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ABSTRACT

Interactive Object Selection and Matting for Video and Images

Brian L. Price

Department of Computer Science

Doctor of Philosophy

Video segmentation, the process of selecting an object out of a video sequence, is a
fundamentally important process for video editing and special effects. However, it remains
an unsolved problem due to many difficulties such as large or rapid motions, motion blur,
lighting and shadow changes, complex textures, similar colors in the foreground and back-
ground, and many others. While the human vision system relies on multiple visual cues
and higher-order understanding of the objects involved in order to perceive the segmenta-
tion, current algorithms usually depend on a small amount of information to assist a user
in selecting a desired object. This causes current methods to often fail for common cases.
Because of this, industry still largely relies on humans to trace the object in each frame, a
tedious and expensive process.

This dissertation investigates methods of segmenting video by propagating the seg-
mentation from frame to frame using multiple cues to maximize the amount of information
gained from each user interaction. New and existing methods are incorporated in propagat-
ing as much information as possible to a new frame, leveraging multiple cues such as object
colors or mixes of colors, color relationships, temporal and spatial coherence, motion, shape,
and identifiable points. The cues are weighted and applied on a local basis depending on the
reliability of the cue in each region of the image. The reliability of the cues is learned from
any corrections the user makes. In this framework, every action of the user is examined and
leveraged in an attempt to provide as much information as possible to guarantee a correct
segmentation. Propagating segmentation information from frame to frame using multiple
cues and learning from the user interaction allows users to more quickly and accurately
extract objects from video while exerting less effort.

Keywords: Video segmentation, image segmentation, image matting, color modeling
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Chapter 1

Introduction

Video segmentation is the process of selecting an object in every frame of a video

sequence, as illustrated in Figure 1.1. Video segmentation is fundamentally important in

many applications involving video. For example, video editing and special effects rely heavily

on video segmentation. In order to delete an object from a scene or place an object from

one video sequence into another, the object must be segmented. The brightness or color

of an object may need to be changed without changing the overall scene, which requires

segmenting the desired object first. Video segmentation is used to divide a scene into layers

so that new objects (real or synthetic) may be placed between the segmented layers to suggest

their depth. Video segmentation is also involved in many other applications such as object

recognition, 3D reconstruction from video, video compression, etc. In fact, any problem that

requires knowledge of specific objects in video also requires video segmentation.

Selecting an object in a video sequence is a surprisingly difficult problem. Video seg-

mentation shares the difficulties inherent in image and volume segmentation. The colors of

the object and background may be similar, which creates weak edges and confuses color mod-

els. Blurring also degrades the edges between the object and background. Complex textures

may introduce many gradients that will confuse edge detectors. Compression artifacts may

make it difficult to identify the true edge. In addition to these difficulties common to seg-

mentation in images and volumes, video has many other problematic factors that frequently

occur. The object may move enough relative to its size that there is no overlap between suc-

cessive frames. Other objects moving in the background may cause confusion. The camera

1



Figure 1.1: Video segmentation example. The top row of images are the frames from the
video sequence. The selected object, the cat, is shown in the row below.

movement may be erratic. Lighting changes and shadows may alter the color properties of

the object and background, while even simple movements in 3D space may greatly change

the 2D object boundary shape. Motion blur destroys object edges and contaminates the

foreground objects. Occlusions may temporarily hide pieces of the object. Each of these

problems is quite common, and a given video sequence can easily exhibit most or all of these

qualities, making video segmentation a difficult problem.

Because of the inherent difficulty of the problem, video segmentation algorithms are

often interactive, with a user indicating the desired object, generally by placing a stroke

over the desired object or by drawing around the border of the object. The algorithm then

determines the location of that object throughout the video. It may accomplish this by

solving the segmentation on a spatiotemporal volume, much like in volume segmentation,

or by selecting the object in the current frame using an image segmentation approach and

then propagating the segmentation to other frames. In an interactive paradigm, the key goal

of video segmentation is to minimize the work the user must perform in order to select the

object.

There are currently many methods for segmenting video. Some methods, like

Keyframe Rotoscoping [1] and Snakes [32], track the boundary of the object using shape

and color cues. Methods based on graph cut [9, 10], such as Interactive Video Cutout [80],

Video Object Cut and Paste [41], and Live Surface [2], use regional color information and
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gradients (edges) to formulate the segmentation as a graph problem. The geodesic framework

of [4] uses color as a basis for geodesic distance for computing the segmentation.

While many approaches exist for segmenting video, they are still largely inadequate.

Most techniques are too slow and require excessive preprocessing time (for example, Inter-

active Video Cutout [80] requires about 30 minutes of preprocessing time and 20-30 minutes

of user interaction time to segment 2-3 seconds of video, with a ∼10 second delay between

each user interaction). Current techniques also cannot handle most of the problem cases

often seen in video, making them very inaccurate and requiring excessive amounts of user

interaction to correct the problems. Because of this, industry often resorts to hiring artists

to manually segment objects in video by drawing curves around their boundary, a tedious,

time-consuming, expensive task. A ten-second video clip can easily take days or even weeks

to segment by hand, costing industry a great deal of money and tying up artists in menial

tasks.

A key reason why current segmentation algorithms fall short is that current methods

use only a few of the many informative cues available when deciding the segmentation. For

example, in Figure 1.2, the ballerina’s feet have a similar color to the floor, so color cues

will give little information about the selection, while the shape and location of the feet

are more reliable. The ballerina’s arm, on the other hand, moves such that much of it is

not overlapping between frames, rendering spatiotemporal coherence cues less effective. If

an algorithm utilizes a limited amount of information such as color and gradient (as many

graph-cut approaches do), then it would struggle on areas such as the feet of the ballerina.

For a high-quality segmentation, computing a selection by labeling each pixel as either

object or background is insufficent. For many pixels, the color of the pixel does not belong

only to the object or to the background, but rather is a blend of foreground and background

colors. This occurs when an object boundary is blurred, when the edge between two objects

lies on a pixel, when an object is semi-transparent, or when an object is smaller than an

individual pixel. This is illustrated for a simple case in Figure 1.3, where the pixels along a
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Figure 1.2: Two successive video frames are shown. Different regions of the video frames
exhibit different difficulties.

Figure 1.3: Although the letter “A” is black and the background is white in the image on
the left, gray values exist on the boundary of the image. Because these pixels overlap both
the letter “A” and the background, the colors of each are blended to produce the pixel color.

boundary contain the blended colors of both the black letter “A” and the white background.

Without separating the foreground and background colors at a pixel many common video

edits, such as those involving hair or shadows, will look unrealistic. For example, the toys in

Figure 1.4 need the foreground and background colors separated to capture the hair correctly.

To address this problem, the process of matting computes a “soft” segmentation where

the color of any pixel may be divided into foreground and background components and a

blending coefficent called the alpha value. The equation governing matting is very simple
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(a) Image (b) Alpha Matte (c) Close-up

Figure 1.4: The toys in image (a) have a lot of hair. The ground truth matte is shown in
(b), with a close-up in (c). In order to correctly segment hair like in (a), matting must be
performed.

since the color at a pixel is a linear combination of the foreground and background colors:

I = αF + (1− α)B (1.1)

where I is the color at a pixel, F is the foreground color, B is the background color, and α

is the blending coefficient. Unfortunately, matting is a difficult problem to solve correctly

because it is severely underconstrained, with three variables (the RGB color I) being used

to solve for seven unknowns (two RGB values F and B and α) at each pixel. Many mat-

ting algorithms exist for single images, which usually require a known foreground, a known

background, and an unknown region to be specified (a trimap), and then use a method

to estimate the alpha values in the unknown region. Single-image matting algorithms still

struggle on complex images. Generally matting is applied to video by segmenting and then

applying a single image matting algorithm to each frame, which does not preserve coherency

in the matte over time. Mattes for video have also been solved by treating the video as

a spatiotemporal volume, which gives some consistency in the matte but can fail in many

instances.
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1.1 Leveraging Multiple Types of Information

This dissertation introduces a new approach to selecting objects in arbitrary video sequences

accurately and with minimal user interaction. To achieve this segmentation, the system

attempts to propagate as much information as possible from one frame to the next. By

combining multiple types of information, this system is more likely to handle problem cases

like those in Figure 1.2 than approaches using limited information.

A key factor in the success of such a system is the set of information cues that the

algorithm uses. Possible cues that can be extracted from video include color, gradient, color

adjacency relationships, shape, temporal coherence, camera motion, object motion, and

easily-identifiable points. This research provides several novel cues as well as improvements

to other cues to improve the quality of information used.

An important factor in dealing with multiple cues is how to combine the information.

The most useful information can vary from sequence to sequence, from frame to frame, and

even from one area of a frame to the next as shown in Figure 1.2. To account for this, the

proposed system uses each piece of information in the area that it is most useful. It also

utilizes user corrections to re-evaluate its local weighting between cues.

Additionally, this dissertation looks at how this approach applies to different problem

domains. The approach of using better information, more information, and selectively ap-

plying the information where it is most useful can not only be used in video segmentation but

also extends to related problems such as image segmentation, image matting, and multiple

similar image segmentation. Several such extensions are included.

1.2 Organization

This dissertation consists of five previously published or soon to be published papers. They

are organized as follows.
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Chapter 2 presents a novel video segmentation system that adaptively combines mul-

tiple cues to allow for easy object selection with minimal user interaction. This chapter

was published under the title LIVEcut: Learning-based Interactive Video Segmentation by

Evaluation of Multiple Propagated Cues in the IEEE International Conference of Computer

Vision, October 2009 [50].

Chapter 3 expands the novel cues from [50] of modeling color adjacency relationships

to identify the edges desired for segmentation. The method is more fully explained and

generalized and some improvements are made. The algorithm is also extended to segmented

sets of similar images (where the same object is in the same scene, although some change has

occurred). This chapter will appear under the title Color Adjacency Modeling for Improved

Image and Video Segmentation in the International Conference on Pattern Recognition,

August 2010 [51].

Chapter 4 extends the idea of selectively combining different methods to the problem

of single-image segmentation. An analysis is given of the strengths and weaknesses of graph-

cut segmentation methods [9, 10] and geodesic segmentation [4]. These two methods are

then combined into a single formulation with the contribution of each weighted globally and

locally based on the estimated performance of each term. This chapter was published under

the title Geodesic Graph Cut for Interactive Image Segmentation in the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, June 2010 [52].

Chapter 5 addresses the problem of image matting. In order to properly segment

hair, blurred objects, or transparent objects from video sequences, video matting is needed.

Unfortunately, video matting and image matting are still largely unsolved problems. This

chapter presents a novel method for computing the matte of an image while simultaneously

computing the estimated foreground and background colors. By simultaneously approaching

the problem of alpha estimation and foreground/background estimation, more information

may be applied to help inform the algorithm. This chapter was published under the title
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Simultaneous Foreground, Background, and Alpha Estimation for Image Matting in the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, June 2010 [53].

Chapter 6 revisits the video segmentation system presented in Chapter 2. In this

paper, additional detail, motivation, and validation are given for many of the cues and new

cues are introduced. The learning method is also improved and better validated. This

chapter will soon be submitted for publication.

1.3 Major Contributions

This dissertation makes many contributions to the solution of the problem of video segmen-

tation as well as of the related problems of image segmentation and matting. The major

contributions of this work are as follows.

1. It introduces a means of adaptively applying information at a pixel level to solve video

segmentation problems and evaluates the application using user corrections.

2. It introduces a new color adjacency relationship model that allows a segmentation

algorithm to focus on edges relevant to the selection.

3. It provides other novel or improved cues for use in segmentation, such as a local color

model, point tracking information, and shape.

4. It introduces a novel image segmentation technique that leverages the strengths of

geodesic segmentation and graph-cut segmentation, weighting the application of each

at a global and a local level, to improve selection results.

5. It introduces a novel image matting algorithm that computes the foreground and back-

ground along with the alpha matte to provide improved foreground/background esti-

mations while maintaining state-of-the-art results for the alpha matte.
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Chapter 2

LIVEcut Video segmentation

A key goal of this research is to introduce a novel method of video segmentation that

adaptively combines multiple informative cues. This chapter presents an approach to this

problem as published in the IEEE International Conference on Computer Vision (ICCV)

in October 2009 under the title LIVEcut: Learning-based Interactive Video Segmentation

by Evaluation of Multiple Propagated Cues [50]. The cues that this system uses are briefly

described, and one method of combining that information in a learning paradigm is given.

Further details and improvements are presented in Chapter 6.

2.1 Abstract

Video sequences contain many cues that may be used to segment objects in them, such as

color, gradient, color adjacency, shape, temporal coherence, camera and object motion, and

easily-identifiable points. This paper introduces LIVEcut, a novel method for interactively

selecting objects in video sequences by extracting and leveraging as much of this information

as possible. Using a graph cut optimization framework, LIVEcut propagates the selection

forward frame by frame, allowing the user to correct any mistakes along the way if needed.

Enhanced methods of extracting many of the features are provided. In order to use the

most accurate information from the various potentially-conflicting features, each feature is

automatically weighted locally based on its estimated accuracy using the previous implicitly-

validated frame. Feature weights are further updated by learning from the user corrections

required in the previous frame. The effectiveness of LIVEcut is shown through timing com-
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parisons to other interactive methods, accuracy comparisons to unsupervised methods, and

qualitatively through selections on various video sequences.

2.2 Introduction

Video segmentation is an essential process in many video applications. It is required for video

editing and special effects whenever objects must be moved, deleted, individually edited, or

layered. It is also used in object recognition, 3D reconstruction from video, and compression.

Despite recent research in the area, industry still largely relies on chroma keying and manual

rotoscoping, emphasizing the need for an effective, easy-to-use video segmentation tool.

This need remains due to the surprising difficulty of the problem. Video segmentation

shares the difficulties of image segmentation, such as overlapping color distributions, weak

edges, complex textures, and compression artifacts. In addition to these challenges, video

may contain erratic camera and/or object movement, motion blur, and occlusions. Objects

may move enough that there is no overlap between successive frames. Other moving objects

may cause confusion. Lighting changes and shadows alter the color distributions, and move-

ments in 3D space may greatly change an object’s 2D projected boundary. A given video

sequence can easily exhibit many of these challenges.

Many different kinds of information can be gleaned from successive video frames to aid

object selection. Such features include color, gradient, adjacent color relationships, shape,

spatiotemporal coherence, camera motion, object motion, and trackable points. The relative

importance of the cues differs depending on the sequence, the frame, and even the location

in the frame. For example, in Figure 2.1 a color model can easily distinguish the cat from

the light brown floor but would struggle separating the tail from the similarly-colored bag.

A shape feature, however, could separate the tail and bag. An algorithm that intelligently

applies all of these cues based on specific circumstances will perform better than one relying

only on a subset of these cues or on a static combination of all of them.
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Figure 2.1: From an initial segmented frame, a variety of features are extracted. These are
automatically locally weighted based on estimated correctness and used to segment the next
frame. If errors occur, the user may correct them, and the system learns which features
are providing good information. The corrected frame is used to continue propagating the
segmentation.

Despite the importance of each kind of information, most current algorithms do not

use all these features. Algorithms that segment the video as a spatiotemporal volume [3,

4, 9, 80] can generally only extract information from the pixels under the user strokes to

model the foreground and background. These methods have no information about some of

these features such as shape or boundary information, and have limited knowledge of other

features such as foreground and background color. By allowing the user to segment one

frame and then propagating this information to other frames, these features can be used.

In this paper, we introduce LIVEcut, a frame-by-frame interactive video segmenta-

tion method designed to maximize the information propagated from one frame to the next.

As shown in Figure 2.1, LIVEcut extracts various features, locally weights them based on

likely effectiveness, and resolves them using graph-cut optimization. LIVEcut also learns
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automatically from user corrections how well each cue performed and weights their impor-

tance accordingly. Our local weighting allows LIVEcut to selectively apply the cues that will

most effectively segment the object. Contributions are also made in the extraction of many

of the individual cues. These include full foreground and background local color models,

color adjacency models, separate foreground and background motion models, point tracking

information, and a new shape prior.

This chapter is organized as follows. Section 2.3 describes related work. Section 2.4

describes the basic interaction and framework of our system, and then analyzes each infor-

mative cue used. This is followed with an explanation of how to automatically weight the

different cues and learn from user corrections in Section 2.5. Section 2.6 gives our results,

and our conclusion and future work are given in Section 2.7.

2.3 Related Work

Many approaches have been taken in interactive video segmentation. Some approaches

focus on either boundary or region information only. Agarwala et al. [1] performs boundary

tracking using splines that follow object boundaries between keyframes using both boundary

color and shape-preserving terms. Other methods of boundary tracking include [31, 32].

Bai and Sapiro [4] use region color to compute a geodesic distance to each pixel to form a

selection. These approaches perform well when a single type of cue is sufficient for selecting

the desired object.

Many current techniques use graph cut to segment the video as a spatiotemporal

volume. Graph cut, as formulated in [9], solves for a segmentation by minimizing an energy

function over a combination of both region and boundary terms. It has been shown to be

effective in the segmentation of images [40, 60] and volumes [3].

Boykov and Jolly [9] introduced a basic approach to segmenting video as a spa-

tiotemporal volume. Their graph connects pixels in a volume, which implicitly includes
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spatiotemporal coherence information. Graph cut is applied using a region term based on a

color model of the pixels under the user strokes and a boundary term based on gradient.

Wang et al. [80] builds on this approach by allowing users to segment video by drawing

strokes on arbitrary slices of the spatiotemporal volume. While this permits a user to mark

several frames at once, it requires a steep learning curve to know how to carve the volume

so that the right pixels are visible along the slice. The method uses a global color model

based on the user strokes as well as a local color model for static backgrounds in addition to

gradient values.

In Li et al. [41], users segment every tenth frame, and graph cut computes the selection

between the frames using global color models from the key-frames, gradient, and coherence

as its primary cues. The user may also manually indicate areas to which local color models

are applied. While this method performs well, it requires the manual segmentation of many

frames in addition to corrections.

In methods where the video is treated as a spatiotemporal volume [3, 4, 9, 80], the

only information known for certain about the object and background are in the user-marked

pixels. This provides very limited knowledge about the object interior and no knowledge

about the boundary. While [41] is an exception to this, it requires the user to manually

segment many frames. These methods contrast our own, where frame-by-frame propagation

allows for the computation of complete features. We also provide an interactive paradigm of

moving through the video sequentially, which is arguably the most natural for video.

In parallel with our own work, Yin and Collins [85] proposed an automated video

segmentation system that includes color, gradient, color adjacency, and shape information

in a graph cut framework. They dynamically reweight these terms from frame to frame, but

do so on a global basis without regard to user corrections.

Some unsupervised video segmentation methods have also combined various cues [17,

73, 84, 78]. While unsupervised techniques generally perform well at roughly separating

motion layers, they do not produce the high-quality results required for many applications.
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The object of interest may also not correspond to a motion layer, leaving these methods

incapable of generating the desired result.

2.4 LIVEcut Video Segmentation

While the methods described in Section 2.3 provide good means of segmenting video, each

relies only on a few cues to make decisions. LIVEcut extracts much more information about

the sequence and uses this to improve the segmentation. The user marks the object in

the first frame of the sequence using the stroke-based method employed by most graph-cut

methods, and LIVEcut propagates various cues taken from the full frame to the next frame

as described in this section. These cues are automatically weighted locally and resolved

using graph-cut optimization (Section 2.5). As the user proceeds through the sequence, the

implicit verification of the previous frame allows LIVEcut to use the entire previous frame

once again to segment the current frame.

We emphasize the importance of the frame-by-frame propagation in extracting infor-

mation for segmentation. In methods where the sequence is segmented as a spatiotemporal

volume [80], the only information the algorithm knows for certain about the foreground

and background are the pixels located directly below the user stroke. This provides very

limited knowledge about the object interior and no knowledge about the boundary charac-

teristics. The interactive paradigm of moving through the video sequentially not only is the

most natural for video, but allows the complete characteristics of each frame to be used in

segmenting the next. While this is also true of keyframe-based systems such as [41], these

require the user to completely segment many frames instead of allowing the algorithm to

quickly compute this information for the user.

2.4.1 Graph cut framework

Before explaining the specific features we propagate from frame to frame, we present the

overall framework in which the features are resolved. For this, we use minimum graph-cut
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optimization. Graph cut computes a segmentation over a set of pixels P by minimizing the

equation

E(L) =
∑
xi∈P

R(xi,Li) + λ
∑

(xi,xj)∈N

B(xi, xj) |Li − Lj| (2.1)

where L = (Li) is a binary vector of labels and Li is the label (0 for background, 1 for

foreground) for pixel xi, R(xi, l) is a region cost term based on the label l, B(xi, xj) is a

boundary cost term, λ is a relative weighting of R and B, and N is the set of pairs of

neighboring pixels.

Our region term R(xi, l) is the sum of all cues that apply to an individual pixel. Given

a set of unary cues U ,

R(xi, l) = s(xi, l) +
∑
u∈U

αu(xi) wu(xi, l) (2.2)

where wu(xi, l) is the cost of labeling pixel xi with label l according to cue u, αu(xi) is a

scalar giving the certainty of wu at xi, and s(xi, l) = 0 if the pixel was labeled l by a user

stroke and ∞ if labeled l̄ (the other label).

Our boundary term B(xi, xj) is given by

B(xi, xj) = wa(xi, xj) wg(xi, xj). (2.3)

and encourages selection boundaries in the current frame to occur at image edges with similar

color profiles to the selection boundaries in the previous frame. The unary terms (color wc,

spatiotemporal coherency wh, shape ws, and point tracking wp) and binary terms (gradient

wg and color adjacency wa) are defined in Sections 2.4.3-2.4.8.

In order to increase the speed of the algorithm, we apply our algorithm to an overseg-

mentation of the image produced using [76]. The segmentation is then refined on the pixel

level similar to [40], except the “band” around the boundary is made up of the pixels in the
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(a) Color (b) Color adjacency (c) Temporal coherence (d) Shape (e) Point tracking

Figure 2.2: Visualization of the graph-cut terms for the frame with a cat from Figure 2.6.
White indicates foreground likelihood, black background, and mid-gray neutral, except for
the color adjacency, where white indicates an object boundary and black indicates no bound-
ary.

oversegmentation regions which border the coarse-level cut. While the following terms are

defined according to pixels, they can all be directly extended to oversegmented regions.

2.4.2 Object and background motion

Motion is an important cue in video segmentation. By considering the motion of the object,

more precise local information may be used to segment it. By removing camera motion,

better local information can be used for the background where it is static.

