wish to validate

this model in our results by showing that the modifications we made to the conventional Bin

Packing Problem are indeed helpful in modeling VMAP.

In our experiments, we did exactly what we expect real system administrators to

do with our work. We deployed various VMs to a cluster of computers, gathered data on

resource utilization of these VMs, generated an assignment for these VMs to servers, and

carried out that assignment with virtualization software. The VMs that we created were

of the form such that 8-12 of them would fit on a physical server. Because deployments in

real data centers normally have 8-12 VMs per physical server [6], we expect our results to

generalize well to other clusters.

We use the data itself as a nonparametric statistical distribution. The mean of this

distribution can be computed by finding the mean of the data. The variance of the distribu-

tion can be found by finding the variance of the data. This distribution can be sampled by

picking a data point with uniform probability. The icdf of this distribution can be found for

any percentile by sorting the data, multiplying the percentile used by the number of data

points, and returning that particular data point.

With this nonparametric distribution for the load on each VM, we were able to gen-

erate new assignments of VMs to servers. We ran each assignment algorithm for varying

icdf values. We show the predicted performance for varying icdf values in our results. Af-

ter simulating the assignment of VMs to servers, we predicted the number of servers and

proportion of servers over capacityfor the case if we actually carried out the assignment. In

order to obtain our simulated metrics, we sampled from the load distribution for each VM
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and assigned loads to VMs from their distributions. Using this data, we obtained predicted

results for what a assignment would be like if we carried out the assigning on the servers. 1.

After obtaining predicted results for assigning VMs to servers, we then reassigned

VMs to servers, averaged the results and analyzed how closely our model showed what

happened in real life. We show the results of these new assignments in our results. We used

the Kernel-Based Virtual Machine (KVM) kernel virtualization infrastructure, the qemu

processor emulator, and the libvirt virtualization management tool. In our data set, we

used VMs with varying CPU and RAM loads. We kept track of the loads on the VMs and

recorded the observed CPU and RAM utilization on host servers.

Because it is an option that the system administrator can tweak, we also show the

predicted performance for different algorithms for varying icdf values. As mentioned in

Section 3.4, raising the icdf value makes an assignment algorithm more conservative and

lowering the icdf value makes an assignment algorithm more aggressive.

In our simulated experiments, we performed these steps:

1. The packing algorithm receives some type of distribution over the load for each virtual

machine it needs to pack.

2. The packing algorithm derives a specific load using the distribution from step 1 and

the icdf value used.

3. The packing algorithm develops an assignment of virtual machines to servers.

4. One specific load for each virtual machine is sampled from the load distribution for

that virtual machine. This load is assigned to that virtual machine.

5. Metrics are gathered.

6. Steps 1-4 are repeated as needed.

When we implemented RGGA, we used a maximum function evaluation count of

7500, a crossover rate of 0.8, and a mutation rate of 0.1. In the event that two individuals

1http://aml.cs.byu.edu/~davidw/virt/datasets
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do not crossover, one of them is picked randomly and added directly to the next population.

If an individual is not mutated, it is simply added as is to the next generation.

3.7 Results

In our results, we wish to validate the probabilistic model proposed in Section 3.3 and the

algorithms we proposed in Section 3.4. We will divide presentation of results in three parts.

First, we will show how system administrators can use assignment algorithms with varying

icdf values. We then analyze and present graphs that show in a practical standpoint number

of servers used and the proportion of servers over capacity. Lastly, we analyze how closely

our predictive model resembles what happens on real hardware by repacking VMs to servers.

Even though we do not directly incorporate probabilistic loads into any assignment

algorithm proposed in this paper, we show results that help system administrators to in-

directly incorporate probabilistic results into the assignment algorithm picked by applying

the ideas presented in Section 3.3.1. We systematically increased the icdf value and sub-

sequently the derived load from the icdf value. Increasing this value increases the derived

loads on VMs which the algorithm uses. As discussed earlier, lower values of percentile yield

more conservative assignment algorithms and higher value of percentile yield more aggressive

assignment algorithms.

Figure 3.6 shows the proportion of servers over capacity while Figure 3.7 shows the

number of servers found by the different algorithms. The independent variable in both

graphs is the icdf value used. Even though we present both figures separately, they must

be interpretted together. One shows the number of servers used, while the other shows the

proportion of servers over capacity. Algorithms which tend to use fewer bins will tend to

look better in Figure 3.7, but look worse in Figure 3.6.

