
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2010-12-16

A Reusable Persistence Framework for Replicating
Empirical Studies on Data from Open Source
Repositories
Scott Bong-Soo Chun
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Chun, Scott Bong-Soo, "A Reusable Persistence Framework for Replicating Empirical Studies on Data from Open Source
Repositories" (2010). All Theses and Dissertations. 2371.
https://scholarsarchive.byu.edu/etd/2371

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2371?utm_source=scholarsarchive.byu.edu%2Fetd%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Reusable Persistence Framework for Replicating Empirical Studies

on Data From Open Source Repositories

Scott B. Chun

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Charles D. Knutson, Chair
Christophe G. Giraud-Carrier

William A. Barrett

Department of Computer Science

Brigham Young University

April 2011

Copyright c© 2011 Scott B. Chun

All Rights Reserved

ABSTRACT

A Reusable Persistence Framework for Replicating Empirical Studies

on Data From Open Source Repositories

Scott B. Chun

Department of Computer Science

Master of Science

Empirical research is inexact and error-prone leading researchers to agree that repli-
cation of experiments is a necessary step to validating empirical results. Unfortunately,
replicating experiments requires substantial investments in manpower and time. These re-
source requirements can be reduced by incorporating component reuse when building tools
for empirical experimentation. Bokeo is an initiative within the Sequoia Lab of the BYU
Computer Science Department to develop a platform to assist in the empirical study of
software engineering. The i3Persistence Framework is a component of Bokeo which enables
researchers to easily build and rapidly deploy tools for empirical experiments by providing
an easy-to-use database management service. We introduce the i3Persistence Framework of
Bokeo to assist in the development of software to replicate experiments and conduct studies
on data from open-source repositories.

ACKNOWLEDGMENTS

First and foremost, to my wife Andrea, who never gave up even when I did.

To my children, Christopher, Samuel, Alexander, Daniela, and Dominik, for their patience

when Papa was "too busy."

To my advisor, Dr. Charles Knutson, for lighting a fire under me and making sure I

finished.

To my collegue Alex MacLean for his counsel and critique which have improved this thesis.

To Dr. Benjamin Gibbs whose orthogonal view added a new dimension to this thesis.

To my sister-in-law Beth for the time she spent to edit this thesis.

To my co-workers, Ben Wood and Jason Hill, without whose collaboration this project

would not have been possible.

To my father who in his dying breath instructed me to pursue higher education.

Thank you.

Contents

List of Figures ix

List of Tables xi

List of Listings xiii

1 Introduction 1

1.1 The Role of Replication in Empirical Research 1

1.2 Bokeo: A Framework for Conducting Empirical Experiments 2

1.3 The Database Management System . 4

2 Related Work 6

3 Thesis Statement 8

4 Project Description 9

4.1 Why Another Persistence Framework? . 9

4.1.1 Limitations of Existing Database Management Systems (DBMSs) . . 9

4.1.1.1 The Relational vs. Object-Oriented Impedance Mismatch . 9

4.1.1.2 The Challenges of SQL . 10

4.1.1.3 The Challenges of Modern Object-Oriented DBMSs 12

4.1.2 The Traditional vs. i3Persistence Development Process Model 13

4.1.3 Static vs. Dynamic Database Schema 14

4.2 i3Persistence Framework User Specifications 15

iv

4.2.1 Decoupling via the Dependency Inversion Principle 16

4.2.2 Further Decoupling via the Dependency Injection Pattern 16

4.2.3 Delegation via The Factory Method Pattern 17

4.2.4 Reduce Complexity via Query By Filter vs. SQL 18

4.2.5 Reduce Code via Automatic Generation of interface Implementations 18

4.2.6 Ease of Use via a Simple Persistence API 19

4.2.7 Support for MySQL . 20

5 Implementation 21

5.1 Architecture Overview . 21

5.1.1 Project Organization . 21

5.2 Java Object Persistence Scheme . 23

5.2.1 Java Instrumentation and i3Agent 25

5.2.2 Javassist and Byte Code Manipulation 26

5.3 i3Injection: Java Annotation . 26

5.3.1 @ServiceContext . 27

5.3.1.1 Registering Services with initializationClasses 27

5.3.1.2 Controlling the Scope of a ServiceContext with contextType 28

5.3.2 @RegisterService . 30

5.3.3 @RegisteredClass . 30

5.3.4 @Service . 32

5.3.5 @New . 33

5.3.6 @Transaction . 34

5.4 Optimizing Object Injection . 34

5.4.1 Fine Tuning The Injection with the injection-conf.xml File 35

5.4.2 @DoNotTransform . 36

5.5 Framework Services . 37

5.5.1 The Factory Service Interface . 37

v

5.5.2 The PersistenceManager Service . 39

5.5.3 The Query Interface . 40

6 Setup and Deployment 46

6.1 Database: Setup and Connection . 46

6.2 Preparing an Eclipse Project . 48

7 Product Validation 50

7.1 Replicating the Modification Request Experiment 50

7.1.1 The Sliding Time Window Algorithm 51

7.1.2 Assumptions . 52

7.1.3 Unraveling the CVS Log Format with cvs2cl 53

7.1.4 The Application Design . 54

7.1.4.1 Extraction Phase: The ChangelogExtractor Module 54

7.1.4.2 Adapting to a Crisis . 57

7.1.4.3 Analysis and Synthesis Phase: The ChangelogAnalyzer

Module . 57

7.2 Validating the Implementation . 60

7.3 Replication Results . 60

7.4 Conclusion . 61

7.4.1 Implementation Technologies . 62

7.4.2 Database Technologies . 62

7.4.3 Datasets . 63

7.4.4 Algorithms . 63

7.5 Comparison of Technologies . 63

8 Conclusion 66

vi

9 Future Work 68

9.1 Point-in-Time Architecture . 68

9.2 Optimize Speed . 68

9.3 Support Large Datasets . 69

9.4 Object Version Migration . 69

Bibliography 69

A Separating Responsibilities with a Component-Layered Architecture 75

B Decoupling Modules with the Dependency Inversion Principle 77

C Connecting Components and Layers with the Dependency Injection Pat-

tern 79

D ChangelogExtractor Module injection-config.xml 82

E ChangelogAnalyzer Module injection-config.xml 83

F ChangelogDAOTest.java 84

G ModificationRequestBuilder.java 94

H i3Persistence Framework , JDBC/SQL and Berkeley DB Test Results 97

I Gnu gcc: Distribution of the Number of Files in an MR 98

J Gnu gcc: Modification Requests per Month, 2003 99

K UML Diagrams 100

K.1 i3Datasource: Module Statistics and Package Diagram 100

K.2 i3InjectionApi: Module Statistics and Class Diagram 101

K.2.1 i3InjectionApi: Service Module Class Diagram 102

vii

K.2.2 i3InjectionApi: Modules Class Diagram 103

K.3 i3PersistenceApi: Module Metrics and Package Diagram 104

K.3.1 i3PersistenceApi: Query Module Class Diagram 105

K.3.2 i3PersistenceApi: Modules Class Diagram 106

K.4 i3InjectionImpl: Module Statistics and Package Diagram 107

K.5 i3PersistenceImpl: Module Statistics and Package Diagram 108

viii

List of Figures

1.1 High-level Workflow Phases of Bokeo. 3

4.1 SQL-based Database Development Process 14

4.2 i3Persistence-based Database Development Process 15

4.3 i3Persistence-based Plug-in Development Process 16

5.1 i3Persistence Framework Component-Layered Architecture 22

5.2 Java Object Serialization . 23

5.3 i3Persistence Framework Database ER Diagram 24

6.1 SerialSchema.sql file location . 46

6.2 connection.properties file location . 47

6.3 connection.properties file Settings . 47

6.4 Eclipse Build Path . 48

6.5 Eclipse Runtime Configuration Classpath 48

6.6 Eclipse Runtime Agent Configuration Classpath 49

7.1 Software Trails . 50

7.2 The sliding-time-window algorithm . 51

7.3 ChangelogExtractor module class diagram 55

7.4 ChangelogAnalyzer module class diagram 58

7.5 Number of files in MRs . 61

7.6 MRs per month, 2003 . 61

ix

A.1 Layered Architecture . 75

B.1 Dependency Inversion Principle . 77

C.1 Consumer-Service Dependency . 79

C.2 The Dependency Injection Process . 80

C.3 Dependency Injection Dependencies . 80

K.1 i3Datasource Module Package Diagram . 100

K.2 i3InjectionApi Module Class Diagram . 101

K.3 i3InjectionApi Service Module Class Diagram 102

K.4 i3InjectionApi Modules Class Diagram . 103

K.5 i3PersistenceApi Module Package Diagram 104

K.6 i3PersistenceApi Query Module Class Diagram 105

K.7 i3PersistenceApi Modules Class Diagram 106

K.8 i3InjectionImpl Module Package Diagram 107

K.9 i3PersistenceImpl Module Package Diagram 108

x

List of Tables

4.1 JavaBeans Properties Naming Convention 19

5.1 i3Persistence Framework Database Table Definitions 25

5.2 PersistenceStatus Values . 25

5.3 ServiceContext Annotation Optional Element Summary 27

5.4 ServiceContextType Values . 29

5.5 PresistenceManager Method Summary . 40

5.6 Query Class Method Summary . 40

5.7 FilterAdapter Class Method Summary . 41

5.8 FilterGroupAdapter Class Method Summary 41

7.1 ChangelogExtractor module class descriptions 56

7.2 ChangelogAnalyzer module class descriptions 59

7.3 CVS statistics for the GNU gcc project . 60

7.4 JDBC vs. i3Persistence: Database class . 63

7.5 JDBC vs. i3Persistence: DAO class . 64

H.1 Comparison of GNU gcc cvs log Analysis 97

I.1 Distribution of the Number of Files in an MR 98

J.1 Modification Requests Per Month, 2003 . 99

K.1 i3Datasource Module Metrics . 100

K.2 i3InjectionApi Module Metrics . 101

xi

K.3 i3PersistenceApi Module Metrics . 104

K.4 i3InjectionImpl Module Metrics . 107

K.5 i3PersistenceImpl Module Metrics . 108

xii

List of Listings

4.1 Oracle Debugging Setup . 11

4.2 Oracle SQL Debugging Code . 11

4.3 MySQL SQL Debugging Code . 12

5.1 ServiceContext Initializer Class . 27

5.2 JUnit Test for Manual Control of Service Context 29

5.3 LazyInterface example . 31

5.4 LazyAbstractClass example . 31

5.5 LazyInterface Initializer class . 31

5.6 Instantiating an abstract class for Injection 32

5.7 @Service declaration . 33

5.8 @New declaration . 33

5.9 @Transaction interface . 34

5.10 i3InjectionImpl injection-config.xml file 35

5.11 i3Datasource injection-config.xml file 36

5.12 @DoNotTransform annotation usage . 36

5.13 Class Instance Factory . 37

5.14 Custom Factory Implementation . 38

5.15 Initializer Class for Custom Factory Implementation 38

5.16 Custom Factory Implementation Injection 38

5.17 interface to Persist . 42

5.18 Data Access Object Class . 42

5.19 DAOClass accessObjects() Method . 43

xiii

5.20 DAOClass getObjects() Method . 43

5.21 Test Main Harness . 44

7.1 cvs2cl command-line options . 54

xiv

Chapter 1

Introduction

1.1 The Role of Replication in Empirical Research

Basili [4], Brooks [8], MacDonnell [32] and other researchers [23, 24, 40] state that empirical

studies tend to be inexact and error-prone; thus, results need to be validated. Empirical

experiments are fraught with potential errors: statistical procedures may be misapplied, the

sample size may not be adequate to support the results, and/or the results may not justify

the conclusion.

Because of such problems, researchers consider reproducibility of experimental results

a prerequisite to establishing validity. Shull et al. state that one of the primary goals of

replication is to verify the applicability of the results of the initial study [39].

One method of validating the results of an experiment is for multiple independent

teams to conduct the same experiment concurrently [8]. The confirmation of two or more

independently conducted experiments adds credibility to the results.

Another way to facilitate replication is to publish detailed reports on how to replicate

the empirical experiment. When describing an experiment a researcher provides a recipe

for others to verify results by documenting the type of equipment used and the precise

procedure followed. Basili et al. suggest a project package structure which outlines the

minimal information necessary to facilitate the external replication of an experiment [39].

A third way to facilitate replication is to use experiment databases (ExpDB) to store

detailed information on numerous learning experiments [6, 7]. An ExpDB is a special kind

of inductive database whose methodology consists of filling and then querying this database

1

for patterns [37]. This methodology is useful for data mining and machine learning where

insights into the behavior of learning algorithms are obtained by implementing the algorithms

and studying their behavior on specific datasets. Although ExpDB has been successfully used

in empirical experiments in various fields of study (i.e., biology, physics) where algorithms

are applied to well-defined datasets, it is not as readily applicable in empirical studies of

software evolution because such studies are exploratory in nature and are not as well-defined

as learning experiments. Therefore, the ExpDB methodology is mostly applicable to software

engineering empirical studies which optimize algorithms that work on well-defined datasets.

Experimental replication may require the researcher to invest substantial manpower

and/or time to develop and maintain the software tools necessary to validate empirical

experiments.

One technique to reduce the resources required to develop tools and increase exper-

imental accuracy is to incorporate code reuse when implementing the tools. Studies have

shown the positive effects of code reuse on reducing the time required to develop and main-

tain software projects [3, 11, 42]. We intend to apply similar principles to experimental

replicability.

We present a reusable persistence framework to help implement and deploy tools for

replicating empirical experiments.

1.2 Bokeo: A Framework for Conducting Empirical Experiments

Although tools are available to assist with empirical experiments, we are not aware of any

tools with the extensibility and power to conduct a broad scope of empirical software en-

gineering research on a large corpus of data. Most research tools are intended as proof-

of-concept and are designed to test the hypothesis of a particular experiment. Such tools

usually have limited functionality, applicability, and scalability. Other tools define a static

workflow tailored to the specifics of an experiment, making them difficult to extend to new

experiments.

2

Consequently, the Sequoia Lab at BYU is actively developing Bokeo to help re-

searchers conduct empirical experiments on large corpora of open source software. Bokeo is

an extensible framework with which users may extract, analyze and visualize derived metrics

and data from software repositories. Bokeo follows a conceptual workflow-based model with

four distinct areas of abstraction called phases, each comprised of one or more components

and workflows.

In this section we present the overall architecture of Bokeo and describe the high-level

functions of each phase (see Figure 1.1).

Figure 1.1: High-level Workflow Phases of Bokeo.

The first phase of Bokeo is the Extraction Phase, which extracts raw data from source

code or other artifacts of software and bug repositories. Our goal is to aggregate, into a single

repository, evolutionary data from many projects across multiple revision control systems to

allow researchers to conduct a broad scope of experiments with varying sample sizes.

The second phase of Bokeo is the Analysis and Synthesis Phase, which analyzes and

synthesizes raw data to generate new, more informative derived data. Unlike controlled

experiments in which the variation in data is dictated by the design of the experiment, the

data contained in software and bug repositories are historical and fixed. The variation in

the data is extracted or derived in the Analysis and Synthesis Phase for the purpose of

testing the hypothesis of the empirical experiment, validating the results of an experiment,

or viewing a metric to gain insights into a complex data set. Therefore, the majority of the

3

work for an empirical experiment will normally be carried out in the Analysis and Synthesis

Phase.

The third stage of Bokeo is the Aggregation Phase, which performs the aggregation,

correlation, and dissemination of both raw and derived data into forms consumable by the

Presentation Phase.

The fourth stage of Bokeo is the Presentation Phase, which allows users to navigate

and explore derived data in order to gain insights about large and complex data sets.

1.3 The Database Management System

The study of software engineering allows researchers to create better models of software

processes, products, and environmental factors and to understand how these models interact.

This knowledge, in turn, empowers practitioners to better control the development process

by understanding what techniques work and what techniques do not work, and under what

conditions.

