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ABSTRACT

Drop-in Concurrent API Replacement for Exploration, Test, and Debug

Everett A. Morse

Department of Computer Science

Master of Science

Complex concurrent APIs are difficult to reason about manually due to the exponential growth in the
number of feasible schedules. Testing against reference solutions of these APIs is equally difficult as reference
solutions implement an unknown set of allowed behaviors, and programmers have no way to directly control
schedules or API internals to expose or reproduce errors. The work in this paper mechanically generates
a drop-in replacement for a concurrent API from a formal specification. The specification is a guarded
command system with first-order logic that is compiled into a core calculus. The term rewriting system
is connected to actual C programs written against the API through lightweight wrappers in a role-based
relationship with the rewriting system. The drop-in replacement supports putative what-if queries over
API scenarios for behavior exploration, reproducibility for test and debug, full exhaustive search and other
advanced model checking analysis methods for C programs using the API. We provide a Racket instantiation
of the rewriting system with a C/Racket implementation of the role-based architecture and validate the
process with an API from the Multicore Association.

Keywords: API, Concurrency, PLT Redex, Exhaustive Search, Continuations
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Chapter 1

Preamble

Concurrent APIs are hard to reason about, due to an exponential explosion of possible linearizations

for calls made in each thread. Short program examples can confuse experts (Palmer et al. [2007]). Tool

support is necessary to tackle this problem.

Current approaches include reference implementations, such as the C implementation of the Multi-

core Association Communications API (MCAPI), and formal modeling techniques. Models have been created

for subsets of several APIs, including Message-Passing Interface (MPI) and MCAPI (Palmer et al. [2007],

Sharma et al. [2009]). These models are often limited in the behavior that they explore, especially those

dependent on a reference implementation. Other models using formal logic are difficult to use for expressing

API semantics and difficult to use for any user beyond the initial specifier. We propose a solution that

provides a higher-level formal specification and that has wider use.

We allow API designers to experiment with design decisions, implementers to explore intended

behavior of the API in order to test and debug their own implementations, and programmers to experiment

with the API to better understand – and thus better use – the API. Our formal API specifications are closer

to the natural language specification than some logic system and certainly closer than an implementation

language like C, yet the are explicit in declaring internal state and all effects of operations, qualities that are

purposely missing from the natural language specification. Furthermore, the specification can be used as a

drop-in replacement for the API. It is thereby much easier to use than other formal methods and can move

beyond the initial designers to allow exploration, debug, and testing by all users of the API.

This work presents a thesis in the form of a paper ready for journal publication. Chapters 2 through

8 are this paper, which has been submitted for publication. The appendices add further discussion of details

that pertain to our thesis or that are too lengthy to include in the journal paper.

1.1 Relation to Thesis

The focus of the academic paper presented below is to introduce our architecture for utilizing a formal

specification of an API as a drop-in replacement for that API for the purposes of exploration, test, and
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debug. In order to accomplish this, the paper presents 4M, a specification language for concurrent APIs that

uses first-order logic. It presents the operational semantics of this specification language, then it presents the

architecture for the drop-in. Finally, it concludes with our instantiation of this architecture as validation.

The pieces of this paper are closely aligned with our original thesis.

Our thesis is that a specification in first-order logic of an API can be used to mechanically

generate an implementation that allows sound experimentation with API behavior. The included

paper presents this first-order logic API specification language. The drop-in architecture presented is the

mechanically generated implementation. The purpose of the drop-in is to allow exploration, test, and debug

– a purpose which includes experimentation with API behavior.

The process is mechanical in generating this implementation. It first uses a 4M compiler to produce

the 4M core form which runs on the operational semantics presented in the paper. The instantiation of the

architecture plugs in a PLT Redex (Felleisen et al. [2009]) model of the operational semantics along with

other components in C and Racket to complete the drop-in architecture. It requires only a small amount of

hand-tuning for the thin C wrappers in addition to the original 4M specification of the API; everything else

is mechanically generated.