Many methods account for the camera motion by aligning the frames in a preprocess-

ing step [41, 80]. However, since the foreground object will often exhibit different motion

patterns than the background, aligning the background will not correctly align the fore-

ground.

Since we know the segmentation of the previous frame, we can align the foreground

and background separately. The background is aligned by locating good points to track [65],

then computing and applying a homography.

While the foreground can be tracked in the same manner, problems can occur if the

foreground does not have enough trackable points to generate a good homography due to

large movements or little texture. To account for these cases, we use a novel method to

roughly align the foreground.

We use an iterative closest point-style algorithm [6] to match pixels xi in the selection

M on the current frame I to pixels yj in the next frame Inext with one affine transformation A.
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The iteration alternates between (a) finding the best matches {(xi, ym(i))} for a given A, and

(b) finding the best A to align matches {(xi, ym(i))}. In (a), we match points in (xy position

× RGB color) space so that points in M are matched to points in Inext that are similar in

color and position after applying A. For each xi ∈ M , we solve a nearest neighbor problem

ym(i) = arg minyj
||(Axi, γI(xi))−(yj, γInext(yj))||22 ([49]), where RGB values are in [0, 1] and γ

is the sum of the frame width and height. For (b), we solve A = arg minA
∑n

i=1 ||Axi−ym(i)||22

([62]).

We begin the iteration with the identity transformation, although perhaps a better

starting value could be obtained by a prediction based on motion in previous frames. We run

a maximum of 25 ICP iterations and declare that the algorithm has converged if the positions

of all the transformed points do not move by more than 0.1 pixels. Our algorithm is robust

enough that it can use a small subset of uniformly sampled points from M and still find a

good affine transformation. We set the number of selection points to track to the maximum

of 200 and 2% of the total points in M . An optional input of the largest allowable interframe

motion allows us to reduce the set of potential matches in Inext to something less than the

entire frame. If the number of points in M that we track is m and the number of potential

matching locations in Inext is n, then the building the search kd-tree requires O(n log n) time

and computing all the nearest neighbors in step (a) requires O(m log n) time for each ICP

iteration. For SD-size videos, our novel foreground alignment procedure typically runs in

tenths of a second with the specified size subset of M and a maximum interframe motion of

50 pixels.

The object and background motions are not included as a term in graph cut. Rather,

they are used to spatially transform the locality information of the other cues. While this

transformation does not completely capture non-rigid motion, it improves the locality of the

foreground information and works well in practice.
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2.4.3 Gradient

Image gradients are important for encouraging selection boundaries to fall on image edges.

As in [40], we use color difference as a boundary term:

wg(xi, xj) =
1

||C(xi)− C(xj)||2 + 1
. (2.4)

where C(xi) ∈ [0, 255]3 is the color at xi. Gradient boundary terms are standard practice in

graph-cut segmentation.

2.4.4 Color

A color-model region term encourages pixels to be labeled according to the color distribution

of the model. Because most graph-cut algorithms [9, 40, 80] do not have access to a full

segmentation of a frame, only the pixels under the user strokes are used to create the model.

This limited sample does not always accurately represent the color properties of the image.

These algorithms must also by necessity use a global color model, which does not differentiate

colors located in different regions of the image. While [41] can use a local color model, it

only does so over a small window if manually indicated by the user.

A contribution of LIVEcut is that it uses a local color model generated from the

entire previous frame, which can distinguish between colors in different regions of the image.

Such a color model is shown in Figure 2.2a, where the cat is likely foreground while the

similarly-colored backpack and rope are not. The local color model is generated by creating

a (l, u, v, x, y) vector pi for each pixel xi in the previous frame (where (l, u, v) is the color

and (x, y) is the motion-adjusted location). The probability of the pixel being foreground is

then computed by a 5D Fast Gauss Transform [83]. The probability is assigned to the cost

term by

wc(xi, l) = P (pi|l̄) (2.5)

where P (pi|l̄) is the normalized probability of the location and color of xi given the label l̄.
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2.4.5 Color adjacency

Not only are the colors indicative of the objects, but the relationship of adjacent colors is

as well. Certain color pairs may only exist within the object (background), while others

only cross the object boundary. For example, the ballerina in Figure 2.6 contains a strong

red-to-black edge in her clothing that only exists within her interior and never across her

boundary. Ideally, a method should distinguish which transitions exist along the boundary

and which do not.

While some methods have modeled the color profile of the object edge, such as [47]

and its extension to video [31], they do not handle strong gradients within objects where a

cut could occur. Cui et al. [19] modifies gradient strength based on color relationships but

requires the color to be heavily quantized and does not specify exactly how the locality of

edges is implemented.

We introduce a new color-adjacency model to weight the importance of image gradi-

ents. The model is computed using a Fast Gauss Transform [83], similar to the color model.

Adjacent pixels are represented by an 8D vector eij = (li, ui, vi, lj, uj, vj, x, y) where (li, ui, vi)

is the color of pixel xi, (lj, uj, vj) the color of the xj, and (x, y) their motion-adjusted loca-

tion. A model I is generated for all edges that are in the interior of either the foreground

or background, and another model B is generated for all edges along the boundary. These

probabilities are combined into a boundary reweighting factor by

wa(xi, xj) =

(
1 +

∣∣∣∣P (eij|I)− P (eij|B)

P (eij|I) + P (eij|B)

∣∣∣∣)2η

(2.6)

where P (eij|l) is the probability of eij given the label l. η gives the sign of the numerator:

1 if P (eij|I)≥P (eij|B) and -1 otherwise. Equation 2.6 creates a scalar ranging from 0.25 if

the model indicates a pure boundary (P (eij|I)=0, P (eij|B)=1) to 4 for a pure interior edge

(P (eij|I)=1, P (eij|B)=0), with a factor wa=1 for equal interior and boundary probabilities
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(P (eij|I) =P (eij|B)). Figure 2.2b shows the effect of the color adjacency model. The cat’s

outline is clearly highlighted as the desired boundary, while other edges are suppressed.

2.4.6 Spatiotemporal coherency

Videos usually exhibit a high amount of coherency between frames. Spatiotemporal-volume

approaches [41, 80] implicitly capture this coherency through edges across frames. With

our frame-by-frame approach, coherency between frames can be included without explicitly

representing the labeled pixels from the previous frame. Rather, we assign a high region cost

to label xi as l if there is a nearby pixel (after motion adjustment) in the previous frame

labeled l̄ that has a similar color:

wh(xi, l) =
∑

yj∈Nl̄(xi)

1

||C(xi)− C(yj)||2 + 1
(2.7)

where Nl̄(xi) is the set of all neighbors of xi from the previous frame that are labeled l̄.

Figure 2.2c shows the cost map for the spatiotemporal coherency where the cat is likely

foreground since it overlaps with the previous frame. The blockiness is due to the overseg-

mentation regions.

2.4.7 Shape

When an object passes over a similarly colored background, no edge exists upon which to

place the boundary. In these cases, the shape of the object is vital. Including a shape term

in the features can handle such cases.

Recently there has been interest in including shape priors into graph cut [23, 35, 72,

77, 30]. The common approach is to align the shape to the image by user interaction and/or

automated means, and then include a term in the cost function based on distance to the

shape or a mismatch score.
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In LIVEcut, because we have tracked the object motion forward, we already have an

estimate of the motion-adjusted object shape Φ (where Φ(xi) = 1 if xi is in the object mask

and 0 otherwise) and its boundary Ω (where Ω = ∂Φ). We compute the distance from each

pixel to the boundary after adjusting for object motion using

dΩ(xi) = min
p∈Ω

(||p− xi||). (2.8)

Our shape term is an extension to [77] but takes distance into account:

ws(xi, l) = |l − Φ(xi)|min(dΩ(xi)/M, 1) (2.9)

where M is the maximum allowable distance (we use M = 10). If the estimated shape mask

does not match the labeling of a pixel, this term penalizes the labeling based on the pixel’s

distance to the predicted shape boundary up to a threshold M . Using a small M , if the

boundary is only off by a few pixels, it will have a minimal cost added. This cost function

combined with the estimation of the object motion comprise a novel shape prior for graph

cut. The resulting costs produced by the shape cue are shown in Figure 2.2d.

2.4.8 Point tracking

For most pixels in a typical video sequence, it is difficult to precisely determine the cor-

responding point in the next frame. However, easily-trackable points give nearly certain

information about their labeling (see Figure 2.2e). While many algorithms make use of such

points, video segmentation methods based on graph cut currently do not. We use [43, 65]

to track these points and assign a penalty to labeling xi as l if xi is within a distance D (we

use D = 5) of a tracked point that was labeled l̄ in the previous frame:

wp(xi, l) =

 1 if dΘl̄
(xi) ≤ D

0 otherwise
(2.10)
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where Θl̄ is the set of tracked points labeled l̄. Any points that were not reliably tracked are

removed from Θl. We also filter out any points too close to the object boundary (within 10

pixels), because points near the boundary may potentially spill over onto the other side.

2.5 Automatically Weighting Cues

While a variety of cues can be used for video segmentation, some features will perform more

reliably than others given a specific sequence, frame, or even location within the frame. In

order to best leverage the various cues, we evaluate and learn from their performance.

We automatically weight the region terms in graph cut on a local basis, as shown

in Equation 2.2 by the αu factors. In this manner, the most effective cues will have a

stronger effect. Each αu is a combination of an automatic scaling βu based on the estimated

effectiveness of that term locally (Section 2.5.1) and a weighting ρu that is learned through

user corrections (Section 2.5.2):

αu(xi) = βu(pi) ρu(xi). (2.11)

2.5.1 Setting estimated effectiveness

For each region term, LIVEcut assesses its own performance on the previous frame to esti-

mate the accuracy of that feature for each pixel. This ensures that each feature is weighted

strongly in the areas where it is most effective.

For the color term, the accuracy can be estimated by applying the model to the frame

that generated it (i.e. the previous frame) by

βc(xi) = P prev(pi|Lprevi ) (2.12)

where the superscript prev indicates that the probability and label are from the previous

frame and pi is the (l, u, v, x, y) color and location vector for pixel xi. Figure 2.3a shows

22



(a) Color (b) Coherency (c) Shape

Figure 2.3: Visualization of the estimated accuracy of the (a) color, (b) spatial coherency,
and (c) shape terms. The grayscale value of a pixel indicates the local weight β for that
pixel and cue.

the estimated effectiveness for one frame of the cat sequence. Note that while the weighting

is generally high (shown by brighter pixels), it is lower near where the cat crosses the rope

due to the overlapping color models.

The coherency term in Equation 2.7 returns a large value when a pixel is similar

in color to a neighboring pixel of the opposite label in the previous frame. This works well

except when near object boundaries where the foreground and background colors are similar,

because the costs for each label are then similar. This can be detected by a low probability

in the color model near the boundary. We weight the coherency term accordingly:

βh(xi) = max(P prev(pi|Lprevi ),min(d2
Ω(xi)/D

2, 1)) (2.13)

where D is a distance threshold (we use 0.25(image width + height)). This equation includes

both a color term and a distance term. Near the boundary, the distance term is small, so

the color term dominates, and the weight is high if the foreground and background colors

are dissimilar. Far from the boundary, the distance term dominates. This is illustrated in

Figure 2.3b, where near the object the weighting looks similar to that of the color model,

while away from the object it resembles a distance map.

The shape term is most important for localizing boundaries where the similarity of

foreground and background colors weakens the effectiveness of the color, spatiotemporal,
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(a) Error (b) Color (c) Coherency (d) Shape

Figure 2.4: (a) An error occurred in the propagated segmentation. Since the (b) color cue
was incorrect, its weight is decreased. The (c) coherency and (d) shape cues were correct, so
they are increased. The grayscale value in (b-d) visualizes the label the cue suggests, with
white indicating foreground and black background.

gradient, and color adjacency terms. It is also effective far from the boundary where the

labeling is more certain. Based on these ideas, we weight the shape term using

βs(xi) = max(1−P prev(pi|Lprevi ),min(d2
Ω(xi)/D

2, 1)). (2.14)

Note the similarity to βh(xi) in Equation 2.13, except that the color probability has been

subtracted from 1. This can be seen in Figure 2.3c, where the shape term looks like the

coherency term except that it is inverted near the object. The shape prior will thereby be

more heavily weighted in areas where color does not effectively identify the boundary, such

as the cat and rope overlap in Figure 2.3.

For the point-tracking term, we have already removed points that were not reliably

tracked, so we have high confidence in the remaining points. We therefore weight all points

equally: βp(xi) = 1.

2.5.2 Learning from user corrections

While the automatic weighting usually works well, it may be incorrect at times and require

further user correction. LIVEcut handles this automatically by learning from the corrections.

The user corrects any mistakes by marking them with strokes before proceeding to the next

frame. Since each region term gives a value in favor of the foreground F and the background
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B, each suggests a label for each pixel. More precisely, if wu(xi,F)−wu(xi,B) > 0, then the

term wu would label xi as background on its own, and vice versa. By comparing the initial

propagated selection to the selection after corrections, we can determine which features were

correct at each pixel and use that to weight their future performance. In Figure 2.4, since the

color weight for foreground wc(xi,F) was greater than the background weight wc(xi,B), the

future weight of those color terms are weakened. The coherency and shape terms suggested

the correct labeling and are strengthened.

We initialize ρu to a constant value for all xi. Let Siu be the initial propagated

segmentation suggested by term wu alone, and let Sf be the final segmentation after the

user has corrected any mistakes. If Siu(xi) 6= Sf (xi), wu suggested an incorrect labeling for

xi and its weight should be discounted by ρu in the next frame,

ρnextu (xi) =

 ρu(xi) + δ0 if Siu(xi) = Sf (xi)

ρu(xi)− δ1 if Siu(xi) 6= Sf (xi)
(2.15)

where all segmentations S are from the current frame. δ0 and δ1 are constant increments for

ρu. We use δ0 = 0.4 and δ1 = 0.8, and ρ is initialized to 1.

2.6 Results

For an interactive segmentation system, the real measure of success is the amount of user time

required to perform a selection. Accordingly, we report the time required to select objects

in several sequences. The segmentations can be judged qualitatively by the examples shown

in Figure 2.6. In order to better evaluate the accuracy of LIVEcut, we also compare it

to automatic segmentation techniques, despite the disadvantage this gives to an algorithm

designed for interactive use.
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Video Size Graph Cut Time User Time
Bass Guitar 960×540×72 0.055 / 3.53 sec 38 min
Cat 640×480×56 0.038 / 1.88 sec 5 min
Flamingo 960×540×76 0.055 / 2.82 sec 30 min
Footballer 720×576×19 0.053 / 1.99 sec 5 min
Lemurs 960×540×86 0.047 / 3.11 sec 36 min

Table 2.1: Timing results from several sequences. The graph-cut time first gives the time
to process an interaction on one frame, and then the time to propagate information to the
next frame. “Footballer” is courtesy of Artbeats (www.artbeats.com).

Other Techniques LIVEcut
Pre- Graph Cut User Post- Graph Cut User

Video Size Method process Time Time process Time Time
amira 640×480×35(80)* [80]+[1] 12 min 5 sec 15 min 35 min 0.054 / 1.62 sec 7 min
ballerina 640×480×150 [80] 25 min 11.5 sec 140 min 30 min 0.051 / 1.76 sec 74 min
elephant 720×480×100 [80] 20 min 9.1 sec 40 min 30 min 0.036 / 2.39 sec 38 min
manincap 640×480×150 [80] 30 min 16.5 sec 20 min 35 min 0.034 / 1.86 sec 23 min
stairs 640×480×63(100)* [80] 20 min 8.5 sec 20 min 30 min 0.028 / 1.71 sec 13 min

Table 2.2: Comparison of LIVEcut to [80]. The graph-cut time for LIVEcut lists first the
time to process an interaction on one frame, and then the time to propagate the selection
to the next frame. The ’*’ indicates that the video we obtained differed in length to that
reported in [80] (shown in parentheses). The postprocess time for [80] consists of pixel-level
refinement, but also includes matting, which is not reported for the our method. LIVEcut
does not need any pre-processing time.

2.6.1 Timing and qualitative results

Table 2.1 gives timing results over several challenging video sequences. The “footballer”

sequence exhibits large motions, a drastically changing object shape, and a partial occlusion

from another moving object. “Bass guitar” and “lemurs” both contain overlapping color

models, boundaries where there is no gradient information, and motion blur. While much of

the body of the “flamingo” is easy to segment, the legs are narrow, exhibit large movements,

are often heavily blurred, and have a similar color to the background. Using LIVEcut, a

user is able to segment the objects without excessive interaction. The selection from several

frames of these sequences can be seen in Figure 2.6. We apply the robust matter [81] to our

output to account for mixed pixels on boundaries.

We compare LIVEcut to [80] using videos from this paper in Table 2.2. The user time

to acquire binary segmentation results similar in quality to these techniques is comparable or

less in these examples. The time the user must wait between each interaction for the selection

to update is also less, providing a better interactive experience. Our algorithm also does not
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Sequence 41 43 50 51 54
LIVEcut Error % 2.30 5.93 1.07 1.18 0.45
[84] Error % 0.80 0.02 1.31 1.06 0.33
Sequence 56 58 60 IU JM
LIVEcut Error % 2.47 0.24 14.96 2.96 31.37
[84] Error % 0.93 0.79 6.33 2.56 0.27

Table 2.3: Comparison of [84] to LIVEcut using automatic segmentation (i.e. without
allowing user corrections).

need the large preprocessing time that [80] requires. We were able to segment “amira” with

LIVEcut, while [80] required the help of [1] to do so. We also were able to segment the

“ballerina” as one object, while [80] required one pass for the feet and another for the body.

Finally, our user interaction is simpler, requiring only drawing strokes on individual frames

and allowing sequential processing of the video, while [80] also requires rotating and slicing

through a spatiotemporal volume.

Note that [80] requires postprocessing time to refine the segmentation to the pixel

level, but also includes time to compute the matte, which is excluded in the timing results of

the other methods. Also note that for two sequences, indicated by a ‘*’, the video sequences

we obtained were of shorter length than those reported in [80]. The original lengths are

reported in parentheses.

2.6.2 Accuracy and stability

For interactive segmentation systems, accuracy is difficult to measure since a user can always

achieve perfect accuracy given enough time. To demonstrate accuracy, we perform automatic

segmentations and compare to the unsupervised method from [84] on their database. In

doing so, LIVEcut faces a large disadvantage. LIVEcut was designed to assume that the

previous frame was correctly segmented by the user, and proceeds under that assumption.

Furthermore, LIVEcut receives no user training, while [84] is trained on similar data. While

this test neutralizes many of the strengths of LIVEcut, it allows us to show the algorithm’s

accuracy and stability.
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Figure 2.5: Accuracy of several sequences from Table 2.3.

For this test, we segmented the first frame of ten sequences, each of size 320×240

with an average length of over 350 frames. We then computed the segmentation without

additional user interaction and compare to the results from [84] in Table 2.3. For several of

the videos (50, 51, 54, 58, IU), we have comparable or better results. For the others, the

accuracy over time is shown in Figure 2.5. Our segmentation error in each case was very low

until an abrupt increase due to a change in the scene. For three of the cases, the error is low

until the subject moves his hand in front of his body. In these cases, LIVEcut assumes that

the hand is an occluding object that it should not segment and does not recover the entire

object once the hand leaves. In the other cases, a rapid motion confuses our algorithm.

Note that in each case, the error is quite stable after the initial mistake because LIVEcut

accurately tracks what it assumes is the new state of the object.

To better show the accuracy and stability on these sequences, we resegmented the

video allowing corrections only on or near the frames where large errors occur. Table 2.4

shows that the accuracy is now similar to or less than [84] while allowing very few correc-

tions. While LIVEcut can achieve similar results to unsupervised methods with little or no
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Sequence 41 43 56 60 JM
LIVEcut Error % 0.55 1.41 1.37 3.17 2.26
# frames corrected 1 5 1 2 7

Table 2.4: Accuracy of LIVEcut on sequences from Table 2.3 after corrections on the number
of frames shown.

corrections, these methods could not produce the high quality results from LIVEcut shown

in Figure 2.6.

2.7 Conclusion

We have presented a new method for interactively segmenting video sequences by propagating

multiple cues from one frame to another. These cues are automatically weighted according to

their predicted importance on the specific video sequence being segmented, and are further

weighted based on learning from user corrections. Many of the cues also include novel

improvements in the context of video segmentation using graph cut.

While propagating multiple weighted cues is effective in segmenting video, further

improvements can be made. LIVEcut only uses cues from the previous frame together with

the accumulated learning. However, more global information about the entire video sequence

may assist the segmentation. Improved learning techniques may better weight the graph-cut

terms.
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Figure 2.6: Several examples of object selections using LIVEcut.
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Chapter 3

Color Adjacency Modeling

A portion of Chapter 2 briefly described a novel contribution of our work, a color

adjacency model that allows the segmentation algorithm to focus on edges that are similar

to the desired object boundary and ignore edges that are internal to the foreground or

the background. This chapter further develops that idea, gives several improvements, and

validates its effectiveness. This chapter is presented as it will appear in the International

Conference on Pattern Recognition (ICPR), August 2010 under the title Color Adjacency

Modeling for Improved Image and Video Segmentation [51].

3.1 Abstract

Color models are often used for representing object appearance for foreground segmentation

applications. The relationships between colors can be just as useful for object selection. In

this paper, we present a method of modeling color adjacency relationships. By using color

adjacency models, the importance of an edge in a given application can be determined and

scaled accordingly. We apply our model to foreground segmentation of similar images and

video. We show that given one previously-segmented image, we can greatly reduce the error

when automatically segmenting other images by using our color adjacency model to weight

the likelihood that an edge is part of the desired object boundary.
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3.2 Introduction

Object selection is an important task for many image and video editing applications. A

common component in many foreground segmentation algorithms is color, which is used

to generate descriptions of the object of interest and the background. There are many

ways to implement color models, such as histograms [47], Gaussian mixture models [60],

clustering [40], and so on.

While often overlooked, the relationships between colors in an image can also be used

for segmentation when boundary characteristics are known. While object boundaries are

usually placed on edges in an image, in most images many edges do not correspond to the

desired boundary. Such edges produce attractive locations for a segmentation algorithm

to place the object boundary incorrectly. A color adjacency model can be used to help

distinguish between desirable and undesirable edges for segmentation boundaries.