The icdf value is merely a parameter used to determine both the number of servers

used and the proportion of servers over capacity. The icdf value used is really irrelevant

because the icdf value picked by system administrators is a function of the number of servers
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Figure 3.6: A comparison of the proportion of servers over capacity for varying percentile
values.
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Figure 3.7: A comparison of the the number of servers found for varying percentile values.
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Figure 3.8: A comparison of the proportion of servers over capacity with the number of
servers found.

used and the proportion of servers over capacity. Instead of showing this graph, we wish

to combine Figures 3.6 and 3.7 so that we can see this type of interaction between the

proportion of servers over capacity and the number of servers used.

In order to simplify our analysis, we joined the proportion of servers over capacity

with the number of servers found using the percentile values to produce a joint graph. Using

this graph, Figure 3.8, a system administrator can choose how many servers on average will

be in utilization or what proportion over capacity they are willing to tolerate in order to get

the other parameter. This graph shows that for this particular configuration, RGGA

3.7.1 Repacking to Servers

Lastly, in order to validate the model we generated, we used the assignments generated to

make assignments of real VMs to servers. We measured the proportion of server resources

over capacity for all three assignment algorithms at the 80th cdf percentile. We show our

results in Figure 3.9. The predicted proportion of server resources over capacity all algo-

52



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

RGGA FirstFit WorstFit

P
ro

p
o

rt
io

n
 o

f 
So

lu
ti

o
n

s 
O

ve
r 

C
ap

ac
it

y

Predicted

Actual

Figure 3.9: A comparison of the proportion of solutions over capacity that our algorithm
predicted and also the measured proportion of solutions over capacity when deploying real
VMs to servers for the 80th cdf percentile.

rithms is very close to the actual proportion of server resources over capacity measured when

deploying VMs to servers. This gives validity to the model we suggest in this paper.

3.8 Conclusion

A novel model for Virtual Machine Assignment Problem is proposed. This model uses ideas

from the conventional Bin Packing Problem, where servers are bins and VMs are items, with

two variations. First, it allows multiple weights for each item and multiple capacities for

each bin. The sum of all the weight of any one type in any bin must be less than that

corresponding capacity in that bin. Second, our model proposes that VMs have probabilistic

loads. The probabilistic loads should be incorporated into the assignment algorithm for best

results. We, show the feasibility of using probabilistic loads with the assignment algorithm

by modifying three known packing algorithms.
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Adding probability theory helps system administrators to pick the correct percentile

value representing the spot on the inverse cumulative distribution function representing

the load of a resource. Small values for the icdf value yield more conservative assignment

algorithms while larger values for the icdf value yield more aggressive assignment algorithms.

For the problems which we investigated, it seems that optimization algorithms like

RGGA perform well.
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Chapter 4

An Analysis of Variance in Virtual Machine Packing

We formally define virtual machine variance and show its relevance in the Virtual

Machine Packing Problem. We show that system administrators can use virtual machine

variance as a tool for deciding which packing algorithm to use. We systematically increase

virtual machine variance to see its effects on different packing algorithms. We show that for

packing problems where virtual machines have low variance, Reordering Grouping Genetic

Algorithm performs very well, while for problems where virtual machines have high vari-

ance, all algorithms compared perform equally. We then test hybrid problems where some

virtual machines have low variance, and some have high variance. We show that Reordering

Grouping Genetic Algorithm performs well on these types of problems.
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4.1 Introduction

One of the major causes of energy inefficiency in data centers is the idle power wasted when

servers in data centers run at low utilization [23]. In 2005, data centers accounted for 0.8%

of all world energy consumption, costing $7.2 billion [12]. Part of the problem is that most

servers and desktops are in use only 5-15% of the time they are powered on, yet most x86

hardware consumes 60-90% of normal workload power even when idle [4, 5, 26].

Data center costs can be reduced by utilizing virtual machines (VMs). Using virtu-

alization, multiple operating system instances can be placed on the same physical machine,

exploiting hardware capabilities more fully and allowing system administrators to save money

on hardware and energy costs. To maximize the savings, system administrators should place

as many virtual machines as possible onto a server while satisfying performance criteria.

This problem is referred to as the Virtual Machine Assignment Problem [28].

The Virtual Machine Assignment Problem (VMAP) is the problem of given virtual

machine loads with no packing before-hand, find an initial packing which distributes the

load on the virtual machines as well as possible, minimizing the number of servers used.