The generated implementation allows sound experimentation inasmuch as the user-made portions

are correct. The drop-in architecture uses the 4M model of the API directly to generate all possible API

behaviors. If the specification is correct, the model is also correct. The drop-in architecture deals with

communication between the C program and the API model and with choosing behaviors to explore. This

exploration method is API-agnostic and is either exhaustive, thus leaving no room for unexplored behaviors

and thus unsound exploration, or it is a random walk of one path, which also soundly represents API

experimentation. Each transformation in the compiler from full 4M to 4M core is simple and easily shown

to preserve the meaning of the specified API. Furthermore, we have tested each portion of the drop-in

instantiation to our satisfaction. If there are no errors in our instantiation, of which we are reasonably

confident, then the exploration of API behavior is as sound as the 4M specification provided by the user.

The paper presents the operational semantics of 4M core in Chapter 4. The full 4M language

is further explained in Appendix A, and the full rewrite rules for the operational semantics of 4M are

presented all together in Appendix B. The compilation process from full 4M to 4M core is described in

Appendix C. Next, the architecture of the drop-in is described in Chapter 5 along with the our implementation

in Chapter 6. Usage examples for the 4M language and the drop-in are presented in Chapter 3. A much

better validation, however, is the specification and exploration of a real API. This we have done with our

4M specification of MCAPI, presented in full detail in Appendix D.

2



Each aspect of the thesis is described herein, whether in the paper or in the appendix material.

We thereby show that a specification in first-order logic of an API can be used to mechanically generate an

implementation that allows sound experimentation with API behavior.

3



Chapter 2

Introduction

Natural language—“English”—specifications are the standard in concurrent API specifications. En-

glish is familiar and easy to produce for API designers, and they can choose the level of detail necessary.

Debate about the meaning of the specification follows the time-honored standards of lawyers, literary critics,

and philologists.

The vagueness often present in such specifications is valuable for implementors because implementa-

tion details are not micro-managed by designers. Instead, high-level properties such as “atomic”, “blocking”,

or “non-overtaking” are aluded to, without requiring a detailed explanation of the API’s internal state and

how it provides these properties.

Implementations, of course, are only tangentially related to the specification. They are typically

implemented in hardware or low-level languages, like C, where the high-level properties of the API are

smeared across the low-level details of the circuit board. Implementers and users cannot easily determine

the allowable behaviors of an API in such an implementation. Indeed, for many APIs there simply are no

implementations because the API is in development.

There are clear benefits of formal logic-based specifications of APIs: designers can understand their

creations; implementers can verify their work; and programmers can explore, test, and debug the behavior

of their programs. For these benefits, designers and implementers can be viewed as special-cases of program-

mers: programs are particular API scenarios that designers may wish to understand and implementers may

wish to use in order to validate their implementations.

Yet, few APIs are specified formally. We contend that this dearth is partly due to the tedious

nature of formal specification as many languages are too low-level from a logical perspective (Palmer et al.

[2007]), but more critically, because formal specifications do not serve a purpose beyond one time analysis in

the constrained runtime environment of the specification framework—the formal specification rarely moves

beyond the writer. When such specifications are available, it is difficult (or impossible) for a programmer,

implementer, or designer to directly use these specifications for exploration, testing, and debugging of API

4



scenarios in all but the most trivial instances, and certainly, using the actual specifications as instances of

the API linked against application code is extraordinary.

The remainder of this paper presents our solution:

• a language, 4M, for concurrent API modeling and specification that combines the structure of English

specifications with the detail of formal specifications (Chapter 4); and

• a novel technique for exploring, testing, and debugging actual C programs using a drop-in replacement

of the API that employs a direct implementation of 4M as a term-rewriting system (Chapter 5) as an

instance of the API.

Chapter 3 presents the structure of our solution using a concrete message-passing API. Chapter 6

validates our solution by applying it to MCAPI, a real communications API from the Multicore Association

(MCA).
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Chapter 3

Motivation and Example

Fig. 3.1(a) is the English description of a connectionless message passing API for multi-threaded

applications. The specification defines four API functions to create mailboxes, get mailboxes, and then

send and receive messages between mailboxes. The structure of the written English specification defines

transitions with their input, effects, and error conditions, which are helpful properties in understanding

individual API behavior in isolation.