For example, assume we want to select the frog toy in Fig. 3.1(a). There are many

gradients that do not belong to the object boundary, such as the lines in the background

pattern (Fig. 3.1(b)). Color transitions such as these lines, the edge between the frog’s head

and the blue attachment, or the frog’s green body and orange underbelly, create strong edges

that may be a desirable object boundary for a given segmentation algorithm. However, since

these color transitions occur only within the object or background and never across the

object boundary, these edges could be ignored. By modeling not only the colors themselves,

but also the color transitions, we may be able to identify such edges and not consider them

as potential object boundaries (Fig. 3.1(c)).

We introduce a method for modeling color adjacency relationships in order to improve

the performance of object selection tasks, including the following contributions. First, we

present our color adjacency model. Second, we provide several enhancements to the model,

specifically allowing for global or local color information and providing means of decontami-

nating mixed pixels at object boundaries. Finally, we incorporate our model into graph-cut

segmentation algorithms and demonstrate improved performance in video and similar-image
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(a) Image (b) Edges (c) Reweighted

Figure 3.1: An image (a) may contain edges (b) that are not part of the desired object
boundary. By training a color adjacency model on a similar image, edges are reweighted (c).

segmentation tasks. By similar images, we mean images of the same background scene and

foreground object but with possible differences due to changes such as the camera position

and angle, pose of the object, or small variations in the background scene. This can occur

in multiple shots of the same scene or in successive frames of video.

3.3 Related Work

While many segmentation algorithms use color models [40, 60], especially when propagating

segmentation information to similar images or successive video frames, few have incorporated

color adjacency relationships. Recently, [19] used a form of color adjacency modeling to help

transfer information from a segmented image to similar images by modifying local edge

weights. However, the probability of a transition is not modeled directly but instead derived

from foreground/background color probabilities. If two colors both appear in an object,

the probability of a transition between those two colors within the object is erroneously

considered to be high when that specific transition is not present in the object, such as

illustrated in Fig. 3.2. This problem also affects methods that use foreground/background

probability gradients (e.g., [4]).

Intelligent Scissors [47] describes an “on-the-fly” training method that reweights

edges. For a given partial segmentation boundary, the gradient magnitude of the most

recently generated boundary pixels are stored in a histogram to represent the desired edge
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Figure 3.2: Importance of color adjacencies. Blue-green transitions occur only on the bound-
ary of the man, even though both colors occur in both foreground and background.

characteristics. This is used to reweight the cost for the lowest-cost path generation. While

this training approach works well, it is limited in that it only distinguishes between gradient

magnitudes and not color relationships.

Others have incorporated color adjacency relationships as histograms (co-occurrence

matrices) for use in image matching and retrieval and video scene segmentation [36, 29].

Unfortunately, such histograms can be enormous, requiring the number of colors to be con-

strained. In [36], the image is quantized and only dominant color transitions are modeled.

In [29], the image is oversegmented, and the number of colors is limited to 16. Such color

reduction limits the ability to accurately model color transitions.

Some approaches model the geometry of edges [13, 21] for segmentation or other

applications. Region adjacencies have also been modeled [15, 70] by oversegmenting the

image into regions of similar color and using a region adjacency graph. These approaches

differ significantly from our goal of modeling color transitions.

An early version of our model was used as a component of a video segmentation

system in [50]. This paper more fully describes the color adjacency model and extends it by

allowing color information to be global or local and by using color decontamination. The

model is applied to a new problem set, that of selecting objects in similar images. We also

validate the effectiveness of the model on both similar image and video segmentation tasks.
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3.4 Methods

3.4.1 General Color Adjacency Modeling

To model the co-occurrence of adjacent colors in images, we represent each color adjacency

combination as an adjacency tuple t combining the color components of the adjacent colors.

For example, for two neighboring pixels p and q, a tuple tpq = (rp, gp, bp, rq, gq, bq) may

be created, where rp, gp, bp are the red, green, and blue channels of the color at pixel p

respectively. Other color representations such as LUV may be used.

To model the color adjacencies, we estimate likelihoods for data points tpq using a

kernel density estimation computed by the Fast Gauss Transform [83]. This method uses a

sparse representation and does not require a large amount of storage or coarse quantization.

3.4.2 Global vs. Local Information

This formulation gives a model that is independent of the location of the pixels in the image,

which may be desirable for applications such as transferring knowledge from one image

to another when object placements are not aligned. However, locality may be desirable in

certain applications such as video segmentation where the amount of motion is small between

frames.

To include locality, spatial position can simply be added to the adjacency tu-

ple. For example, given a two-dimensional image with an RGB color representation,

tpq = (rp, gp, bp, rq, gq, bq, x, y), where x and y are the location of the adjacency relationship.

To adjust the locality of the model, the relative range of the location components

to the color components of tpq may be altered. We normalize the color values to the range

[0, 1], then scale the image width or height (whichever is greater) to the range [0, ω], with

the other dimension scaled accordingly. Smaller values of the parameter ω cause the model

to become less sensitive to spatial locality, while larger values of ω cause the significance of

the locality to increase.
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3.4.3 Color Decontamination

One difficulty in computing color adjacencies for adjacent pixels is that edges are rarely

hard boundaries. Because of partial-pixel effects, focus or motion blur, or semi-transparent

edges, object boundaries often extend over many pixels. While in some cases we may want

to model these mixed pixels, in other cases we would like to use only the colors from the

actual objects and not the mixed colors.

To account for this, we apply a color decontamination step by assuming that the

colors at adjacent pixels are linear combinations of two nearby colors. This is fairly simple

to do around the object boundary in the image on which we train our model since we know

where the boundary is, and any standard color decontamination algorithm would do. We

use a fairly simple method of moving in the direction (p − q) of the color adjacency tpq

until intersecting a foreground pixel in one direction and a background pixel in the opposite

direction.

The decontamination problem becomes much more difficult for the adjacencies that

are entirely within the foreground or the background in the training image, and for all pixels

in the test images. In these cases it is not known whether the adjacent pixels lie along

an object edge or not, but not decontaminating these pixels can lead to problems in the

adjacency model. For example, consider a simple case of an edge from white to black, which

is blurred somewhat to create midrange grayscale values along the edge. If we decontaminate

these pixels while training our model, we will model a black-to-white transition. If we do not

decontaminate when evaluating new pixels, we will see midrange grayscale transitions that

are not represented in the trained model. In order for the decontamination to work best, we

must assume that color adjacencies in the test images are along the boundary and attempt

to decontaminate them.

In order to decontaminate these unknown transitions, we choose candidate decon-

taminated colors by sampling pixels near the adjacent pixels in the same row or column as

illustrated in Fig. 3.3(a). It is assumed that one of the decontaminated colors belongs to one
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Image space Color space

(a) Candidates (b) Model Evaluation

Figure 3.3: (a) Candidate decontaminated pixels with colors v0 and v1 are chosen from the
bracketed pixels. (b) v0 and v1 should align well with the adjacent pixel colors u0 and u1 in
color space.

of the pixels in one group (indicated by the green brackets), and the other color in the other

group. The colors u0 and u1 of the adjacent pixels are thereby assumed to be a linear blend

of the two (candidate) decontaminated colors v0 and v1. The blending coefficient α at the

pixel with color u0 is given by

α(u0, v0, v1) =
(u0 − v0) · (v1 − v0)

||v1 − v0||2
(3.1)

The distance d from u0 to the closest point on the line between v0 and v1 can then be

computed by

d(u0, v0, v1) =
||(u0 − v0)× (u0 − v1)||

||v1 − v0||
(3.2)

If the closest point is outside the line segment between v0 and v1, we set d(u0, v0, v1) = ∞.

The values of α and d are shown graphically in Fig. 3.3(b) as they relate to the colors u0

and u1 at adjacent pixels and the candidate decontaminated colors v0 and v1.

Two candidates v0 and v1 are chosen as the decontaminated colors for adjacent pixels

with colors u0 and u1 so that they minimize the cost function

Γ(u0, u1, v0, v1) =
d(u0, v0, v1) + d(u1, v0, v1) + 1

||v0 − v1||2 + 1
(3.3)
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on condition that the difference between u0 and u1 is sufficiently high (we use ||u0−u1|| > 10

for colors u ∈ [0, 255]) and that either 0.25 ≤ α(u0, v0, v1) ≤ 0.75 or 0.25 ≤ α(u1, v0, v1) ≤

0.75. The cost function in Eq. 3.3 is designed to be small when the distance from the adjacent

pixel colors to the line between the candidate decontaminated colors is low, ensuring that

the adjacent pixel colors are well represented as linear blends of the candidate colors. It is

also small when the distance between the candidate colors is large, which helps ensure that

the decontaminated colors are not linear blends themselves.

3.4.4 Use in Object Selection

To use our color adjacency model to assist object selection, we modulate the gradient mag-

nitudes by multipying them by

s(x) =

 (1 + β[LE(x)− LI(x)])2 LE(x) > LI(x)

(1 + β[LI(x)− LE(x)])−2 otherwise
(3.4)

where β > 0 adjusts the effect of the color adjacency model and LE(x) is the posterior

probability (assuming equal priors) that the pixel transition x belongs to the object boundary

(denoted by E) as given by

LE(x) =
P (x|E)

P (x|E) + P (x|I)
(3.5)

where I denotes the interior of the background or object, and P is the probability as com-

puted by our color adjacency model. The effect of Eq. 3.4 is that when LE(x) = LI(x),

the edge strength is left unchanged. As LE(x) increases, the reweighting factor approaches

(1 + β)2, and the local edge weight increases. As LE(x) decreases, the reweighting factor

approaches (1 + β)−2 which decreases the edge weight.

Fig. 3.4 visualizes the effect that the probability difference LE(x)− LI(x) has on an

images. Red indicates that the probability of the transition being a desired edge is large,

and white indicates that the probability of the transition being in the interior is large. More
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precisely, the range [0, 1] for the difference maps to shades of red, and the range [0,−1]

maps to shades of grey (white). Black indicates that both possibilities are equally likely.

Notice how many of the edges in the image that do not correspond to the object boundary

but would be attractive places to place a segmentation boundary based on the strength of

the gradient have been suppressed. For example, the diagonal lines in the frog toy image

have been largely eliminated. Conversely, many edges along the desired boundary have been

strengthened, such as along the boundary of the cat.

3.5 Results

We show the effectiveness of our method by comparing segmentation results with and without

the color adjacency model on sets of similar images and on video frames. We transfer the

selection from a manually-segmented image to similar images or subsequent video frames

within a common graph-cut framework [40]. We compare this selection to one created

with [40] but with edge weights modified by modulating the gradient magnitudes according

to Eq. 3.4 with and without decontamination. Note that we use the graph-cut framework

for our segmentation results here since it is currently the most popular and arguably best

interactive segmentation framework. While we use [40], Eq. 3.4 should apply to any graph-

cut or similar method. The ground truth for our data was generated manually using the

Quick Selection tool in Adobe Photoshop, and the number of mislabeled pixels is reported

as the error. Any pixels within two pixels of the boundary are not included in the error

measurement.

Table 3.1 shows the results for transferring a selection from one image to five related

images, and from one video frame to the next five frames. For similar images, because

the size, position, and orientation of the objects may differ greatly between images, we

de-emphasize the local component in our model (ω = 0.05). For each example, the error

is reduced greatly when including the color adjacency model. For the video examples, we
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With Decontaminated %
Images Standard Adjacency Adjacency Reduced
Cat 7.5 2.4 0.5 93%
Orca 29.7 17.3 16.1 46%
Frog 10.4 2.8 2.4 77%

Video
43 6.2 0.9 0.5 91%
54 3.4 0.4 0.4 88%
Cat 9.7 0.4 0.3 97%
Football 139.2 87.2 87.2 37%
Man 58.7 30.1 29.8 49%
Ballet 16.2 1.2 1.0 94%

Table 3.1: Error (in 1000’s of mislabeled pixels) averaged over five similar images or videos
frames. The selection is performed using [40] without and with the adjacency model and
decontamination.

enforce locality more by using ω = 1.5. Segmenting video using our method clearly improves

performance.

Note that while for this experiment we use the same model for each frame in a

video sequence, in long videos where the object or background change dramatically best

performance is achieved by recomputing the color adjacency model at each frame. This is

how the color adjacency model (computed in subsecond time) was applied in [50], which

gives segmentation results using our model for sequences of more than 350 frames in length.

Results with and without color adjacency modeling are shown in Fig. 3.5. When using

global color models alone, there are many disjoint pieces and holes in the result. Reweighting

the edges based on color adjacency greatly improves the results of the segmentation. Fig. 3.6

shows the results for all five of the frog images.

3.6 Conclusion

We have presented a method of improving object selection in cases where the boundary

information is known, such as in video or sets of similar images, by the application of a color

adjacency relationship model. By increasing the strength of edges similar to the desired
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object boundary and weakening other edges using a color adjacency model, segmentation

algorithms can more easily isolate the correct object boundary.
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Image Adjacency

Figure 3.4: Edge reweighting. Red indicates likely desired edges, white likely interior edges,
and black equally likely edges.

42



Image Standard With Adjacency

Figure 3.5: Example segmentation results.
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Figure 3.6: Results from the frog example. The original image (left) was segmented, and a
color adjacency model is applied to the five similar images (row 1). The adjacency probability
as shown in Fig. 3.4 (row 2) and selection without (row 3) and with (row 4) the adjacency
model are shown.
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Chapter 4

Geodesic Graph Cut

Chapter 2 presents a method of dynamically applying multiple cues to different regions

of a video in order to improve segmentation. This chapter explores this basic idea applied

to single-image segmentation. In this context, we do not have prior knowledge about the

object of interest, like a previously-segmented frame from a video sequence, to use to weight

cooperating cues. Instead, we use previous knowledge of the failure cases from two different

algorithms to combine them for better results. This chapter was originally published in the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

June 2010 under the title Geodesic Graph Cut for Interactive Image Segmentation [52].

4.1 Abstract

Many types of interactive segmentation algorithms have been developed, each with their own

strengths and drawbacks. Segmentation methods based on graph cut are among the most

popular but suffer from an inherent bias toward small boundaries, causing them to “short-

cut” across objects and cut off object appendages. Distance-transform based algorithms are

also commonly used and excel at segmenting along narrow appendages without short-cutting.

However, unlike graph cut, these methods do not explicitly encourage the segmentation

boundaries to fall on image edges, and are limited by the accuracy of their distance function

to cases with relatively simple color distributions. This paper introduces a novel method

of incorporating geodesic distance transform information into the graph-cut segmentation

model. This hybrid approach reduces the drawbacks of each algorithm by relying on the
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strengths of each. The relative weighting of traditional graph-cut information verses geodesic

information is automatically determined using image data, allowing the algorithm to adapt

on a per-image basis. Various examples show the improvement of our method over graph

cut or geodesics alone.

4.2 Introduction

Segmentation is one of the most fundamental and well-studied problems in computer vision.

Because of the inherent difficulty and ambiguity, many methods use interactive segmentation,

which allows a user to supply information regarding the object of interest. Many forms of

interaction have been used, ranging from loosely tracing the desired boundary (e.g., [24, 32,

47, 7, 79]) to loosely marking parts of the desired object and/or background (e.g., [4, 9, 10,

25, 54, 55, 66, 40]) to loosely placing a bounding box around the desired object (e.g., [60, 37]).

In all forms, the goal is to allow the user to accurately select objects of interest with minimal

effort.

We focus here on approaches where the user marks or “scribbles” on parts of the

desired foreground and background regions to seed the segmentation (Figure 4.1). Such

approaches are popular because they generally require less precise input from the user,

allowing them to loosely mark broader interior regions instead of more finely tracing near

object boundaries, though each approach can sometimes be advantageous. Allowing the

user to draw a bounding box [60] is simpler in many cases, though may not provide sufficient

control in all cases, in which scribble-based corrections are often employed to refine the

results.

Many methods for seeded segmentation expand outward from the seeds to selectively

fill the desired region, either explicitly [88, 55, 54, 4] or conceptually [25]. Because these

approaches work from the interior of the selected object outwards and do not explicitly

consider the object boundary, they are particularly useful for selecting objects with complex

boundaries such as those with long, thin parts. However, because these expansions are
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a) Geodesic Segmentation b) Standard Graph Cut

c) Geodesic Graph Cut d) Geodesic Confidence

Figure 4.1: Geodesic graph cut. Without edge information, geodesic segmentation alone
can fail in areas where the foreground/background colors are not distinct (a). Graph cut
segmentation does a better job of aligning with edges but is susceptible to short-cutting (b).
Graph-cut optimization with an automatically tuned geodesic-distance region term leverages
the strengths of the approaches and more accurately selects the object (c). In addition to
global tuning, spatially adaptive weighting (d) is used to prevent boundary placement in
clearly foreground (red) or background (blue) regions, shifting greater control to the edge-
finding component when uncertain (black).

monotonic, these approaches suffer from a bias that favors shorter paths back to the seeds.

As a result, they can be sensitive to seed placement, as illustrated for geodesic segmentation

in Figure 4.2. Because they lack an explicit edge component, these methods may also fail

to accurately localize object boundaries. The stronger the image edges are, the more likely

these methods are to make these transitions here, but this is not guaranteed, as illustrated

for geodesic segmentation in Figure 4.3.

The most popular approach to seeded segmentation is currently the graph-cut ap-

proach of [9], with numerous proposed variations (e.g., [40]). This method combines explicit
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edge-finding and region-modeling components, formulated as a weighted combination and

optimized by framing the problem as a minimum cut in a weighted graph that partitions fore-

ground seeds from background seeds. (See Section 4.4 for a more detailed description.) In its

original form (and most subsequent forms) the region term uses foreground/background color

models inferred from the respective seed pixels. This region/edge combination can be an

effective method in many cases, frequently improving on edge- or region-based segmentation

methods alone.

However, because the boundary term in graph-cut methods consists of a summation

over the boundary of the segmented regions, there is an inherent and well-known bias to-

wards shorter paths, sometimes known as the length or shrinking bias. (This length bias

predates graph-cut methods and is present in earlier least-cost path approaches [47].) This

can be especially noticeable when these methods short-cut across the interior of an object

to avoid segmenting an appendage as illustrated in Figure 4.4. This is offset somewhat by

the region term, which tries to penalize shortcuts through areas where the labeling is clear

from the coloring. However, this is not without tradeoffs—overweighting the region term to

compensate for the boundary term’s shrinking bias can result in discontiguous objects with

coloring similar to the user’s respective scribbles being incorrectly selected (as also illustrated

in Figure 4.4). This leads to a delicate balance between the weighting of the two terms and

the resulting strengths and limitations of each.

Most approaches for otherwise avoiding the shrinking bias in graph-cut and similar

approaches involve variations on normalizing the cost of the cut by the size of the result-

ing object(s). This may be done for grey-level images for which flux may be defined along

the boundary of the region [33], but as noted in [75], this does not readily extend to color

images. Optimizing general normalized cost functions directly is NP-hard but may be ap-

proximated [64, among others]. Alternatively, a subspace of solutions may be explored by

varying the relative weighting of the boundary and region terms [34]. (The authors of [34]

note, however, that this method is not fast enough for interactive color image segmenta-
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tion.) More recent work in [63] uses a curvature-minimizing rather than length-minimizing

regularization term to smooth the resulting boundaries while avoiding shortcutting, but this

does not use an edge component to localize edges, nor does it run in interactive time.

Because of the complementary strengths and weaknesses of seed-expansion and graph-

cut approaches, some have suggested combining them. Work in [69] showed that graph-cuts

and random-walkers [25] (a form of seed expansion), along with a new method similar in

principle to geodesic segmentation [4], could be placed in a common framework in which the

three methods differ by only the (integer) selection of a single parameter, an idea further

expanded in [16] by varying a second parameter. They also showed empirically that of these

three approaches the new method (analagous to geodesic segmentation) is most sensitive to

seed placement while “because of the ’small cut’ phenomenon, the Graph Cuts segmentation

is the least robust to the quantity of seeds.” They went on to suggest a way that the

two “could be combined” but did not explore this idea further in that work. More recent

work [66] has explored a way to blend the respective strengths of these methods using non-

integer selections for the free parameter in [69], determining a suitable parameter selection

empirically over a set of sample images with known ground truth.

This paper introduces a new method for interactive segmentation that makes the

following three contributions. First, it combines geodesic-distance region information with

explicit edge information in a graph-cut optimization framework. This combines the ability

of seed-expansion approaches to fill contiguous, coherent regions without regard to bound-

ary length with the ability of edge-based segmentation to accurately localize boundaries.

Second, it uses pre-segmentation evaluation of the color models inferred from the user’s

seeds to assess the likely effectiveness of the geodesic distance component and weights the

terms accordingly. This avoids the tendency for geodesic segmentation to degenerate to sim-

ple distance maps when the foreground/background color models are indistinct. Third, it

introduces a spatially-varying weighting based on the local confidence of the geodesic com-

ponent and uses this to further adjust the relative weighting of the terms. This makes cuts
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even more expensive in object interiors (or exteriors) while transferring more control to the

edge-localizing component when near the object’s boundary. The result is a method that

adapts both globally and locally to the relative strengths of each approach, providing better

boundary placement than geodesic segmentation and stronger region connectivity and less

short-cutting than typical graph-cut methods (Figure 4.1). This leads to less user interaction

needed to produce a desired segmentation.

4.3 Geodesic Segmentation Revisited

Geodesic segmentation [4], like other seed-expansion approaches, can robustly segment long,

thin structures without regard to boundary length. By incorporating mixture-based color

models inferred from the user’s seeds into an inter-pixel distance metric, it can select even

multicolored or textured objects. Although we point out here key limitations of this approach

in order to address and improve upon it, we refer the reader to the original paper for examples

of its successful application.

Geodesic segmentation labels pixels by computing their geodesic distance Dl(x) from

the nearest foreground (F) and background (B) strokes using

Dl(x) = min
s∈Ωl

dl(s, x) (4.1)

where Ωl is the set of seeds with label l ∈ {F ,B}. The pixel is labeled according to the

smaller of the two distances.

The geodesic distance from any point to any other according to the color model for

the label l is given by

dl(x0, x1) = min
Lx0,x1

∫ 1

0

|Wl(Lx0,x1(p)) · L̇x0,x1(p)| dp (4.2)
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where Lx0,x1 is a path parameterized by p = [0, 1] connecting x0 to x1 respectively, and Wl(x)

gives the geodesic weight according to the model l. [4] defines Wl(x) = ∇Pl(C(x)), where

Pl(c) =
Pr(c|l)

Pr(c|F) + Pr(c|B)
, (4.3)

C(xi) is the color at xi, and Pr(c|l) is the probability of the color c given by the color model

generated from pixels Ωl.