Most artifact-based empirical studies of software engineering analyze one or more

metrics extracted from the software or bug repository. As an example, in the case of software

evolution, this metric may be compared at different points in the life of the software project

to identify trends or patterns of behavior. For example, Gall et al. used software change

version information, fine grained changed entities data and Concurrent Versions System

(CVS) release history data to create models of (1) project growth and change behavior, and

(2) the dependencies within the evolution of particular entities [15].

A central requirement when conducting artifact-based empirical experiments of open

source software development for academic research is to share and store comparable data and

analysis of software artifacts [22, 17]. The most common method of storing and organizing

data is the use of a database management system (DBMS). i3Persistence Framework upon

which Bokeo is being built, reflects the current state of the art in database ease of use and

4

setup. This persistence framework will allow researchers to rapidly develop and deploy Bokeo

plug-in modules.

The i3Persistence Framework was originally designed as a standalone technology

to address the general need in the software development community to increase developer

productivity and decrease the cost of software maintenance. However, in this industrial

thesis, we focus on the applicability of the i3Persistence Framework in replicating artifact-

based empirical experiments on data from open source repositories.

5

Chapter 2

Related Work

The analysis and synthesis of data from source code and bug repositories is an in-

creasingly well-researched problem with tools emerging within the open source community.

These tools support the extraction of data from repositories and the generation of high-

order, derived metrics via analysis and synthesis techniques. In this section we present

relevant related work.

Bonsai [21] and LXR [19], two commonly used CVS front-end tools, store the revision

information for each file into a relational database. Both Bonsai and LXR consist of several

PERL scripts that are run in succession. Although many researchers have managed to gen-

eralize Bonsai and LXR, their maintainers recommend using these tools with the repository

for which they were originally designed, namely Mozilla and the Linux kernel respectively.

Bonsai and LXR are characteristic of tools that are designed to work on a narrow group of

repositories but which researchers have adapted for their particular empirical needs.

SoftChange tracks changed files in C/C++ or Java software projects by aggregating

data from the CVS source repository, Bugzilla bug repository and mail archives [18]. This

tool consists of several PERL scripts designed to run in sequence on a Linux platform.

SoftChange requires the user to install an instance of the PostgreSQL database into which

intermediary information is placed. SoftChange is not designed for use in an automated

workflow scenario due to technology dependencies, as well as required human interaction.

Hipikat identifies relationships between documents by aggregating information from

CVS source and Bugzilla repositories, newsgroups and archives of mailing lists [10]. The

6

goal of Hipikat is to recommend to the user existing artifacts from a software project that

are relevant to a task of interest. This tool is implemented as a plug-in to Eclipse, and hence

cannot be used as a standalone contributor in an automated workflow.

Xia/Creole is an Eclipse plug-in which leverages the Eclipse CVS API and the Shrimp

Visualization Tool [41] to create a visual architectural representation of CVS repositories

[44, 30]. Since Xia/Creole is implemented as a plug-in, it cannot be used as a standalone

component in an automated workflow.

The Google App Engine is an end-to-end Web application development and runtime

environment. Developers build App Engine applications using the provided SDK and deploy

them onto Google’s infrastructure. For the App Engine datastore, the Java SDK includes

implementations of the Java Data Objects (JDO) and Java Persistence API (JPA) interfaces.

The current App Engine JDO implementation does not support inheritance, and only objects

in the same group can be saved in one transaction. Additionally, the App Engine incorporates

a pay-as-you-go fee model: the application resources used, such as storage and bandwidth,

are measured and billed by the gigabyte.

Although analysis and data transformation tools have been developed, much work

remains in improving the extensibility, reusability, and scalability of such tools. The most

significant limitations of existing tools are that (1) they require complex setup rendering

them difficult to utilize, (2) they enforce a static workflow which is not adequate for general

use, (3) they are designed with non-standard interfaces, making them difficult to reuse in a

larger tool context, and (4) they are generally not scalable under increased load.

7

Chapter 3

Thesis Statement

In this industrial thesis, we present a reusable persistence framework, called

i3Persistence, to increase developer productivity in replicating data-centric empirical ex-

periments by abstracting away from the user the complexity of data management, and fa-

cilitating ease of use and setup. We validate this framework by replicating the GNU gcc

portion of German’s study, Mining CVS Repositories, the softChange Experience, using the

Sliding-Time-Window algorithm to rebuild Modification Requests from CVS revision logs.

8

Chapter 4

Project Description

4.1 Why Another Persistence Framework?

Given the plethora of relational database management systems (RDBMS) currently available,

one may argue against the need for yet another persistence framework. We present our

justification below in three parts:

1. The limitations of existing database management systems.

2. The deficiencies of data management in the current development model for empirical

experiments of open source software.

3. The lack of support for Bokeo’s plug-in architecture requirements by the design-time

static schema requirement of current RDBMSs.

4.1.1 Limitations of Existing Database Management Systems (DBMSs)

Although Database Management System (DBMS) technology has evolved from the tightly

integrated systems of the mid 1960s to the cloud-based systems of today, the basic building

blocks of general-purpose DBMSs continue to pose obstacles to the application developer.

We outline these obstacles in the following subsections.

4.1.1.1 The Relational vs. Object-Oriented Impedance Mismatch

Most applications that rely on a database as a datastore use a RDBMS while employing an

object-oriented programming language to implement business logic. Since RDBMSs store

9

data in tables which is inconsistent with this programming model, business objects must

be mapped to and from predefined database tables. This inefficiency, or “impedance mis-

match,” resulting from the need to map objects to tables and vice versa, has been a necessary

complexity and performance penalty when using RDBMSs.

4.1.1.2 The Challenges of SQL

The use of RDBMSs requires proficiency in SQL (Structured Query Language), the most

widely used computer language designed for managing data in RDBMSs. Unfortunately, the

use of SQL poses several challenges to the developer.

First, although there is an accepted SQL standard, there are significant differences in

DBMS implementations [2]. These differences are significant to the degree that SQL written

for one DBMS will often not work on another DBMS. The reason for this can be traced to

the fact that most modern database systems existed long before SQL was standardized and

that there is still a business need to continue to support the legacy SQL written for these

distinct environments. This uneven implementation of SQL and proprietary SQL extensions

among RDBMS products makes migrating a sizable application from one RDBMS to another

a significant effort.

Second, the grammar of SQL is based on declarative programming as opposed to im-

perative programming paradigm of traditional computer programming languages. In declara-

tive programming, computation is described in terms of what the program should accomplish

without prescribing the details of the actions to be taken. In contrast, imperative program-

ming describes how to accomplish a task in terms of specific directions for the computer to

perform. This difference in programming paradigms imposes another “impedance mismatch”

for developers.

Third, although there have been great strides made in the development of database

debuggers, these tools usually support a limited set of databases and require intimate knowl-

edge of the particular flavor of SQL supported by each database. This results in an obtrusive

10

“trial-and-error” development process which usually requires substantial time and resources

(see Section 4.1.2). Additionally, a debugging solution for one RDBMS may not work for

other vendors’ products. Such is the case for Oracle and MySQL.

For example, the accepted practice when debugging Oracle queries is to use the

DBMS_OUTPUT package. This package is a corollary to System.out.println() in Java. The

developer inserts output statements at strategic points in the code during design to evaluate

the state of the executing query.

Additionally, in order to view the output at the command-line in Oracle without using

a database-aware debugger such as SQL*Developer or Toad, the developer must first set a

SQL*Plus environment variable from inside the SQL*Plus command-line environment (List-

ing 4.1). The developer can then test anonymous or named blocks (which is not supported

in MySQL) with SQL statements such as in Listing 4.2.

Listing 4.1: Oracle Debugging Setup

1 SQL > SET SERVEROUTPUT ON SIZE 1000000

Listing 4.2: Oracle SQL Debugging Code

1 -- Create a procedure in Oracle.
2 CREATE OR REPLACE PROCEDURE hello_world IS
3 BEGIN
4 -- Print a word without a line return.
5 dbms_output.put(’Hello ’);
6 -- Print the rest of the phrase and a line return.
7 dbms_output.put_line(’World!’);
8 END;
9 /

10 -- Call the procedure.
11 EXECUTE hello_world;

The MySQL equivalent to calling the DBMS_OUTPUT package procedures is to simply

SELECT a string as in Listing 4.3.

11

Listing 4.3: MySQL SQL Debugging Code

1 -- Conditionally drop the procedure.
2 SELECT ’DROP PROCEDURE hello_world ’ AS "Statement";
3 DROP PROCEDURE IF EXISTS hello_world;
4

5 -- Reset the delimiter to write a procedure.
6 DELIMITER $$
7

8 -- Create a procedure as in Oracle.
9 CREATE PROCEDURE hello_world ()

10 BEGIN
11 -- Print the phrase and a line return.
12 SELECT ’Hello World!’;
13 END;
14 $$
15

16 -- Reset the delimiter back to a semicolon to work again.
17 DELIMITER ;
18

19 -- Call the procedure.
20 SELECT ’CALL hello_world ’ AS "Statement";
21 CALL hello_world ();

As can be seen in Listing 4.2 and Listing 4.3, the syntax of the SQL statements (as

well as the APIs used for debugging) substantially differ between Oracle and MySQL. This

example illustrates that debugging knowledge and efforts for Oracle are not transferable to

MySQL and vice-versa.

4.1.1.3 The Challenges of Modern Object-Oriented DBMSs

An alternative to RDBMS is to manage data through object-oriented database management

systems (OODBMS). There are many products currently available and most have semantics

that are close to those of object-oriented programming languages, making it relatively easy

to store, retrieve, and manage objects rather than rows of data. However, although the

acceptance of OODBMS is growing, this solution also has its drawbacks.

While a standard exists for OODBMSs [5], in practice most products implement very

little of that standard and vendors differ broadly on which portions of the standard they do

implement. Additionally, most OODBMSs require knowledge of OQL, in addition to SQL, to

manipulate the data. Due to the complexity of OQL, many OODBMS vendors implement

12

only subsets of the standard, leading to the same diversity problem of SQL described in

Section 4.1.1.2.

4.1.2 The Traditional vs. i3Persistence Development Process Model

Most existing DBMSs are designed for general use and are not optimized for computation-

centric research. One of the building blocks of a general application DBMS is the Data

Manipulation Subsystem, which helps the user to add, change, and delete information in a

database and query it for valuable information. To maximize flexibility, most RDBMS Data

Manipulation Subsystems support the use of a Data Query Language called SQL.

Complex computations are written in SQL and executed on the database server.

SQL is complex to write and difficult to debug, thus increasing the likelihood of defects and

prolonged development time.

The standard process for developing complex SQL logic is to implement the code in

steps where the outputs of each coding step are saved to be analyzed at a later time for cor-

rectness. This process is repeated until the desired results are generated. This “non-runtime”

debugging process, as depicted in Figure 4.1, usually involves the use of multiple tools and

significantly more iterations than “runtime” debugging processes of modern programming

languages.

The i3Persistence Framework alternative is to write the computations and business

logic in Java and use a persistence-only optimized system to handle the storing and retrieving

of data. This process is shown in Figure 4.2.

In this development model, computations are written in Java using tools with which

the developer is familiar and which support a robust write-debug-modify cycle. The com-

plexity of storing and retrieving data is abstracted behind an easy-to-use interface, freeing

developers to focus on the solution to the research question instead of on the details of per-

sistence implementation. Advanced Integrated Development Environments (IDE), such as

13

Figure 4.1: SQL-based Database Development Process

Eclipse, allow rapid implementation cycles by supporting code editing and debugging as a

contiguous process within a single tool.

4.1.3 Static vs. Dynamic Database Schema

RDBMSs enforce the use of a design-time static schema, which is contrary to Bokeo’s

plug-in architecture, in which each plug-in designer can specify persistence requirements.

The RDBMS-persistence-based prototype-to-production development model usually requires

database changes to be migrated from the prototype to production runtime environment at

design time. This implies that the framework must be aware of each plug-in’s persistence

requirements.

The goal of Bokeo is to allow researchers to prototype their Analysis and Synthesis

Logic outside Bokeo then migrate the modules into Bokeo by wrapping them in the plugin

framework as shown in Figure 4.3.

Bokeo provides the same i3Persistence services used during the prototyping phase

of development where the Analysis and Synthesis Logic is developed as a standalone ap-

plication. By using Dependency Inversion (Appendix B), Dependency Injection (Appendix

14

Figure 4.2: i3Persistence-based Database Development Process

C), and Byte Code Manipulation (Section 5.2.2), Bokeo seamlessly supports the persistence

requirements of the plug-in. Therefore, an i3Persistence Framework -based standalone appli-

cation can be converted into a Bokeo plug-in without any changes to the persistence logic.

4.2 i3Persistence Framework User Specifications

The i3Persistence Framework was developed over a period of 1.5 years. The primary product

goals of the initial release of the i3Persistence Framework are three-fold:

1. Allow development teams of various skill levels to work concurrently on the project,

but independent of each other.

2. Increase developer productivity by abstracting the complexity of data management

away from the user.

3. Promote ease of use and setup.

The following sections describe features that were designed to address the product goals

listed above.

15

Figure 4.3: i3Persistence-based Plug-in Development Process

4.2.1 Decoupling via the Dependency Inversion Principle

In 1996, Robert Martin postulated the Dependency Inversion Principle (DIP) articulating

the need to reduce the dependency of higher-level, more general layers to lower-level, more

concrete layers in software systems [33]. This decoupling is achieved through the use of

abstractions or, in the case of Java, interfaces.

The i3Persistence Framework achieves reduction in coupling by using a Component-

Layered Architecture (see Appendix A). Each layer exposes a Service Interface which ab-

stracts the layer’s implementation details. This decoupling facilitates the independent, con-

current development of the i3Persistence Framework components and layers.

4.2.2 Further Decoupling via the Dependency Injection Pattern

Dependency Injection (DI) is a programming pattern that separates application code from

the concrete implementation of the Service Interface. The main idea behind DI is that if

an object relies on other "components" to help it accomplish its work, it should not be

responsible for creating those components; rather, the components it depends on should

be injected into it in the form of abstractions. Therefore, DI is based on the Dependency

Inversion concept of programming to abstractions.

16

One benefit of using DI is the reduction of boilerplate code in the application objects

since all work to initialize or set up dependencies is handled by a provider component [27].

Another benefit of DI is that it offers configuration flexibility because alternative

implementations of a given service can be used without recompiling code. This means that

service implementations can be easily changed by simply changing a configuration file.

The i3Persistence Framework uses DI to “glue” its services to application logic (see

Appendix C).

4.2.3 Delegation via The Factory Method Pattern

One of the fundamental goals of software development, as stated by the open/close principle,

is to design systems in which software entities (classes, modules, functions, etc.) are “open

for extension, but closed for modification” [34]. Simply stated, software systems should be

designed to change rapidly while reducing the negative impact these alterations can bring.

The Dependency Inversion Principle and Dependency Injection Pattern presented

previously reduce coupling which in turn reduces the impact of changes to the system, but

the use of abstractions introduces another problem. A module at runtime may only know

when to instantiate a new object, but not the kind of subclass to create.

A solution to this problem is a creational design pattern called the Factory Method

Pattern [16]. This pattern addresses the problem of creating objects without specifying the

exact class of object that will be created. The classic definition of the factory method handles

the problem of anonymous object creation by defining a separate method for creating the

objects, of which subclasses can then override to specify the derived type of product that

will be created.

Another definition of the term factory method refers to a method of a factory whose

main purpose is the creation of objects. The i3Persistence Framework implements this

definition by providing a mechanism to define an object factory with the use of the @Service

17

annotation and by implementing the Factory interface (see Section 5.5). This delegation

of responsibility increases application maintainability.

Another benefit of using the Factory Method Pattern is the reduction of boiler-

plate code in the application objects since all work to instantiate objects is handled by

the i3Persistence Framework.