As with any concurrent API, though, it can be a challenge to explain intended behavior in simple

scenarios consisting of a handful of calls. Consider the scenario in Fig. 3.1(b) that includes three threads using

the blocking send (send) and receive (recv) calls from the API to communicate with each other. Picking

up the scenario just after the mailboxes are defined, thread 0 receives two messages from the mailbox to0

in variables a and b; thread 1 receives one message from the mailbox to1 in variable c and then sends the

message “X” to the mailbox to0; and finally, thread 2 sends the messages “Y” and “Z” to the mailboxes

to0 and to1 respectively. Given the scenario, an API designer, implementor, or programmer might ask the

question, “based on the written specification, which messages may be stored in variables a, b, and c at the

end of program execution?”

Intuitively, when the program terminates, variable a contains “Y” and variable b contains “X”

since thread 2 must first send message “Y” to mailbox to0 before it can send message “Z” to mailbox

to1; consequently, thread 1 is then able to send message “X” to mailbox to0. Such intuition is correct in

linearizing program execution, but it is not the only way to linearize as the specification allows an alternative

scenario where message “Y” is delayed in transit and arrives at mailbox to0 after message “X”.

The English specification in Fig. 3.1(a) states that the send operation “returns once the buffer can

be reused by the application.” As such, the return of the send only implies a copy-out of the message buffer

and not a delivery to the intended mailbox; thus, an additional way to linearize the program execution places

the message “X” in variable a and the message “Y” in variable b.

The specification in Fig. 3.1(a) is a simplified subset of a real communications API from the MCA.

Conversations with the MCAPI designers confirmed the intended behavior of the API to include both

6



mbox t mbox(int id, status t *s)

Description: creates a mailbox for id, returns its reference, and sets *s to 1. If id already
exists, *s is set to -1 and the return has no meaning.

mbox t get mbox(int id, status t *s)

Description: returns the reference for mailbox id and sets *s to 1. The call blocks if the
mailbox has yet to be created.

void send(mbox t from, msg t *msg, mbox t to)

Description: sends the message msg from the mailbox from to the mailbox to. It is a blocking
function and returns once the buffer msg can be reused by another application.

void recv(mbox t to, msg t *msg)

Description: receives a message into msg from the mailbox to. It is a blocking function and
returns once a message is available and the received data filled in msg. Messages from a common
mailbox are non-overtaking.

(a)

Thread 0 Thread 1 Thread 2
to0 = mbox(0,&s) to1 = mbox(1,&s) from2 = mbox(2,&s)

to0 = get mbox(0) to0 = get mbox(0)

from1 = mbox(3, &s) to1 = get mbox(1)

recv(to0,&a) recv(to1,&c) send(from2,to0,"Y")

recv(to0,&b) send(from1,to0,"X") send(from2,to1,"Z")

(b)

Figure 3.1: A simple message passing API with an example usage scenario. (a) A specification of the API.
(b) A simple scenario to illustrate the difficulty in reasoning about API behavior.

linearizations of the scenario. Furthermore, lest the reader think this is a trivial issue, three published

verification and analysis tools purpose-built for MCAPI omit the less intuitive program execution, and thus

do not consider such allowed behavior in their results (Sharma et al. [2009], Elwakil and Yang [2010b,a]).

3.1 Formal Specification of the API

Without tool support it quickly becomes difficult to reason about behavior over concurrent API calls. What

tools exist to support such putative what-if queries? Solutions can be roughly categorized into two groups:

formal logic or direct implementation. A formal logic example is TLA, except that recent attempts to model

MPI in TLA have shown the logic to be too low-level for practical application to APIs described in English

prose (Lamport, Palmer et al. [2007]). A direct implementation example is to build the API directly in C.

Not only is the gap between English prose and C extremely difficult to bridge, it is not possible to test in

the presence of concurrency because a user cannot control execution schedules. Moreover, C is unusually

susceptible to bugs as evidenced by the MCAPI reference implementation which non-deterministically dead-
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locks (The Multicore Association). To address the need for clear specification and modeling of concurrent

APIs, we define 4M.