Geodesic segmentation performs best when the geodesic distance between neighbor-

ing pixels inside of (or outside of) the desired object is small relative to the geodesic distance

between neighboring pixels across the object boundary. This requires an accurate fore-

ground/background color model that is consistent in assigning probabilities to the pixels.

However, even small errors or variations in the probabilities can accumulate over the geodesic

paths and lead to incorrect results in two keys ways:

1. If the color models are not distinct, the probabilities Pl(c) may be highly unstable from

one pixel to the next due to unavoidable image noise. This neutralizes the color-based

distance metric and in the limit causes geodesic segmentation to degenerate to simple

(and noisy) distance maps. This causes the segmentation to be highly sensitive to seed

placement, as illustrated in Figure 4.2.

2. Even for more distinct color models, the lack of an explicit edge-finding component

can cause geodesic segmentation to come close to but not precisely localize object

boundaries (as in Figure 4.3 for a simple 1-D example). As the transition in the

geodesic distances increases the method is more likely to place the boundary correctly,

but with softer edges or with even modest noise it can sometimes fail to do so.

The methods in this paper address these two limitations respectively by 1) glob-

ally weighting geodesic-distance component by assessing the relative distinctiveness of the

foreground/background color models, and 2) transferring relative control from the geodesic-

segmentation component to more explicit edge-finding near object boundaries.
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Figure 4.2: Sensitivity of geodesic segmentation to seed placement. As the background stroke
(blue) is translated, the object boundary computed by geodesic segmentation shifts also (top
row), while geodesic graph cut (and other graph cut approaches) give a more consistent result
(bottom row).

We note here one related approach of interest [18], in which a number of geodesic

distance transforms are generated by varying the parameters to generate multiple candidate

solutions. The candidate minimizing a cost function that includes an edge-finding component

(similar to that used in graph-cut approaches) is then selected as the final result. This method

differs from that proposed here in that the region and edge information that graph cut uses

are not used while generating geodesic candidates. Because of this, the space of candidate

solutions may only approximate the optimal solution.

4.4 Graph Cut Segmentation Revisited

Graph cut segmentation [9] seeks to minimize a cost function of the form

E(L) =
∑
xi∈P

RLi
(xi) + λ

∑
(xi,xj)∈N

B(xi, xj) |Li − Lj| (4.4)
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Figure 4.3: Why geodesic segmentation can miss edges. Because of noise in the probability
along the geodesic paths (top), the geodesic boundary (green) between the user’s foreground
stroke and background stroke misses the true image edge (magenta).

where L = (Li) is a binary vector of labels and Li is the label F or B for pixel xi, Rl(xi)

is a region cost term based on the label l, B(xi, xj) is a boundary cost-term, λ is a relative

weighting of R and B, P is the set of pixels in the image, and N is the set of pairs of

neighboring pixels. The terms R and B have been defined in various ways by different

researchers. Generally B corresponds to a measure of the similarity between the colors of

adjacent pixels and R is based on color models of the foreground and background.

Graph cut methods minimize Eq. 4.4 by casting the problem as a graph-partitioning

one and using the mincut/max-flow graph algorithm, where boundary costs are assigned to

graph edges between pixels and region costs are assigned to edges that connect pixel nodes

to the source and sink nodes [9].

Graph-cut methods perform well over a variety of images. Because both region and

boundary information are explicitly captured in the algorithm, they are capable of both

selecting objects consistent with region information and placing object boundaries on image
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edges. Many variations have sought to improve on this approach, including using watershed

regions as primitives in order to reduce the size of the graph and accelerate the computa-

tion [40], using tensor-based region terms to model texture [44], and iteratively alternating

segmentation and model updating to converge to the solution [60]. Because it can eas-

ily operate on multi-dimensional images, the graph-cut approach has also been applied to

videos [41, 80] and image volumes [3, 11, 42]. It is important to note that the term “graph

cut segmentation” has grown to encompass a wide variety of approaches that minimize cost

functions of the form in Eq. 4.4 by framing the problem as a graph-based min-cut/max-flow

one. (See [11] for an excellent discussion of the variety of approaches for which graph-cut

optimization has been used.)

As noted in Section 4.2, a key weakness of graph-cut approaches is that the boundary

term in Eq. 4.4 causes an inherent shrinking bias toward shorter segmentation boundaries.

This can be especially noticeable when the algorithm short-cuts across the interior of an

object to avoid segmenting an appendage as illustrated in Figure 4.4. The ideal boundary

of the object contains the segment B2, but since the segment B1 is so much shorter, the cost

of cutting all the links along B1 may be less than the cost of cutting the links along B2,

even if no individual link in B1 is cheaper than in B2. This leaves the region A12 out of the

selection.

Using this intuition, short-cutting may be prevented by increasing the cost of B1

relative to B2. However, increasing the edge sensitivity may cause even weak gradients to

become attractive options. A better strategy is to increase the incurred region cost of the

shortcut by increasing the sensitivity of the color model or by increasing its weight relative

to the boundary terms by decreasing λ. However, this can have an ill effect when using

a global color-similarity model as is common with graph-cut methods. Other background

objects with properties (region A0 in Figure 4.4) similar to the foreground user stroke are

more likely to be incorrectly segmented as foreground in such cases. Problems with short-

cutting and selection of disconnected unseeded regions can be reduced by allowing users to
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Figure 4.4: Shortcuts. Graph-cut methods may short-cut across the desired object along B1

instead of following the true edge B2 because less cost is accrued transversing the shorter
path.

explicitly specify that certain regions should stay connected or disconnected [75], but this

requires either prior knowledge or further user interaction.

4.5 Geodesic Graph Cut

As discussed in Section 4.3, in cases where the color models inferred from the user’s strokes

are indistinct, geodesic segmentation can be improved by the inclusion of explicit edge in-

formation to encourage placement of selection boundaries on edges in the image and allow

the user more freedom in placing strokes. In cases where the color models are more dis-

tinct, though, the edge information (with its inherent shrinking bias) is not as necessary.

The region term alone can often carry the segmentation in such cases, but as discussed in

Section 4.4 global color models without spatial locality information can often select disjoint

regions. The use of geodesic distance rather than simple color-similarity alone can avoid

this. This section presents how geodesic distances and edge information can be combined in

a graph-cut optimization framework, and then presents a way to use the predicted classifi-
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cation accuracy from the inferred color models to automatically tune the tradeoff between

the strengths and weaknesses of the two.

4.5.1 Using geodesic distance as a unary term

We formulate our algorithm in simplest form as a graph-cut problem using a normalized

form of geodesic distance as one of the unary region terms. Using Eq. 4.4 and minimizing it

using graph cut, we compute the unary region term as follows:

Rl(xi) = sl(xi) +Ml(xi) +Gl(xi) (4.5)

where Ml(xi) is based on a global color model as is often used for graph-cut segmentation,

Gl(xi) is based on geodesic distance, and

sl(xi) =

 ∞ if xi ∈ Ωl̄

0 otherwise
(4.6)

indicates the presence of a user stroke where l̄ is the label opposite l (i.e. if l = F , then

l̄ = B).

We use the Fast Gauss Transform [83] to compute the foreground/background color

models Pl(c) (see Eq. 4.3) for both global similarity and geodesic distances. Ml(xi) is com-

puted by

Ml(xi) = Pl̄(C(xi)). (4.7)

Gl(xi) is computed by normalizing the relative foreground/background geodesic dis-

tances (see Equation 4.1):

Gl(xi) =
Dl(xi)

DF(xi) +DB(xi)
. (4.8)

and using the efficient method in [4] to compute the distances Dl(xi).
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For the boundary term we use [40]:

B(xi, xj) =
1

1 + ||C(xi)− C(xj)||2
(4.9)

where C(x) ∈ [0, 255].

4.5.2 Global weighting based on color model error

The simple form (Eq. 4.4) in Section 4.5.1 can give good results in many cases, generally

performing better than either geodesic or graph-cut segmentation alone. However, we would

like to allow it to provide greater weight to the geodesic-based unary term in cases where

this method is known to perform well, specifically when the foreground/background color

distributions are well-separated. This increased reliance on geodesic distance for the region

term serves to reduce the potential for short-cutting due to the boundary term. But caution

must be exercised with this, because over-reliance on the geodesic component can cause

increased sensitivity to seed placement when the color models are not distinct.

To allow for global weighting of the relative importance of the region and boundary

components, we modify Eq. 4.4 as follows:

E(L) = λR
∑
xi∈P

RLi
(xi) + λB

∑
(xi,xj)∈N

B(xi, xj) |Li − Lj| (4.10)

Although we could fold the separate region (λR) and boundary (λB) weights into a single

weight, we choose to keep them separate to make their respective purposes clearer. The

boundary weight λB serves the role of the traditional fixed region/boundary weighting in

graph cut methods, and we adjust it to individual images by considering only the size of the

image (due to the disproportionate scaling of an object’s area (unary term) and perimeter

(boundary term)). The region weight λR is the relative weighting of the geodesic-distance

and other region components. While the user could tune λR manually, this would require

excessive tweaking and is undesireable; instead, we want to automatically tune this parameter
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on a per-image basis by predicting the segmentation performance of the geodesic distance

term.

To do this, we consider that Eq. 4.3 is the posterior probability of a pixel with color

c belonging to foreground (F) or background (B) respectively, assuming equal priors. As

such, it is essentially functioning as a simple Bayesian classifier, the error in which can be

estimated by (using the notation of Eq. 4.7)

ε =
1

2

[∑
x∈F PB(C(x))

|ΩF |
+

∑
x∈B PF(C(x))

|ΩB|

]
(4.11)

When there is no error (ε = 0), we would like to give the color-based terms (M and G) full

weight, and when the color models become indistinct (ε ≥ 0.5), we want to give them no

weight:

λR =

 1− 2ε if ε < 0.5

0 otherwise.
(4.12)

4.5.3 Local weighting based on geodesic confidence

Globally adjusting the relative weighting of the region and boundary terms on a per-image

basis can help automatically tune the method to different image types, but it does not account

for the properties of different local areas. We further weight the geodesic and boundary terms

based on the local confidence u(x) of the geodesic components:

u(xi) =

∣∣∣∣DF(xi)−DB(xi)

DF(xi) +DB(xi)

∣∣∣∣γ (4.13)

where empirically we have found γ = 2 to 2.5 to work well. (For the results in Section 4.6,

we use a value of γ = 2.5.)

We redefine the region terms to weight the geodesic component by u(xi):

Rl(xi) = sl(xi) +Ml(xi) + u(xi)Gl(xi) (4.14)
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This maintains the weight of the geodesic distance term when relatively certain that the

pixel xi is clearly in the object’s interior or exterior (u(xi) close to 1) and decreases it near

where geodesic segmentation would place boundaries (u(xi) close to 0).

We also correspondingly spatially adapt the weighting of the boundary costs based

on u(x) as follows:

B(xi, xj) =
1 + (u(xi) + u(xj))/2

1 + ||C(xi)− C(xj)||2
(4.15)

Note that when the average geodesic certainty of the two pixels is high, this suggests an

object interior/exterior, and the cost of placing a cut here is further increased. When this

geodesic confidence is low, this suggests that geodesic segmentation alone would consider

this to be near a boundary, and we reduce the effect of the geodesic component, shifting

control to the more accurate edge-finding term.

The net effect of this spatially adaptive weighting is to both increase the relative

weighting of the unary geodesic distance term and increase the cost of a boundary cut in

what are clearly interior/exterior regions, while both decreasing the relative weighting of the

unary geodesic term and decreasing the cost of a boundary cut in areas where we want to

more accurately localize the object boundary.

4.6 Results

Geodesic graph cut with automatic tuning and spatial adaptation works well both in cases

suitable for geodesic segmentation and in cases suitable for standard graph cut methods,

in many cases outperforming both. While accuracy is an essential element of interactive

segmentation, so too is the minimization of user interaction required to achieve that level of

accuracy. This section demonstrates the accuracy of geodesic graph cut, and the interaction

required for these examples is shown in recorded videos1. The time for our algorithm on

these images ranged from 0.2–2.6 seconds for image sizes from 256× 256 to 720× 480, with

most computations requiring approximately 1 second or less. In all cases the unary term

1http://vision.cs.byu.edu/papers/ggc
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Graph Cut Geodesic Graph Cut

Figure 4.5: Examples with distinct color models. For these images geodesic graph cut
segmentation automatically relies more on geodesic distances (λR = 0.97, 0.99 respectively),
avoiding short-cutting common to non-adaptive graph-cut methods.

weighting (λR) and the spatially adaptive weights (u(x)) are set automatically by the method,

with no per-image manual tuning.

In Figure 4.1, geodesic segmentation fails to segment along the dolphin’s back due

to the specular reflection on the table. Graph cut, because of its explicit edge term, can

better segment along the back but shortcuts across the tail. Geodesic graph cut leverages

the strengths of each approach and correctly segments both areas. While additional strokes

could of course correct either the graph-cut or geodesic segmentation, this increases the

required user interaction.

Figure 4.5 shows examples where geodesic graph cut segmentation automatically ad-

justs to the distinct color models, exploiting the geodesic distance term to avoid shortcutting.
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For these images, geodesic segmentation performs comparably to the results shown here for

our method.

Figure 4.6 shows similar examples for images whose color models are less distinct. In

these cases, our method recognizes the error in the color models and automatically adjusts to

rely less heavily on geodesic distances. In the pyramid (top) and candy (middle) examples,

the foreground and background color models overlap considerably. Without distinct color

models, geodesic segmentation alone fails noticeably. In particular, the candy (middle)

result demonstrates the way geodesic distance can degenerate to noisy distance maps when

the colors are not distinct. In the ram (bottom) example, the color models are more distinct

but are still mixed enough to cause geodesic segmentation to mistakenly select the part

of the background away from the user-placed background seeds. The results of graph cut

segmentation for these examples are comparable to our method.

Figures 4.7 and 4.8 show examples where our method outperforms both geodesic and

graph-cut segmentation. For the rolling-pin example (top), because of the similarity between

the foreground and background colors, geodesic segmentation again mistakenly selects part

of the background away from the seeds. Graph cut segmentation avoids this problem but

again exhibits shortcutting. Our method places only a moderate geodesic distance weight

for this image (λR = 0.72), avoiding the problems exhibited by geodesic segmentation alone

while using sufficient weighting of this term to avoid region shortcutting. For the elephant

example (bottom), geodesic segmentation fails to segment along the top of the elephant’s

back due to the similar background even though there is still an edge there, while graph cut

segmentation shortcuts the trunk and part of the back. Geodesic graph cut corrects both of

these problems for this image.

To quantitatively evaluate the accuracy of the segmentations produced by geodesic

graph cut, we applied it to the Microsoft GrabCut dataset [7]. As noted in [20], this dataset

is not well suited to evaluating interactive scribble-based segmentation because it assumes

the user loosely traces the contour of the desired object. As such, it provides far more seeds
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than are typically provided with interactive scribbles, and the seeds are more uniformly

placed on either side of the boundary. We believe that interactive scribble-based methods

cannot be evaluated with static seeds—once the user places the first scribble the resulting

scribbles are dependent on the segmentation result from that and each successive one. But,

as also noted in [20], this is the only evaluation database to provide seeds, and we compute

our results on this dataset for comparison (Table 4.1).

Over all 50 images in the database, geodesic graph cut averaged 4.8% error, better

than either geodesic segmentation (6.8%) or standard graph-cut segmentation (6.7%) indi-

vidually. This error was also lower than that of any of the other compared-to methods that

do not have a spatial position bias, either explicitly [37] or implicitly [27].2 To our knowledge,

this is the lowest error rate reported for this dataset by a scribble-based selection method.

For 48 of the 50 images, geodesic graph cut outperformed either graph cut (43 of 50)

or geodesic segmentation (39 of 50) alone, typically performing at a level near the better of

the two methods for each image. For 34 of the 50 images, it outperformed both.

We also used this dataset with the skeleton-based initialization suggested in [66] as

provided by its authors. This provides fewer seeds overall but tends to place more seeds

in object protrusions. Graph cut segmentation had an error rate of 6.3% with this form of

initialization, while geodesic segmentation had an error rate of 10% and geodesic graph cut

had an error rate of 3.6%.

From our observations, geodesic graph cut usually does as well or better than the

better of the two individual methods. It struggles on inputs for which both individual

methods have difficulties. This typically happens when the foreground and background color

models are overlapping and either there are weak edges or highly textured regions around

the object boundary. Another less severe problem we have observed is that some long thin

2As noted in [20], the adaptive thresholding method of [27] has a strong bias towards placing an object
boundary in the middle of the uncertainty band of the trimap. This is because it uses an adaptive window
that grows to “include at least one α = 0 pixel and one α = 1 pixel.” Due to the nature of the GrabCut
database, which uses an uncertainty band centered close to the actual boundary, this causes this method to
have artificially low error. Although [20] use and report this method for their method and [25], they add
this specific disclaimer on the reported error rates.
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Segmentation Model Error Rate
GMMRF [7] 7.9%
Geodesic Segmentation [4] 6.8%
Graph Cut (as reported by [37]) 6.7%
Random Walker (s=2) [25] 5.4%
Segmentation by Transduction [20] 5.4%
Geodesic Graph Cut (proposed method) 4.8%
Guan and Qiu [27] with AT∗ 4.6%
Random Walker (s=2) [25] with AT [27]∗ 3.3%
Segmentation by Transduction [20] with AT [27]∗ 3.3%
GrabCut-GC (as reported by [37]) 5.9%
Bounding Box Prior (LP-Pinpoint) [37] 5.0%
Bounding Box Prior (GrabCut-Pinpoint) [37] 3.7%

Table 4.1: Quantitative comparison using the Microsoft GrabCut database [7]. Error rates
reported here are either computed by us (our method, [4]), reported by the method’s authors
([7, 27]), or were previously reported by [20] or [37]. The first nine were initialized using
the “Lasso” form of the trimap provided by the database. The adaptive thresholding (AT)
method of [27] is biased towards the middle of the trimap’s uncertainty band and is artificially
favored by this form of initialization. The lower three used the corresponding bounding box
initializations, with the last two using this box as a prior on the spatial extent of the object.

structures are sometimes still short-cutted near the tip, although our adaptive weighting

usually decreases the size of the short-cutted area and thus requires less additional effort

from the user to correct than typical graph cut. This problem is most likely to occur when

there are strong edges across or texture within the long thin structure and when the color

models overlap enough that our algorithm cannot rely on the geodesic information to entirely

prevent a shortcut.

4.7 Conclusion

This paper has presented a way to incorporate both geodesic-distance region information and

explicit edge information together in the popular graph-cut optimization framework in a way

that leverages the strengths of each. Rather than a simple fixed combination, the method

tries to best leverage the respective strengths of the two approaches by adaptively tuning their

combination based on pre-segmentation assessment of the classification performance of the

color models inferred from the user’s input. When the image’s foreground/background color
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models as inferred from the user’s marked seeds are distinct, greater weight is given to the

geodesic-distance component in order to provide greater region coherence and avoid boundary

short-cutting. As the color models become less distinct, the geodesic-distance approach

becomes increasingly unreliable and is weighted less accordingly. In addition, a spatially

adaptive weighting is introduced that makes boundary short-cutting more expensive in object

interiors or exteriors while transferring greater control to the edge-finding component to

better localize edges near object boundaries. Results demonstrate that geodesic graph cut

is able to segment objects in a variety of images, generally performing as well as the better

of these two methods for each image, and often outperforming both methods.
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Geodesic Segmentation Geodesic Graph Cut

Figure 4.6: Examples with less-distinct color models. In these cases geodesic graph cut
cannot rely on the geodesic distances and automatically adjusts to rely more on explicit
edges or a combination of color models and edges (λR = 0.40, 0.22, 0.65 respectively).
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Geodesic Segmentation Standard Graph Cut

Geodesic Graph Cut Geodesic Confidence u(x)

Figure 4.7: Example for which geodesic graph cut segmentation outperforms both geodesic
segmentation and standard graph cut. Geodesic segmentation mislabels the area beneath
the rolling pin because of its distance to the background user stroke. Graph cut segmentation
shortcuts across the handle. Our method correctly segments the rolling pin.
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Geodesic Segmentation Standard Graph Cut

Geodesic Graph Cut Geodesic Confidence u(x)

Figure 4.8: Example for which geodesic graph cut segmentation outperforms both geodesic
segmentation and standard graph cut. Geodesic segmentation mislabels the wall above the
elephant because of the similarity in color to the elephant and the distance to the background
user strokes. Graph cut segmentation shortcuts across the elephant’s trunk, forehead, and
back. Our method correctly segments the elephant.
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Chapter 5

Foreground, Background and Alpha Matting

Chapters 2 through 4 present methods for producing a “hard” segmentation, a seg-

mentation where each pixel is assigned to either the foreground object or the background.

For many pixels, however, the color present at the pixel is actually a blended combination

of the color of the foreground and the color of the background. This is true at the edges

of objects, for pixels covering semi-transparent objects, and for objects thinner than a pixel

such as hair. To properly segment these objects a “soft” segmentation must be produced

that assigns to a pixel a certain percentage of foreground and a percentage of background.

This chapter addresses the problem of matting for images. Most previous work solves

for the percentage of foreground versus background, called the alpha value, while ignoring

the foreground and background colors at the pixel. This chapter presents a method of solv-

ing for the foreground color, background color, and alpha value at a pixel simultaneously.

This chapter was originally published in the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR) in June 2010 under the title Simultaneous

Foreground, Background, and Alpha Estimation for Image Matting [53].

5.1 Abstract

Image matting is the process of extracting a soft segmentation of an object in an image as

defined by the matting equation. Most current techniques focus largely on computing the

alpha values of unknown pixels and treat computation of the foreground and background

colors as an afterthought, if at all. However, for many applications, such as compositing an
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object into a new scene or deleting an object from the scene, the foreground and background

colors are vital for an acceptable answer. We propose a method of solving for the foreground,

background, and alpha of an unknown region in an image simultaneously. This allows for

novel constraints to be placed directly on the foreground and background as well as on alpha.

We show through both visual results and quantitative measurements on standard datasets

that this approach produces more accurate foreground and background values at each pixel

while maintaining competitive results on the alpha matte.

5.2 Introduction

The goal of image matting is to produce a soft segmentation of an image I by computing

the relative contribution of foreground F and background B at each pixel according to the

equation

I = αF + (1− α)B (5.1)

where α is the opacity of the foreground. If I is a three-channel color image, the matting

formula yields seven unknowns with only three equations, making the solution greatly un-

derconstrained. Most techniques constrain the system with a user-defined trimap (which

identifies known foreground and background regions and unknown regions) as well as addi-

tional terms to produce an energy function to optimize or a system of equations to solve.