In defining VMAP, we proposed a model for virtual machine assignment where virtual

machines all have probabilistic loads [28]. In this model, loads on virtual machines can be

represented using probability distributions. Each load has a mean which represents the

expected value of all observed loads along with some variance that represents the amount of

dispersion of a given load.

The decision of how to model load distributions of virtual machines is an important

part of modeling VMAP. One part of modeling these distributions is the amount of variance

attributed to the distribution. The variance of the load distribution is the amount of uncer-

tainty a system administrator has about the future load. It is possible that virtual machines

with less variance should be packed differently than virtual machines with more variance.

In our previous paper defining VMAP, we did not investigate fully the implications of

what happens if system administrators know the variance of virtual machine loads. In this
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chapter, we show that if system administrators are rather certain about the loads of virtual

machines (meaning that the virtual machines have low variance), then Reordering Grouping

Genetic Algorithm (RGGA) can be used and outperforms other heuristics [29].

4.2 Experimental Setup

In our experiments, we measured two different types of load on virtual machines–RAM and

CPU usage. We assumed that loads on the virtual machines were normally distributed.

Using the normal distribution, variance can be encoded directly as a model parameter.

The experiments performed in this section are similar to those we performed when

defining VMAP. For each of these three algorithms, we varied the inverse cumulative distri-

bution function number that each one used. Each algorithm observed a load based on the

inverse cumulative distribution function number used as was done in Chapter 3.

When conducting my tests, we performed a variety of steps:

1. The packing algorithm receives some type of distribution over the load for each virtual

machine it needs to pack.

2. The packing algorithm develops an assignment of virtual machines to servers.

3. One specific load for each virtual machine is sampled from the load distribution for

that virtual machine. This load is assigned to that virtual machine.

4. Metrics are gathered.

5. Steps 1-4 are repeated fifty times in order to achieve statistical significance for the test.

In our results, we found the average number of servers and average percent of servers

over capacity for each algorithm and inverse cumulative distribution function value.
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4.3 Results

We divide our results into two sections. In the first section, we analyze what happens when

virtual machines all have equal variance and this variance is systematically increased. We

also observe what happens for extremely low and high variance values.

In the second section of our results, we analyze what happens when virtual machines

have different variances. Specifically, we created two types of virtual machines. The first

have low variance and the second have high variance. We wished to analyze what happens

when these two types of virtual machines interact with each other.

For the purposes of our experiments, we use the same packing algorithms proposed

in Section 3.4. Specifically, these are First Fit, Worst Fit and RGGA.

4.3.1 Virtual Machines Have Equal Variance

There are two variables which explain the type of packing developed. The first is the al-

gorithm itself. Some algorithms tend to create looser packings than other algorithms. For

example, the Worst Fit algorithm tends to spread load and out and creates a looser packing

than RGGA.

The other variable which explains the type of packing developed is the icdf value used

for the algorithm. Worst fit algorithm with a very low icdf value may produce a packing

with fewer bins than RGGA with a very high icdf value.

In our first experiment, we incrementally changed the variance of virtual machines.

Different packing algorithms assigned virtual machines using varying icdf values. Using the

number of servers found and the percent of servers over capacity for each inverse cumulative

function distribution value, we found which algorithm outperformed the others.

Our first observation was that for very low variance problems, RGGA outperforms

other methods. Figure 4.1 shows the number of servers found for the three algorithms used

for comparison. As can be seen, RGGA outperforms both of the other two algorithms. Intu-

itively, this finding makes sense; If the variance is zero for all loads on all virtual machines,
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Figure 4.1: The number of servers found for varying algorithms for varying percents of servers
over capacity for a problem with very low variance.

then there are no repercussions for packing virtual machines very tightly onto servers. Since

RGGA means to pack VMs tighter onto servers than other methods, then it benefits from all

the gains of packing tightly without suffering any of the repercussions.In low-variance prob-

lems, if actual loads consume more resources than were allotted to those virtual machines

during the initial packing process, the unallocated resources naturally found on each server

are usually enough to prevent any over capacities.

After finding that optimization pays off for low-variance problems, we performed

experiments to discover what happens for high-variance problems. We show the results of

these experiments in Figure 4.2. As can be seen in Figure 4.2, all algorithms performed

similarly for high variance problems. This means that RGGA did not outperform the other

algorithms for high variance problems. We saw these types of results in our paper that defined

VMAP as well. There, we saw that for some high variance problems, all algorithms performed

similarly. However, if system administrators know that the load on virtual machines will not
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Figure 4.2: The number of servers found for varying algorithms for varying percents of servers
over capacity for a problem with high variance.

fluctuate much, it makes sense that we should be able to exploit that fact and pack virtual

machines tighter.