4M is a formal specification language designed to keep the best things from the informal written

style and remove the worst. To be specific, 4M keeps the structure of the written English specification that

defines transitions with their input, effects, and error conditions, but it replaces the thin veneer covering

statements such as “message non-overtaking” in the written English with effects described in first-order logic

over a predefined and explicitly listed vocabulary of API state. Furthermore, all internal processing implied

by statements such as “it returns once the buffer can be reused by another application” is made explicit by

defining daemon transitions that operate on internal API state that are concurrently enabled with pending

API transitions.

The 4M description for the API used in the example scenario is given in Fig. 3.2. The vocabulary

for the API state is defined in lines 1–4 comprising mailboxes to track defined end points, modeled as a set

(indicated by the braces {}), and queues, initialized with the value 0, to track outstanding message sends

in the form of a list of tuples. The API interface is defined as a series of transitions given in lines 5–42.

Consider the mbox transition defined on lines 5–18. It takes three parameters as input: a mailbox

identifier id and references to result (resultAddr) and return status (statusAddr) to send information back

to the caller. The transition itself is divided into two sections: rule (lines 7–13) and errors (lines 14–17).

Each section contains a set of guarded transitions.

The 4M semantics first evaluate errors and then rules. Any enabled error may be selected, and its

corresponding transition is taken. In the mbox transition, the guard on the error in line 15 uses existential

quantification (\E) over the set mailboxes to determine if the request to create a mailbox duplicates an

existing mailbox. The dot notation in box.0 of the guard implies that mailboxes is a set of tuples, and id

is the first member of the tuple. The effect of the error (indicated by the text following the ==> on line 16) is

to set the memory referenced by statusAddr in the next state to value -1. The ‘@’ symbol is the dereference

and the apostrophe indicates the next value

The rule section of mbox defines a single behavior on lines 8–12. This transition is always enabled

in the absence of an error, and its effect is to (i) create an entry in the heap and set the reference to be

newAddr using the tmp command (line 9); (ii) set the next value of memory referenced by resultAddr to be

newAddr (the content of resultAddr is the return value from the transition); (iii) update the set mailboxes

with the tuple [id, newAddr] using the union operator \U (line 11); and (iv) set the memory referenced

by statusAddr in the next state to 1 to indicate the successful completion of the transition as per the API

specification.

8



The other transitions get mbox, send, and recv are defined similarly to mbox. Of note is the

definition of recv, however, that blocks in the absence of a message. The guard on line 38 is only satisfied if

the memory referenced by to is not empty, in which case it knows there is a pending message(s). Looking at

the body of the rule, variable to references a list (lines 39–40) where the first member is the message with

the content copied into msg and the second member is the list of remaining messages.

Internal API housekeeping is managed by daemon transitions as illustrated by the pump transition

defined on lines 43–53. Daemon transitions are invoked infinitely often in the API, executed as often as the

guards are enabled, and represent a concurrently enabled thread of execution to consider in any linearization.

The pump daemon in the example API is active anytime queues has a non-zero value, and its role is to transfer

messages from sending mailboxes to receiving mailboxes. It does this transfer by (i) defining a local variable

from holding the first element of the queues tuple with the let expression (line 46); (ii) defining msg to

hold the actual message from the sender (line 47); (iii) defining to to hold the address of the destination

mailbox (line 48); (iv) adding the message to the receiver mailbox (line 49); (v) removing the message from

the sender mailbox (line 50); and (vi) removing the pending send from queues (line 51).

3.2 Semantic Implementation of 4M

4M itself is intended for human consumption with form and semantics that are non-trivial to define directly.

For example, 4M semantics give simultaneous update of all API state variables affected in a transition and

allows calls to other transitions within an active transition. As such, it is possible to define a blocking send as

a non-blocking send followed by a call to wait that blocks until the send completes. Such nuanced semantics

are more easily realized by a core calculus upon which 4M is built.

The operational semantics for the 4M core is given by a term rewriting system employing small-step

semantics through continuations. Fig. 3.3 shows the implementation of send, recv, and the daemon pump.

Lines 1–2 define heap locations and initial values for the API state variables mailboxes (0) and queues (1).

lines 3–6 and lines 7–11 implement send and recv. 4M core groups assignments into a simultaneous update

action using the upd command. For the recv transition, the guard is on line 8, and the simultaneous update

on msg and to is on lines 10–11. The core calculus is much more compact than 4M and more naturally

implements the intended semantics.