Matting is important for image and video editing when one wishes to select an object

exactly for editing. While some applications may only require an alpha value for the selected

object, such as perhaps applying a filter that tails off as alpha drops to zero, many others

require both the alpha value and the extracted foreground and/or background color. A prime

example of this is composition, where a selected object may have a noticeable “halo” around

the object when placed on a different-colored background if the background colors are still

maintained in the foreground. Another such task is object deletion, where the background

colors are needed to restore the image.
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Interestingly, most existing matting algorithms do not attempt to solve for the fore-

ground and background colors, focusing on solving for alpha exclusively [26, 39, 56, 57, 67,

71, 81, 87]. Such solutions still result in an underconstrained problem, with three equations

and six unknowns, which some methods attempt to solve as a postprocess [4, 38, 61, 79].

Of course, given a trimap, no information is initially known about alpha, but only about

foreground and background. Some methods will constrain the foreground and background

colors [38, 39, 56, 61, 67, 81] or begin with an initial estimate of them [56, 57, 71, 81], but

few attempt to solve for them alongside alpha.

In this paper, we introduce a method for solving the foreground, background, and

alpha simultaneously and make the following three contributions. First, by optimizing over

the foreground and background as opposed to only addressing them as a postprocess or not

at all, we produce more accurate foreground and background values. Second, we produce

alpha matte results that are competitive with the state-of-the-art. Third, we contribute

several new ideas regarding the additional terms used to solve the matting equation. These

include a novel color term that affects the foreground and background directly, as well as

an important observation and new terms involving the gradient of the matting equation and

smoothness assumptions.

5.3 Related Work

Despite the matting problem consisting of seven unknowns per pixel, the majority of matting

algorithms focus only on computing one unknown, the alpha channel. Bayesian Matting [14],

an exception to this, computes foreground, background, and alpha to provide a complete

solution to the matting equation. The colors of the known foreground and background are

represented using Gaussians, and the unknown values are computed by an optimization over

this information and the matting equation using maximum a posteriori estimation. While

this approach computes the foreground and background, the imprecise representation of the

known color values does not lead to robust results in the general case.
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Easy Matting [28] also computes the foreground and background at each unknown

pixel but limits the possible color to one of twenty samples, severely limiting the range

of possible values. The alpha value is then computed using the matting equation and a

smoothness prior on alpha. Similarly, Wang and Cohen [82] presuppose that the foreground

and background belong to a small, unspecified sample set, and then compute an alpha

using the matting equation and an alpha smoothness prior. Unfortunately, these methods

often oversmooth the matte due to the alpha smoothness prior, and the limited freedom in

foreground and background values limits their results.

While few algorithms explicitly optimize over the foreground and background, many

do constrain those values to some extent. An early example of this is seen in the work of

Ruzon and Tomasi [61]. The foreground and background are modeled as Gaussians, and the

assumption is made that the color at the unknown pixels comes from a distribution between

these Gaussians. An alpha matte is then computed by maximizing the probability of the

image color on possible intermediary distributions.

The closed-form solution of Levin et al. [38] constrains the foreground and background

colors in a local neighborhood to each be a linear combination of two colors respectively using

the matting Laplacian. This allows them to eliminate the foreground and background colors

from the matting equation and solve directly for alpha. While this works well in many cases,

it fails when the color model may not be well represented by their linear model.

The elegant solution in [38] has inspired several improvements. Spectral matting [39]

extends the framework to segment multiple layers without the use of a trimap or user interac-

tion. The variant in [67] also extends this framework to computing mattes of multiple layers.

Singaraju et al. [68] introduced an improvement to the matting Laplacian that handles cases

where the colors in a neighborhood may be represented by a point rather than a line.

Another example of a paper that applies constraints to the foreground and background

without solving for them is the work of Zheng and Kambhamettu [87]. They approach the

matting problem in a semi-supervised machine learning paradigm. This allows them to model
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the matting equation using both linear and non-linear equations, and is used in conjunction

with a smoothness prior on alpha to compute an alpha matte.

Several other approaches include an initial estimate of the foreground and background

in their computation but do not seek to improve those values. In Robust Matting [81] an

estimate of the foreground and background is computed by sampling along the nearest edge

in the known foreground or background regions. This information is used to form a sparsity

bias that encourages most of the unknown pixels to take the value of 0 or 1. The sparsity bias

is used in conjunction with the foreground and background smoothness constraint of [38] to

produce an alpha matte. While this method works well in many cases, it can fail when its

initial estimation of foreground and background is not accurate.

Rhemann et al. [56] formulate matte computation similar to [81] but with several

improvements. The initial foreground and background estimation is improved by taking

samples from known regions that are close to the pixel in question using a geodesic distance

measure. A hard segmentation is also used to help formulate the sparsity prior. Robust Mat-

ting is also improved to handle high resolution images through interactive trimap generation

in [57].

Poisson Matting [71] computes an estimate of the difference of the foreground and

background colors in grayscale. This estimate is updated iteratively following a computation

of the matting equation using Poisson equations under the assumption that the foreground

and background are smooth. The simplified method of updating the foreground-background

difference in grayscale and the smoothness assumption on the foreground colors prohibit

good results without excessive user interaction.

Another approach to creating an alpha matte is to forgo the matting equation and

compute alpha using other means. Grady et al. [26] equates alpha to the probability that a

random walker will reach a given pixel from the known foreground and background regions.

Bai and Sapiro [4] compute alpha as a ratio of geodesic distances from a pixel to the known

foreground and background regions. While these approaches do well in some cases, it is
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difficult to achieve good results over a wide range of problems without a more explicit

representation of the matting equation.

Several methods compute the foreground and background as a postprocess after com-

puting alpha. Ruzon and Tomasi [61] solve for the foreground and background by inter-

polating the means of their respective Gaussians. Levin et al. [38] minimizes an equation

combining the matting equation and a smoothness prior on the foreground and background.

Soft Scissors [79], an interactive extension of [81], computes the foreground using a random

walk. Bai and Sapiro [4] solve for the foreground and background by randomly sampling the

known areas looking for values that minimize the matting equation.

5.4 Methods

We approach the matting problem as an energy minimization problem over the seven values

for each pixel in the unknown region of the trimap. By optimizing not just over alpha, but

also over the foreground and background, we may introduce additional regularizations to

the problem that are otherwise difficult or impossible. This leads to improved estimates of

foreground and background colors compared to existing algorithms.

5.4.1 Problem formulation

We formulate our solution to the matting equation as an energy minimization problem of

the form

E(X) =
∑
p∈Ω

|U |−1∑
i=0

λiUi(p) +
∑

(p,q)∈N

|V |−1∑
i=0

γiVi(p, q) (5.2)

where X is the set of 7-tuples (Fr, Fg, Fb, Br, Bg, Bb, α) corresponding to the foreground,

background, and alpha values at each pixel p in the unknown region Ω, U is the set of all

unary terms being minimized, V is the set of all pairwise terms being minimized, N is the

set of all pairs of tuples whose corresponding pixels are adjacent (4-connected), and λi and

γi are weighting factors.
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Since our formulation minimizes over foreground, background, and alpha, we may

include terms that affect any of these values. The remainder of this section details the terms

we use in Equation 5.2 and the resulting optimization.

5.4.2 Matting equation

Adherence to the matting equation (Equation 5.1) is maintained by

U0(p) = ||I(p)− [α(p)F (p) + (1− α(p))B(p)]||22 (5.3)

where I(p) is the color of image I at pixel p (and similarly for F , B, and α).

5.4.3 Matting derivatives

We can constrain the solution not only with respect to the matting equation, but also with

respect to the derivatives of the matting equation:

∇I = α∇F + (1− α)∇B + (F −B)∇α (5.4)

We define the derivative between adjacent pixels p and q (in the x and y direction) as

∆pqIj = Ij(p) − Ij(q), where Ij is an image consisting of only the jth channel of I (and

similarly for F and B). We then derive the following term:

V0(p, q) =
∑

j∈(r,g,b)

[∆pqIj − α(p)∆pqFj − (1− α(p))∆pqBj − (Fj(p)−Bj(p))∆pqα]2 (5.5)

5.4.4 Smooth matting gradients

While Equation 5.1 is known to be true, it has an infinite number of solutions, corresponding

to any line segment in the color cube that passes through the color at the pixel. The matting

derivative of Equation 5.4 is derived from Equation 5.1 and is insufficient to completely

constrain the problem. Because of this, additional terms are needed. One common practice
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in current methods is to add a smoothness assumption on the foreground, background, or

alpha. In other words, one or more of the terms ∇F , ∇B, and ∇α are assumed to be zero.

The effect of this is to assume that the gradient of the image is not affected by gradients in

the term that was set to zero.

Differing algorithms make different decisions about which gradient to set to zero.

For example, several algorithms make the assumption that the foreground and background

values are locally smooth. Poisson Matting [71] does so by directly modifying Equation 5.4

by setting ∇F and ∇B to zero, leaving

∇I = (F −B)∇α (5.6)

Smoothness assumptions on foreground and background are also made in Levin et al. [38]

and other works incorporating its matting Laplacian [39, 56, 57, 68, 67, 81], although the

smoothness assumption in [38] is admittedly more complex and elegant than that of Equa-

tion 5.6.

On the other hand, other papers, such as Easy Matting [28], Wang and Cohen [82],

and Digital Matting [87] make the opposite assumption, that the alpha is smooth (setting

∇α to 0), thereby minimizing

∇I = α∇F + (1− α)∇B (5.7)

It is interesting that different methods simplify Equation 5.4 to make opposite as-

sumptions. Of course, in places where the change in alpha values is primarily driving the

image gradient, ∇F = ∇B = 0 is a better assumption to make. In areas where α is 0 or 1,

or where there is smooth transparency, ∇α = 0 is the better assumption. In order to apply

each of these assumptions where they are effective, we could instead make the smoothness
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assumption

∇I =


α∇F if ∇F 7→ ∇I

(1− α)∇B if ∇B 7→ ∇I

(F −B)∇α if ∇α 7→ ∇I

(5.8)

where ∇F 7→ ∇I indicates that the gradient at I is due primarily to the gradient in F . This

leads to a term that encourages smoothness in foreground, background, and alpha where

there should be smoothness, and encourages the gradient to be proportional to the image

where it should be proportional:

V1(p, q) =


∑

j∈(r,g,b) g
F
j (p, q) if ∇F 7→ ∇I∑

j∈(r,g,b) g
B
j (p, q) if ∇B 7→ ∇I∑

j∈(r,g,b) g
α
j (p, q) if ∇α 7→ ∇I

(5.9)

where (using the notation from Equation 5.5)

gFj (p, q) = (∆pqIj − α(p)∆pqFj)
2 + (∆pqBj)

2 + (∆pqα)2 (5.10)

gBj (p, q) = (∆pqIj − (1− α(p))∆pqBj)
2 + (∆pqFj)

2 + (∆pqα)2 (5.11)

gαj (p, q) = (∆pqIj − (Fj(p)−Bj(p))∆pqα)2 + (∆pqFj)
2 + (∆pqBj)

2 (5.12)

Equations 5.10, 5.11, and 5.12 are just discretizations of Equation 5.4 encouraging

∇B = ∇α = 0, ∇F = ∇α = 0, and ∇F = ∇B = 0, respectively.

To decide which of the gradients is causing the image gradient, we use the alpha

values at pixels p and q. For some threshold T , if α > T for both p and q, then we assume

∇F 7→ ∇I. If α < (1 − T ) for both p and q, then we assume ∇B 7→ ∇I. Otherwise, we

assume ∇α 7→ ∇I.
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5.4.5 Color

The color term encourages the foreground and background colors to be similar to the colors

in the known foreground and background areas of the image respectively. This is achieved

by imposing a cost on the foreground (background) color based on the squared distance in

color space to the nearest pixel in the foreground (background) in a combined color and

position space,

U1(p) = ||F (p)− IFnear(p)||2 + ||B(p)− IBnear(p)||2 (5.13)

where IFnear(p) is the color of the nearest pixel to p in the known foreground region of I

and IBnear(p) the nearest pixel in the known background. To compute the nearest pixel,

we calculate a distance for the foreground and background pixels respectively to all other

possible x,y,r,g,b locations using the Maurer distance transform [45].

5.4.6 Sparsity in alpha

In most images, the number of mixed pixels is far less than the number of pixels that belong

completely to foreground or background (pixels whose α = 0 or 1). Because of this, it is

reasonable to bias pixels toward having alpha values of 0 or 1. Our term to bias alpha toward

0 or 1 is given by

U2(p) =


(1− α)h(I, p, B, F ) if h(I, p, F,B) ≤ Th

αh(I, p, F,B) if h(I, p, B, F ) ≤ Th

0 otherwise

(5.14)

where

h(I, p, F,B) =
dist(I, p, F )

dist(I, p, F ) + dist(I, p, B)
(5.15)

dist(I, p, F ) = ||I(p) − IFnear(p)||2 and Th is a threshold. Here we use a value of Th = 0.01.

This term introduces the assumption that if the color models indicate that the color at a pixel

is distinctly foreground or background only (if it has a low squared distance to foreground
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and high to background, or vice versa), then that pixel likely has an alpha value near 1 or 0

respectively.

5.4.7 Optimization method

Many previous matting algorithms have cost functions that are specifically designed to be

easy to minimize. In our formulation, we are more concerned with including the best terms

possible to allow for the simultaneous computation of the foreground, background, and alpha.

Unfortunately, this approach results in a difficult function to optimize.

We use gradient descent in order to minimize Equation 5.2. Because our objective

function is not convex, we can easily fall into local minima while optimizing the energy func-

tion. To address this, we add a momentum term to help overcome shallow local minima. We

also borrow an idea from graduated non-convexity [8]. These methods attempt to minimize

over a non-convex objective function by smoothing the function such that it is (more) con-

vex, finding a minimum, and then iteratively using that minimum to initialize a less smooth

form of the function. We achieve a similar end by changing the matting equation weight λ0

in order to allow for a smoother function initially before converging on the weighted terms

we desire. Although the matting equation term (Equation 5.3) is extremely important to

finding the correct solution, it may be minimized to 0 at infinitely many values of F , B, and

α, and so produces many local minima. By reducing λ0 near the beginning of the gradient

descent, we can more easily avoid local minima created by this term. Specifically, we use

λ0 = 0.25 initially and increment it in steps until λ0 = 4. We fix the other parameters at

λ1 = 1, λ2 = 0.4, γ0 = 0.2, γ1 = 0.8. We also increase the threshold T used for computing

the primary gradient in Equation 5.9. We use a T = 0.6 initially, and increment it until

T = 0.99. The lower initial value helps better compute F and B, and the later higher value

enforces more smoothness in α once the foreground and background are better estimated.

Note that we constrain F , B, and α to the range [0, 1] at each iteration.
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To initialize the gradient descent, we compute an initial estimate of the foreground,

background, and alpha values. We initialize F and B by sampling the known regions similar

to [81]. We initialize α by computing the ratio of the distance to the nearest foreground and

background color for a given pixel as computed by Equation 5.15 (α = 1 − h(I, p, F,B)).

This distance metric is similar in spirit to those in [4, 26].

5.5 Results

We evaluate our matting technique using the two datasets introduced in [58]. The first

dataset, which we will refer to as the public dataset, consists of 27 input images and trimaps,

and has the ground truth alpha mattes and ground truth foreground images publicly avail-

able. The second dataset, the private dataset, consist of 8 images which are overall more

difficult than the public dataset, and their accompanying trimaps only. The foreground,

background, and alpha ground truth images of the private dataset are not available, al-

though one may submit their alpha mattes to www.alphamatting.com to obtain an error

score over four different metrics.

5.5.1 Alpha accuracy

Table 5.1 shows the error in α on the public dataset from [58] for our algorithm, Closed-

Form Matting [38] using their publicly-available code, and Robust Matting [81] using our

own implementation. The mean absolute difference (MAD), mean squared error (MSE),

and gradient error (which detects errors in the gradient and is correlated to what humans

visually perceive as correct as explained in [58]) averaged over all images in the dataset are

shown. Our algorithm outperformed Closed-Form Matting and Robust Matting on all three

measures. We also achieved a lower gradient error than both Closed-Form Matting and

Robust Matting on all examples individually.

Tables 5.2 and 5.3 show our results on the private dataset for the sum of absolute

difference and the mean squared error respectively as computed by submitting our results
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Algorithm MAD MSE Gradient
Our Method 0.017 0.0066 0.016
Closed-Form Matting [38] 0.019 0.0081 0.035
Robust Matting [81] 0.037 0.0177 0.032

Table 5.1: Average error in α on public set from [58] for our method, Closed-Form Mat-
ting [38], and Robust Matting[81].

Algorithm Rank Troll Doll Donkey Elephant Plant Pineapple Bag Net
(of 11) small large small large small large small large small large small large small large small large

Our Method 3.8 16.9 27.1 10.4 14.2 6.5 8.0 3.4 8.3 6.4 8.9 6.8 11.0 25.9 28.3 40.7 51.2
Rhemann [56] 1.9 14.9 24.5 6.7 9.5 4.6 6.1 2.6 5.4 7.5 9.9 6 10.1 26.1 26.7 23.8 25.6
Closed-Form [38] 2.8 12.7 21.9 5.9 8.5 4.6 6.1 2.2 4.6 9.3 12.1 8.3 14.9 34.2 32.4 26.5 25.7
Robust [81] 3.8 17.3 28.4 10.1 16.9 4.8 6.5 2.8 7.3 7.3 14 6.8 14.6 22.7 26.1 34.4 37
High-Res [57] 4.5 18.6 25.8 8.6 14.1 5.0 6.2 2.5 8.3 7.8 14 8.5 18.1 35.3 38.1 38.7 54.6
Random Walk [26] 6.5 17.9 20.3 11.3 15.6 5.8 7 3.4 6.7 13.1 22.1 12.3 18 44.1 43.5 75.1 81.8
Geodesic [4] 7.3 26.9 38.5 14.2 16.5 11.7 14 7.6 15.1 12.8 16.7 7.3 12.1 37.3 37.4 48.6 50

Table 5.2: Sum of absolute difference on private dataset from [58]. The table includes the
top seven of eleven algorithms and data from two of the three trimaps. Iterative BP [82],
Easy Matting [28], Bayesian Matting [14], and Poisson Matting [71] finish out the rankings.

to www.alphamatting.com. For size reasons, only a subset of the tables are shown. On this

more difficult dataset, we perform comparable to the current best algorithms in generating an

alpha matte, while only one of these algorithms, [38], computes foreground and background

colors (and does so as a postprocess). Note the magnitudes of the values in Tables 5.2

and 5.3 differ from those in Table 5.1 because they are scaled at www.alphamatting.com for

presentation purposes.

A comparison of our technique to several others is shown in Figure 5.1 on the “Plant”

example from the private dataset. Our algorithm is able to cleanly matte the leaves while

maintaining the “holes” through which the background shows. Additional examples of alpha

mattes generated by our algorithm are shown in Figure 5.3.

Algorithm Rank Troll Doll Donkey Elephant Plant Pineapple Bag Net
(of 11) small large small large small large small large small large small large small large small large

Our Method 4.1 0.9 2.6 0.8 1.2 0.5 0.7 0.2 0.7 0.5 0.7 0.6 1.0 1.9 2.1 3.3 4.5
Rhemann[56] 1.9 0.8 2.4 0.3 0.5 0.3 0.4 0.1 0.3 0.7 0.7 0.4 0.7 2.0 1.9 1.3 1.5
Closed-Form[38] 3.1 0.5 1.8 0.3 0.4 0.3 0.4 0.1 0.3 1.2 1.4 0.8 1.6 3.0 2.7 1.3 1.2
Robust[81] 3.5 1.1 2.8 0.7 1.5 0.3 0.4 0.1 0.5 0.5 1.2 0.5 1.5 1.5 1.8 2.4 2.3
High-Res[57] 4.2 1.2 2.2 0.5 1.1 0.3 0.4 0.1 0.7 0.6 1.2 0.8 2.0 3.2 3.4 2.6 4.3
Iterative BP [82] 6.4 1.7 2.6 1.5 2.6 0.5 0.7 0.2 0.8 1.1 2 1 2 2.8 3.3 3 3.8
Random Walk [26] 6.7 1 1.1 1 1.7 0.5 0.6 0.2 0.4 2 3.4 1.6 2.3 4.6 4.4 8.3 9.4

Table 5.3: Mean squared error on private dataset from [58]. The table includes the top seven
of eleven algorithms and data from two of the three trimaps. Geodesic Matting [4], Bayesian
Matting [14], Easy Matting [28], and Poisson Matting [71] finish out the rankings.
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Original Close up Our Method Rhemann [56] Closed-Form [38]

Trimap Robust [81] High-res [57] Bayesian [14] Easy [28]

Our Method Geodesic [4] IterativeBP [82] Poisson [71] RandomWalk [26]

Figure 5.1: The left column shows our results on the “Plant” example from [58]. The
remaining columns show a comparison of our technique to several others on a region of this
image.

5.5.2 Foreground/background accuracy

A particular focus of our algorithm is achieving high accuracy for the foreground and back-

ground at each unknown pixel. To determine accuracy of our foreground estimation, we

compare our method to several others using the true foreground colors of the public dataset

in [58]. Because the foreground colors were only provided in a raw 16-bit format without

gamma correction and white balance, we manually set the gamma and white balance of the

foreground images and their corresponding raw 16-bit input images to produce input images

similar in color appearance to the standard input images of the public dataset.

We compare our foreground colors to those generated simultaneously with alpha by

Bayesian Matting [14], those generated as a postprocess by Closed-Form Matting [38], and

those generated as an initialization to Robust Matting [81]. The error is computed by taking
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Algorithm MAD MSE
Our Method 0.063 0.005
Closed-Form Matting [38] 0.082 0.016
Bayesian Matting [14] 0.11 0.02
Robust Matting [81] 0.16 0.031

Table 5.4: Foreground alpha product (αF ) error over public dataset from [58]. The mean
absolute difference (MAD) and mean squared error (MSE) are shown.

the difference of the foreground color multiplied by the ground truth α, since pixels with a

high α are more important visually when compositing.

The results are shown in Table 5.4. The MAD and MSE averaged over all 27 images

are shown for each algorithm. Our algorithm outperformed all other methods on 18 of the

27 images using the MAD as a metric, and 20 of the 27 using MSE.

Several examples of foregrounds and backgrounds generated by our algorithm are

shown in Figure 5.2 in comparison to those generated by Closed-Form Matting [38]. The

regions being shown in each close-up are indicated by red and blue boxes corresponding

to foreground and background respectively. In each example, the foreground is multiplied

by α and the background by (1 − α) using the α computed by the respective algorithm.