We started performing experiments systematically increasing the variance of virtual

machines in order to find this point.

In Figure 4.3 we show the number of servers found plotted against the percent of

servers over capacity for problems where loads have a standard deviation of about 1.7% of

the total server capacity. In Figure 4.4 we show the number of servers found plotted against

the percent of servers over capacity for problems where loads have a standard deviation of

about 2.5% the total server capacity. Lastly, in Figure 4.5, we again show the number of

servers found plotted against the percent of servers over capacity when loads have a standard

deviation of about 3.1% the total server capacity.

Figure 4.3 shows that it is feasible to run RGGA to pack virtual machines tightly

when virtual machines have load standard deviations of about 1.7% of the total server load.

However, by the time the load standard deviation increases to 3.1% as shown in Figure 4.5,
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Figure 4.3: The number of servers found for varying algorithms vs percent of servers over
capacity. Variance on VMs is set to 1.7% the total server capacity.
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Figure 4.4: The number of servers found for varying algorithms vs percent of servers over
capacity. Variance on VMs is set to 2.5% the total server capacity.
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Figure 4.5: The number of servers found for varying algorithms vs percent of servers over
capacity. Variance on VMs is set to 3.1% the total server capacity.

the gains from packing virtual machines tightly with RGGA can no longer be seen clearly.

Therefore, for this problem type, for deployments where the loads on virtual machines have

a standard deviation of less than 2-3 percent of the total server capacity, RGGA can be

used to effectively pack virtual machines tightly. However, for this problem type, if loads

on virtual machines have a standard deviation of more than 2-3 percent of the total server

capacity, it seems that all packing algorithms considered here perform similarly.

4.3.2 Virtual Machines Have Differing Variance

In our second experiment, we had two types of virtual machines packed together. The first

type of virtual machines could be packed efficiently and had a load standard deviation of

1.7% of the total capacity for the server. The second type of virtual machines could not be

packed efficiently by an optimization algorithm. The standard deviation of the load of these

virtual machines was 5.5% of the total capacity for the server. Fifty percent of the virtual
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Figure 4.6: The number of servers found for varying algorithms vs percent of servers over
capacity. Half of VMs have high variance. Half of VMs have low variance.

machines in this experiment were from each group. The average standard deviation of the

load for virtual machines was 3.6% of the total server capacity.

Before performing this experiment, our hypothesis was initially that if a large num-

ber of virtual machines with high-variance loads are to be packed along with virtual ma-

chines with low-variance loads, then the virtual machines with low-variance loads would be

overpowered by the virtual machines with high-variance loads. The virtual machines with

high-variance loads would cause most servers to go over capacity. Our hypothesis was that

RGGA would see poor performance for this type of problem.

We show in Figure 4.6 the resulting graph of having just a some virtual machines that

could be packed together tightly, and others that had too much variance to be packed tightly.

RGGA still outperforms the other algorithms. This means that our initial hypothesis that

the high-variance loads would make all servers into which they are placed go overcapacity was

wrong. It seems that what is most important is the combined variance of virtual machines

in a server.
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Figure 4.7: The number of servers found for RGGA and RGGA w/ Part vs percent of servers
over capacity. Half of VMs have high variance. Half of VMs have low variance.

The results here led us to experiment with a new variant on RGGA. Our new variant

(RGGA w/ Part) picks all the virtual machines with low variance and runs RGGA on

those, hoping to pack them tightly together. Afterward, the algorithm can pack the high-

variance virtual machines together, since those will probably go over capacity anyway. The

motivation for trying this approach was to see if any gains could be made from keeping

high-variance virtual machines away from low-variance servers. This way, the high-variance

virtual machines would not make the servers where low-variance virtual machines are packed

go over capacity.

We show the results of this experiment in Figure 4.7. The new method does not

significantly outperform the existing method, and in fact performs worse in some cases.

RGGA Part seems to not work well because it seems that it is not able to optimize

high-variance virtual machines with low-variance virtual machines together. The normal

RGGA algorithm is able to optimize both types of virtual machines together. Thus, RGGA

Part seems to not do as well.
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As long as the high-variance virtual machines are packed on their own server, then

the total number of servers over capacity should be fewer.