Direct questions regarding API behavior over concurrent calls such as the scenario in Fig. 3.1(b)

can be explored directly in 4M core by iteratively presenting to the calculus the current API call of each

participating thread and asking the calculus for all possible next states of the system. In such a manner, it
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is possible to evolve the API state from a known initial state to one of several possible end states allowed by

the specification.

The API state for the scenario at the point where threads 0 and 1 are blocking on their first calls to

recv, and thread 2 is blocking on its second call to send is shown in Fig. 3.4. Lines 1–7 encode the heap with

the mailboxes in location 0 and the queues in location 1. Location 7 in line 6 is the from2 mailbox showing

the message enqueued by send(from2, to0, ‘‘Y’’). Following the heap are the states of the daemons and

threads. Line 8 is the daemon for the pump transition. Lines 16–19 define the state of thread 2. Line 16–17

is the local environment mapping variable names to locations in the heap. Line 18 is the continuation in

the tail position where ret marks the end of execution. Line 19 is the continuation showing the pending

send(from2, to1, ‘‘Z’’) invocation.

The semantics allows several next states from Fig. 3.4 such as the pump transition moving the message

out of the from2 mailbox (location 7 in the heap) into the to0 mailbox (location 5 in the heap) or adding

the next send from thread 2 into the queue (location 1 in the heap) and from2 mailbox. A user is able to

trace any or all possible executions from the current API state by stepping each thread transition allowed

by the semantics.

3.3 Drop-in Replacement for C Programs

Manually writing the state of the API for 4M core and manually stepping through the semantics definition is

not feasible. Suppose instead that there exists an actual implementation of 4M core such that it is possible to

reasonably argue that the implementation is a faithful reproduction of the term rewriting system. Naturally,

it would be ideal to take a C program using the API, in form like the definition of thread 0 in Fig. 3.5(a),

and connect it directly to the 4M core implementation to simulate the API behavior.

The connection is implemented by a role-based relationship between the C runtime and the 4M

core implementation runtime. Thin wrappers bridge the API calls to the actual C drop-in code as shown

in Fig. 3.5(b). The gem call is the entry to the drop-in. The drop-in itself blocks waiting for all threads

to invoke the API at which point it communicates with the 4M core implementation to send the state of

the active threads. The 4M implementation returns a possible next state, and the drop-in releases the

corresponding blocked gem call for the stepped thread. The thread then continues until the next API entry

occurs to repeat the process. The drop-in also stores a random seed from the execution for reproducibility

in test and debug.

The drop-in can be further extended to exhaustive search when programs can rewind through some

form of continuation. Fig. 3.5(c) shows the C code for thread 0 in a continuation passing style (CPS)
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semantics. The closure is completed by passing local variables from the t0 function as parameters to the

continuations. These local variables are given as additional input to each API call. Note that the return

value from mbox in line 4 must also be passed to the continuation in line 6. Each function ends with a call

in the tail position. With CPS semantics, the drop-in queries the 4M implementation for all possible next

states of the API and traverses the entire program behavior space.

3.4 Summary

The entire aforementioned process is implemented to mechanically create a drop-in replacement for a con-

current API described in 4M. The drop-in replacement is controllable for test and debug, and it can perform

exhaustive search of the entire program behavior space with CPS semantics. The 4M core is implemented in

Racket (Flatt and PLT [2010]) with additional support from the PLT Redex (Felleisen et al. [2009]) language

for debugging and developing the core calculus.

The next three sections describe this process and our contributions in detail: Chapter 4 formally

defines our language and provides an operational semantics for the 4M core rewriting system using small-

step semantics. Chapter 5 presents the novel role-based architecture that bridges the C runtime to the

implementation of the 4M core runtime, suitable for test, debug, and exhaustive search. Chapter 6 presents

our 4M description of the connectionless message-passing MCAPI library with performance results.
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1 state
2 mailboxes = {}
3 queues = 0
4 end
5 transition mbox
6 input id , statusAddr , resultAddr
7 rule
8 true ==>
9 tmp newAddr;