4.2.4 Reduce Complexity via Query By Filter vs. SQL

The i3Persistence Framework Query object eliminates the need for SQL by supporting query

by filter. A Filter Object for a query is used to limit the results returned by a query based

upon the return value of a getter method (see Section 5.5.3). For filtering on multiple

properties, multiple Filters can be applied to a Query using a FilterGroup.

4.2.5 Reduce Code via Automatic Generation of interface Implementations

To reduce lines of code, the i3Persistence Framework provides a mechanism to automatically

generate implementations for interfaces which adhere to the JavaBeans properties naming

convention. JavaBeans is a framework for defining reusable modular software components.

The class properties must be accessible using get, set, is (not that common) and other

methods (so-called getter methods and setter methods), following a standard naming con-

vention [12]. These conventions make it possible to develop tools that can use, reuse, replace,

and connect JavaBeans. The JavaBeans properties naming convention is depicted in Table

4.1.

A bean defines a property p of type T if it has getter methods that follow these

patterns (if T is boolean, a special form of getter method is allowed):

JavaBeans-compliant classes are used frequently as Data Transfer Objects (DTO).

A DTO (formerly known as Value Objects) [14], is a design pattern used to transfer data

between software application subsystems. DTOs are often used in conjunction with Data

Access Objects (DAO) to retrieve data from a database. The difference between DTOs and

18

Property Naming Convention
Getter public T getP()
Boolean getter public boolean isP()
Setter public void setP(T)
Array getter public T[] getP()
Element getter public T getP(int)
Array setter public void setP(T[])
Element setter public void setP(int, T)

Table 4.1: JavaBeans Properties Naming Convention

DAOs is that a DTO does not have any behavior except for storage and retrieval of its own

data (getters and setters).

In a traditional three-tiered architecture, DTOs serve dual purposes: first, they pro-

vide serializable solutions for objects which are not serializable; second, they implicitly define

an assembly phase where all data to be used by the view are fetched and marshaled into

the DTOs before returning control to the presentation tier. A benefit of controlling the

synthesis of DTOs in the framework is that the object assembly phase can be optimized for

a particular platform or database without affecting the client application.

The i3Persistence Framework implementation auto-generation mechanism creates a

DTO class definition for an interface at runtime using the Javassist APIs. The fields of

the generated DTO are based on the property name p and type T required by the JavaBeans

naming convention for getter/setter methods.

This auto-generation mechanism reduces boilerplate code in the application since the

framework generates the implementation for an interface. The usage details of this feature

are described in Section 5.3.5.

4.2.6 Ease of Use via a Simple Persistence API

The Persistence Layer of the i3Persistence Framework is optimized for data storage and

retrieval, leaving computations to be written at the Application Layer in Java. This opti-

mization is manifested in the simplicity of the data management API, which consists of a

19

PersistenceManager to store data and a Query manager to retrieve data. These two API

classes hide the complexity of data management and integrate seamlessly into native Java

along with the object-oriented programming paradigm.

Because the i3Persistence Framework is written completely in Java, the framework

functions as an extension to the Java language and is supported by the same IDE as is used

to develop the Analysis and Synthesis Logic. This integral development allows for rapid

write-debug-modification cycles.

4.2.7 Support for MySQL

MySQL is an RDBMS released as open source by MySQL AB in 2000. Since then, MySQL

has emerged as the preferred open-source database choice for developers [1]. MySQL runs on

more than 20 platforms including Linux, Windows, Mac OS, Solaris, HP-UX, IBM AIX, and

is currently being used on every continent. The i3Persistence Framework supports MySQL.

20

Chapter 5

Implementation

5.1 Architecture Overview

The architecture of a software system is the highest-level breakdown of the system into its

parts [14]. It embodies the design decisions that are difficult to change over the course of

the software development cycle.

In this chapter, we present what we consider to be the important aspects of the

i3Persistence Framework architecture.

5.1.1 Project Organization

The i3Persistence Framework is composed of two layers: the Injection Layer and the Per-

sistence Layer (see Figure 5.1). As the names suggest, the Injection Layer encapsulates the

DI functionality and the Persistence Layer encapsulates the Data Persistence functionality.

The Injection Layer is comprised of the following modules:

• i3InjectionApi – The service abstraction for the Injection Layer (see Section 4.2.1)

• i3InjectionImpl – The implementation of the i3InjectionApi services (see Section

4.2.1)

• i3Agent – An implementation of the Java Agent module required by the Java Instru-

mentation mechanism (see Section 5.2.1)

• Javassist – A third-party library for byte-code manipulation

21

Figure 5.1: i3Persistence Framework Component-Layered Architecture

The Injection Layer has a hard binding to several J2EE modules to support deployment on

Tomcat and JBoss.

The Persistence Layer is comprised of the following modules:

• i3PersistenceApi – The service abstraction for the Persistence Layer (see Section

4.2.1)

• i3PersistenceImpl – The implementation for the i3PersistenceApi services (see

Section 4.2.1)

• i3Datastore – The database-specific modules

22

5.2 Java Object Persistence Scheme

The i3Persistence Framework persists Java objects in a Relational Database by utilizing

Java Serialization. Serialization is the process of converting a set of object instances that

contain references to each other into a linear stream of bytes as outlined in Figure 5.2.

Figure 5.2: Java Object Serialization

The stream functions as a container

for the object. Its contents include a partial

representation of the object’s internal struc-

ture, including variable types, names, and

values as outlined in Section 6 of the Sun

Microsystem Java Object Serialization Spec-

ification rev. 1.4.4 [28].

The Persistence Layer services an

object persistence request by generating a

transient encoding of the object via the Java

Serialization API. The framework then pro-

cesses the serialized information modifying it

for persistence and retrieval, then passes the

modified information to the i3Datastore

module. The i3Datastore module persists

the object information in the schema de-

picted by Figure 5.3.

Java objects are broken down into

their basic members and stored in the database tables listed in Table 5.1.

Each unique class is stored in JAVA_CLASS. All object instances are registered in the

JAVA_OBJECT table along with their associated class name. For each field of an object, an en-

try is created in JAVA_REFERENCE to record the object hierarchy and in JAVA_OBJECT_FIELD

23

Figure 5.3: i3Persistence Framework Database ER Diagram

to record the data. The Persistent_Status field values of the JAVA_OBJECT table determine

how long an object is retained by the PersistenceManager and determines if the object is

visible to queries. Table 5.2 contains a list of the possible PersistentStatus values.

Object data is stored by type in the remaining tables. All String data are stored in

the JAVA_STRING table to optimize searches.

The i3Persistence Framework abstracts the physical representation of the data store

in the i3Datastore module with the intent to replace the current class getter -based query

filtering with a more performant implementation and to eventually support multiple data

sources in various formats and technologies.

24

Table 5.1: i3Persistence Framework Database Table Definitions

Table 5.2: PersistenceStatus Values

5.2.1 Java Instrumentation and i3Agent

Java 5 introduced the Java Instrumentation mechanism, which allows developers to provide

Java Agents that can inspect and modify the byte-code of the classes as they are loaded.

A Java Agent is a pluggable library that runs embedded in a JVM and intercepts the class

loading process.

The i3Agentmodule of the i3Persistence Framework provides a custom Transformer

which is utilized by the Java Agent to support byte-code manipulation and object injection.

25

5.2.2 Javassist and Byte Code Manipulation

Javassist (Java Programming Assistant) is a class library for the runtime editing of byte-

codes in Java [9]. It enables Java programs to define a new class at runtime and to modify

a class file when the JVM loads it. The byte-code-level API allows users to directly edit a

class declaration at runtime to add new methods.

Javassist also supports runtime reflection by enabling Java programs to use a metaob-

ject that controls method calls on base-level objects.

The Injection Layer of the i3Persistence Framework uses Javassist for service injec-

tion.

5.3 i3Injection: Java Annotation

An annotation, in the Java programming language, is a special form of syntactic metadata

that can be added to Java source code [25]. Classes, methods, variables, parameters and

packages may be annotated. Unlike Javadoc tags, Java annotations can be reflective in that

they can be embedded in class files generated by the compiler and may be retained by the

Java VM to be made retrievable at run-time [20].

Annotations are used by the i3Persistence Framework to achieve the following:

1. Applying behaviors to user-defined classes and methods.

2. Used by the Injection Layer for service injection.

3. Used by the framework Java Agent hook to transform objects at runtime.

The Transformer object inserted into the VM at application startup by the i3Agentmodule,

using the Java Automation API (see Section 5.2.1), intercepts the Classloader at runtime.

It then scans the target class to load using Java reflection for supported annotations.

The following sections describe the custom annotations supported by the i3Persistence

Framework.

26

5.3.1 @ServiceContext

@ServiceContext is a method-level annotation used to create a context within which reg-

istered objects and services are available for injection into method variables. When the

Transformer detects the @ServiceContext annotation at class loading time, it manipulates

the byte-code of the containing object and inserts additional code to the annotated method

to access the service registry. This byte-code manipulation is achieved using the Javassist

API (see Section 5.2.2).

Table 5.3 details the options for the @ServiceContext annotation.

Table 5.3: ServiceContext Annotation Optional Element Summary

5.3.1.1 Registering Services with initializationClasses

The initializationClasses option takes a list of comma-delimited runtime class objects

to use to register injection implementations. These injection initialization classes (IIC), or

Initializer classes, contain implementation details used by the Transformer to instantiate

objects for injection. Listing 5.1 is an example of an injection initialization class.

Listing 5.1: ServiceContext Initializer Class

1 public class Initializer
2 {
3 /**
4 * 1) Register the TestObject interface so that it can be used
5 * with the @New annotation.
6 */
7 @RegisteredClass
8 private final Class <TestObjectIntf > testObjectClass = TestObjectIntf.

class;
9

10 /**
11 * 2) Register the TestService service so that it can be used
12 * with the @Service annotation.

27

13 */
14 @RegisteredService
15 private final TestService testServiceClass = new TestServiceImpl ();
16
17 /**
18 * 3) Register a custom factory to use when the CustomTestObject
19 * is auto -instantiated using the @New annotation.
20 */
21 @RegisteredService
22 Factory <CustomTestObject > customTestObjectClass = new

CustomTestObjectFactoryImpl ();
23 }

The Initializer class of Listing 5.1 registers three injection implementation references

annotated with either @RegisteredClass or @RegisteredService. Sections 5.3.3 and 5.3.2

cover these annotations in detail. Each reference maps a left-hand side (LHS) type with a

right-hand side (RHS) implementation. The variable name is used only to be syntactically

correct. When the Transformer encounters an injection annotation (@Service or @New),

it looks for the LHS type in the service registry of the current service context. If the type

exists, it retrieves the RHS implementation details.

If the RHS is an interface (line 8), the default factory generates an in-memory

implementation based on the interface’s JavaBeans-compliant getter/setter methods.

If the RHS is an object (line 15), the Transformer uses the object as the implemen-

tation to inject.

The use of the Factory interface in line 22 is detailed in Section 5.5.1.

A service context may have only one implementation mapped to each Service Inter-

face. Two different injection sites can receive different implementations for the same Service

Interface if the injection sites are bound to different service context initializations (see Sec-

tion 5.3.5 for details).

5.3.1.2 Controlling the Scope of a ServiceContext with contextType

The lifespan or scope of a service context is controlled using the contextType option shown

in Table 5.4.

28

Table 5.4: ServiceContextType Values

The default value, standard, limits

the scope of the service context to the tar-

get method. When the method exits, the

service context is destroyed. This setting is

useful in Java SE, single-threaded environ-

ments where the scope of a context is tied

to an execution thread. When the execution terminates, the service context is no longer

needed and is destroyed.

The options containerContextInitializer and containerContextFinalizer al-

low developers to manually designate the beginning and ending of a service context. These

settings are useful in J2EE, multi-threaded and asynchronous environments where program

execution can be distributed across multiple independent processes.

Listing 5.2: JUnit Test for Manual Control of Service Context

1 public class Test
2 {
3 /**
4 * Create a service context
5 */
6 @ServiceContext(contextType=ServiceContextType.

containerContextInitializer)
7 @BeforeClass
8 public static void setupBeforeClass () throws Exception {}
9

10 /**
11 * Delete a service context
12 */
13 @ServiceContext(contextType=ServiceContextType.

containerContextFinalizer)
14 @AfterClass
15 public static void tearDownAfterClass () {}
16 }

Listing 5.2 shows how the containerContextInitializer and

containerContextFinalizer options can be used to extend a service context scope

in a JUnit test from the method to the class.

29

5.3.2 @RegisterService

@RegisterService is a field-level annotation used in Initializer classes to register a service,

or a singleton, with the service context (Listing 5.1).

In an Initializer class, when a field marked with the @RegisteredService annotation

is written to, the instance (RHS) assigned to the field is registered with the service context.

The identifier for the registered service is defined by the LHS declared field type including

the type parameters, if any.

When a field that is marked with the @Service annotation is discovered in any class,

and the declared type of the field (including the type parameters, if any) exactly matches

the declared type of the @RegisteredService field in the Initializer class, then the instance

assigned to the @RegisteredService field will be injected into the @Service annotated field.

5.3.3 @RegisteredClass

@RegisteredClass is a field-level annotation used in Initializer classes to register

interfaces and class implementations for injection. This annotation is a specialized version

of @RegisterService designed to simplify the injection of auto-generated implementations.

In an Initializer class, when a field marked with the @RegisteredClass annotation

is written to, a default factory is generated to synthesize the implementation of the RHS

runtime class. If the RHS runtime class is an interface, the default factory will synthesize

an in-memory implementation of all non-implemented getters/setters which comply with the

JavaBeans naming convention.

An added feature of the @RegisteredClass annotation is that the RHS runtime class

can be an abstract class with only the getters/setters of interest implemented. The default

factory will auto-generate the remaining getters/setters based on their JavaBeans-compliant

method names.

30

Listing 5.3: LazyInterface example

1 public interface LazyInterface
2 {
3 public List <String > getNames ();
4 public void setName(List <String > names);
5

6 public int getCount ();
7 public void setCount(int count);
8 }

Listing 5.4: LazyAbstractClass example

1 public abstract class LazyAbstractClass implements LazyInterface
2 {
3 private List <String > names;
4

5 @Override
6 public List <String > getNames ()
7 {
8 if (null == names)
9 {

10 names = new ArrayList <String >();
11 }
12 return names;
13 }
14

15 @Override
16 public void setNames(List <String > names)
17 {
18 this.names = names;
19 }
20 }

LazyAbstractClass in Listing 5.4 is an abstract class which implements two of the

four methods required by LazyInterface of Listing 5.3.

Listing 5.5: LazyInterface Initializer class

1 public class LazyAbstractClassInitializer
2 {
3 @RegisterClass
4 private Class <? extends LazyInterface > testObject = LazyAbstractClass

.class;
5 }

In Listing 5.5, the Initializer class registers LazyAbstractClass as the implementa-

tion class for the LazyInterface type.

31

Listing 5.6: Instantiating an abstract class for Injection

1 public class LazyClassInjectionTest
2 {
3 /**
4 * Main method for the Service Context
5 */
6 @ServiceContext(initializationClasses ={ LazyAbstractClassInitializer.

class})
7 public void lazyAbstractClassNewTest ()
8 {
9 new Object ()

10 {
11 // Inject the abstract class instance
12 @New
13 private LazyInterface lazy;
14

15 public void run()
16 {
17 Assert.assertEquals(lazy.getNames ().size(), 0);
18 }
19 }.run();
20 }
21 }

According to the Java Programming Language Specification, abstract classes can-

not be instantiated [20], but the i3Persistence Framework injection mechanism bypasses this

restriction by automatically completing the implementation of LazyInterface using Javas-

sist and byte-code manipulation. In Listing 5.6, the i3Persistence Framework transforma-

tion mechanism inserts into the LazyAbstractClass declaration at runtime a count field of

type int and the getCount()/setCount(int count) getter/setter, effectively completing

the implementation of LazyInterface.