The foreground and background colors produced by our method appear more plausible,

confirming the quantitative results in Table 5.4. For example, this is easily seen in the top

example of a plant, where the leaves of the plant appear blue and the spaces in between the

leaves appears green in the Closed-Form Matting results, but appear more correct in our

results. Additional examples are shown in Figure 5.3.

Unfortunately, only the true foreground colors from the public dataset of [58] are

available, so a quantitative evaluation of this dataset cannot be performed for the background

colors. Based on the visual appearance, we predict that the accuracy of the background would

be similar to that of the foreground for each of these algorithms. For example, note how in

Figure 5.2 our method appears to better reconstruct the occluded backgrounds.
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Image Our Fg Closed-Form Fg Our Bg Closed-Form Bg

Figure 5.2: Comparison of the foreground and background generated by our method and
Closed-Form Matting [38]. The foreground is multiplied by α and the background by (1−α)
using the α computed by the respective method. The red and blue boxes in the original
images indicate the close-up areas for the foreground and background respectively.

5.6 Conclusion

We have introduced a new method for computing a solution to the full matting equation

for a given image by simultaneously estimating the foreground, background, and alpha at

each unknown pixel. We do so by including additional terms to affect the foreground,

background, and alpha values, formulating the terms into a single energy equation, and

minimizing that equation using gradient descent with momentum and a partial form of
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Image Trimap Ground Truth Foreground Background Alpha

Figure 5.3: The foreground, background, and alpha generated by our algorithm.

graduated non-convexity. This focus on estimating not just alpha but also the foreground and

background allows us to optimize over explicit constraints on the foreground and background,

which most current algorithms that optimize only over alpha cannot do. Our results are

comparable to the best current algorithms for computing the alpha matte and show superior

performance in computing the foreground colors in all tests performed.

While this work improves foreground and background estimation for mattes and pro-

vides competitive results in computing alpha, our energy function is complex and difficult

to optimize. Future work could improve this by incorporating more advanced optimiza-

tion techniques or by simplifying the terms to allow for easier minimization. Additional or

improved terms could also be added to potentially improve results.

84



Chapter 6

Video Segmentation

Chapter 2 presents an initial version of our video segmentation system. This chapter

presents an extended and expanded version of that system and explores the system more fully.

There are three major additions and contributions of this chapter over that of Chapter 2.

First, the explanation and motivation for the different cues is expanded. More details

are given and several new figures provide increased understanding. Some minor changes to

some of the cues improve their performance. A new cue is also introduced, a color model

whose scope is global both spatially and temporally.

Second, this chapter better explores the process of learning from multiple cues using

user interaction. Several new learning approaches are proposed and explained. The new

learning process include the delta function, a prediction by expert advice learning algorithm,

and two different probabilistic methods.

Finally, the validation of our system is extended. A test set comprised of many

video sequences and ground-truth object selections from two sources is introduced. The

effectiveness of the different learning algorithms is tested on this dataset. The impact of

each cue on the final segmentation results is also examined using this dataset. Further

analysis of the overall system and new results are given.

6.1 Abstract

Video sequences contain many cues that may be used to segment objects in them, such as

color, gradient, color adjacency, shape, temporal coherence, camera and object motion, and
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easily-identifiable points. This paper introduces a novel method for interactively selecting

objects in video sequences by extracting and leveraging as much of this information as

possible. Using a graph cut optimization framework, this method propagates the selection

forward frame by frame, allowing the user to correct any mistakes along the way if needed.

Enhanced methods of extracting many of the features are provided. In order to use the

most accurate information from the various potentially-conflicting features, the effectiveness

of each feature is automatically learned and updated based on user corrections. Several

potential learning algorithms are explored and evaluated. The effectiveness of our system is

shown through timing comparisons to other interactive methods, accuracy comparisons to

unsupervised methods, and qualitatively through selections on various video sequences.

6.2 Introduction

Video segmentation is an essential process in many video applications. It is required for video

editing and special effects whenever objects must be moved, deleted, individually edited, or

layered. It is also used in object recognition, 3D reconstruction from video, and compression.

Despite recent research in the area, industry still largely relies on chroma keying and manual

rotoscoping, emphasizing the need for an effective, easy-to-use video segmentation tool.

This need remains due to the surprising difficulty of the problem. Video segmentation

shares the difficulties of image and volume segmentation, such as overlapping color distri-

butions, weak or blurred edges, complex textures, and compression artifacts. In addition to

these challenges, video segmentation suffers from many other common problems. A video

sequence may contain erratic camera and/or object movement and motion blur. Objects

may move enough that there is no overlap between successive frames. Other moving objects

may cause confusion. Lighting changes and shadows alter the color distributions, and move-

ments in 3D space may greatly change an object’s 2D projected boundary. Occlusions may

temporarily hide portions of the object. A given video sequence can easily exhibit many of

these challenges.
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Many different kinds of information can be gleaned from successive video frames to aid

object selection. Such features include color, gradient, adjacent color relationships, shape,

spatiotemporal coherence, camera motion, object motion, and trackable points. The relative

importance of the cues differs depending on the sequence, the frame, and even the location

in the frame. For example, in Figure 6.1 a color model can easily distinguish the cat from

the light brown floor but would struggle separating the tail from the similarly-colored bag.

A shape feature, however, could separate the tail and bag. An algorithm that intelligently

applies all of these cues based on specific circumstances will perform better than one relying

only on a subset of these cues or on a static combination of them.

Despite the importance of each kind of information, most current algorithms do not

use all these features. Algorithms that segment the video as a spatiotemporal volume [3,

4, 9, 80] can generally only extract information from the pixels under the user strokes to

model the foreground and background. These methods have no information about some of

these features such as shape or boundary information, and have limited knowledge of other

features such as foreground and background color. By allowing the user to segment one

frame and then propagating this information to other frames, these features can be used.

In this paper, we introduce LIVEcut, a frame-by-frame interactive video segmentation

method designed to maximize the information propagated from one frame to the next. As

shown in Figure 6.1, LIVEcut extracts various features and resolves them using graph-cut

optimization. LIVEcut also learns automatically from user corrections how well each cue

performed and weights their importance accordingly. Our local weighting allows LIVEcut

to selectively apply the cues that will most effectively segment the object. Contributions are

also made in the extraction of many of the individual cues. These include full foreground and

background local color models, color adjacency models, separate foreground and background

motion models, point tracking information, and a new shape prior.

The paper is organized as follows. Section 6.3 describes related work. Section 6.4

describes the basic interaction and framework of our system. An analysis of each informative
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Figure 6.1: From an initial segmented frame, a variety of features are extracted and used
to segment the next frame. If errors occur, the user may correct them, and the system
learns which features are providing good information, and uses this information to weight
the cues for proceeding frames. The corrected frame is used to continue propagating the
segmentation.

cue used in presented in Section 6.5. This is followed by an explanation of how to automat-

ically weight the different cues by learning from user corrections in Section 6.6. Section 6.7

gives our results, and our conclusion and future work is given in Section 6.8.

6.3 Related Work

Many approaches have been taken in interactive video segmentation. Some approaches focus

on either boundary or region information only. Agarwala et al. [1] performs boundary track-

ing using splines that follow object boundaries between keyframes using both boundary color

and shape-preserving terms. Snakes [32] also track the boundary by minimizing an energy

term over the boundary curvature and image information. Bai and Sapiro [4] use region
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color to compute a geodesic distance to each pixel to form a selection. These approaches

perform well when a single type of cue is sufficient for selecting the desired object.

Many current techniques use graph cut to segment the video as a spatiotemporal

volume. Graph cut, as formulated in [9], solves for a segmentation by minimizing an energy

function over a combination of both region and boundary terms. It has been shown to be

effective in the segmentation of images [40, 60] and volumes [3, 86].

A basic approach to segmenting video as a spatiotemporal volume was given in [9].

The graph connects pixels in a volume, which implicitly includes spatiotemporal coherence

information. Graph cut is applied using a region term based on a color model of the pixels

under the user strokes and a boundary term based on gradient.

Wang et al. [80] builds on this approach by allowing users to segment video by drawing

strokes on arbitrary slices of the spatiotemporal volume. While this permits a user to mark

several frames at once, it requires a steep learning curve to know how to carve the volume

so that the right pixels are visible along the slice. The method uses a global color model

based on the user strokes as well as a local color model for static backgrounds in addition to

gradient values.

In Li et al. [41], users segment every tenth frame, and graph cut computes the selection

between the frames using global color models from the key-frames, gradient, and coherence

as its primary cues. The user may also manually indicate areas to which local color models

are applied. While this method performs well, it requires the manual segmentation of many

frames in addition to corrections.

In methods where the video is treated as a spatiotemporal volume [3, 4, 9, 80], the

only information known for certain about the object and background are in the user-marked

pixels. This provides very limited knowledge about the object interior and no knowledge

about the boundary. While [41] is an exception to this, it requires the user to manually

segment many frames. These methods contrast our own, where frame-by-frame propagation

allows for the computation of complete features. Frame-by-frame propagation also provides
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an interactive paradigm of moving through the video sequentially, which is arguably the

most natural for video.

In parallel with our own work, Yin and Collins [85] proposed an automated video

segmentation system that includes color, gradient, color adjacency, and shape information

in a graph cut framework. They dynamically reweight these terms from frame to frame, but

do so on a global basis without regard to user corrections.

Another recent work, Video Snapcut [5], segments a video using a frame-by-frame

propagation method similar to our own. They select an object by dividing the boundary

into overlapping portions and individually tracking each with a SIFT tracker. Region color

and shape information are then used as part of a graph-cut optimization to produce a

segmentation.

Some unsupervised video segmentation methods have also combined various cues [17,

73, 84]. While unsupervised techniques generally perform well at roughly separating motion

layers, they do not produce the high-quality results required for many applications. The

object of interest may also not correspond to a motion layer, leaving these methods incapable

of generating the desired result.

6.4 Video Segmentation Framework

While the methods described in Section 6.3 provide good means of segmenting video, each

relies only on a few cues to make decisions. LIVEcut extracts much more information about

the sequence and uses this to improve the segmentation. The cues are combined in a graph-

cut optimization to compute the object selection for the current frame. As the user proceeds

through the sequence, the implicit verification of the previous frame allows LIVEcut to use

the entire previous frame once again to segment the current frame.
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Previous frame Next frame with error Corrected frame

Figure 6.2: Frame-by-frame interaction. The user selects the object in the first frame (left)
by placing foreground strokes (red) and background strokes (blue). The boundary of the
object is highlighted in green. The selection is then propagated to the following frame. If
there are any mistakes, such as the front leg of the cat (middle), the user may correct it
(right) before proceeding to the next frame of the sequence.

6.4.1 Interaction

We utilize a frame-by-frame interactive framework for segmenting video sequences as illus-

trated in Figure 6.2. The user begins the selection by marking the object in the first frame

of the sequence (Figure 6.2 left) by placing foreground and background strokes as in most

graph-cut segmentation methods [9, 40, 41, 80, 5, 3, 86]. LIVEcut then propagates various

cues computed using the full frame to the next frame. If any mistakes occur such as the

missing front leg in Figure 6.2 middle, the user may correct the error (Figure 6.2 right) before

advancing the selection to the next frame.

The use of a frame-by-frame propagation method provides several advantages over

other techniques. In methods where the sequence is segmented as a spatiotemporal vol-

ume [80], the only information known to the algorithm for certain about the foreground

and background are the pixels located directly below the user stroke. This provides very

limited knowledge about the object interior and no knowledge about the boundary charac-

teristics. The interactive paradigm of moving through the video sequentially not only is the

most natural for video, but allows the complete characteristics of each frame to be used in

segmenting the next. While this is also true of keyframe-based systems such as [41], these

require the user to completely segment many frames instead of allowing the algorithm to

quickly compute this information for the user.
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6.4.2 Graph cut framework

Before explaining the specific features we propagate from frame to frame, we present the

overall framework in which the features are resolved. For this, we use minimum graph-cut

optimization. Graph cut computes a segmentation over a set of pixels P by minimizing the

equation

E(L) =
∑
xi∈P

R(xi,Li) + λ
∑

(xi,xj)∈N

B(xi, xj) |Li − Lj| (6.1)

where L = (Li) is a binary vector of labels and Li is the label (0 for background, 1 for

foreground) for pixel xi, R(xi, l) is a region cost term based on the label l, B(xi, xj) is a

boundary cost term, λ is a relative weighting of R and B, and N is the set of pairs of

neighboring pixels.

Our region term R(xi, l) is the sum of all cues that apply to an individual pixel. Given

a set of unary cues U ,

R(xi, l) = s(xi, l) +
∑
u∈U

wu(xi) Ru(xi, l) (6.2)

where Ru(xi, l) is the cost of labeling pixel xi with label l according to cue u, wu(xi) is

a scalar weight giving the certainty of cue u at pixel xi as set by our learning algorithm

(Section 6.6), and s(xi, l) = 0 if the pixel was labeled l by a user stroke or not labeled by

the user and ∞ if labeled l̄ (the other label) by the user.

Our boundary term B(xi, xj) is given by

B(xi, xj) = Ba(xi, xj) Bg(xi, xj) (6.3)

and encourages selection boundaries in the current frame to occur at image edges with color

profiles similar to the selection boundaries in the previous frame. The unary terms (local

color Rc, global color Rgc, spatiotemporal coherency Rh, shape Rs, and point tracking Rp)

and binary terms (gradient Bg and color adjacency Ba) are defined in Sections 6.5.2–6.5.8.
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6.4.3 Oversegmentation Regions

Graph-cut optimization can be somewhat slow for interactive applications when operating

on pixels. In order to increase the speed of the algorithm, we apply our algorithm to an over-

segmentation of the image. Similar techniques have been used to speed up graph-cut-based

algorithms before [40, 41, 80]. While these methods use a single layer of oversegmentation

regions to accelerate the segmentation, [3] instead uses a multi-layered hierarchy of regions

computed using the tobogganing algorithm of [22] to produce an initial fine layer of overseg-

menation regions that are then accumulated into larger regions to form a new coarser layer

of the hierarchy using the technique from [55]. These regions can themselves be accumulated

into even larger regions which builds a new layer of the region hierarchy, and this process

can continue until only one region exists.

The advantage of coarser levels of the hierarchy is that fewer regions exist and algo-

rithms such as graph-cut optimization can process them much quicker. However, at some

point coarse regions no longer represent homogeneous regions of the image as desired. In

our method, we use the coarse level of regions created by aggregating the initial fine regions

produced by [22]. This allows for fewer regions than the finest level with the individual re-

gions still maintaining a reasonable degree of homogeneity. We then refine the segmentation

on the pixel level, using only those pixels that belong to oversegmentation regions bordering

the coarse-level boundary.

For ease of explanation, the following terms used in our graph-cut optimization are

all defined according to pixels. However, they can all be directly extended to oversegmented

regions.

6.5 Cues

Many different pieces of information exist in video sequences that can be used to aid in

selecting objects. In this section, we describe the various cues our system utilizes. These
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cues will be applied on each frame using the graph-cut framework of 6.4.2 and weighted

adaptively using the learning framework of 6.6.

In choosing cues, it is worthwhile to look at the different types of cues possible. The

graph-cut framework necessarily divides possible cues into region-based and boundary-based

terms. This necessitates that some cues are applied directly to individual pixels to indicate

whether they are foreground or background, while others operate on pairs of pixels to define

their similarity. Additionally, the possibility exists of using cues to influence the performance

of other cues rather than directly incorporating them as a term in the graph-cut optimization.

Another way to differentiate types of cues is by their scope over the video sequence, or

the temporal scope over which the cues gather information. In a global scope, the cue would

look at all preceding frames in order to determine the selection in the current frame. Since

the user implicitly validates the segmentation of one frame before moving onto the next,

we have the entire segmentation from all previous frames to use in computing the current

selection. However, video objects and backgrounds can change significantly over the course

of a video sequence, causing the global information to quickly become outdated and possibly

causing it to hurt performance. In a local scope, just the previous frame (or small number

of previous frames) would be used to create the cue. This assumes that the current frame to

be segmented is entirely a product of the previous frame and treats the video sequence like

a Markov chain. While the previous frame should contain most of the information needed

about the object, in many cases such as where occlusions occur objects may disappear for a

time before reappearing, which may require user interaction to select the part of the object

that reappeared if more global information is not available. We use cues that are both local

and global in scope over the video sequence.

The specific cues that we use in our system will be presented as follows. We first

present object and background motion, which are used to adjust the locality information of

the following cues rather than being directly applied as a term in the graph-cut optimization.

We then present the region-based cues (color, global color, shape, spatiotemporal coherency,
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(a) Original (b) Local Color (c) Global Color

(d) Temporal coherence (e) Point tracking (f) Shape

(g) Gradient (h) Color Adjacency

Figure 6.3: Visualization of the graph-cut terms for a frame from the “cat” sequence. For
the region cues (top two rows), white indicates foreground likelihood (meaning the cost
of labeling the pixel foreground according to the given cue is low and the cost of labeling
background is high), black background likelihood, and mid-gray neutral. For the boundary
cues (bottom row) white indicates an object boundary and black indicates no boundary.

and point tracking). The boundary-based cues (gradient and color adjacency) are then

presented. Each of these cues is local in scope temporally except for the “global color” cue,

which is global in scope temporally as suggested by its name. Figure 6.3 visualizes the effect

of many of the cues.
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6.5.1 Object and Background Motion

Motion is an important cue in video segmentation. By considering the motion of the object,

more precise local information may be used to segment it. By removing camera motion,

better local information can be used for the background where it is static.

Many methods account for the camera motion by aligning the frames in a preprocess-

ing step [41, 80]. However, since the foreground object will often exhibit different motion

patterns than the background, aligning the background will not correctly align the foreground

and the object motion can potentially interfere with the background alignment.

Since we know the segmentation of the previous frame, we can align the foreground

and background separately. To align the background, we assume that the majority of the

motion is caused by camera movement. The background is aligned by locating good points

to track [65], then computing and applying a homography.

While the foreground can be tracked in the same manner, problems can occur if the

foreground does not have enough trackable points to generate a good homography due to

large movements or little texture. To account for these cases, we use a novel method to

roughly align the foreground.

We use an iterative-closest-point-style algorithm [6] to match pixels xi in the selection

M on the current frame I to pixels yj in the next frame Inext with one affine transformation

A. The iteration alternates between two steps. First, we use the rigid transformation A

to map the points in M forward the next frame and then for each point search that area

for a better corresponding pixel. Second, we recompute A to align it better to the new

correspondences.

More precisely, in the first step we find the best matches {(xi, ym(i))} for a given A.

We match points in (xy position × RGB color) space so that points in M are matched to

points in Inext that are similar in color and position after applying A. For each xi ∈ M , we
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solve a nearest neighbor problem ([49])

ym(i) = arg min
yj

||(Axi, γI(xi))− (yj, γInext(yj))||22 (6.4)

where RGB values are in [0, 1] and γ is the sum of the frame width and height. This results

in a new corresponding pixel ym(i) for each xi that matches more closely in terms of color

and location than the pixel corresponding to xi after simply applying A.

In the second step, our method finds a new transformation A to best align matches

{(xi, ym(i))}. To accomplish this, we solve

A = arg min
A

n∑
i=1

||Axi − ym(i)||22 (6.5)

as in [62]. This step ideally improves the alignment A of the points in M to the next image

Inext.

We begin the iteration with the identity transformation, although perhaps a better

starting value could be obtained by a prediction based on motion in previous frames. We

run a maximum of 25 ICP iterations and declare that the algorithm has converged if the

positions of all the transformed points do not move by more than 0.1 pixels. Our algorithm

is robust enough that it can use a small subset of uniformly sampled points from M and

still find a good affine transformation. We set the number of selection points to track to the

maximum of 200 and 2% of the total points in M . An optional input of the largest allowable

interframe motion allows us to reduce the set of potential matches in Inext to something less

than the entire frame.

If the number of points in M that we track is m and the number of potential matching

locations in Inext is n, then building the search kd-tree requiresO(n log n) time and computing

all the nearest neighbors in the first step requires O(m log n) time for each ICP iteration.

For SD-size videos, our novel foreground alignment procedure typically runs in tenths of a

second with the specified size subset of M and a maximum interframe motion of 50 pixels.
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The object and background motions are not included as a term in graph cut. Rather,

they are used to spatially transform the locality information of the other cues. While this

transformation does not completely capture non-rigid motion, it improves the locality of the

foreground information and works well in practice.

6.5.2 Color

A color-model region term encourages pixels to be labeled according to the color distribution

of the model. Because most graph-cut algorithms [9, 40, 80] do not have access to a full

segmentation of a frame, only the pixels under the user strokes are used to create the model.

This limited sample does not always accurately represent the color properties of the image.

These algorithms must also by necessity use a global color model, which does not differentiate

colors located in different regions of the image. While [41] can use a local color model, it

only does so over a small window if manually indicated by the user.

A contribution of LIVEcut is that it uses a local color model generated from the entire

previous frame, which can distinguish between colors in different regions of the image. The

effect of using a local color model is shown in Figure 6.4. The global (Figure 6.4(b)) and local

(Figure 6.4(c)) color models applied to three images are illustrated, where white indicates

a high likelihood of foreground, black a high likelihood of background, and the mid-gray

uncertainty. Ideally the objects in these images would be white, and the background black,

with very little mid-gray. However, because of the overlapping color models, the global color

model shows less certainty for many of the pixels in the image and even suggests the wrong

label for some pixels. The inclusion of position information allows the local color model to

perform much better. For example, the bag and rope in the cat example are not indicated

as foreground even though they are the same color as the cat. Our color model is also shown

in Figure 6.3b in comparison to the other cues.

To model the color distributions, we estimate the likelihoods for each data point using

a kernel density estimation computed by the Fast Gauss Transform [83]. The Fast Gauss

98



(a) Original (b) Global (c) Local (d) Local (scaled)

Figure 6.4: Global color model vs. local color model. For (a) a given image, the (b) global
and (c) local color models for selecting an object are shown. White indicates foreground
likelihood, black background, and mid-gray neutral. (c) shows the local color model com-
puted using Equation 6.8 and (d) shows the local color model scaled by φ (Equation 6.10)
as computed by Equation 6.11.