4.4 Conclusion

The effect of virtual machine variance on the Virtual Machine Assignment Problem is dis-

cussed. If a system administrator knows how much virtual machines vary, he or she can

use this information to pack virtual machines more efficiently. RGGA has been shown to

pack virtual machines with low variance very well, outperforming other heuristics used for

comparison. Even when some virtual machines have low variance and some virtual machines

have high variance, RGGA can pack the low-variance virtual machines naturally still out-

performs other heuristics used for comparison. However, if all virtual machines have loads

with high variance, then all packing algorithms considered in this section perform similarly.

4.5 Future Work

The results presented here in this paper have been shown empirically by running experiments.

We did not develop any type of mathematical formula that would help to determine which

packing algorithm to use for which problems. A more exhaustive search or proof should be

done to find out in general which packing algorithms should be used when.

Moreover, even though RGGA works well for problems which have low variances, we

have not discovered an algorithm which handles virtual machine assignment problems with

high variance. A proof of existence or nonexistence of such an algorithm would further future

research in this area.
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Chapter 5

Virtual Machine Migration

In previous chapters, we defined the Virtual Machine Assignment Problem and showed

how it can be used to place virtual machines onto servers. However, if virtual machines can

be migrated, then it may not be so important to pack virtual machines tightly ahead of

time. After discussing the relevance of virtual machine migration to the Virtual Machine

Packing Problem we propose a load redistribution algorithm. We present results showing the

number of servers yielded when running a virtual machine packing algorithm followed by a

load redistribution algorithm. For some configurations, load redistribution algorithms cannot

make up for a bad initial packing. However, for other configurations, load redistribution

algorithms can quickly adjust to make up for a poor initial packing.
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5.1 Introduction

This thesis has investigated the problem of packing virtual machines onto servers. This

problem is important because of the large amount of electricity used in data centers. A good

packing of virtual machines onto servers will decrease the number of servers in utilization,

reducing energy and hardware costs.

The algorithms presented thus far might, for example, be applied at the beginning of

a day at an e-commerce web site. At the beginning of the day, there are low loads on servers

at the web site, and system administrators have more flexibility to move around virtual

machines between servers. However, after the day has started, system administrators may

not be able to move around virtual machine as freely because servers need to be dedicated to

processing customer transactions, and not performing migrations between virtual machines.

While exploring VMAP, we have largely ignored live migration, which is the transfer

of a virtual machine from one host to another without downtime between the hosts. Using

live migration, it is possible to redistribute load between servers outside of initial virtual

machine packings.

One assumption we have made so far is that a good initial packing is important to

virtual machine packings. However, it might be possible for system administrators to do

some live migrations during the day, reducing load on servers. Because it might be possible

to use live migration technology to reduce the number of servers after virtual machines are

deployed, one might question the relevance of doing a good packing. If live migration is a

tool which can be used to swap virtual machines between servers, some would ask why doing

a good initial packing is even important.

The purpose of our experiments was to analyze the feasibility of using live migration

technology to swap virtual machines after an initial packing has been made. We performed

some experiments where extra servers existed where virtual machines could be swapped in

the case of high loads. We analyzed how many servers were in use after different runs using

different inverse cumulative distribution function values.
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In our experiments, first, we generate an initial assignment of virtual machines to

servers. After this initial assignment of virtual machines is generated, loads are assigned to

virtual machines. Virtual machines can then be moved in order to achieve a target percent of

servers over capacity for the entire problem. After a target percent of servers over capacity

is achieved by swapping virtual machines between servers, metrics such as the total number

of servers in utilization can be gathered.

This chapter proceeds as follows. Section 5.2 discusses the live migration algorithm

used in our results. Section 5.3 discusses how we set up our experiments in this chapter.

Section 5.4 discusses the results of our experiments and our findings about how live migration

could fit in with the virtual machine packing problem.

5.2 Load Redistribution Algorithm

Load redistribution algorithms swap virtual machines between servers. They move virtual

machines from more heavily loaded servers to less heavily loaded servers. We present a load

redistribution algorithm, Live Migration Algorithm (LMA), that we use to redistribute load

between servers.

The basic intuition behind LMA is to run RGGA first. Afterward, LMA swaps enough

servers from servers which are over capacity to servers which have never been over capacity

in order to satisfy the target percent of servers over capacity. We illustrate this algorithm

in Function 1.