The @RegisterClass annotation works in conjunction with the @New field-level anno-

tation to inject implementations into fields (see Section 5.3.5). This feature greatly reduces

the lines of code necessary when working with abstract classes.

5.3.4 @Service

@Service is a field-level annotation used to indicate that the marked field must be injected

at runtime with a service that implements the functions defined by the declared type of the

32

field. A service is a singleton implementation that is registered with a service context via

the Initializer class using the @RegisterService annotation (see Listing 5.1).

Fields with the @Service annotations must be populated with an instance of a service

before any of the non-static methods of the class (including constructors) are invoked. The

service to be injected is identified by the declared type of the field, including the type

parameters, if any. For example, when the field declaration in Listing 5.7 is discovered by

the Transformer, it will search the service registry of the current service context for an

implementation matching the LHS type signature, Factory<MyServiceObject>, to inject.

Listing 5.7: @Service declaration

1 @Service
2 private MyService myService;
3

4 @Service
5 private Factory <MyServiceObject > myFactory;

If no implementation exists, then a ServiceNotAvailableException is thrown.

5.3.5 @New

@New is a field-level annotation used to mark a variable for injection. Its counterpart,

@RegisterClass, is used to register the implementation details (see Section 5.3.3).

When the Transformer detects the @New annotation in Listing 5.8, it searches the

service registry in the current service context for an implementation matching the LHS type

signature of the marked field.

Listing 5.8: @New declaration

1 @New
2 private LazyInterface lazyObject;

This implementation may have been previously registered with the service context

using the @RegisteredClass annotation in an Initializer class in the @ServiceContext

declaration. If no implementation was registered and if the LHS type is an interface, an

33

in-memory implementation is auto-generated using the Javassist API. The Transformer

then injects the generated object into the annotated field.

This feature reduces the boilerplate code necessary when working with DTOs by

delegating the implementation of JavaBeans-compliant interfaces to the framework.

5.3.6 @Transaction

@Transaction is a method-level annotation which indicates that the work done by a method

should be treated as a single unit of work (a single transaction). If an exception is thrown

by the annotated method, then all changes done by the method to the database are undone.

In other words, if a method tagged with this annotation throws an exception, then the work

done by the method will have no persistent effect on the system. The annotation is defined

as follows:

Listing 5.9: @Transaction interface

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target ({ ElementType.METHOD , ElementType.CONSTRUCTOR })
3 public @interface Transaction
4 {
5 /**
6 * Read only transaction will not commit any object changes to
7 * persistent storage.
8 */
9 public boolean readOnly () default false;

10 }

The readOnly option ensures that no changes will be committed to the database.

5.4 Optimizing Object Injection

The Java Instrumentation mechanism does not discriminate which classes are analyzed for

injection. This inefficiency can cause substantial degradation in performance for projects

which depend heavily on third-party libraries. Consequently, the i3Persistence Framework

provides mechanisms to declare which classes are candidates for transformation.

34

5.4.1 Fine Tuning The Injection with the injection-conf.xml File

Similar to the connections.properties file discussed in Section 6.1, the i3Persistence

Framework searches for an injection-config.xml file at the root of the META-INF di-

rectory of every JAR loaded. This XML file contains 1) a list of regular expression filters

used to validate the canonical class name of classes to transform and 2) a list of default

Initializer classes to load when creating a service context. This configuration mechanism is

used internally by the i3Persistence Framework to qualify framework classes for transforma-

tion and to register internal services. Listing 5.10 is the injection-config.xml file for the

i3InjectionImpl module.

Listing 5.10: i3InjectionImpl injection-config.xml file

1 <?xml version="1.0" encoding="UTF -8"?>
2 <!DOCTYPE injection -config PUBLIC " -//Sequoia Lab//DTD Injection

Configuration //EN" "/META -INF/dtd/injection -config.dtd">
3 <injection -config >
4 <!-- Classes to transform -->
5 <injection -class -list>
6 <injection -class regex="edu\.byu\.cs\. sequoia \.bokeo \..*+"/>
7 <injection -class regex="org\. apache \.jsp \..* _jsp"/>
8 </injection -class -list>
9 </injection -config >

The two classpaths under the injection-class-list tag declared in Listing 5.10,

edu.byu.cs.sequoia.bokeo.* and org.apache.jsp.*, comprise the system default class

transformation filters. Each application with package structures outside those qualified by

the system default filters, must contain a connections.properties file to extend the default

filter list and qualify the application’s classes for transformation.

Also, developers can simplify the declaration of the @ServiceContext annotation

(Section 5.3.1) by registering default initialization classes in the injection-config.xml

using the initialization-class-list tag. Listing 5.11 shows the i3Datasource module’s

injection-config.xml file with the default list of Initializer classes.

35

Listing 5.11: i3Datasource injection-config.xml file

1 <?xml version="1.0" encoding="UTF -8"?>
2 <!DOCTYPE injection -config PUBLIC " -//Sequoia Lab//DTD Injection

Configuration //EN" "/META -INF/dtd/injection -config.dtd">
3 <injection -config >
4 <initialization -class -list>
5 <initialization -class classname="edu.byu.cs.sequoia.bokeo.i3.

datasource.connection.impl.Initializer"/>
6 <initialization -class classname="edu.byu.cs.sequoia.bokeo.i3.

datasource.update.impl.Initializer"/>
7 <initialization -class classname="edu.byu.cs.sequoia.bokeo.i3.

datasource.get.impl.Initializer"/>
8 <initialization -class classname="edu.byu.cs.sequoia.bokeo.i3.

datasource.impl.Initializer"/>
9 </initialization -class -list>

10 </injection -config >

The Initializer classes declared in the injection-config.xml file are evaluated

upon service context creation. The i3Persistence Framework uses the i3Datasource

injection-config.xml file to register default services with every service context.

5.4.2 @DoNotTransform

@DoNotTransform is a class-level annotation which developers can use to exempt classes that

lie within the scope of the injection-class filters from transformation. Listing 5.12 shows

how this annotation is used.

Listing 5.12: @DoNotTransform annotation usage

1 @DoNotTransform
2 public class MyClass
3 {
4 ...
5 }

The combination of the injection-config.xml file and the @DoNotTransform anno-

tation enables developers to control the object injection process of the i3Persistence Frame-

work.

36

5.5 Framework Services

The i3Persistence Framework provides default services to increase productivity, store objects

to the database and query objects from the database. This section introduces these services.

5.5.1 The Factory Service Interface

The Factory interface, in conjunction with the @Service annotation, provides an easy-

to-use mechanism to create an instance of the Factory Method design pattern. When the

Transformer encounters a field declaration of LHS type Factory and marked with the

@Service annotation, it searches the service registry of the current service context for an

implementation matching the type Factory and its parameter type(s). If no implementation

exists, the framework provides a default implementation which returns an instance of the

parameter type.

Listing 5.13: Class Instance Factory

1 @ServiceContext
2 public void Test()
3 {
4 @ServiceContext
5 public List <Long > getList(int size)
6 {
7 /**
8 * Inject a default factory which returns the auto -generated
9 * implementation of the TestInterface

10 */
11 @Service
12 private Factory <TestInterface > classFactory;
13
14 /**
15 * Inject a default factory which returns an instance
16 * of the ArrayList <TestInterface > class
17 */
18 @Service
19 Factory <ArrayList <TestInterface >> listFactory;
20
21 List <TestInterface > list = listFactory.newInstance ();
22 for (int i = 0; i < size; i++)
23 {
24 list.add(classFactory.newInstance ();
25 }
26 return list;
27 }
28 }

37

In Listing 5.13, the Transformer first injects into the field classFactory a default

factory to generate instances of the wrapper class TestInterface. It then injects into the

field listFactory a default factory to generate instances of the ArrayList<TestInterface>

class. In line 21 of the listing, an instance of ArrayList<TestInterface> is assigned

to the variable list. In the for loop starting at line 22, instances of the wrapper class

TestInterface are added to the variable list.

The developer can provide a custom RHS implementation which controls the instanti-

ation of the object. This RHS implementation must implement the interfaces Initializable

and the LHS Factory type with the corresponding parameters. Listing 5.14 shows an exam-

ple of a custom implementation of the Factory interface which returns instances of the

ArrayList<Object> class.

Listing 5.14: Custom Factory Implementation

1 public class ListFactory implements Initializable , Factory <List <?>>
2 {
3 @Override
4 public List <?> newInstance ()
5 {
6 return new ArrayList <Object >();
7 }
8 }

Listing 5.15 is the Initializer class which registers the custom factory implementation

for the Factory<List<?>> type with service context.

Listing 5.15: Initializer Class for Custom Factory Implementation

1 public class Register
2 {
3 @SuppressWarnings("unused")
4 @RegisteredService
5 private Factory <List <?>> listFactory = new ListFactory ();
6 }

In Listing 5.16, the @ServiceContext annotation on line 3 creates a new service

context within the scope of the customFactoryImplTest() method.

38

Listing 5.16: Custom Factory Implementation Injection

1 public FactoryTest
2 {
3 @ServiceContext(initializationClasses ={ Register.class})
4 public void customFactoryImplTest ()
5 {
6 new Object ()
7 {
8 /**
9 * Inject the implementation registered in the

10 * Initializer class.
11 */
12 @Service
13 private Factory <List <?>> listFactory;
14
15 public void run()
16 {
17 listFactory.newInstance ();
18 }
19 }.run();
20 }
21 }

During the service context creation process, the framework uses the

initializationClasses option to register the ListFactory instance for the type

Factory<List<?>> interface. When the Transformer encounters the @Service anno-

tation on line 12, it searches the service registry of the current service context for the

implementation for the type with the signature Factory<List<?>> and injects it into the

listFactory variable.

The i3Persistence Framework support of the Factory Method Pattern eliminates the

need for the boilerplate code necessary when manually implementing the Factory Method

Pattern.

5.5.2 The PersistenceManager Service

The PersistenceManager service is a framework service that is used to add objects to the

database. Table 5.5 lists the methods supported by the PersistenceManager.

A PersistentID is a Universally Unique Identifier (UUID) guaranteed to be unique.

This identifier allows database objects to be shared across instances of the i3Persistence

39

Table 5.5: PresistenceManager Method Summary

Framework. The PersistenceManager also manages the object’s PersistentStatus. See

Section 5.2 for details on PersistentStatus.

The source listing in Section 5.5.3 shows an example of how to use the

PersistenceManager, Query, Filters and FilterGroups.

5.5.3 The Query Interface

Query is a framework class (versus a service) that is used to retrieve objects from the

database. A Query instance searches the database for instances of a specific class or its

subclasses (polymorphic search). Table 5.6 summarizes the methods of the Query class.

Table 5.6: Query Class Method Summary

40

The results of a Query can be restricted by adding a Filter or a FilterGroup that

compares an object’s properties to a set of values using a FilterOperator provided by the

Filters and FilterGroups. Filters and FilterGroups, if used, must be added before the

execute() method is invoked. FilterAdapter is a default implementation of the Filter

interface. Table 5.7 summarizes the methods supported by FilterAdapter.

Table 5.7: FilterAdapter Class Method Summary

A FilterGroup allows multiple Filters to be combined into “AND” or “OR” group-

ings designated by FilterGroupOperator values (see Table 5.8).

Table 5.8: FilterGroupAdapter Class Method Summary

41

The following is an example of how to use the PersistenceManager, Query,

Filters and FilterGroups. Listing 5.17 shows the JavaBeans-compliant interface im-

plemented by the class whose instance is to be persisted in the database.

Listing 5.17: interface to Persist

1 public interface TestInterface
2 {
3 public int getNumber ();
4 public void setNumber(int value);
5 public String getText ();
6 public void setText ();
7 }

Listing 5.18 shows the DAO class that will be responsible for saving and retrieving

the objects.

Listing 5.18: Data Access Object Class

1 public class DAOClass
2 {
3 /**
4 * Inject the framework PersistenceManager service
5 */
6 @Service
7 private PersistenceManager pm;
8
9 /**

10 * Inject a default factory which returns the
11 * auto -generated implementation of the TestInterface
12 */
13 @Service
14 Factory <TestInterface > factory;
15
16 /**
17 * Method -scoped transactions to save/retrieve test
18 * objects to/from the database.
19 */
20 @Transaction
21 public void addObjects ()
22 {
23 ...
24 }
25
26 @Transaction(readOnly = true)
27 public List <TestInterface > getObjects ()
28 {
29 ...
30 }
31 }

42

In lines 6-7, the framework PersistenceManager service is injected into the pm field. In

lines 13-14, a default factory which returns instances of TestInterface is injected into the

factory field. The implementation of the addObjects() and getObjects() methods is

listed below.

Listing 5.19: DAOClass accessObjects() Method

1 @Transaction
2 public void addObjects ()
3 {
4 for (int i = 0; i < 20; i++)
5 {
6 TestInterface obj = factory.newInstance ();
7 obj.setNumber(i);
8 obj.setText(Long.toString(i));
9 pm.add(obj);

10 }
11 }

Listing 5.19 begins by creating a transactional boundary scoped to the addObjects()

method. The addObjects() method then saves 20 objects to the database.

Listing 5.20: DAOClass getObjects() Method

1 @Transaction(readOnly = true)
2 public List <TestInterface > getObjects ()
3 {
4 /**
5 * Framework Query service to retrieve TestInterface instances
6 */
7 @New
8 Query <TestInterface > query;
9

10 /**
11 * Create two filters to retrieve objects
12 */
13 Filter filter1 = new FilterAdapter("number", 3);
14 Filter filter2 = new FilterAdapter("number", FilterOperator.between

, 5, 7);
15

16 query.addFilter(filter1);
17 TestInterface result = query.getResult ();
18 printSummary(new TestInterface []{ result });
19

20 query.clearFilters ();
21 query.addFilter(filter2);
22 Set <TestInterface > results = query.getResultSet ();
23 printSummary(results.asList ());
24

25 /**
26 * Combine all the filters into one query.

43

27 */
28 FilterGroup filterGroup = new FilterGroupAdapter ();
29 filterGroup.setFilterGroupOperator(FilterGroupOperator.and);
30 filterGroup.addFilters(new Filter []{ filter1 , filter2 });
31 query.clearFilters ();
32 query.addFilterGroup(filterGroup);
33 results = query.getResultSet ();
34 printSummary(results.asList ());
35 }

Listing 5.20 begins by creating a read-only transaction scoped to the getObjects() method.

In lines 7-8, a framework Query service is inserted into the variable query. On line 13, a

filter to retrieve the object with the number field equal to 3 is instantiated. Line 14 is a

filter to retrieve objects with the value of the number field between 5 and 7. The next two

code blocks add the two filters in turn. They also invoke the query and print the results

to standard output. On lines 28-34, the two filters are combined in a FilterGroup and

added to the query object. The query is again executed and the results printed to standard

output.

Listing 5.21: Test Main Harness

1 public class Test
2 {
3 /**
4 * This method will create a service context then
5 * invoke the persistence operations.
6 */
7 @ServiceContext ()
8 public doPersistenceTest ()
9 {

10 DAOClass daoObject = new DAOClass ();
11 daoObject.addObject ();
12 daoObject.getObjects ();
13 }
14
15 /**
16 * Application main
17 */
18 public static main()
19 {
20 try
21 {
22 Test test = new Test();
23 test.doPersistenceTest ();
24 }
25 catch(Exception e)
26 {
27 e.printStackTrace ();

44

28 }
29 }
30 }

Listing 5.21 is the harness to launch the test application. In the doPersistenceTest()

method, a service context is first created to make available the framework services. Then, an

instance of the DAOClass is created to invoke the addObject() and getObject() methods.

The test is invoked from the application main() method.

45

Chapter 6

Setup and Deployment

One of the benefits of the i3Persistence Framework is the ease with which it can be

integrated into an application. This section outlines the steps necessary to set up and deploy

the i3Persistence Framework in Eclipse.