Transform computes the weighted sum of a set of Gaussians

G(p, l) =

Nl∑
j=1

qje
−||p−yj ||2/2h2

(6.6)

efficiently by expanding the sum into Hermite functions as explained in [83]. In Equation 6.6,

p is a point for which we want a likelihood, yi is a source data point from the previous frame

with label l, Nl is the number of source points from the previous frame with label l, h is

the bandwidth of the Gaussians, and qi is a weighting coefficient. The weighted sum of

Gaussians G represents the probability of an input p given a label l:

P (p|l) = G(p, l) (6.7)
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The local color model is generated by creating a (l, u, v, x, y) vector pi for each pixel

xi in the previous frame (where (l, u, v) is the color and (x, y) is the motion-adjusted loca-

tion). The probability of the pixel being foreground is then computed by a 5D Fast Gauss

Transform [83] by

P (l|pi) =
P (pi|l)

P (pi|l) + P (pi|l̄)
(6.8)

The probability is assigned to the cost term by

Rc(xi, l) = φ(xi, l)P (l̄|pi)2 (6.9)

where φ is a function that scales the probability according to the confidence in the color

models. The purpose of φ is to account for cases where the probabilities for both labels at a

pixel xi are very low but one probability is proportionally large compared to the other. For

example, if P (pi|l) = 0.01 and P (pi|l̄) = 0.001, the probability of xi belonging to either label

is very low, likely because a new color was introduced into the sequence. Despite P (pi|l)

being very low, it is still 10 times the size of P (pi|l̄). Because of this, when the probabilities

are normalized by the sum of both probabilities, the color model will indicate that the xi

almost certainly belongs to label l. To counteract this, φ scales the probabilities by a scaled

sum of the probabilities

φ(xi, l) =
(P (pi|l) + P (pi|l̄))2

max0<j<N,k∈{l,l̄} P (pj|k)2
(6.10)

where N is the number of pixels. Combining Equations 6.8-6.10 and canceling terms gives

Rc(xi, l) =
P (pi|l̄)2

max0<j<N,k∈{l,l̄} P (pj|k)2
(6.11)

The effect of scaling the color model by φ is shown in Figure 6.4(d), where much more gray

is seen due to the increase in uncertainty caused by φ.
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The degree of locality enforced by the color model can be altered based on relative

scaling of the color information to the position information. We scale the chromaticity

components (u and v) of the color to [0,1] and scale the intensity accordingly. We then

scale the the image width or height (whichever is greater) to the range [0, r], with the other

dimension scaled accordingly. By altering the value of r, we can change the locality of the

color information. Smaller values of r cause the model to become less sensitive to spatial

locality, while larger values of r cause the significance of the locality to increase. We use a

fixed value of r = 3 in our formulation.

6.5.3 Global Color

In Section 6.5.2, we introduce a local color model that is generated from the previous frame.

While this will account for the majority of the colors in most sequences, other colors may

appear that have been occluded for several frames. In this case, a color model that is

temporally global over the length of the sequence is needed to identify the new colors. Also,

if the location of the object differs greatly from the previous frame, it may fall outside the

locality of the same color from the previous frame. In this case, a color model that is global

over the area of the frame is needed.

In our system, we include a color model that is global both temporally over the

sequence and spatially over a frame to account for these cases. We record all previously-seen

colors that are labeled l in a histogram Hl, and include this information in our graph-cut

formulation using

Rgc(xi, l) =
Hl(C(xi))

Hl(C(xi)) +Hl̄(C(xi))
(6.12)

where C(xi) is the color at pixel xi
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6.5.4 Shape

When an object passes over a similarly colored background, no edge exists to indicate the

boundary location. In these cases, the shape of the object is vital. Including a shape term

in the features can handle such cases.

Recently there has been interest in including shape priors into graph cut [23, 35, 72,

77, 30]. The common approach is to align the shape to the image by user interaction and/or

automated means, and then include a term in the cost function based on distance to the

shape or a mismatch score.

In LIVEcut, because we have tracked the object motion forward, we already have an

estimate of the motion-adjusted object shape Φ (where Φ(xi) = 1 if xi is in the object mask

and 0 otherwise) and its boundary Ω (where Ω = ∂Φ). We compute the distance from each

pixel to the boundary after adjusting for object motion using

dΩ(xi) = min
p∈Ω

(||p− xi||). (6.13)

This distance is visualized in Figure 6.5. Our shape term is an extension to [77] but takes

distance into account:

Rs(xi, l) = |l − Φ(xi)|min(dΩ(xi)/M, 1) (6.14)

where M is the maximum allowable distance (we use M = 10). If the estimated shape

mask does not match the labeling of a pixel, this term penalizes the labeling based on the

pixel’s distance to the predicted shape boundary Ω. For example, in Figure 6.5, the pixel

xi is outside of the object shape Φ, and so this pixel will only occur a cost if labeled as

foreground. Conversely, xj will only occur a cost if labeled background since it is in Φ.

Pixels are penalized based on the distance up to a maximum distance M . Using a small

M , if the boundary is only off by a few pixels, it will have a minimal cost added. This cost
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Figure 6.5: The distance dΩ(xi) (blue) is computed as the shortest distance from the point
xi (green) to Ω, the boundary of the object in the previous frame projected forward (red).
Pixels within the object shape Φ (pink) such as xj will occur a cost only if the pixel is labeled
as background. Pixels outside of Φ such as xi will occur a cost only if the pixel is labeled as
foreground.

function combined with the estimation of the object motion comprise a novel shape prior for

graph cut. The resulting costs produced by the shape cue are shown in Figure 6.3f.

6.5.5 Spatiotemporal Coherency

Videos usually exhibit a high amount of coherency between frames. Spatiotemporal-volume

approaches [41, 80] implicitly capture this coherency through edges across frames. With

our frame-by-frame approach, coherency between frames can be included without explicitly

representing the labeled pixels from the previous frame. Rather, we assign a high region cost

to label xi as l if there is a nearby pixel (after motion adjustment) in the previous frame

labeled l̄ that has a similar color:

Rh(xi, l) =
∑

yj∈Nl̄(xi)

1

||C(xi)− C(yj)||2 + 1
(6.15)

where Nl̄(xi) is the set of all neighbors of xi from the previous frame that are labeled l̄. Note

that this formulation is similar to that of the gradient term described later in Section 6.5.7.

Since this term can be represented as edges from one frame to similar pixels in the next, such

a formulation is expected. Figure 6.3d shows the cost map for the spatiotemporal coherency
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where the cat is likely foreground since it overlaps with the previous frame. The blockiness

is due to the oversegmentation regions.

6.5.6 Point tracking

For most pixels in a typical video sequence, it is difficult to precisely determine the cor-

responding point in the next frame. However, easily-trackable points give nearly certain

information about their labeling (see Figure 6.3e). While many algorithms make use of such

points, video segmentation methods based on graph cut currently do not. We use [43, 65]

to track these points and assign a penalty to labeling xi as l if xi is within a distance D (we

use D = 5) of a tracked point that was labeled l̄ in the previous frame:

Rp(xi, l) =

 1 if dΘl̄
(xi) ≤ D

0 otherwise
(6.16)

where Θl̄ is the set of tracked points labeled l̄ and d is defined in Equation 6.13. Using

Equation 6.16, labeling xi as l incurs a penalty if xi is within the distance D of a tracked

point that was labeled l̄ in the previous frame. Any points that were not reliably tracked

are removed from Θl. We also filter out any points too close to the object boundary (within

10 pixels), because points near the boundary may potentially spill over onto the other side.

6.5.7 Gradient

Image gradients are important for encouraging selection boundaries to fall on image edges.

As in [40], we use color difference as a boundary term:

Bg(xi, xj) =
1

||C(xi)− C(xj)||2 + 1
. (6.17)

where C(xi) ∈ [0, 255]3 is the color at xi. Gradient boundary terms are standard practice in

graph-cut segmentation.
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6.5.8 Color Adjacency

Not only are the colors indicative of the objects, but the relationship of adjacent colors is

as well. Certain color pairs may only exist within the object (background), while others

only cross the object boundary. For example, the ballerina in Figure 6.15 contains a strong

red-to-black edge in her clothing that only exists within her interior and never across her

boundary. Ideally, a method should distinguish which transitions exist along the boundary

and which do not by modeling the co-occurrence of colors along the object boundary and

within the object or background.

While some methods have modeled the color profile of the object edge [47] or the

geometry of an edge [48], they do not handle strong gradients within objects where a cut

could occur. Recently, Cui et al. [19] modified gradient strength based on two colors on

either side of the edge, but did not directly model the adjacency relationships. Additionally,

their method required the color to be heavily quantized and did not specify exactly how

the locality of edges is implemented. Other computer vision tasks have incorporated color

adjacency relationships as histograms (essentially concurrence matrices) for use in image

matching and retrieval and video scene segmentation [36, 29]. Unfortunately, the size of

such histograms can be enormous, again requiring heavy quantization.

We introduce a new color-adjacency model to weight the importance of image gradi-

ents. The model is computed using a Fast Gauss Transform [83], similar to the color model.

Adjacent pixels are represented by an 8D vector eij = (li, ui, vi, lj, uj, vj, x, y) where (li, ui, vi)

is the color of pixel xi, (lj, uj, vj) the color of the xj, and (x, y) their motion-adjusted loca-

tion. A model is generated for all edges that are in the interior of either the foreground or

background, and another model is generated for all edges along the boundary. Let the label

I correspond to edges in the interior and the label E to edges along the desired boundary.

These probabilities are combined into a boundary reweighting factor by

Ba(xi, xj)=

 (1+β[P (E|eij)−P (I|eij)])−2
P (E|eij)>P (I|eij)

(1+β[P (I|eij)−P (E|eij)])2 otherwise
(6.18)
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where β > 0 is a scalar that adjusts the effect of the color adjacency model and P (E|eij) is

the posterior probability (assuming equal priors) that the pixel transition eij belongs to the

object boundary (denoted by E) as given by

P (E|eij) =
P (eij|E)

P (eij|E) + P (eij|I)
(6.19)

P (eij|l) is defined as in Equation 6.7, except with an 8D vector as the initial parameter

instead of a 5D vector as used in Equation 6.11. Equation 6.18 creates a scalar ranging from

(1 + β)−2 if the models indicate a pure boundary (P (I|eij)=0, P (E|eij)=1) to (1 + β)2 for

a pure interior edge (P (I|eij) = 1, P (E|eij) = 0), with a factor Ba = 1 for equal interior and

boundary probabilities (P (I|eij)=P (E|eij)). We use β = 1 in our formulation.

Figure 6.6 visualizes P (E|eij)−P (I|eij). The color red indicates that the probability

of the transition being a desired edge is large, and white indicates that the probability of the

transition being in the interior is large. More precisely, the range [0, 1] for the difference is

mapped to [0, 255] in the red, green, and blue channels and the range [0,−1] is mapped to

[0, 255] in the blue channel. Black indicates that both possibilities are equally likely. Notice

how many of the gradients in the image which do not correspond to the object boundary

but would be attractive places to place a segmentation boundary based on the strength

of the edge have been suppressed. For example, the lines in the ceiling behind the man

have been largely eliminated. Conversely, many edges along the desired boundary have been

strengthened, such as along the boundary of the cat. Figure 6.3h shows the final weighting

Ba(xi, xj) of the color adjacency model in reference to the other cues. The cat’s outline is

clearly highlighted as the desired boundary, while other edges are suppressed.
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(a) Image (b) Adjacency

Figure 6.6: Visualization of color adjacency difference P (E|eij)−P (I|eij) from Equation 6.18.
Red indicates a high probability of the desired edge, white a high probability of an interior
transition, and black indicates an equal probability of both.
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Figure 6.7: Spatially-differing difficulties in video. Two successive video frames are shown.
Different regions of the video frames exhibit different difficulties.

6.6 Learning

Section 6.5 introduces many different that cues can be combined in computing the selection

of a video sequence. When using multiple informative cues, it is important that the different

components be combined in a manner that will allow the best final result. This can be

difficult because the ideal combination of cues will differ significantly from one video sequence

to another, from one frame in a sequence to another, and from one area of one frame to

another. One reason for this is because different cues will handle some of the difficulties

inherent in video segmentation better than other cues.

For example, in Figure 6.7, the ballerina’s feet have a similar color to the floor, so

color cues will give little information about the selection, while the shape and location of

the feet are more reliable. The ballerina’s arm, on the other hand, moves such that much of

it is not overlapping between frames, rendering spatiotemporal coherence information less

effective. The red shirt changes very little between frames, so many cues would effectively
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segment it. Because of the different properties of the object of interest and the background,

the relative importance of each cue will change from one area of the frame to the next, and

will not be consistent over time, so effective means of combining the cues will be essential.

In order to best leverage the various cues, we learn from the past performance of our

cues and use that information to locally weight their application. We automatically weight

the region terms in graph cut on a local basis, as shown in Equation 6.2 by the wu factors.

In this manner, the most effective cues will have a stronger effect. The basic idea behind

this is as follows. An initial selection of a frame is computed. Since each region term gives

a value in favor of the foreground F and the background B, each suggests a label for each

pixel. More precisely, if Ru(xi,F) − Ru(xi,B) > 0, then the term Ru would label xi as

background on its own because it costs more to label xi as foreground than background.

Conversely, if Ru(xi,F) − Ru(xi,B) < 0, Ru would label xi as foreground on its own. This

label can be viewed as the predicted label from a given cue. The user then corrects any

mistakes by marking them with strokes before proceeding to the next frame. By comparing

the initial propagated selection to the selection after corrections, we can determine which

features were correct at each pixel and use that to weight their future performance. For

example, consider the error and cost maps for three cues in Figure 6.8. Since the color cost

for foreground Rc(xi,F) was less than the background cost Rc(xi,B), the future weight of

the color term is weakened. The coherency and shape terms suggested the correct labeling

and are strengthened.

We present several different algorithms for computing wu: a statistical weighting, a

simple punishment-reward method, one based on the delta rule [46], and the prediction with

expert advise method [12]. We then present a methods of limiting the temporal scope of the

learning algorithms.
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(a) Error (b) Color (c) Coherency (d) Shape

Figure 6.8: (a) An error occurred in the propagated segmentation. Since the (b) color cue
was incorrect, its weight is decreased. The (c) coherency and (d) shape cues were correct, so
they are increased. The grayscale value in (b-d) visualizes the label the cue suggests, with
white indicating foreground and black background.

6.6.1 Statistical

A straight-forward way to weight the differing cues is to use the previously-segmented frames

to compute a probability that each cue is correct. This requires keeping a count at each pixel

of how often each cue is correctly segmented and dividing that by the total number of frames

already segmented.

Let us define the suggested labeling for a pixel xi as suggested solely by cue u as

Su(xi) =

 1 if Ru(xi,B) > Ru(xi,F)

0 otherwise
(6.20)

Weights for the next frame are then calculated by considering how often each of these

suggestions agreed with the user’s final segmentation:

wu(xi)← 1− 1

n

n∑
j=1

∣∣∣Ŝj(xi)− Sju(xi)∣∣∣ (6.21)

where Sju and Ŝj are the initial (Eq. 6.20) and final segmentations for frame j respectively,

and n is the number of frames already segmented, including the current one.
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6.6.2 Simple Reward-Punishment

Another way to have the segmentation system learn is to dynamically increment or decrement

the weights after the user verifies the segmentation for each frame before proceeding to the

next frame. This can be done using a straightforward reward/punishment approach as

follows:

∆wu(xi) =

 +δ0 if Su(xi) = Ŝ(xi)

−δ1 if Su(xi) 6= Ŝ(xi)
(6.22)

where Su(xi) is again the initial segmentation suggestion made by considering cue u alone

(Eq. 6.20), Ŝ(xi) is the final segmentation for that pixel, and δ0 and δ1 are constant re-

ward/punishment increments. We use δ0 = 0.04 and δ1 = 0.08, and wu is initialized to 1.0.

We then update the weights accordingly:

wu(xi)← wu(xi) + ∆wu(xi) (6.23)

The adjusted value of wu is constrained to the range [0, 1].

6.6.3 Delta-Rule Learning

Since we are training the weights for the unary (region-based) terms only, let us revisit Eq. 6.1

and focus solely on the unary component. In the absence of boundary terms, minimization

of Eq. 6.1 devolves to a simple process of labeling each pixel based on choosing the least

costly of R(xi,F) or R(xi,B), using Eq 6.2 to compute each.

Let R∗u(xi) denote the difference between the foreground/background labeling costs

for pixel xi using cue u as follows:

R∗u(xi) = Ru(xi,B)−Ru(xi,F) (6.24)
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We can now write a variant of Eq. 6.2 in terms of R∗u,

R∗(xi) = s(xi) +
∑
u∈U

wu(xi) R
∗
u(xi) (6.25)

and label suggestion becomes a trivial process:

S(xi) =

 1 if R∗(xi) > 0

0 otherwise
(6.26)

Notice that except for the inclusion of user-placed seeds (which have infinite cost

for mislabeling), Eqs. 6.25 and 6.26 taken together have the form of a classic perceptron

classifier [59], where the per-cue R∗u(xi) values serve as their feature inputs and wu(xi) serve

as the respective weights. We can thus use the well-known delta rule [46] to adjust the

individual cue weights before proceeding to the next frame.

Training Using a Step Activation Function

Letting S(xi) continue to denote the initial segmentation of the current frame using only the

region terms and Ŝ(xi) again denote the final segmentation after user corrections, we update

our individual cue weights as follows:

∆wu(xi) = α
[
Ŝ(xi)− S(xi)

]
R∗u(xi) (6.27)

where α is a scalar controlling the learning rate.

For example, if cue u suggests that pixel xi is foreground but the final label is back-

ground, then Ŝ(xi) − Su(xi) = 0 − 1 = −1. Since cue u suggested foreground, the cost

to label xi background was greater than the cost to label it foreground, so R∗u(xi) > 0.

The overall product is negative, so wu(xi) will be decremented according to the difference
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R∗u(xi) multiplied by a step size α. This is reversed for pixels initially incorrectly labeled as

background.

Note that unlike offline training methods, we do not iterate this training to conver-

gence over some training set. Instead, our online training approach adjusts the weights once

each time we proceed from frame to frame.

A variation of his method is to use the initial segmentation generated by the graph-cut

algorithm instead of the initial segmentation S(xi) computed using only the region terms:

∆wu(xi) = α
[
Ŝ(xi)− Li

]
R∗u(xi) (6.28)

In this case, the boundary term will effect the accuracy of the initial segmentation as well.

Training Using a Continuous Activation Function

The selection equation given Eq. 6.26 serves as a binary-valued output activation function

when considering Eq. 6.25 as a feedforward neural network. As a result, the update rule

in Eq. 6.27 adjusts individual cue weights only when the initial segmentation is incorrect,

regardless of how close R∗(xi) is to the selection threshold (0). We can instead adjust the

weights by using a continuous-valued activation function f(x) ∈ [0, 1] when performing the

training:

f(x) =
1

1 + exp−x
(6.29)

and

∆wu(xi) = α
[
Ŝ(xi)− f (R∗(xi))

]
R∗u(xi) (6.30)

This form of update rule has the effect of continuing to adjust weights even when the

initial frame segmentation is judged by the user to be correct. This is desirable to improve

the future classification of margin cases where R∗(xi) is close to 0.
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6.6.4 Advice from experts

In our segmentation system, many cues are used to determine the region cost for the graph

cut algorithm. The combination of many cues is similar to the decision-making model of

prediction with expert advice [12]. In this model, a forecaster makes label predictions based

on the “advice” of several “experts”, or the predictions of several other algorithms. Details

of how the experts arrive at their advice need not be known. The model is learned online,

with one input being introduced at each time step. Each expert gives its advice, and the

forecaster then makes a prediction before learning the true label of the input. The forecaster

may then re-evaluate how it regards the advice of each expert before moving onto the next

input.

The goal of forecaster is to minimize the cumulative regret Re for each expert (or

cue) e in the finite set of experts E:

Re =
n∑
t=1

(l(p̂t, yt)− l(fe,t, yt)) (6.31)

where n is the number of inputs already seen, p̂t is the predicted label at time t, yt is the

input’s true label, fe,t is the prediction of expert e, and l is a non-negative loss function. The

predicted label p̂t can be computed using a weighted average of the experts:

p̂t =

∑|E|
i=1 ωi,tfi,t∑|E|
j=1 ωj,t

(6.32)

To minimize the regret, the weights must be set appropriately and updated with each new

input. One method of updating the weights is to use an exponentially-weighted average

forecaster:

ωi,t+1 =
ωi,te

−ηl(fi,t,yt)∑|E|
j=1 ωj,te

−ηl(fj,t,yt)
(6.33)

The formulation of the prediction with expert advice method is quite similar to that

of our frame-by-frame segmentation algorithm. For a given pixel, a new input is given to
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a collection of expert cues that give their prediction of the label. Their predictions are

combined using graph cut to produce a final decision, and then the correct answer is given

after the user has a chance to correct any errors. The cycle then repeats with a new input

from the next frame.

Because of the similarity, we use a weight-update formula derived from Equation 6.33:

wu(xi)←
wu(xi)e

−ηl(R∗u(xi),Ŝ(xi))∑|U |
j=1 wj(xi)e

−ηl(R∗j (xi),Ŝ(xi))
(6.34)

with the loss function

l(R∗u(xi), Ŝ(xi)) = ||R∗u(xi)− Ŝ(xi)||2 (6.35)

and η =
√

2 ln |U |/n where n is the number of frames already segmented in the sequence

including the current frame. Note that this update scheme works to minimize the regret

according to the prediction in Equation 6.32, which corresponds well to how the region cues

are combined to produce the region term R in our graph-cut formulation, adding only a

normalization calculation.

6.6.5 Limiting the temporal scope of the learning

Video sequences often have large changes that occur during the sequence that change the

characteristics of the object or background. This may occur due to objects entering or

leaving the scene, to camera motion introducing a new background, or to changes in position

or appearance of the object. When large changes occur, any learned information may no

longer be valid. At this point, it often would be best to re-initialize our learning algorithm

and begin learning again.

Determining when such changes occur can be a difficult problem in itself. We instead

take a more simplistic approach of only accumulating the error over a small number of frames

preceding the current frame (we use five frames). With this method, large changes will be

quickly forgotten, and only the information most likely to be current will be used.
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6.7 Results

In our method, we combine information cues adaptively using a learning algorithm. We

evaluate these components individually to show their effectiveness in our system. First, we

compare the proposed learning algorithms in Section 6.6 to determine which learning method

is most successful. We then compare the performance of the individual cues.

For an interactive segmentation system, the real measure of success is the amount of

user time required to perform a selection. Accordingly, we report the time required to select

objects in several sequences. The segmentations can be judged qualitatively by the examples

shown in Figure 6.15. In order to better evaluate the accuracy of LIVEcut, we also compare

it to automatic segmentation techniques, despite the disadvantage this gives to an algorithm

designed for interactive use.