5.3 Experimental Setup

The purpose of our experiments is to determine in what situations initial packing algo-

rithms like RGGA are made invalid by live migration, and in what situations live migration

algorithms cannot make up for inefficient preliminary packings. When conducting our ex-

periments, there were a variety of steps:
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Function 1 Redistributing Load Onto Servers

overcapacity ← calc over capacity()

prop over ← (overcapacity−target)
overcapacity

servers not over ← get servers not over capacity()
servers over ← get servers over()
count← 0
for each si ∈ servers over do

get servers that fit(servers not over, si) ← servers that fit
if len(servers that fit) = 0 then

new server()← server to
else
servers that fit.sample() ← server to

end if
swap smallest item from si to server to
count← count+ 1
if count < prop over ∗ size(servers over) then

break
end if

end for

1. RGGA is run on a problem and an initial packing solution is developed.

2. Loads on virtual machines are sampled and assigned from their respective load distri-

butions.

3. LMA is used to migrate virtual machines from servers which are over capacity.

4. Metrics such as the total number of servers used are calculated.

In Chapters 3 and 4, we measured success by number of servers found for a particular

percent of servers over capacity. With the option of live migration, it is possible to achieve

any particular percent of servers over capacity by swapping virtual machines from servers

which are heavily loaded to servers which have fewer virtual machines. Therefore, when

performing our experiments, we consider the target percent of servers over capacity a value

that system administrators can set. The inverse cumulative distribution function (icdf)

value that should be used minimizes the number of servers for a particular target percent of

servers over capacity. In our results, we focus on finding the particular inverse cumulative
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distribution value that should be used with RGGA for a particular target percent of servers

over capacity.

We performed experiments for each icdf value between 0.02 and 0.98 increasing with

an interval of 0.02. We used target values of percent of servers over capacity between 0 and

1 increasing with an interval of 0.02. We used the same data set as was used in Chapter

4 and performed experiments generally in the same manner, except LMA was run after a

solution from RGGA was generated in order to redistribute virtual machines after loads were

observed. We analyzed how many servers were found after LMA corrected packings so that

the y had the correct number of servers.

We recognize that the assumption that migration comes at no cost is not realistic.

While recent advances in VM migration technology [11] make it possible for a VM instance to

change host nearly instentaneously, migration does consume network resources. It is not clear

whether the pay-off of extra migrations would justify added cost. In our experiments, because

we have no basis on how many live migrations should be done, we allow an unbounded number

of live migrations to perform, and report the number of live migrations done.

We ran three different experiments in Section 5.4. The three different experiments

are for virtual machines which have low, medium and high variance in their loads. We wish

to explore which icdf values should be used for the three different types of problems.

5.4 Results

In our experiments, we wished to find for differing target percents of servers over capacity,

which icdf value should be used. We start our discussion for low-variance problems. We

show the the number of servers found for a low-variance problem in Figure 5.1.

As mentioned earlier, system administrators can decide on a target percent of servers

over capacity. With the target percent of servers over capacity in mind, they can decide

which icdf value to use that will yield them the fewest number of servers, which in tern,
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Figure 5.1: A surface graph showing the number of servers yielded by running RGGA at
different icdf values and different targets with low variance.

saves the most money. Therefore, in our analysis, we will consider this scenario, which is

finding the best icdf value value for given values for target percent of servers over capacity.

Figure 5.1 shows that for low values for target percent of servers over capacity, the

best icdf value to use is 0.98. However, if the percent of servers over capacity can be higher,

such as more than 0.1, then a low icdf value can be used.

This result means that live migration cannot compensate for a bad initial packing if

a low percent of servers over capacity is desired. The best option is to use RGGA to develop

an assignment of VMs to servers with a high icdf value, and do fewer swaps. This means

that a good initial packing is needed for some configurations if virtual machines have low

variance.

Next, we performed a similar experiment for virtual machines with medium variance.

We wished to find, generally, for differing target percents of servers over capacity, which icdf

value should be used. We show our results in Figure 5.2.
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Figure 5.2: A surface graph showing the number of servers yielded by running RGGA at
different inverse cumulative distribution values and different targets with average variance.

Figure 5.2 shows, again, that for a low target percent of servers over capacity, the

best option is to use a low icdf value value. However, Figure 5.2 suggests that for moderately

higher values for percent of servers over capacity, it is actually better to use a low icdf value

value and swap. Nonetheless, there are circumstances in which system administrators would

desire to have very low values for percent of servers over capacity. In these situations, it

seems that the best option is to use a virtual machine packing algorithm with a , instead of

merely swapping servers with live migration.