6.1 Database: Setup and Connection

Connecting the i3Persistence Framework to a database is a simple two-step process:

First, the necessary database tables are created using the supplied SerialSchema.sql

script. Figure 6.1 shows the location of the scripts in the i3Datastore project.

Figure 6.1: SerialSchema.sql file location

Currently, the i3Persistence Frame-

work supports Sybase and MySQL for

its backend RDBMS. The i3Datasource

module uses canned SQL scripts to save

and retrieve objects. These files are

located in the /src/META-INF/sql di-

rectory of the i3Datasource project.

The /src/META-INF/sql/common di-

rectory contains SQL scripts that are

common between Sybase and MySQL. The

/src/META-INF/sql/<database>/dml directories contain SQL scripts which are specific to

a database.

46

Second, the connection.properties file must be configured with the JDBC database

connection settings. Figure 6.2 shows the location of the META-INF directory containing the

connection.properties file.

Figure 6.2: connection.properties file loca-
tion

Each application using the

i3Persistence Framework must have

a connection.properties file in the

META-INF directory at the root of where

the compiled classes are stored. The

connection.properties file contains

name-value pair settings necessary for a

JDBC driver to connect to a database.

Figure 6.3 shows the contents of a

connection.properties file configured to

connect to a remote instance of a MySQL

database.

Figure 6.3: connection.properties file Set-
tings

The pool-size setting controls the

number of connections in the connection-

pool used to connect to the database. The

sql-resource-path setting indicates the lo-

cation of the SQL scripts specific to the

target platform. The i3Persistence Frame-

work ships with the jTDS (Sybase and MS

SQL Server) and the MySQL native JDBC

drivers and corresponding SQL scripts.

47

6.2 Preparing an Eclipse Project

Incorporating the i3Persistence Framework into an Eclipse project requires 1) the framework

JAR files be added to the build and run environments and 2) the i3Agent be inserted into

the VM via the Java Instrumentation mechanism.

Figure 6.4: Eclipse Build Path

The project Java Build Path settings

determine the compile-time classpath for

building an application in Eclipse. Fig-

ure 6.4 shows the JAR files included in the

Java Build Path setting. These compile-

time dependent JAR files correspond di-

rectly to the Service Interface modules

outlined in Section 5.1.1. The remain-

ing JAR files are used specifically by the

i3PersistenceTests project as part of the

testing framework.

Figure 6.5: Eclipse Runtime Configuration
Classpath

The runtime-classpath is config-

ured for each runtime configuration associ-

ated with a project. The JAR files neces-

sary to run the application must be added

to the Classpath setting in either a de-

bug configuration or a runtime configura-

tion. These runtime dependent JAR files

correspond to the implementation modules

outlined in Section 5.1.1. Figure 6.5 shows

how the Classpath setting can be modified

in an Eclipse project runtime configuration.

48

The final step is to enable the i3Persistence Framework Injection feature by hooking

the i3Agent module into the Java VM at application bootup as shown in Figure 6.6.

Figure 6.6: Eclipse Runtime Agent Configuration Classpath

A custom agent can be inserted into the VM’s bootup process by adding the

-javaagent command-line option to the startup command. The syntax for the

-javaagent option is:

java(w) -javaagent:jarpath[=options]

49

Chapter 7

Product Validation

7.1 Replicating the Modification Request Experiment

A project contributor usually modifies all the files necessary to accomplish a given task, then

submits them together to the source repository in a single commit or Modification Request

(MR) (see Figure 7.1, step 3). Knowing which files were modified at the same time allows

researchers to analyze the logical coupling between files [15, 45].

Contributor

Source Files/Directories

Bug Repository

Source
Repository

Team Members/Stakeholders

E-mail Archives
Mailing Lists

4) Record Resolution

2) Checkout Files

3) Checkin Modified Files

1) Change Request

5)
 N

ot
ify

 O
th

er
s

Requirements
Bugs
New Features
Enhancements

Version Source
Code Releases
CVS Logs
ChangeLogs

Release History

2)
 C

ol
la

bo
ra

te
 W

ith
 O

th
er

s

Figure 7.1: Software Trails

50

Over the past decade, CVS has emerged as the preferred choice for source code repos-

itories in many open source projects. Consequently, CVS repositories have long evolution

periods (5-10 years) and represent a ready resource for research on software evolution [43].

Unfortunately, CVS does not record the list of files committed together in an MR. Instead,

each file is committed as a separate transaction. This makes it difficult to determine which

files were committed together.

In 2004, Zimmermann et al. proposed the fixed-time-window algorithm for rebuilding

MRs [46, 18]. The following year, Zimmermann et al. proposed the sliding-time-window

algorithm asserting it to be superior to the previous fixed-time-window algorithm [47].

To validate the sliding-time-window algorithm, German rebuilt the MRs for the

Mozilla, Evolution, PostgreSQL and GNU gcc projects [18]. To validate the effectiveness

of the i3Persistence Framework, we replicated the GNU gcc portion of German’s study first

using the i3Persistence Framework and again using standard JDBC/SQL.

The following sections outline our replication process and compare the i3Persistence

Framework and JDBC/SQL solutions.

7.1.1 The Sliding Time Window Algorithm

//	 front(List)	 removes	 the	 front	 of	 the	 list	
//	 top(list)	 and	 last(list)	 query	 the	 corresponding	 elements	 of	 the	 list	
//	 Initialize	 the	 set	 of	 all	 MRs	 to	 empty	
!"# = ∅	
for	 each	 A	 in	 Authors	 do	
	 List	 =	 Revisions	 by	 A	 ordered	 by	 date	

do	
	 MR.list	 =	 {front(List)}	
	 MR.sTime	 =	 time(MR.list1)	
	 while	 !"#$% !"#$. !"#$ −!". !"#$% ≤ !!"#⋀	
	 	 !"#$% !"#$. !"#$ − !"#$!". !"#$. !"#$ ≤ !!"#⋀	
	 	 !"#$% !"#$. !"# = !"#$!". !"#$. !"#⋀	
	 	 !"#!" !"#$.!"#$ ∉ !". !"#$	 do	
	 	 	 !"#"#(!". !"#$,!"#$% !"#$)	
	 do	
	 !"# = !"# ∪ !" 	
until	 !"#$ ≠ ∅	

do	
	

Figure 7.2: The sliding-time-window algorithm

German utilized a heuristic

based on the sliding-time-window

algorithm to rebuild the MRs. This

algorithm takes two parameters as

input: the maximum length of time

that an MR can last δmax, and the

maximum distance in time between

two file revisions τmax (see figure

7.2) [18].

51

In the sliding-time-window algorithm, a file revision is included in a given MR if:

1. All the file revisions in the MR and the candidate file revision were created by the same

author and have the same log message (a comment added by the developer during the

commit).

2. The candidate file revision is at most τmax seconds apart from at least one file revision

in the MR.

3. The addition of the candidate file revision to the MR keeps the MR at most δmax

seconds long.

7.1.2 Assumptions

CVS maintains the details of file revisions in log files which can be accessed using the cvs

log command. The command supports many options to customize the information returned

from the source repository. Consequently, the accuracy of the MR reconstruction is directly

related to the parameters used when invoking the cvs log command [13]. The command

parameters that may affect the composition of the file revision information returned from

the CVS repository are:

• -d dates

Print information about revisions with a checkin date/time in the range given by the

semicolon-separated list of dates.

• -rrevision

Prints information about revisions given in the comma-separated list revisions of revi-

sions and ranges.

branch

An argument that is a branch means all revisions on that branch.

52

• -s states

Print information about revisions whose state attributes match one of the states given

in the comma-separated list states.

The only information available from the original experiment about which parameters were

used to retrieve the cvs log is:

“A snapshot of their CVS repositories was made on Feb 17, 2004 [18]. ”

Because the dataset and the cvs log command used in the original experiment were inacces-

sible, we proceeded with the replication experiment after making the following assumptions

about the cvs log command used by German’s team:

• Include -d"<2004-02-18" to retrieve all revisions made before midnight of Feb 17,

2004

• Exclude -r to retrieve revisions for every branch

• Exclude -s to retrieve revision for all states

An additional assumption we made was that file revision information with empty commit

comments were considered valid and included in the analysis of the log information.

7.1.3 Unraveling the CVS Log Format with cvs2cl

Although CVS revision history log information can be retrieved using the cvs log command,

the format of the information is not fully documented. In the original experiment, German

utilized a “clean room” approach to reverse-engineer the log format [18]. Since the time of

German’s original experiment, many tools have emerged from the open source community

that translate cvs log information into more human-readable formats.

Perl script cvs2cl is an industry standard tool that produces a GNU-style

ChangeLog for CVS-controlled sources by running cvs log and parsing the output [13].

We modified cvs2cl to output the CVS file revision information. The command-line pa-

rameters we employed were as follows:

53

Listing 7.1: cvs2cl command-line options

1 cvs2cl -l "-d"" <2004-02-18""" --utc -f ChangeLog_2004 -02 -17. xml

The actual cvs log command generated by cvs2cl is cvs log -d<"2004-02-18",

which complies with our assumptions of Section 7.1.2.

As part of our modification of cvs2cl, we wrapped user messages (comments) in

CDATA tags to prevent any HTML markups contained in messages from confusing the XML

parser. The CDATA tags also prevent parsing errors caused by invalid unsupported character

encodings in messages.

7.1.4 The Application Design

The development plan for the replication experiment was to follow the phases outlined in

Bokeo, namely extract, analyze, aggregate and present (see Section 1.2 for details). Because

Bokeo is currently under development, we manually implemented each Bokeo phase.

7.1.4.1 Extraction Phase: The ChangelogExtractor Module

The ChangelogExtractormodule encapsulates the Extraction Phase of Bokeo. Figure 7.3 is

the UML class diagram and Table 7.1 is the detailed description of the classes that comprise

the ChangelogExtractor module.

The ChangelogExtractor module is comprised of three class types: XML Parsers,

DTOs, and Service Interfaces. The XML Parsers implement the Service Interface which

is injected into classes in the Analysis and Synthesis Phase by the i3Persistence Frame-

work. The DTOs are populated by the XML Parsers and passed to the clients via the

EventListener Service Interfaces.

54

Figure 7.3: ChangelogExtractor module class diagram

Due to the large size of the cvs2cl output file, it was not possible to use a DOM Parser

to extract the revision information. Our solution to this problem was to use an XML Pull

Parser (XPP) which requires less memory and performs better than DOM Parsers [36, 31].

Our first selection of an XPP technology was StAX2 [38]. Since the StAX2

technology was new to our team, we used the i3Persistence Framework Dependency

Injection Pattern to decouple the parser implementation from the rest of the mod-

ule. ChangelogStax2XmlParserImpl, our implementation of the StAX2 parser, was

mapped for injection into the ChangelogParser Service Interface by registering it in the

ServiceContext Initializer class, ChangelogParserInitializer.

Next, we implemented the DTOs to carry the file revision information to and from the

database. We created the interfaces and utilized the i3Persistence auto-synthesis service

to generate the implementations. Since the implementation auto-generation process is lim-

ited to only synthesizing property variables, complex data types such as List<> must be ini-

tialized with an instance of a List<>. The purpose of the ChangelogEntryDtoAbstractImpl

and ChangelogEntryFileDtoAbstractImpl abstract classes is to lazy-load the List<>

55

Class name Role Description
ChangelogParser Service Interface Exposes the module’s functionality

ChangelogStax2ParserImpl XPP XML Pull Parser library based on the StAX2

ChangelogXPP3ParserImpl XPP XML Pull Parser library based on the XPP3

ChangelogParserEventListener Event Listener Service Interface Parser events listener interface

ChangelogParserInitializer Injection Initializer Class Registers service implementations for injection

ChangelogEntryDto DTO Interface Changelog Entry DTO interface

ChangelogEntryDtoAbstractImpl Abstract DTO Class ChangelogEntryDto partial implementation

ChangelogEntryFileDto DTO Interface Changelog Entry File DTO interface

ChangelogEntryFileDtoAbstractImpl Abstract DTO Class ChangelogEntryFileDto partial implementation

ChangelogEntryTagDateDto DTO Interface Changelog TagDate DTO interface

DtoHelper Utility Class Converts XML Strings to Objects

ChangelogParserDtoInitializer Injection Initializer Class Registers service implementations for injection

Table 7.1: ChangelogExtractor module class descriptions

type properties of the ChangelogEntryDto and ChangelogEntryFileDto interfaces. The

remainder of the interface getters/setter are automatically synthesized by the Injection

Layer as described in Section 4.2.5. This i3Persistence Framework feature allowed us to

rapidly implement the object infrastructure necessary to persist the CVS file revision in-

formation to the database. It also significantly reduced the amount of boiler-plate code

necessary to implement the DTO interfaces.

One point to note about Figure 7.3 is the lack of dependencies between the Parser

and Parser.Dto packages. Although the XML parsers in the Parser package use the DTOs

in the Parser.Dto package, there is no direct association between the classes of the two

packages. This is due to Dependency Injection where service objects are instantiated and

injected into the consumer classes by the injection framework and not directly created by

the consumer classes (see Appendix C).

The next step was to register the Initializer classes to be loaded at application startup.

This was done by adding the Initializers to the injection-config.xml file in the META-INF

directory.

The final step was to setup the database and configure the connection information in

the connection.properties file.

56

Of the eight hours spent on implementing the ChangelogExtractor module, approx-

imately seven hours were spent on tasks related to parsing the XML file with the remaining

hour allocated to implementing the persistence logic and the DTOs.

7.1.4.2 Adapting to a Crisis

The initial test of the ChangelogStax2XmlParserImpl XML parser uncovered a flaw in the

StAX2 XPP library: the implementation was not able to process the encoding format used

in several of the file revision messages. Although the messages were embedded in CDATA tags,

the StAX2 XPP library attempted to parse the messages.

An investigation of other XPP technologies revealed that the XPP3 Pull Parser li-

brary was capable of processing the XML file in its entirety. We implemented an XPP3-based

XML Pull Parser and replaced the faulty StAX2-based implementation registration in the

ChangelogParserInitializer file in approximately 30 minutes. Aside from implementing

the new parser and modifying the injection registration, no other changes were necessary.

7.1.4.3 Analysis and Synthesis Phase: The ChangelogAnalyzer Module

The ChangelogAnalyzer module encapsulates the Analysis and Synthesis Phase, Aggrega-

tion Phase, and Presentation Phase of Bokeo. Figure 7.4 is the UML class diagram of the

ChangelogAnalyzer module.

Table 7.2 is the detailed description of the classes that comprise the

ChangelogAnalyzer module.

57

Figure 7.4: ChangelogAnalyzer module class diagram

Rebuilding the CVS revision modification requests is a three-step process:

1. Extraction Phase and Analysis and Synthesis Phase – Invoke the

CvsChangelogLoaderApp to parse the cvs2cl output XML file and store the

file revision information in the database.

2. Aggregation Phase – Invoke CvsChangelogModificationRequest to generate the mod-

ification requests from the CVS file revision information.

3. Presentation Phase – Generate the report.

CvsChangelogLoader is the main worker class for the XML parsing process. To maxi-

mize portability, The XML Parser and database Service Interface implementations were

58

Class name Role Description
CvsChangelogLoaderApp Application/Presentation Main application to load the CVS logs

CvsChangelogLoader Implementation The implementation to load the CVS rlogs

CvsChangelogModificationRequestApp Application/Presentation Main application to rebuild the MRs

CvsChangelogModificationRequest Implementation The implementation to rebuild the MRs

CvsChangelogDB Service Interface The database Service Interface

CvsChangelogDAO Service Interface The data access object Service Interface

i3PersistenceDBImpl Implementation Class The i3Persistence database implementation

JdbcDBImpl Implementation Class The JDBC/SQL database implementation

i3PersistenceDAOImpl Implementation Class The i3Persistence DAO implementation

JdbcDAOImpl Implementation Class The JDBC/SQL DAO implementation

CvsChangelogAnalyzerInitializer Injection Initializer Class Registers service implementations for injection

Table 7.2: ChangelogAnalyzer module class descriptions

injected into the CvsChangeLogLoader by the framework. This allowed us to change

the parser implementation between the StAX2 and XPP3 solutions by simply modify-

ing the ChangelogParserInitializer Initializer class. We were also able to switch

between the JDBC and i3Persistence based DB and DAO solutions by modifying the

CvsChangelogAnalyzerInitializer class.