10 @resultAddr ’ := newAddr;
11 mailboxes ’ := mailboxes \U {[id, newAddr]};
12 @statusAddr ’ := 1;
13 end
14 errors
15 (\E box in mailboxes: box.0 = id) ==>
16 @statusAddr ’ := -1;
17 end
18 end
19 transition get_mbox
20 input id , resultAddr
21 rule
22 (\E box in mailboxes: box.0 = id) ==>
23 let mailbox = (box in mailboxes: box.0 = id);
24 @resultAddr ’ := mailbox.1;
25 end
26 end
27 transition send
28 input from , msg , to
29 rule
30 true ==>
31 queues ’ := [from , queues];
32 @from ’ := [@msg , to, from];
33 end
34 end
35 transition recv
36 input to , msg
37 rule
38 @to != 0 ==>
39 @msg ’ := (@to).0;
40 @to ’ := (@to).1;
41 end
42 end
43 daemon pump
44 rule
45 queues != 0 ==>
46 let from = queues.0;
47 let msg = (@from).0;
48 let to = (@from).1;
49 @to ’ := [msg , @to];
50 @from ’ := (@from).2;
51 queues ’ := queues.1;
52 end
53 end

Figure 3.2: A simplified message-passing API in 4M
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1 ([0 0]
2 [1 0])
3 (transition send (from val to)
4 ([true
5 ((upd [@ 1 (tuple from (@ 1))]
6 [@ from (tuple val to (@ from))]))]))
7 (transition recv (to msg)
8 ([(6= 0 (@ to))
9 ((upd ()

10 ([@ msg (vecref (@ to) 0)]
11 [@ to (vecref (@ to) 1)])))]))
12 (daemon pump ()
13 ([(6= 0 (@ 1))
14 ((upd [@ 1 (vecref (@ 1) 1)]
15 [@ (vecref (@ (vecref (@ 1) 0)) 1)
16 (tuple
17 (vecref (@ (vecref (@ 1) 0)) 0)
18 (@ (vecref (@ (vecref (@ 1) 0)) 1)))]
19 [@ (vecref (@ 1) 0)
20 (vecref (@ (vecref (@ 1) 0)) 2)]))]))

Figure 3.3: The message passing API transitions send, recv, and pump as implemented in the core calculus
that defines the semantics for 4M.

1 ((((((((((∅ [0 7→ ([0 (addr 5)] [1 (addr 6)]
2 [2 (addr 7)] [3 (addr 5)])])
3 [1 7→ ((addr 7) 0)]) [2 7→ 0])
4 [3 7→ 0]) [4 7→ 0])
5 [5 7→ 0]) [6 7→ 0])
6 [7 7→ ("Y" (addr 5) (addr 7))]
7 [8 7→ 0]) [9 7→ "Z"])
8 ((∅ ret (ω pump))
9 ((((∅ [a 7→ (addr 2)]) [b 7→ (addr 3)])

10 [to0 7→ (addr 5)])
11 ret
12 ((call recv (to0 a) 7→ ret)))
13 ((((∅ [c 7→ (addr 4)]) [to1 7→ (addr 6)]) [from1 7→ 8])
14 ret
15 ((call recv (to1 c) 7→ ret)))
16 (((((∅ [from2 7→ 7])[to0 7→ (addr 5)])
17 [to1 7→ (addr 6)]) [Z 7→ (addr 9)])
18 ret
19 ((call send (from2 to1 Z) 7→ ret)))))

Figure 3.4: The 4M core API state at the point where mailboxes are created and thread 2 completes its first
send.
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1 void t0 ( ) {
2 msg t a , b ; s t a t u s t s ; mbox t to0 ;
3 to0 = mbox(0 , &s ) ;
4 recv ( to0 , &a ) ;
5 recv ( to0 , &b) ;
6 }

(a)

1 void send (mbox t from , msg t ∗msg , mbox t to ) {
2 gem ca l l ( "send (%v %#b %v)" ,
3 from , msg , to ) ;
4 }

(b)

1 void t0 ( ) {
2 msg t a , b ;
3 s t a t u s t s ;
4 mbox(0 , &s , &t0 1 ,{ a : a , b : b}) ;
5 }
6 void t0 1 ( msg t a , msg t b , mbox t to0 ) {
7 recv ( to0 , &a , &t0 2 ,{ a : a , b : b , to0 : to0 }) ;
8 }
9 void t0 2 ( msg t a , msg t b , mbox t to0 ) {