In our third and last experiment, we wondered what would happen if loads on virtual

machines had high variances. We increased the variance on virtual machines from what was

shown in Figure 5.2 by a factor of four, and ran the same experiment as was shown previously,

except for higher variance values. We show the results of this experiment in Figure 5.3.

Again, in this graph, we see that for very high values for percent of servers over

capacity, the best alternative is to use a low icdf value. However, again, if the value of target

percent of servers over capacity is higher, then the best alternative may be to consolidate

virtual machines and merely use live migration.
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Figure 5.3: A surface graph showing the number of servers yielded by running RGGA at
different icdf values and different targets with high variance.

The general trend from low variance to high variance seems to show that when virtual

machines with high variance are packed, the packing algorithm can exploit the variance more

with swaps. However, when variance is low, and there is less uncertainty in the loads of

virtual machine, then less can be exploited by doing an initial tight packing and moving

virtual machines which send the packing over to other virtual machines.

For reference, we show the number of migrations needed to achieve the number of

servers shown. We show the number of swaps needed in Figures 5.4, 5.5 and 5.6. These

figures all look similar, and what we expected. There are fewer swaps in general for low-

variance problems and more swaps in general for high-variance problems.

Some conclusions are:

1. If the target percent of servers over capacity is low (near zero), then a very high icdf

value should be used.

2. If the number of live migrations done during run-time is a factor during deployment,

then a high icdf value should be used.
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Figure 5.4: A surface graph showing the number of servers yielded by running RGGA at
different icdf values and different values of target percent of servers over capacity with low
variance.
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Figure 5.5: A surface graph showing the number of servers yielded by running RGGA at dif-
ferent icdf values and different values of target percent of servers over capacity with medium
variance.
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Figure 5.6: A surface graph showing the number of servers yielded by running RGGA at
different icdf values and different values of target percent of servers over capacity with high
variance.

3. If the number of swaps done during the run-time of virtual machines does not matter,

and system administrators can tolerate some servers over capacity, then a packing with

a low icdf value with load redistribution could be used.

5.5 Conclusion

At times, it may be possible to swap virtual machines between servers. If swapping virtual

machines between servers is viable, then the number of servers in use after swapping servers

is still important to consider. We present a reassignment algorithm (LMA) that can be used

to swap virtual machines between servers.

We present results that show the results of swapping virtual machines at different

configuration settings. We show that when the target percent of servers over capacity is very

small (around zero percent), then a high icdf value should be used. However, if the target

percent of servers over capacity is higher, then a tight packing using a very low icdf value

with swapping may perform better than a packing with a high icdf value.
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We also show in this paper that if loads on virtual machines have high variance then a

load redistribution algorithm can take advantage of observed loads by redistributing virtual

machines with observed loads to other servers. This allows the load redistribution algorithm

to essentially see the load and fix the packing, achieving any arbitrary amount of percent of

servers over capacity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis has investigated the problem of packing virtual machines onto servers. This

problem is important because of the large amount of electricity used in data centers. A good

packing of virtual machines onto servers will reduce the number of servers in utilization,

reducing energy and hardware costs.

We defined the Multi-Capacity Bin Packing Problem and showed its applicability to

the Virtual Machine Packing Problem (VMAP). Afterward, we defined Reordering Grouping

Genetic Algorithm (RGGA) and showed its applicability to the Virtual Machine Assignment

Problem. We showed that Reordering Grouping Genetic Algorithm is fast, accurate, and

applicable to the Virtual Machine Packing Problem.

We proposed a model for virtual machine packing. Specifically, we added the idea

that loads on virtual machines are not deterministic as in the Bin Packing Problem, but

rather probabilistic, and can be represented by probabilistic distributions. We gave results

for preliminary experiments for this model.

Third, we investigated the effect of what happens when system administrators know

something about the variance of loads on virtual machines. We found that Reordering

Grouping Genetic Algorithm performs well when variance of loads on virtual machines is

low.

Lastly, we investigated the relevance of our research in the face of the availability of

extra servers and live migration. We found that it is still important to do a good initial
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packing even if it is possible to migrate some virtual machines to other servers. It seems

that even if virtual machines are swapped from servers, this swapping is not as efficient as

what could be found by an optimization algorithm.

Some of the ideas presented in this paper led us to experiment with different variants

of RGGA.

6.1.1 Variants of RGGA

Our first observation was that RGGA generally packed some servers very tightly and other

servers very loosely. We wanted to spread the free space around so that all servers are packed

to about the same point.