To compare the accuracy and productivity differences of using the i3Persistence

Framework to technologies currently in use, we implemented a reference version of

the CvsChangelogDB and CvsChangelogDAO interfaces using JDBC and SQL. The

ChangelogParser injection implementation is defined in the ChangelogExtractor mod-

ule injection-config.properties file (see Appendix D), and the CvsChangelogDB and

CvsChangelogDAO injection implementations are defined in the ChangelogAnalyzer module

injection-config.properties file (see Appendix E).

The MR statistics of Table 7.3 were collected by a custom ChangelogEventListener

passed to the ChangelogParser by the CvsChangelogModificationRequest class. The

data for Figures 7.5 and 7.6 were collected by CvsChangelogDAO during the MR rebuilding

process.

59

7.2 Validating the Implementation

Because German’s original study provides little information on implementation details

against which to compare our application, we validated our implementation against the

sliding-time-window algorithm [18, 47]. This algorithm defines four basic steps (see Figure

7.2):

1. Retrieve all distinct file revision authors.

2. Retrieve all distinct commit messages by each author.

3. Retrieve all files revisions having the same commit message by the same author.

4. Rebuild the MRs using the files retrieved in (3)

Steps (1) to (3) are implemented in the DAO classes. Step (4), the business module for the

Modification Request Rebuilder, is implemented in the CvsChangelogModificationRequest

class. We used the JUnit tests detailed in Appendix F to validate our implementation.

7.3 Replication Results

Table 7.3 shows the main statistics of the GNU gcc projects for the original and the replicated

experiments.

Experiment Authors Files Revisions
Original 214 24,463 60,311

Replicated 214 22,875 54,647
Error % 0.0% -6.49% -9.06%

Table 7.3: CVS statistics for the GNU gcc project

Figure 7.5 shows the distribution of the number of files in an MR (normalized to

values from 0 to 1). Figure 7.6 shows the MRs per month during 2003.

Figure 7.6 shows that approximately 23 of 26 data points of the replicated experiment

are within 1.0% of the original experimental results (see Appendix I.1). Figure 7.6 shows

60

Figure 7.5: Number of files in MRs Figure 7.6: MRs per month, 2003

that the replicated data has basically the same progression as the original data except for

July when the replicated data transitions from a negative to a positive offset (see Appendix

J.1).

7.4 Conclusion

The differences between the original and replicated experiment results can be attributed to

one or more, but not limited to, the following factors:

• Implementation technologies – We used Java while the original experiment used Perl.

• Database technologies - The i3Persistence Framework is a potential source of data

variance.

• Datasets – The output of cvs2pl may not match the dataset used in the original

experiment.

• Algorithms – We could have misinterpreted the sliding-time-window algorithm of the

original experiment.

The following subsections discuss our analysis of each of the aforementioned factors.

61

7.4.1 Implementation Technologies

The differences between Java and Perl which may affect our experiment results are 1) the

date/time functions 2) the math library and 3) text handling. In our replicated experiment

application implementation, we used the industry-accepted Jodatime libraries to convert text

representations of date/time to DateTime objects. We assume that the original experiment

used the Perl gmtime() and localtime() libraries which are implemented in C. The Java

and Perl functions are equivalent in functionality and should not cause any discrepancies in

the data.

The math functions used are basic addition and subtraction of Long Integers. Java

and Perl math function produce the same outputs.

Text handling is one area of difference between Java and Perl that may appreciably

influence experiment results. This is due to the various text encoding formats used by

project contributors. Text in certain native encodings can be construed by XML Parsers as

invalid characters. To ensure that file revision messages are compared in its original form,

we embedded message text in CDATA tags. When XML parsers encounter the CDATA tag,

the enclosed text is passed directly to the invoking application without any processing, thus

bypassing any potential encoding errors.

7.4.2 Database Technologies

Our JUnit tests proved that the i3Persistence Framework -based implementations functioned

as designed (see Appendix F). Also, the comparison of the replicated experimental results

using three independent database solutions (the i3Persistence Framework, JDBC/SQL and

Berkeley DB technologies) was identical (see Appendix H). This consistency strengthens our

argument that differences in database technologies are not a factor in the disparity between

the original and replicated experimental results.

62

7.4.3 Datasets

Without the original dataset, we cannot quantitatively discuss the differences introduced by

the dataset used in the replicated experiment. But because cvs2cl is an industry-accepted

technology shipped with most Linux distributions, we feel confident that if any variances exist

in the datasets, the cvs2cl-based output is more accurate than that obtained by German’s

reversed-engineered solution.

7.4.4 Algorithms

Without the original implementation details, we are not able to assess the differences in the

approaches used in the original and the replicated solutions. Although we can estimate the

potential margin of error between the original and replicated implementations based on the

relative simplicity of the algorithm, a definitive comparison is not possible until such time

when a more quantitative analysis is conducted.

7.5 Comparison of Technologies

Tables 7.4 and 7.5 compare the i3Persistence Framework and JDBC/SQL solutions based

on three productivity factors: development time, lines of code, and McCabe Cyclomatic

Complexity values [35].

DB Class Development Time Lines of Code McCabe Cyclomatic Complexity

JDBC ≈ 3 hours 84 5
i3Persistence ≈ 15 min. 22 2

Ratio (JDBC:i3) 12:1 3.8:1 2.5:1

Table 7.4: JDBC vs. i3Persistence: Database class

Our experience showed that we were able to develop the DAO and DTO logic approx-

imately 10 times faster using the i3Persistence Framework than using JDBC/SQL. Futher-

more, the i3Persistence Framework based DB and DAO modules required fewer lines of code

63

DAO Class Development Time Lines of Code McCabe Cyclomatic Complexity

JDBC ≈ 5 hours 226 9
i3Persistence ≈ 30 min 130 2

Ratio (JDBC:i3) 10:1 1.7:1 4.5:1

Table 7.5: JDBC vs. i3Persistence: DAO class

and had, in the case of the DAO classes, significantly lower McCabe’s Cyclomatic Complex-

ity values [29]. The majority of the time in implementing the JDBC/SQL versions of the

DAO and DTO modules was spent:

1. Optimizing the schema.

2. Setting up the SQL query.

3. Mapping the JDBC table representations and data types to our object model.

In comparison, the i3Persistence Framework :

1. Has a fixed schema provided in the project that needs to be run once per database.

2. Requires no SQL.

3. Supports the persisting of objects, which allowed us to work in the object-oriented

paradigm and with native Java data types.

The ease of maintenance of the i3Persistence Framework solutions, as reflected by the low

McCabe’s Cyclomatic Complexity values, was made evident in the relative ease with which

we replaced the faulty StAX2 version of the XPP with the XPP3 version (see Section 7.1.4.2).

The decoupling nature of i3Persistence Framework DI feature localized the system integra-

tion changes to a single configuration file. The injection feature also allowed us to easily

switch between the JDBC/SQL and i3Persistence Framework versions of the DAO and

DTO modules.

The research portion of the replication experiment, investigating the cause of the

differences between the original and replicated results, consumed the majority of the four

week replication project period. During this time, various permutations of the experimental

64

variables were employed in an attempt to force a convergence of the original and replicated

experiment results. Although we were unsuccessful in obtaining consistency in the data,

modifying the JDBC/SQL solution required approximately five times more resources when

compared to the resource demands of the i3Persistence Framework solution.

One noticeable overhead of using the i3Persistence Framework was the up-front time

investment necessary for developers to learn to use the technology. This “learning curve”

was evident in the differences in productivity between developers who were familiar with the

framework and those who were working with it for the first time. In general, we observed that

developers attained proficiency with the i3Persistence Framework relatively quickly when

compared to developers working with JDBC/SQL. We attribute this to 1) the fact that the

i3Persistence Framework is based on familiar standards and technologies [25, 26, 27] and 2)

the relative simplicity of the i3Persistence Framework APIs when compared to the complex

APIs and language syntax of JDBC/SQL.

65

Chapter 8

Conclusion

The Sequoia Lab at BYU is actively developing an extensible framework, Bokeo, to

help researchers conduct artifact-based empirical experiments on software evolution. Re-

searchers can use Bokeo to chain existing components and custom plug-ins into workflows

to extract, analyze and visualize derived metrics and data from software repositories. The

i3Persistence Framework was developed to allow researchers to 1) easily incorporate data-

persistence features in their Bokeo plug-ins and 2) to promote developer productivity.

Although Bokeo is a general purpose framework for conducting artifact-based empiri-

cal experiments on software evolution, this industrial thesis focuses on how the i3Persistence

Framework facilitates the replication of artifact-based empirical experiments on data from

software repositories. The i3Persistence Framework promotes a Java-centric development

model which allows researchers to employ rapid write-debug-modify cycles when implement-

ing data-centric tools for their experimental replication efforts. DI, annotation-based feature

invocation, auto-implementation synthesis, and simplified persistence APIs 1) reduce the

need to write boilerplate code and 2) abstract technology and complexity behind easy to use

interfaces. The result is that researchers are able to focus on the “business” aspects of their

replication processes.

The initial release of the i3Persistence Framework focused primarily on features that

would increase developer productivity. Our experience showed that the learning curve expe-

rienced by developers new to the framework was relatively small when compared to that of

using JDBC/SQL. Once developers gained proficiency with our new technology, they were

66

able to accomplish implementation tasks quickly and with relatively few lines of code. We

attribute this increase in productivity to the fact that the i3Persistence Framework utilizes

existing standards (annotations, object-oriented development, the Java programming lan-

guage), de facto productivity design patterns (DI and Service Lookup), and a simple, terse

API set.

Although our initial motivation to develop a new persistence framework was to com-

pensate for the lack of existing tools which would facilitate the plug-in development require-

ments of Bokeo, the i3Persistence Framework was not designed for this purpose alone. We

designed the i3Persistence Framework to address the general need in the software artifact-

based empirical research community to increase developer productivity and decrease the cost

of software maintenance.

We realize that there is yet much work to do to ready the i3Persistence Framework

for general consumption. Security, scalability, performance, etc. are just a few of the areas

yet to be addressed. Since the start of this industrial thesis, many tools have been developed

that address these concerns, but we have yet to find any tool that combines the level of API

simplicity and productivity features as does the i3Persistence Framework. It is our hope that

our work will serve to further the development of tools not only in the area of experimental

replication, but in other areas of data-centric research.

67

Chapter 9

Future Work

9.1 Point-in-Time Architecture

One of the fundamental requirements when replicating experiments on data from software

repositories is the need for reference datasets along various points of the original experiment’s

computation process. These reference datasets can be used to validate the replication process.

One way to gather reference data is to use a Point-in-Time Architecture (PTA) database.

A Point-in-Time Architecture system is able to present an image of the database as

it existed at any previous point in time, without destroying the current image. In effect, a

PTA maintains a searchable audit trail of all data that is persisted in the database over the

life of that database.

9.2 Optimize Speed

A known trade-off when designing the database schema for the i3Persistence Framework

is its performance limitations. The highly-normalized nature of the i3Persistence database

tables requires multiple joins when storing and retrieving objects. Additionally, current

RDBMSs distribute the computational load onto the database server while thei3Persistence

Framework localizes it on the application server.

Performance issues were ignored in the initial release of the i3Persistence Framework

with the justification that advancements in hardware performance will compensate for most

of the performance issues and that the majority of the expense when developing database

applications is in manpower costs versus hardware costs.

68

9.3 Support Large Datasets

Currently, the i3Persistence Framework retrieves the entire object hierarchy in memory for

each query. This strategy is impractical for large datasets. Memory usage can greatly be

reduced via hot loading and unloading of business objects.

9.4 Object Version Migration

Currently, the i3Persistence Framework does not track changes to class structure. This

feature is critical in a prototyping environment such as when conducting one-off research

experiments. One solution is to version object instances and use Javassist to generate

version-specific class structures at runtime.

69

Bibliography

[1] MySQL gains 25% market share of database usage, latest Evans data survey shows.
http://www.evansdata.com/press/viewRelease.php, March 2007.

[2] Troels Arvin. Comparison of different SQL implementations.
http://troels.arvin.dk/db/rdbms/, August 2010.

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse influences produc-
tivity in object-oriented systems. Communications of the ACM, 39:104–116, October
1996.

[4] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering, 25:456–473, 1999.

[5] Mark Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf Schadow, Torsten
Stanienda, and Fernando Velez. The object data standard: ODMG 3.0. Morgan Kauf-
mann Publishers Inc., 2000.

[6] Hendrik Blockeel. Experiment databases: a novel methodology for experimental re-
search. In Knowledge Discovery in Inductive Databases, 4th International Workshop,
volume 3933 of Lecture Notes in Computer Science, pages 72–85. Springer, 2006.

[7] Hendrik Blockeel and Joaquin Vanschoren. Experiment databases: towards an improved
experimental methodology in machine learning. In Knowledge Discovery in Databases:
PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, Proceedings, volume 4702 of Lecture Notes in Computer Science,
pages 6–17. Springer, 2007.

[8] Andrew Brooks, John Daly, James Miller, Marc Roper, and Murray Wood. Replication
of experimental results in software engineering. Technical report, International Software
Engineering Research Network, Livingstone Tower, Richmond Street, Glasgow G1 1XH,
UK, 1996.

[9] Shigeru Chiba. Javassist - a reflection-based programming wizard for Java. In Proceed-
ings of the ACM OOPSLA’98 Workshop on Reflective Programming in C++ and Java,
October 1998.

70

[10] Davor Cubranic, Gail C. Murphy, Ieee Computer Society, Janice Singer, and Kellogg S.
Booth. Hipikat: a project memory for software development. IEEE Transactions on
Software Engineering, 31:446–465, 2005.

[11] Prem Devanbu, Sakke Karstu, Walcélio Melo, and William Thomas. Analytical and
empirical evaluation of software reuse metrics. In Proceedings of the 18th International
Conference on Software Engineering, ICSE ’96, pages 189–199, Washington, DC, USA,
1996. IEEE Computer Society.

[12] David Flanagan. Javabeans convention. O’Reilly Media, Inc., 5th edition, 2005.

[13] Karl Franz Fogel. Open source development with CVS. Coriolis Group Books, Scottsdale,
AZ, USA, 1999.

[14] Martin Fowler. Patterns of enterprise application architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[15] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. CVS release history data for detect-
ing logical couplings. In Proceedings of the 6th International Workshop on Principles of
Software Evolution, pages 13–23, Washington, DC, USA, 2003. IEEE Computer Society.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, January
1994.

[17] Daniel M. German. Using software trails to rebuild the evolution of software. In Pro-
ceedings of the International Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA), Amsterdam, The Netherlands, 2003.

[18] Daniel M. German. Mining CVS repositories, the softChange experience. In Proceed-
ings of the First International Workshop on Mining Software Repositories, pages 17–21,
Edinburg, Scotland, UK, 2004.

[19] Arne G. Gleditsch and Per K. Gjemshus. LRX cross-referencing Linux.
http://lxr.linux.no/, March 2008.

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java(tm) language speci-
fication, the (3rd edition). Addison-Wesley Professional, Upper Saddle River, NJ, 3rd
edition, 06 2005.

[21] Tara Hernandez. The Bonsai project. http://www.mozilla.org/projects/bonsai/, March
2008.

71

[22] James Howison, Megan S. Conklin, and Kevin Crowston. FLOSSmole: a collaborative
repository for FLOSS research data and analyses. International Journal of Information
Technology and Web Engineering, 1(3):17–26, 2006.