6.7.1 Ground-truth Experiments

Our experiments with ground-truth data proceed as follows. The selection is initialized using

the ground truth for the first frame. If the ground truth contains unlabeled pixels due to

mixed pixels (along edges of objects, hair, or blurred areas), then these pixels are not seeded

and are solved for using graph cut. The selection is then propagated to the next frame. This

selection is compared to the ground-truth for that frame, and any incorrect pixel is counted

toward the error. The ground truth is then used to correct the mistakes, and the algorithm

proceeds to the next frame.

Our dataset of video sequences with ground-truth data is a collection of sequences

and ground-truth provided by [74]. As these sequences were designed for automated motion

layer segmentation algorithms, there are parts of sequences where no foreground objects are

in view or where multiple objects exist. Accordingly, we chose frames that were suitable for

an interactive system. The sequences and frames used are shown in Table 6.1. An example

frame from each of the sequences is shown in Figure 6.9.
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Sequence Frames
dancing chachacha v1 185-1485
dancing chachacha v4 185-1485
exhausted runner 60-125
hot day 50-290
ingravity 1-90
playing alone 1-306
teddy bear 25-300

Table 6.1: Ground-truth video sequences from [74].

Figure 6.9: Example frames from each sequence in our ground-truth dataset. Start-
ing on the top row, from left to right, the frames are from dancing chachacha v1, danc-
ing chachacha v4, exhausted runner, hot day, ingravity, playing alone, and teddy bear. Se-
quences are from [74].

6.7.2 Learning Evaluation

We compare these learning algorithms on a set of video sequences with ground-truth data.

For this experiment, the ground truth is used to initialize the segmentation in the first frame,

similar to how a user would correctly segment the first frame. The proceeding frame is then

segmented, and the number of mislabeled pixels according to the ground truth is computed

as error. The ground truth is then used to correct the segmentation (as a user would), and

the selection proceeds to the next frame.

All the cues presented in Section 6.5 are used to perform the segmentation and are

weighted according to the learning algorithms. Table 6.2 gives the average error over all the
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dancing chachacha v1 204 -8.5 % -8.9 % -9.1 % -7.6 % -8.7 % -4 % -5.6 %
dancing chachacha v2 148 -16.6 % -15.3 % -15.7 % -18.6 % -16.4 % 78.3 % -8.5 %
exhausted runner 54 15.6 % 16.2 % 16.2 % 16.4 % 19.1 % -14.5 % -13.1 %
hot day 120 -7.4 % -4.1 % -5.9 % -8 % -4.9 % -15.2 % -14.2 %
ingravity 1 100 -16.9 % -16.9 % -16.9 % -16.9 % -16.9 % -11.9 % -9.9 %
playing alone 140 -5 % -3.3 % -3.9 % -4.6 % -3.3 % -16.4 % -5.3 %
teddy bear 45 -6.4 % -6.1 % -6.3 % -8.5 % -4.2 % -3.3 % -4.4 %
Sequence Average 116 -8.5 % -7.6 % -8.1 % -8.8 % -7.5 % 5.6 % -8.3 %
Frame Average 155 -10.9 % -10.3 % -10.7 % -11.2 % -10.6 % 22.8 % -7.1 %

Table 6.2: The average error (number of mislabeled pixels) over the ground-truth sequences
is calculated for each learning algorithm. All the cues presented in Section 6.5 are in use for
this experiment. The three variations of the delta function (graph cut, step, and sigmoid)
use Equations 6.28, 6.27, and 6.30 respectively. The “windows” variation of experts limits
the temporal scope of the experts method to a window. Green text shows a desired decrease
in error when using a learning method, and red text indicates and increase in error.

video sequences for each of the learning algorithms. We also tested the learning methods

when restricting the learning to only a small temporal window around the frame in question.

This had a small or negative effect on all learning methods except for the learning from

expert advice method, which is the only result shown in the table.

Two average scores are given in Table 6.2. The sequence average is the average of

the average error over each sequence (the average of the numbers in the column above it)

and does not take into consideration that the sequences are of different lengths. The frame

average respects the length of the sequences by averaging over all frames from all sequences

(equivalent to scaling each sequence error in Table 6.2 by the number of ground-truth frames

for each sequence before averaging them).

Overall, the best performance was achieved by the reward-punishment method ac-

cumulating error over the entire sequence. The delta function method performed nearly as

well overall, and many methods outperformed the reward-punishment method on individual

sequences.

A visualization of changing learning weights is shown in Figure 6.10. The grayscale

value in the weight images represents the value of the weights, with white indicating a high
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Original Shape Color

Figure 6.10: Learning weights for the “flamingo” example. A portion of the frame as well
as the weights for the color and shape cues are shown for an initial frame (top row) and the
following frame (bottom row). The grayscale value in the weight images correlates to the
weight values. The weights on the following frame have changed to favor the shape over the
color near the legs of the flamingo since the color is ambiguous in those areas.

weight and black a low weight. In this example, the legs of the flamingo are of a similar color

to the background water so the color cue performs poorly in those areas. The shape of the

legs, however, is consistent. As the user proceeds to the second frame, the weights adjust to

favor shape over color around the legs.

6.7.3 Cue Evaluation

To evaluate the performance of the cues, we segment the video sequences described in Sec-

tion 6.7.1. In each case, the sequences are segmented with one of the cues disabled. The

number of mislabeled pixels is then computed using the ground truth. By disabling one cue

at a time, we may see the impact that individual cue is having on the overall error. In all

cases, we use the reward-punishment learning algorithm described in Section 6.6.2 to weight

the applications of the cues.

Table 6.3 gives the results of this experiment. The largest increase in error occurs with

the removal of the gradient cue which apparently contributes the most toward computing

the correct solution. The global color model, motion, and coherence cues also have a large
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effect on error. The other cues have a smaller effect. The only effect that causes a decrease

of error on average when removed is the color cue.

These results also show that there remains room for improvement in our learning

method. If there is improvement in the error rate for a given sequence if a cue is dropped

entirely, then the learning algorithm was unable to accurately weight the cues to provide the

best results.

To show the effect of the region cues, each cue was used to segment the object on

its own. The results are shown in Table 6.4. The spatiotemporal coherence cue proved to

be most correct overall. The shape and color cues are fairly comparable in their average

error over the sequences to the spatiotemporal cue but have much higher error in the frame

average. The global color cue performs far worse than the other cues when in isolation. The

point-tracking cue was not evaluated because it only provides a labeling for a small subset

of the total number of pixels in the image.

One interesting note is that the global color model performs worse on its own when

compared to the other region cues as shown in Table 6.4 but is more helpful in reducing

error when combined with the other cues as shown in Table 6.3. This is likely because it

provides a different type of information, global in scope temporally and spatially, allowing

it to provide information that the other cues cannot.

6.7.4 Timing and Qualitative Results

Table 6.5 gives timing results over several challenging video sequences. The “footballer”

sequence exhibits large motions, a drastically changing object shape, and a partial occlusion

from another moving object. “Bass guitar” and “lemurs” both contain overlapping color

models, boundaries where there is no gradient information, and motion blur. While much of

the body of the “flamingo” is easy to segment, the legs are narrow, exhibit large movements,

are often heavily blurred, and have a similar color to the background. Using LIVEcut, a

user is able to segment the objects without excessive interaction. The selection computed
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dancing chachacha v1 189 49.2 % -4.2 % 15.7 % 17.4 % 117.7 % -1.1 % 1143.1 % 10.1 %
dancing chachacha v4 120 86.3 % -3.3 % 45.2 % 12.4 % 107.8 % 4.3 % 2013.1 % 6.9 %
exhausted runner 63 57 % -5.3 % 37.6 % -22.5 % 15.2 % -8.6 % 3084 % 32.2 %
hot day 111 51 % -3.6 % 35.4 % 26.9 % 82.1 % 1.6 % 1518 % 3.8 %
ingravity 1 83 70 % -0.1 % 8.6 % 14.9 % 278.7 % -0.1 % 436.7 % -27.1 %
playing alone 134 40 % -4.3 % 50.6 % 10.1 % 48.4 % 0.7 % 1226.6 % 17.8 %
teddy bear 42 102.8 % 0.1 % 68.9 % 106.8 % 70.6 % 2 % 2487.3 % 3.4 %
Sequence Average 106 59.8 % -3.4 % 33.8 % 18 % 105.1 % 0.1 % 1515.3 % 7.4 %
Frame Average 138 61.9 % -3.8 % 30.4 % 17.4 % 107.4 % 0.9 % 1483.3 % 8.9 %

Table 6.3: The effect of the cues on ground-truth video sequences. The average error (number
of mislabeled pixels) over the ground-truth sequences is shown in the column labeled ”All”.
Each of the cues is then turned off one at a time, and the change in the error is shown. The
green text shows an increase of error, indicating that the disabled cue must have contributed
information that helped lower the cue. Red text shows a decrease in error, indicating that
the disabled cue actually hurt the average performance and is best not used in that case.
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dancing chachacha v1 2208 3275 1498 782
dancing chachacha v4 1570 3620 1493 443
exhausted runner 1670 1142 1587 520
hot day 930 1822 1023 271
ingravity 1 169 128 178 96
playing alone 1403 752 1402 562
teddy bear 531 1584 449 143
Sequence Average 1212 1760 1090 402
Frame Average 1632 2841 1345 535

Table 6.4: Error in segmentation when performed using only a single region cue. The
sequence average is computed by averaging the average error over all the sequences as shown
in the table. The frame average is computed by averaging the error over all frames in all
sequences.
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Video Size Graph Cut Time User Time
Bass Guitar 960×540×72 0.047 / 3.14 sec 20 min
Cat 640×480×56 0.024 / 1.50 sec 4 min
Flamingo 960×540×76 0.046 / 2.33 sec 16 min
Footballer 720×576×19 0.030 / 1.79 sec 4 min
Lemurs 960×540×86 0.037 / 2.71 sec 17 min

Table 6.5: Timing results from several sequences. The graph-cut time first gives the time
to process an interaction on one frame, and then the time to propagate information to the
next frame. “Footballer” is courtesy of Artbeats (www.artbeats.com).

[80] LIVEcut
Pre- Graph Cut User Post- Graph Cut User

Video Size process Time Time process Time Time
amira 640×480×35(80)* 12 min 5 sec 15 min 35 min 0.030 / 1.41 sec 5 min
ballerina 640×480×150 25 min 11.5 sec 140 min 30 min 0.025 / 1.51 sec 48 min
elephant 720×480×100 20 min 9.1 sec 40 min 30 min 0.031 / 2.11 sec 27 min
manincap 640×480×150 30 min 16.5 sec 20 min 35 min 0.022 / 1.57 sec 21 min
stairs 640×480×63(100)* 20 min 8.5 sec 20 min 30 min 0.019 / 1.36 sec 13 min

Table 6.6: Comparison of LIVEcut to Interactive Video Cutout [80]. The graph-cut time
for LIVEcut lists first the time to process an interaction on one frame, and then the time to
propagate the selection to the next frame. For the “amira” video sequence, [80] could not
effectively segment the object, and [1] was also used. The ’*’ indicates that the video we
obtained differed in length to that reported in [80] (shown in parentheses). The postprocess
time for [80] consists of pixel-level refinement, but also includes matting, which is not reported
for our method. LIVEcut does not need any pre-processing time.
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Figure 6.11: Frames and object selections from the “cat” sequence.

over a range of consecutive frames is shown in Figures 6.11-6.14 for several sequences. The

selection from selected frames from many of the sequences is also shown in Figure 6.15. We

apply the robust matter [81] to our output to account for mixed pixels on boundaries.

We compare LIVEcut to [80] using videos from this paper in Table 6.6. The user time

to acquire binary segmentation results similar in quality to these techniques is comparable or

less in these examples. The time the user must wait between each interaction for the selection

to update is also less, providing a better interactive experience. Our algorithm also does not

need the large preprocessing time that [80] requires. We were able to segment “amira” with

LIVEcut, while [80] required the help of [1] to do so. We also were able to segment the

“ballerina” as one object, while [80] required one pass for the feet and another for the body.

Finally, our user interaction is simpler, requiring only drawing strokes on individual frames

and allowing sequential processing of the video, while [80] also requires rotating and slicing

through a spatiotemporal volume.
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Figure 6.12: Frames and object selections from the “footballer” sequence.

Figure 6.13: Frames and object selections from the “manincap” sequence.

Figure 6.14: Frames and object selections from the “lemurs” sequence.

124



Figure 6.15: Several examples of object selections using LIVEcut.
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Sequence 41 43 50 51 54
LIVEcut Error % 2.71 6.71 1.45 0.38 0.90
Yin 2007 Error % 0.80 0.02 1.31 1.06 0.33
Sequence 56 58 60 IU JM
LIVEcut Error % 2.27 0.07 14.85 3.52 28.16
Yin 2007 Error % 0.93 0.79 6.33 2.56 0.27

Table 6.7: Comparison of [84] to LIVEcut using automatic segmentation (i.e. without
allowing user corrections).

6.7.5 Accuracy and Stability

For interactive segmentation systems, accuracy is difficult to measure since a user can always

achieve perfect accuracy given enough time. To demonstrate accuracy, we perform automatic

segmentations and compare to the unsupervised method from [84] on their database. In

doing so, LIVEcut faces a large disadvantage. LIVEcut was designed to assume that the

previous frame was correctly segmented by the user, and proceeds under that assumption.

Furthermore, LIVEcut receives no user training, while [84] is trained on similar data. While

this test neutralizes many of the strengths of LIVEcut, it allows us to show the algorithm’s

accuracy and stability.

For this test, we segmented the first frame of ten sequences, each of size 320×240

with an average length of over 350 frames. We then computed the segmentation without

additional user interaction and compare to the results from [84] in Table 6.7. For several of

the videos (50, 51, 54, 58, IU), we have comparable or better results. For the others, the

accuracy over time is shown in Figure 6.16. Our segmentation error in each case was very

low until an abrupt increase due to a change in the scene. For three of the cases, the error is

low until the subject moves his hand in front of his body. In these cases, LIVEcut assumes

that the hand is an occluding object that it should not segment and does not recover the

entire object once the hand leaves. In the other cases, a rapid motion confuses our algorithm.

Note that in each case, the error is quite stable after the initial mistake because LIVEcut

accurately tracks what it assumes is the new state of the object.
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Figure 6.16: Accuracy of several sequences from Table 6.7.

Sequence 41 43 56 60 JM
LIVEcut Error % 1.02 1.46 1.56 2.34 1.11
# frames corrected 1 4 1 1 6

Table 6.8: Accuracy of LIVEcut on sequences from Table 6.7 after corrections on the number
of frames shown.

To better show the accuracy and stability on these sequences, we resegmented the

video allowing corrections only on or near the frames where large errors occur. Table 6.8

shows that the accuracy is now similar to or less than [84] while allowing very few correc-

tions. While LIVEcut can achieve similar results to unsupervised methods with little or no

corrections, these methods could not produce the high quality results from LIVEcut shown

in Figure 6.15.
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6.8 Conclusion

We have presented a new method for interactively segmenting video sequences by propagating

multiple cues from one frame to another. These cues are automatically weighted based on

learning from user corrections. Many of the cues also include novel improvements in the

context of video segmentation using graph cut.

While propagating multiple weighted cues is effective in segmenting video, further

improvements can be made. LIVEcut only uses cues from the previous frame together with

the accumulated learning. However, more global information about the entire video sequence

may assist the segmentation. Improved learning techniques may better weight the graph-cut

terms.
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Chapter 7

Conclusion

This dissertation has investigated computing object selections in video sequences by

combining multiple informative cues. The cues are dynamically weighted based on user

corrections in order to improve overall performance. Many novel cues or new improvements

to cues have also been introduced. This includes a color adjacency model that allows the

algorithm to focus only on edges of interest. Results, both qualitative and quantitative, have

shown that this system provides improved performance on many video sequences.

The concept of combining multiple pieces of information to improve selection results

was also applied to image segmentation. This work has shown that geodesic segmentation

and graph-cut segmentation have complementary strengths and weaknesses. Because the

failure cases of geodesic segmentation are relatively easy to identify, the two algorithms may

be combined such that each is applied in local areas where it is most effective. The approach

allows objects to be selected using fewer user strokes. This approach also achieved the best

performance on the GrabCut database of any reported method not using a specific input

constraint or implicit bias.

In order to provide complete object selection in video, video matting is required. In

order to help the state-of-the-art progress to the point where video matting is effective, this

work has introduced an improved image matting algorithm. This algorithm produces mattes

comparable to other current techniques while improving on the foreground and background

color estimations.
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While much progress has been made in improving video segmentation, many difficult

challenges remain. Several different problem cases have not been fully solved, such as oc-

clusions and fast-moving or fast-changing objects. Higher-level models and object detection

techniques may assist with these cases. Improvements in shape modeling would also help

improve results.

Another problem that can still occur is to correctly localize the object boundary in

cases with difficult textures, overlapping color models, or motion blur. While the method

presented here does quite well at identifying the bulk of the object, in these difficult cases

the user may be required to correct small mistakes on the boundary. It may be helpful to

further research methods of modeling and identifying small regions of the object boundary.

This is a strength of the Video Snapcut paper [5], which tracks and models small sections of

the object boundary to try to localize it correctly. More work should be done in this area.

Image matting still remains largely unsolved. Despite the progress made in this dis-

sertation as well as other current research, matting is only effective in simple cases. In areas

with complex textures or overlapping color models, matting still largely fails. Unfortunately,

these complications are very common in natural images. Improved constrains, especially

those handling textures, may lead to improved results. Higher-order image understanding

may be necessary in order to handle many of the difficult cases.

In order to correctly segment video, video matting is required. One of the hurdles to

be faced by those looking to improve video matting is that image matting still falls short.

Besides this significant problem, the other major problem in video matting is maintaining

good temporal coherency. Perhaps the easiest way to enforce temporal coherency is to

view the lack of coherency as high-frequency noise and simply blur it away. Unfortunately,

blurring in the spatial domain in many cases would completely destroy the results, so the

blur must only occur in the temporal domain. This requires highly accurate frame-to-frame

pixel correlation. Current correlation algorithms cannot provide the accuracy needed given

natural videos that may contain huge movements, lighting changes, occlusions, and blur.
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Either great improvements in correlation must be made, or a method of enforcing temporal

coherence without correlation must be developed.

One area that I feel is greatly lacking in research is that of interactively editing mattes.

While fully automated image and video segmentation algorithms exist, accurate object selec-

tion is largely viewed as an interactive process, and tools are provided to users to easily make

corrections to acquire the desired selection. While producing correct mattes is even more

difficult than producing a binary segmentation, easy-to-use accurate matting editing tools do

not exist. Currently, the only interactive methods consist of refining the trimap [26, 57, 79]

or specifying areas over which to reapply the matting algorithm locally [71]. While these

are legitimate approaches, they do not provide easy and direct methods of altering the fore-

ground, background, or alpha estimation. More direct methods are needed to allow users to

generate a desirable matte.

131



References

[1] Aseem Agarwala, Aaron Hertzmann, David H. Salesin, and Steven M. Seitz. Keyframe-

based tracking for rotoscoping and animation. ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH), 23(3):584–591, 2004. ISSN 0730-0301.

[2] Christopher Armstrong, William Barrett, and Brian Price. Live surface. Proceedings of

Volume Graphics 2006, 2006.

[3] Christopher J. Armstrong, Brian L. Price, and William A. Barrett. Interactive seg-

mentation of image volumes with live surface. Computers and Graphics, 31(2):212–229,

April 2007.

[4] Xue Bai and Guillermo Sapiro. A geodesic framework for fast interactive image and

video segmentation and matting. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), pages 1–8, 2007.

[5] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro. Video snapcut: robust video

object cutout using localized classifiers. ACM Transactions on Graphics (Proceedings

of SIGGRAPH), pages 1–11, 2009.

[6] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–256, February 1992.

[7] Andrew Blake, Carsten Rother, M. Brown, Patrick Perez, and Philip Torr. Interactive

image segmentation using an adaptive GMMRF model. In Proceedings of the IEEE

European Conference on Computer Vision (ECCV), pages 428–441, May 2004.

[8] Andrew Blake and Andrew Zisserman. Visual Reconstruction. MIT Press, Cambridge,

MA, 1987.

[9] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and region

segmentation of objects in N-D images. In Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV), pages 105–112, 2001.

132



[10] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow al-

gorithms for energy minimization in vision. In IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), volume 26, pages 1124–1137, September 2004.

[11] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient N-D image segmentation.

International Journal of Computer Vision (IJCV), 70(2):109–131, 2006.

[12] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, New York, NY, USA, 2006. ISBN 0521841089.

[13] Hanna Chidiac and Djemel Ziou. Classification of image edges. In Vision Interface,

pages 17–24, 1999.

[14] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. A bayesian

approach to digital matting. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 2, pages 264–271. IEEE Computer Society,

December 2001.

[15] P. Colantoni and B. Laget. Color image segmentation using region adjacency graphs. In

Proceedings of the International Conference on Image Processing and Its Applications,

volume 2, pages 698–702, Jul 1997.

[16] Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot. Power watersheds: A

new image segmentation framework extending graph cuts, random walker and optimal

spanning forest. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 2009.

[17] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation of live video.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 1, pages 53–60, June 2006.

[18] A. Criminisi, T. Sharp, and A. Blake. GeoS: Geodesic image segmentation. In Proceed-

ings of the IEEE European Conference on Computer Vision (ECCV), 2008.

[19] Jingyu Cui, Qiong Yang, Fang Wen, Qiying Wu, Changshui Zhang, L. Van Gool, and

Xiaoou Tang. Transductive object cutout. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1–8, June 2008.

[20] O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Segonne. Segmentation by

transduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2008.

133



[21] James H. Elder and Steven W. Zucker. Scale space localization, blur, and contour-based

image coding. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 27–34. IEEE Computer Society, 1996.

[22] J. Fairfield. Toboggan contrast enhancement for contrast segmentation. Proceedings of

the International Conference on Pattern Recognition (ICPR), 1:712–716, 1990.

[23] Daniel Freedman and Tao Zhang. Interactive graph cut based segmentation with shape

priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 755–762, 2005.

[24] Michael Gleicher. Image snapping. International Conference on Computer Graphics

and Interactive Techniques, pages 183–190, 1995.

[25] Leo Grady. Random walks for image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 28(11):1768–1783, November 2006. ISSN

0162-8828.

[26] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random
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