The first variant (RGGA w/ Repack) takes the solution that RGGA returns and

rebalances the solution to balance loads between servers. It first determines the solution that

RGGA would have given, and then runs a second genetic algorithm. This second genetic

algorithm starts with the same population as was returned by the previous algorithm. The

goal of this algorithm is to spread virtual machines out as evenly as possible between servers.

This is done by modifying Equation 2.3. By setting κ = 1
2
, solutions are rewarded most when

servers are most spread out. We only keep solutions that had the same number of servers as

were found in the original solution.

The motivation for this approach is to create a solution that has the exact same

number of servers as the solution found by RGGA, but spread out the virtual machines so

that there is an equal amount of free space in each server. This way, there is a bit of room

for virtual machines to “spill over” to if they end up using more resources than is initially

allotted to them.

The second approach (RGGA w/ Distro) is motivated by the idea that the packing

algorithm may be able to do better with a knowledge of the load distribution instead of

merely expectations on the loads. What we do in the third algorithm is add the respective
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distributions together using known methods for adding probabilistic distributions, and then

sample an expectation from the new, convolved distribution.

Let N be all resource distributions corresponding to one resource of one virtual

machine. Let µ be the mean for all resource distributions corresponding to N and σ2

be the variance for all resource distributions corresponding N . Let icdf(N, p) be the icdf

function for distribution N and value p. Normally, when applying a packing algorithm, we

applied the following algorithm for a vector N of resource distributions corresponding to a

VM:

est =
∑
N∈N

icdf(N, p) (6.1)

However, because in our experiments, loads could be modeled well with the normal

distribution, instead of applying the above equation, we add together the seperate load

distributions before taking the ICDF estimate.

est = icdf(

|N |∑
i=1

Ni, p) (6.2)

est = icdf(Normal(

|µ|∑
i=1

µi,

|σ2|∑
i=1

σ2
i ), p) (6.3)

In our tests, we used normal distributions, which add together easily. Assume that

one particular load on computer c1 is distributed as N1(µ1, σ
2
1). Assume also that the one

particular load on computer c2 is distributed as N2(µ2, σ
2
2). The added distribution of N1 +

N2 is N3(µ1 + µ2, σ
2
1 + σ2

2). In the third approach, we use an expectation of the added

distribution using the methods proposed earlier. This expectation will be used for all packing

purposes. The difference between this approach and the earlier approaches is that in the

earlier approaches, the expectation is taken first, and the expectations are added together.

In this approach, the loads are added together first, and then the expectation is taken.
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Figure 6.1: The number of servers found for varying algorithms vs percent of servers over
capacity. Half of VMs have high variance. Half of VMs have low variance.

We show in Figure 6.1 the performance of these new variants compared with the other

algorithms we used. Figure 6.1 shows that the new variants on the algorithms proposed did

not outperform RGGA. The only variant on RGGA that shows promise is RGGA with

Repack. But, even that solution is only marginally better than RGGA.

In conclusion, a good initial packing is important to consolidate energy in packing

virtual machines. How virtual machines are packed onto servers makes a difference on the

number of servers used. More balanced packings tend to use fewer servers.

6.2 Future Work

The work in this paper lays the foundation for other organizations to pack virtual machines

onto servers. Even though we did preliminary tests by packing real virtual machines onto

servers, these loads were largely contrived and made up. We have no basis to justify that the

loads we used for virtual machine assignment are similar to loads found on virtual machines
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in real deployments. Even though the results I present in this thesis show promise, we have

not tested the concepts presented on a real industrial deployment.

Ideally, future work should be done by an organization that has data describing loads

on virtual machines in a real deployment. Using this data describing loads on real virtual

machines, the research should focus on how the concepts presented in this paper fair in

modeling loads on real virtual machines, what modifications needed to be done, and other

things that were generally unforeseeable without real data from a real deployment and the

ability to test algorithms with a real deployment.

Moreover, loads on virtual machines in real deployments invariably change throughout

time. Our algorithm here assumes a static distribution on virtual machines throughout

time. In the model proposed here, the loads on virtual machines can be described by a

probabilistic distribution, but this probabilistic distribution stays the same through time. We

have proposed no way of modeling a changing probabilistic distribution as a day progresses.

Future research could focus in this area, discovering what happens when the probabilistic

distribution that describes virtual machine load changes throughout time.

Load on servers have historically been described using queueing theory. Future re-

search can focus on how to use queueing theory to develop probabilistic distributions for the

loads on virtual machines that can be used with the model presented in this thesis. This type

of research would make the research presented here more applicable and usable to industry.
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