[23] James Howison and Kevin Crowston. The perils and pitfalls of mining Sourceforge.
In Mining Software Repositories Workshop at the International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, 2004.

[24] Raymond Hubbard, Daniel E. Vetter, and Eldon L. Little. Replication in strategic
management: scientific testing for validity, generalizability, and usefulness. Strategic
Management Journal, 19:243–254, March 1998.

[25] Sun Microsystems Inc. JSR 175: a metadata facility for the Java programming language.
http://www.jcp.org/en/jsr/detail?id=175.

[26] Sun Microsystems Inc. JSR 299: contexts and dependency injection for the Java EE
platform. http://jcp.org/en/jsr/detail?id=299.

[27] Sun Microsystems Inc. JSR 330: dependency injection for Java.
http://jcp.org/en/jsr/detail?id=330.

[28] Sun Microsystems Inc. Java object serialization specification, rev. 1.4.4. Technical
report, Sun Microsystems Inc., 2001.

[29] Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability. Journal
of Systems and Software, 23(2):111–122, November 1993.

[30] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu. Plugging-in vi-
sualization: experiences integrating a visualization tool with Eclipse. In SoftVis ’03:
Proceedings of the 2003 ACM Symposium on Software Visualization, SoftVis ’03, New
York, NY, USA, June 2003. ACM.

[31] Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach to XML parsing. pages
223–230, 2006.

[32] Stephen G. MacDonell. Rigor in software complexity measurement experimentation.
Journal of Systems and Software, 16(2):141–149, 1991.

[33] Robert C. Martin. Object oriented design quality matrics: an analysis of dependencies.
ROAD, Vol. 2, No.3(Sep-Oct), 1995.

72

[34] Bertrand Meyer. Object-oriented software construction (2nd edition). Prentice Hall,
2nd edition, March 2000.

[35] John C. Munson and Taghi M. Khoshgoftaar. Measuring dynamic program complexity.
IEEE Software, 9:48–55, 1992.

[36] Matthias Nicola and Jasmi John. XML parsing: a threat to database performance.
In Proceedings of the Twelfth International Conference on Information and Knowledge
Management, CIKM ’03, pages 175–178, New York, NY, USA, 2003. ACM.

[37] Luc De Raedt. A perspective on inductive databases. ACM SIGKDD Explorations
Newsletter, 4(2):69–77, 2002.

[38] Tatu Saloranta. StAX2. http://docs.codehaus.org/display/WSTX/StAX2, June 2009.

[39] Forrest Shull, Victor Basili, Jeffrey Carver, José C. Maldonado, Guilherme H. Travassos,
Manoel MendonÃ§a, and Sandra Fabbri. Replicating software engineering experiments:
addressing the tacit knowledge problem. In Proceedings of the 2002 International Sym-
posium on Empirical Software Engineering, pages 7–16, 2002.

[40] Forrest Shull, Jeffrey Carver, and Guilherme H. Travassos. An empirical methodology
for introducing software processes. In Proceedings of the 8th European Software Engi-
neering Conference Held Jointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 288–296, Vienna, Austria, 2001. ACM.

[41] Margret-Anne Storey, Casey Best, and Jeff Michand. SHriMP views: an interactive envi-
ronment for exploring Java programs. In Proceedings of the 9th International Workshop
on Program Comprehension, pages 111–112, 2001.

[42] Giancarlo Succi, Luigi Benedicenti, and Tullio Vernazza. Analysis of the effects of
software reuse on customer satisfaction in an RPG environment. IEEE Transactions on
Software Engineering, 27:473–479, 2001.

[43] Lucian Voinea and Alexandru Telea. An open framework for CVS repository querying,
analysis and visualization. In Proceedings of the 2006 International Workshop on Mining
Software Repositories, pages 33–39, Shanghai, China, 2006. ACM.

[44] Xiaomin Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse engineering approach
to support software maintenance: version control knowledge extraction. In Proceedings
of the 11th Working Conference on Reverse Engineering, pages 90–99, 2004.

73

[45] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies system
architecture (or not). In Proceedings of the Sixth International Workshop on Principles
of Software Evolution, pages 73–83, 2003.

[46] Thomas Zimmermann and Peter Weissgerber. Preprocessing CVS data for fine-grained
analysis. IEE Seminar Digests, 2004:2–6, 2004.

[47] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Mining
version histories to guide software changes. IEEE Transactions on Software Engineering,
31:429–445, 2005.

74

Appendix A

Separating Responsibilities with a Component-Layered Architecture

Software architecture is commonly articulated in the form of the major components
and services of the system and how they interact. A software component can be defined as
a grouping of software that’s intended to be used, without change, by an application that
is outside the scope of control or knowledge of the writers of the component. When using
the component, application source code is not changed, although the component’s behavior
may be altered by extending it in ways allowed by the component writers.

Figure A.1: Layered Architecture

The component-layered approach is
one of the most common techniques used by
software designers to organize a complicated
software system. In this scheme, each layer
is composed of one or more components that
are tightly coupled. This complexity is ab-
stracted from the outside world by the Ser-
vice Interface. The layers are organized so
that higher layers use various services de-
fined by lower layers, but the lower layer is
unaware of the higher layer. Furthermore,
each lower layer usually hides its lower lay-
ers from the higher layers.

In the component-layered architec-
ture depicted in Figure A.1, layer N relies
on services from layer N-1 to provide a ser-
vice to layer N+1 and N+2. In each layer,

interfaces define the services offered.
Breaking down a system into layers has a number of important benefits:

• Complexity abstraction – The implementation details of a layer are hidden by the
Service Interface, promoting simpler interactions between components and layers.

75

• Separation of Concerns – It is possible to understand a single layer as a coherent whole
without knowing much about the other layers.

• Modularization – Since the service required from a lower layer is independent of its
implementation, alternative implementations of the same basic services can be used
without adversely affecting the system.

• Reduce Coupling – Dependency is isolated to adjacent layers which minimizes cross-
layer coupling.

• Standardization – Service Interface present opportunities to standardize layer interac-
tion.

• Code Reuse – As depicted in Figure A.1, a component can be reused in multiple layers
and a single layer can service multiple clients, which promotes code reuse.

76

Appendix B

Decoupling Modules with the Dependency Inversion Principle

The Service Interfacedepicted in Figure 5.1 is an implementation of the Dependency
Inversion Principle, which serves to resolve the shortcomings of the standard component-
layered architecture where higher-level layers are coupled to lower-level layers. The primary
disadvantages of the standard component-layered architecture are that designs tend to be:

• Rigid (hard to change due to dependencies, especially since dependencies are transi-
tive);

• Fragile (changes cause unexpected bugs);

• Immobile (difficult to reuse across applications due to implicit dependence on current
application code).

Figure B.1: Dependency Inversion Principle

Robert Martin formulated the De-
pendency Inversion Principle (DIP) to ad-
dress the disadvantages of the standard
Component-Layered Architecture (see Ap-
pendix 4.2.1) [33]. The DIP states:

1. High-level modules should not depend
upon low-level modules. Both should
depend upon abstractions.

2. Abstractions should not depend upon
details. Details should depend upon
abstractions.

The goal of the DIP is to decouple higher-
level components from their dependency
upon lower-level components. This may be
achieved by creating interfaces, which de-
fine the component’s external needs, as part
of the higher-level component package. This

77

allows the component to be isolated from any particular implementation of the provided
interface, thus increasing the component’s portability. In Java, this decoupling is achieved
through the use of interfaces. Figure B.1 illustrates this relationship.

The i3Persistence Framework achieves reduction in coupling by using a Dependency
Inversion-based Component-Layered Architecture (Section A) and Dependency Injection to
“glue” the components and layers together into a cohesive software solution (Section C).

This decoupling facilitates the anonymous distributed development of the
i3Persistence Framework components and layers.

78

Appendix C

Connecting Components and Layers with the Dependency Injection Pattern

A common issue facing developers of application frameworks is how to wire together
the different elements of the framework. The complexity of this issue is magnified when
portions of the software are built by different teams with little knowledge of each other. The
i3Persistence Framework supports the Dependency Injection Pattern (DI) to loosely couple
elements of the framework to the client application.

DI, a specific form of Inversion of Control, is an object-oriented design pattern whose
purpose is to reduce coupling between software components by separating behavior from
dependency resolution [14]. In most software applications, consumer components are tightly
coupled to service components because of the need for the consumer component to explicitly
state all the details of the creation of an instance of the service component. Figure C.1
depicts the hard coupling between consumer and service components.

Figure C.1: Consumer-Service Dependency

DI eliminates the need for explicit service instantiation by externally injecting a ref-
erence to the service component inside the consumer component. In other words, objects are
configured by an external entity. DI is an alternative to having the object configure itself.

In Figure C.2, the DI Container first resolves all of the server component’s depen-
dencies, meaning all the dependency injection requirements of the server component itself.

79

Figure C.2: The Dependency Injection Process

The DI Container then injects the fully resolved reference to the service component into the
consumer component. For example, if ServiceComponentImpl is dependent on class A, the
DI Container will execute the following tasks when the ConsumerComponent is instantiated:

1. Instantiate ServiceComponentImpl

2. Instantiate class A

3. Inject object A into the instance of ServiceComponentImpl

4. Inject ServiceComponentImpl into the instance of ConsumerComponent

Figure C.3 depicts the resulting dependencies.

Figure C.3: Dependency Injection Dependencies

80

The DI design pattern removes the hard dependency of the ConsumerComponent

on the ServiceComponentImpl by introducing an external entity, the DI Container.
The DI container, in turn, has dependencies to the ServerComponentImpl and the
ConsumerComponent. The i3Persistence Framework eliminates the hard injection depen-
dency of the DI Container to the ConsumerComponent by using Javassist and byte-code
manipulation (see Section C.3 for details).

81

Appendix D

ChangelogExtractor Module injection-config.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE injection-config PUBLIC "-//Sequoia Lab//DTD Injection '

3 Configuration//EN" "/META-INF/dtd/injection-config.dtd">

4

5 <injection-config>
6 <injection-class-list>
7 <injection-class regex="edu\.byu\.cs\.sequoia\.bokeo\..*+"/>
8 </injection-class-list>
9 <initialization-class-list>
10 <initialization-class classname="edu.byu.cs.sequoia.bokeo.'
11 changelogextractor.parser.'

12 ChangelogParserInitializer"/>
13 <initialization-class classname="edu.byu.cs.sequoia.bokeo.'
14 changelogextractor.parser.dto.'

15 ChangelogParserDtoInitializer"/>
16 </initialization-class-list>
17 </injection-config>

82

Appendix E

ChangelogAnalyzer Module injection-config.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE injection-config PUBLIC "-//Sequoia Lab//DTD Injection '

3 Configuration//EN" "/META-INF/dtd/injection-config.dtd">

4

5 <injection-config>
6 <injection-class-list>
7 <injection-class regex="edu\.byu\.cs\.sequoia\.bokeo\..*+"/>
8 </injection-class-list>
9 <initialization-class-list>
10 <initialization-class classname="edu.byu.cs.sequoia.bokeo.'
11 changeloganalyzer.app.db.'

12 CvsChangelogAnalyzerInitializer"/>
13 </initialization-class-list>
14 </injection-config>

83

Appendix F

ChangelogDAOTest.java

1 package edu.byu.cs.sequoia.bokeo.changeloganalyzer.app.db;

2

3 import java.util.ArrayList;

4 import java.util.Comparator;

5 import java.util.Date;

6 import java.util.HashMap;

7 import java.util.HashSet;

8 import java.util.Iterator;

9 import java.util.List;

10 import java.util.Map;

11 import java.util.PriorityQueue;

12 import java.util.Set;

13

14 import junit.framework.Assert;

15

16 import org.junit.AfterClass;

17 import org.junit.BeforeClass;

18 import org.junit.Test;

19

20 import edu.byu.cs.sequoia.bokeo.changeloganalyzer.app.'

21 ModificationRequestBuilder;

22 import edu.byu.cs.sequoia.bokeo.changeloganalyzer.app.db.ChangelogDAO;

23 import edu.byu.cs.sequoia.bokeo.changeloganalyzer.app.db.dto.'

24 ModificationRequestDto;

25 import edu.byu.cs.sequoia.bokeo.changelogextractor.parser.dto.CvsFile;

26 import edu.byu.cs.sequoia.bokeo.changelogextractor.parser.dto.'

27 CvsLogFileDto;

28 import gov.utah.ush.i3.annotations.Service;

84

29 import gov.utah.ush.i3.annotations.ServiceContext;

30 import gov.utah.ush.i3.annotations.ServiceContextType;

31 import gov.utah.ush.i3.service.Factory;

32

33 public class ChangelogDAOTest

34 {

35 @Service
36 ChangelogDAO dao;

37

38 @BeforeClass
39 @ServiceContext(contextType = ServiceContextType.'

40 containerContextInitializer)

41 public static void setup()

42 {

43 // Scope the service context to the class;

44 }

45

46 @AfterClass
47 @ServiceContext(contextType = ServiceContextType.'

48 containerContextFinalizer)

49 public static void teardown()

50 {

51 // Clean-up resources

52 dao.close();

53 }

54

55 /**

56 * Test the API to retrieve all the revision files.

57 */

58 @Test
59 public void testGetFiles()

60 {

61 new Object()

62 {

63 Long fileCount = 0L;

64

85

65 void run()

66 {

67 // Check each file

68 Iterator<Object> itr = dao.getFiles();

69 while (itr.hasNext())

70 {

71 fileCount++;

72 }

73 Assert.assertEquals(442075, fileCount.longValue());

74 }

75 }.run();

76 }

77

78 /**

79 * Test the API which returns all the authors.

80 */

81 @Test
82 public void testGetAuthors()

83 {

84 final Set<String> authors = new HashSet<String>();

85

86 new Object()

87 {

88 void run()

89 {

90 Iterator<String> itr = dao.getAuthors();

91 while (itr.hasNext())

92 {

93 authors.add(itr.next());

94 }

95 }

96 }.run();

97 Assert.assertEquals(214, authors.size());

98 }

99

100 /**

86

101 * Test API to return messages by authors.

102 */

103 @Test
104 public void testGetMessagesByAuthor()

105 {

106 final Set<String> missingMsgs = new HashSet<String>();

107

108 new Object()

109 {

110 void run()

111 {

112 // Check each author

113 Iterator<String> itr = dao.getAuthors();

114 while (itr.hasNext())

115 {

116 // Manually compile the messages per author

117 Set<String> msgs = new HashSet<String>();

118 String author = itr.next();

119 Iterator<Object> filesByAuthor = dao.getFilesByAuthor(author);

120 while (filesByAuthor.hasNext())

121 {

122 CvsFile file = (CvsFile) filesByAuthor.next();

123 msgs.add(file.getMsg());

124 }

125

126 // Get the messages using the unique index

127 Iterator<String> msgItr = dao.getMessagesByAuthor(author);

128 while (msgItr.hasNext())

129 {

130 String msg = msgItr.next();

131 if (!msgs.contains(msg))
132 {

133 missingMsgs.add(msg);

134 }

135

136 // Remove the message so that duplicates are considered as

87

'

137 errors

138 msgs.remove(msg);

139 }

140 }

141 }

142 }.run();

143 Assert.assertEquals(0, missingMsgs.size());

144 }

145

146 /**

147 * Test the API which returns the files with the same

148 * message and author.