10 recv ( to0 , &b , &t0 3 ,{ a : a , b : b , to0 : to0 }) ;
11 }
12 void t0 3 ( msg t a , msg t b , mbox t to0 ) {
13 p r i n t f ( "a = %s\nb = %s\n" , a , b ) ;
14 }

(c)

Figure 3.5: An interface to connect the 4M core implementation to C programs. (a) The C implementation
of thread 0 in the scenario. (b) The wrapper for the send API call. (c) A continuation passing style
implementation of thread 0 in the scenario.
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Chapter 4

4M

Many English specifications are simply a catalog of API calls, each with a description of effects on

correct calls and a separate list of effects on incorrect calls—whether they be incorrect because of the state

of the API internals or due to improper arguments. The assumed model of these specifications is a set of

threads making API calls concurrently. The implementations of the API calls may coordinate with hidden

state or with API “daemon” threads.

Model Our language, 4M, adopts this catalog specification structure and formalizes this correct/incorrect

computation model, while adopting a few simplifications. Its model is a set of threads effecting a global

store. User threads and daemon threads are explicitly represented. Each thread runs in atomic blocks that

manipulate a single store state, thus representing a “transition” from one store state to another.

In any given 4M program, the threads cannot perform arbitrary transitions. Instead, they are

restricted to a small set of transitions that are defined in a registry. This registry represents the particular

API that the threads are using and is referred to as “the spec”. This restriction on threads and, in turn, on

state transitions, keeps the relationship between the 4M specification and the platonic specification tight.

The transition registry includes a list of well-known store locations that transitions can use to com-

municate and, for instance, implement queuing. It also singles out some transitions as “daemon” transitions

that are assumed to always have dedicated threads executing them.

Structure 4M is specified as an operational abstract machine in the style of the CESK machine (Nielson

and Nielson [1992]). For simplicity, it is a set of cooperating machines, each representing a different level of

abstraction in the model.

The machines do not operate on the syntax exemplified by Figure 3.2. Instead, it is de-sugared into

the core form on which the semantics of 4M is defined. Most of the transformation is obvious and intuitive,

so we do not dwell on it. In the few places where the semantics of core 4M is tricky, we elaborate the

translation in our discussion below.
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The machines are as follows: a system machine for the set of all threads; a thread machine for a

particular thread’s state; an atomic block machine for the intermediate steps in the atomic regions; and an

expression machine for the actual work of computation.

Each machine has slightly different capabilities. For example, the expression machine can inspect

the store, but not modify it, and cannot inspect the transition registry. The atomic block machine may

modify the store. The thread machine may inspect the registry.

Each machine has slightly different properties. For example, the expression machine is deterministic,

while the others are not.

We present these machines from bottom to top: starting with the expression machine.

estate ::= (σ η e k)
σ ::= ∅ | (σ [ address 7→ v ])

η ::= ∅ | (η [ id 7→ v ])

ae ::= v | id
e ::= ae | (@ e)
| (setop (pattern in e) e)
| (if e e e)
| (let ([id e]) e)
| (op e e ...)

v ::= number
| true | false
| error
| string
| (addr address)
| (const-set v ...)
| (const-tuple v ...)

pattern ::= id | (tuple id ...)
op ::= binop | unaop | set | tuple

setop ::= setFilter | setBuild
k ::= ret

| (@ * -> k)
| (setop (pattern in *) e -> k)
| (if * e e -> k)
| (pop η k)
| (let ([id *]) e -> k)
| (op (v ...)* (e ...)-> k)

Figure 4.1: Expression Machine syntax

Expression Machine The expression machine is a straight-forward CESK-style machine with a store (σ),

environment (η), expression (e), and continuation (k).