149 */

150 @Test
151 public void testGetFilesByAuthorAndMessage()

152 {

153 new Object()

154 {

155 void run()

156 {

157 // Check each author

158 Iterator<String> itr = dao.getAuthors();

159 while (itr.hasNext())

160 {

161 // Manually compile the messages per author

162 Map<String, List<CvsFile>> filesByMsg = new HashMap<String,

List<'

163 CvsFile>>();

164 String author = itr.next();

165 Iterator<Object> filesByAuthor = dao.getFilesByAuthor(author);

166 while (filesByAuthor.hasNext())

167 {

168 CvsFile file = (CvsFile) filesByAuthor.next();

169 if (!filesByMsg.containsKey(file.getMsg()))
170 {

88

171 filesByMsg.put(file.getMsg(), new ArrayList<CvsFile>());

172 }

173 filesByMsg.get(file.getMsg()).add(file);

174 }

175

176 // Get the files for each generated message and author

177 for (String msg : filesByMsg.keySet())

178 {

179 List<CvsFile> generatedFiles = filesByMsg.get(msg);

180

181 // Get the indexed files

182 Iterator<Object> fileItr = dao.getFilesByAuthorAndMessage('

183 author, msg);

184

185 // Compare the generated and indexed files

186 while (fileItr.hasNext())

187 {

188 boolean found = false;

189 CvsFile indexedFile = (CvsFile) fileItr.next();

190 for (int i = 0; i < generatedFiles.size(); i++)

191 {

192 CvsFile generatedFile = generatedFiles.get(i);

193 if (fileEquals(indexedFile, generatedFile))

194 {

195 generatedFiles.remove(i);

196 found = true;

197 break;
198 }

199 }

200

201 if (!found)
202 {

203 Assert.fail("Indexed file not found in generated.");

204 }

205 }

206

89

207 if (generatedFiles.size() > 0)

208 {

209 Assert.fail("Generated had more files then indexed.");

210 }

211 }

212 }

213 }

214 }.run();

215 }

216

217 /**

218 * Test the MR rebuilding logic.

219 */

220 @Test
221 public void testGetMRs()

222 {

223 new Object()

224 {

225 void run()

226 {

227 // Create the MRs

228 List<ModificationRequestDto> mrs = new ArrayList<'

229 ModificationRequestDto>();

230 generateMRs(mrs);

231 Assert.assertEquals(4, mrs.size());

232 }

233 }.run();

234 }

235

236 /***

237 * Utility functions.

238 ***/

239 boolean fileEquals(CvsFile file1, CvsFile file2)

240 {

241 Assert.assertEquals(file1.getId(), file2.getId());

242 Assert.assertEquals(file1.getAuthor(), file2.getAuthor());

90

243 Assert.assertEquals(file1.getCvsstate(), file2.getCvsstate());

244 Assert.assertEquals(file1.getMsg(), file2.getMsg());

245 Assert.assertEquals(file1.getTime(), file2.getTime());

246 Assert.assertEquals(file1.getRevision(), file2.getRevision());

247

248 return true;

249 }

250

251 /**

252 * Generate test file revision data.

253 */

254 void generateMRs(final List<ModificationRequestDto> mrs)

255 {

256 new Object()

257 {

258 @Service
259 Factory<CvsLogFileDto> fileFactory;

260

261 public void run()

262 {

263 PriorityQueue<CvsFile> files = new PriorityQueue<CvsFile>(1,

new '
264 CompareCvsFileByTime());

265 Date now = new Date();

266 long start = now.getTime();

267

268 // First MR has 5 files

269 files.add(makeFile(1L, "test", "Test message", start + 2));

270 files.add(makeFile(2L, "test", "Test message", start + 4));

271 files.add(makeFile(3L, "test", "Test message", start + 6));

272 files.add(makeFile(4L, "test", "Test message", start + 8));

273 files.add(makeFile(5L, "test", "Test message", start + 10));

274

275 // Second MR has 3 files

276 start += 650000;

277 files.add(makeFile(6L, "test", "Test message", start + 2));

91

278 files.add(makeFile(7L, "test", "Test message", start + 4));

279 files.add(makeFile(8L, "test", "Test message", start + 6));

280

281 // Third MR has 2 files

282 start += 650000;

283 files.add(makeFile(9L, "test", "Test message", start + 2));

284 files.add(makeFile(10L, "test", "Test message", start + 4));

285

286 // Fourth MR has 2 files

287 start += 650000;

288 files.add(makeFile(11L, "test4", "Test message", start));

289

290 ModificationRequestBuilder builder = new '
291 ModificationRequestBuilder();

292 mrs.addAll(builder.build(files, 45000L, 600000L));

293 Assert.assertEquals(4, mrs.size());

294 }

295

296 CvsLogFileDto makeFile(Long id, String author, String msg, long
time)

297 {

298 CvsLogFileDto f = fileFactory.newInstance();

299 f.setId(id);;

300 f.setAuthor(author);

301 f.setMsg(msg);

302 f.setTime(time);

303 return f;

304 }

305

306 /**

307 * Comparator to sort files by descending time.

308 */

309 class CompareCvsFileByTime implements Comparator<CvsFile>

310 {

311 @Override
312 public int compare(CvsFile o1, CvsFile o2)

92

313 {

314 return o1.getTime().compareTo(o2.getTime());

315 }

316 }

317

318 }.run();

319 }

320 }

93

Appendix G

ModificationRequestBuilder.java

1 package edu.byu.cs.sequoia.bokeo.changeloganalyzer.app;

2

3 import java.util.ArrayList;

4 import java.util.List;

5 import java.util.PriorityQueue;

6

7 import edu.byu.cs.sequoia.bokeo.changeloganalyzer.app.db.bdb.'

8 ModificationRequestDto;

9 import edu.byu.cs.sequoia.bokeo.changelogextractor.parser.dto.CvsFile;

10

11 /**

12 * Implementation of the sliding-time-window algorithm.

13 *

14 * @author scott

15 *

16 */

17 public class ModificationRequestBuilder

18 {

19 /**

20 * Build the modification requests.

21 *

22 * @param files

23 * @param distanceMax

24 * @param periodMax

25 * @return

26 */

27 public List<ModificationRequestDto> build(PriorityQueue<CvsFile>

files, '

94

28 Long distanceMax, Long '

29 periodMax)

30 {

31 List<ModificationRequestDto> mrs = new ArrayList<'

32 ModificationRequestDto>();

33

34 // Bootstrap the process:

35 // 1) Create a new MR

36 // 2) Assign the first revision

37 // 3) Set sTime (start time) and pTime (previous time)

38 // to the first revision time.

39 ModificationRequestDto mr = new ModificationRequestDto();

40 CvsFile currentFile = files.poll();

41 mr.getFiles().add(currentFile.getId());

42 mr.setTime(currentFile.getTime());

43 Long startTime = currentFile.getTime();

44 Long previousTime = startTime;

45

46 // Check each file for distance and period

47 while (files.size() > 0)

48 {

49 // Get the current file time

50 currentFile = files.poll();

51 Long currentTime = currentFile.getTime();

52

53 // Check the distance and period

54 if ((currentTime - previousTime <= distanceMax) && (currentTime -

'

55 startTime <= periodMax))

56 {

57 // Add the revision to the MR

58 mr.getFiles().add(currentFile.getId());

59 previousTime = currentTime;

60 }

61 else
62 {

95

63 // Save the old MR and start a new MR

64 mrs.add(mr);

65

66 // Create the next MR

67 mr = new ModificationRequestDto();

68

69 // Bootstrap the process again.

70 mr.getFiles().add(currentFile.getId());

71 mr.setTime(currentFile.getTime());

72 startTime = previousTime = currentFile.getTime();

73 }

74 }

75

76 // Save the last one

77 if (mr.getFiles().size() > 0)

78 {

79 mrs.add(mr);

80 }

81

82 return mrs;

83 }

84 }

96

Appendix H

i3Persistence Framework , JDBC/SQL and Berkeley DB Test Results

Database Authors Files Revisions
i3Persistence (MySQL) 214 22,875 54,647
JDBC/SQL (MySQL) 214 22,875 54,647

Berkeley DB 214 22,875 54,647

Table H.1: Comparison of GNU gcc cvs log Analysis

97

Appendix I

Gnu gcc: Distribution of the Number of Files in an MR

Files Replicated Original % Change
1 0.1744 0.1570 1.74%
2 0.4213 0.4240 -0.27%
3 0.1188 0.1180 0.08%
4 0.0946 0.0800 1.46%
5 0.0428 0.0600 -1.72%
6 0.0326 0.0410 -0.84%
7 0.0197 0.0250 -0.53%
8 0.0146 0.0150 -0.04%
9 0.0101 0.0110 -0.09%
10 0.0086 0.0090 -0.04%
11 0.0064 0.0070 -0.06%
12 0.0059 0.0060 -0.01%
13 0.0045 0.0050 -0.05%
14 0.0037 0.0040 -0.03%
15 0.0046 0.0035 0.11%
16 0.0033 0.0030 0.03%
17 0.0043 0.0025 0.18%
18 0.0017 0.0020 -0.03%
19 0.0019 0.0020 -0.01%
20 0.0014 0.0015 -0.01%
21 0.0012 0.0010 0.02%
22 0.0012 0.0010 0.02%
23 0.0012 0.0010 0.02%
24 0.0010 0.0010 0.00%
25 0.0010 0.0010 0.00%

Table I.1: Distribution of the Number of Files in an MR

98

Appendix J

Gnu gcc: Modification Requests per Month, 2003

Month Replicated Original %
1 1198 1460 -21.87%
2 1164 1220 -4.81%
3 1233 1486 -20.52%
4 967 1157 -19.65%
5 890 984 -10.56%
6 1376 1520 -10.47%
7 1666 1380 17.17%
8 875 935 -6.86%
9 888 957 -7.77%
10 1184 1250 -5.57%
11 893 911 -2.02%
12 1016 1097 -7.97%

Table J.1: Modification Requests Per Month, 2003

99

Appendix K

UML Diagrams

K.1 i3Datasource: Module Statistics and Package Diagram

Metric Total
Number of Packages 7
Number of Classes 62

Number of Interfaces 6
Total Lines of Code 4011

Table K.1: i3Datasource Module Metrics

Figure K.1: i3Datasource Module Package Diagram

100

K.2 i3InjectionApi: Module Statistics and Class Diagram

Metric Total
Number of Packages 5
Number of Classes 6

Number of Interfaces 20
Total Lines of Code 322

Table K.2: i3InjectionApi Module Metrics

Figure K.2: i3InjectionApi Module Class Diagram

101

K.2.1 i3InjectionApi: Service Module Class Diagram

Figure K.3: i3InjectionApi Service Module Class Diagram

102

K.2.2 i3InjectionApi: Modules Class Diagram

Figure K.4: i3InjectionApi Modules Class Diagram

103

K.3 i3PersistenceApi: Module Metrics and Package Diagram

Metric Total
Number of Packages 5
Number of Classes 8

Number of Interfaces 11
Total Lines of Code 343

Table K.3: i3PersistenceApi Module Metrics

Figure K.5: i3PersistenceApi Module Package Diagram

104

K.3.1 i3PersistenceApi: Query Module Class Diagram

Figure K.6: i3PersistenceApi Query Module Class Diagram

105

K.3.2 i3PersistenceApi: Modules Class Diagram

Figure K.7: i3PersistenceApi Modules Class Diagram

106

K.4 i3InjectionImpl: Module Statistics and Package Diagram

Metric Total
Number of Packages 11
Number of Classes 73

Number of Interfaces 4
Total Lines of Code 3981

Table K.4: i3InjectionImpl Module Metrics

Figure K.8: i3InjectionImpl Module Package Diagram

107

K.5 i3PersistenceImpl: Module Statistics and Package Diagram

Metric Total
Number of Packages 6
Number of Classes 61

Number of Interfaces 14
Total Lines of Code 4599

Table K.5: i3PersistenceImpl Module Metrics

Figure K.9: i3PersistenceImpl Module Package Diagram

108

	Brigham Young University
	BYU ScholarsArchive
	2010-12-16

	A Reusable Persistence Framework for Replicating Empirical Studies on Data from Open Source Repositories
	Scott Bong-Soo Chun
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 The Role of Replication in Empirical Research
	1.2 Bokeo: A Framework for Conducting Empirical Experiments
	1.3 The Database Management System

	2 Related Work
	3 Thesis Statement
	4 Project Description
	4.1 Why Another Persistence Framework?
	4.1.1 Limitations of Existing Database Management Systems (DBMSs)
	4.1.1.1 The Relational vs. Object-Oriented Impedance Mismatch
	4.1.1.2 The Challenges of SQL
	4.1.1.3 The Challenges of Modern Object-Oriented DBMSs

	4.1.2 The Traditional vs. i3Persistence Development Process Model
	4.1.3 Static vs. Dynamic Database Schema

	4.2 i3Persistence Framework User Specifications
	4.2.1 Decoupling via the Dependency Inversion Principle
	4.2.2 Further Decoupling via the Dependency Injection Pattern
	4.2.3 Delegation via The Factory Method Pattern
	4.2.4 Reduce Complexity via Query By Filter vs. SQL
	4.2.5 Reduce Code via Automatic Generation of interface Implementations
	4.2.6 Ease of Use via a Simple Persistence API
	4.2.7 Support for MySQL

	5 Implementation
	5.1 Architecture Overview
	5.1.1 Project Organization

	5.2 Java Object Persistence Scheme
	5.2.1 Java Instrumentation and i3Agent
	5.2.2 Javassist and Byte Code Manipulation

	5.3 i3Injection: Java Annotation
	5.3.1 @ServiceContext
	5.3.1.1 Registering Services with initializationClasses
	5.3.1.2 Controlling the Scope of a ServiceContext with contextType

	5.3.2 @RegisterService
	5.3.3 @RegisteredClass
	5.3.4 @Service
	5.3.5 @New
	5.3.6 @Transaction

	5.4 Optimizing Object Injection
	5.4.1 Fine Tuning The Injection with the injection-conf.xml File
	5.4.2 @DoNotTransform

	5.5 Framework Services
	5.5.1 The Factory Service Interface
	5.5.2 The PersistenceManager Service
	5.5.3 The Query Interface

	6 Setup and Deployment
	6.1 Database: Setup and Connection
	6.2 Preparing an Eclipse Project

	7 Product Validation
	7.1 Replicating the Modification Request Experiment
	7.1.1 The Sliding Time Window Algorithm
	7.1.2 Assumptions
	7.1.3 Unraveling the CVS Log Format with cvs2cl
	7.1.4 The Application Design
	7.1.4.1 Extraction Phase: The ChangelogExtractor Module
	7.1.4.2 Adapting to a Crisis
	7.1.4.3 Analysis and Synthesis Phase: The ChangelogAnalyzer Module

	7.2 Validating the Implementation
	7.3 Replication Results
	7.4 Conclusion
	7.4.1 Implementation Technologies
	7.4.2 Database Technologies
	7.4.3 Datasets
	7.4.4 Algorithms

	7.5 Comparison of Technologies

	8 Conclusion
	9 Future Work
	9.1 Point-in-Time Architecture
	9.2 Optimize Speed
	9.3 Support Large Datasets
	9.4 Object Version Migration

	Bibliography
	A Separating Responsibilities with a Component-Layered Architecture
	B Decoupling Modules with the Dependency Inversion Principle
	C Connecting Components and Layers with the Dependency Injection Pattern
	D ChangelogExtractor Module injection-config.xml
	E ChangelogAnalyzer Module injection-config.xml
	F ChangelogDAOTest.java
	G ModificationRequestBuilder.java
	H i3Persistence Framework , JDBC/SQL and Berkeley DB Test Results
	I Gnu gcc: Distribution of the Number of Files in an MR
	J Gnu gcc: Modification Requests per Month, 2003
	K UML Diagrams
	K.1 i3Datasource: Module Statistics and Package Diagram
	K.2 i3InjectionApi: Module Statistics and Class Diagram
	K.2.1 i3InjectionApi: Service Module Class Diagram
	K.2.2 i3InjectionApi: Modules Class Diagram

	K.3 i3PersistenceApi: Module Metrics and Package Diagram
	K.3.1 i3PersistenceApi: Query Module Class Diagram
	K.3.2 i3PersistenceApi: Modules Class Diagram

	K.4 i3InjectionImpl: Module Statistics and Package Diagram
	K.5 i3PersistenceImpl: Module Statistics and Package Diagram