The syntax is given in Figure 4.1. Stores map addresses to values; environments map identifiers to

values; expressions are divided into atomic expressions (ae) (a category important in the other machines),

store references (@), set operations (filtration and building), conditionals, binding, and operations. We do
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Dereference cont
(σ η (@ e) k)→e

(σ η e (@ * → k))

apply cont
(σ η (op e0 e1 ...) k)→e

(σ η e0 (op () (e1 ...)→ k))

argument eval
(σ η v1 (op (v0 ...) ∗ (e0 e1 ...) k)→e

(σ η e0 (op (v0 ...v1 ) ∗ (e1 ...)→ k))

pop eta

(σ η1 v (pop η0 k))→e (σ η0 v k)
Variable lookup

(σ η id k)→e (σ η η(id) k)

Dereference

(σ η (addr address) (@ * → k))→e (σ η σ(address) k)

Binary Op
vres = vlhs binop vrhs

(σ η vrhs (binop (vlhs) * ()→ k))→e (σ η vres k)

If expression (true)

(σ η true (if () * (etrue efalse)→ k))→e (σ η etrue k)

Let expression

(σ η v (let ([id ∗]) e→ k))→e (σ (η [id 7→ v]) e (pop η k))

Figure 4.2: Expression Machine reductions (→e)

not specify the set of operations beyond set and tuple constructors. Continuations capture the structure of

these expressions and include the top continuation (ret) and the environment restoring continuation (pop).

Figure 4.2 presents a few of the reductions. The structural rules are straight-forward except for

application. The computational rules are equally simple, except for the set operations; though the details

are tedious, so they are relegated to Appendix B. The meaning of an expression is defined as the transitive

closure of →e with the top continuation.

The expression machine is trivially lifted to lists of expressions with left-to-right evaluation:

Eval Leftmost

(σ η etarget ret)→e (σ η vtarget ret)

(σ η (v ...) (etarget e ...))→es (σ η (v ... vtarget) (e ...))

astate ::= (σ η (acmd ...))
acmd ::= (choose id e)

| (let ([id e] ...))
| (alloc id)
| (upd (@ e e)...)

Figure 4.3: Atomic Block Machine syntax

Atomic Block Machine The atomic block machine performs all side-effecting operations of the language

and is always executed atomically.
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Choose
(σ η e ret)→∗e (σ η (const−set v0 ... v v1 ...) ret)

(σ η ((choose id e) acmd ...))→c

(σ (η[id 7→ v]...) (acmd ...))

Let
(σ η () (e ...))→∗es (σ η (v ...) ())

(σ η ((let ([id e] ...)) acmd ...))→c

(σ (η[id 7→ v]...) (acmd ...))

Alloc
address = σmalloc(σ)

(σ η ((alloc id) acmd ...))→c

((σ [address 7→ 0]) (η [id 7→ (addr address)]) (acmd ...))

Store Update
(σ η () (eid ... e ...))→∗es (σ η ((addr address) ...0 v ...0) ())

σ′ = σ[address 7→ v] ...

(σ η ((upd (eid e) ...0) acmd ...))→c (σ′ η (acmd ...))

Figure 4.4: Atomic Block Machine reductions (→c).

The syntax is given in Figure 4.3. The state consists of a store, an environment, and a sequence of

commands. Commands in figure order are: non-deterministic choice from a set, simple binding, allocation,

and store update. The rules are presented in Figure 4.4. Each rule is straight-forward, although our store

update rule uses a non-standard annotation on “...” to indicate when lists should be the same length as

another list. The atomic block machine relies on the expression machine for expression evaluation.

We could have made non-deterministic choice part of the expression machine. But, it would be

dangerous for expression evaluation to be non-deterministic as we discuss below in the select command of

the thread machine.

µ ::= s (t | d) ...
s ::= ((address v)...)
t ::= (transition id (id...)(r...))
d ::= (daemon id ()(r...))
r ::= (e c)
c ::= (acmd ... tcmd)

tcmd ::= (select r ...)
| (call/k id (ae ...) id (ae ...))
| (tail-call id (ae ...))
| ret

tstate ::= (µ σ η tcmd ck)
ck ::= ret

| (ω id)
| (call id (v ...) -> ck)

Figure 4.5: Thread Machine syntax
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Select
(r0 ... r1 r2 ...) = (r ...) epre = precondition(r1)
(σ η epre ret)→∗e (σ η true ret) (acmd ... tcmd) = effects(r1) (σ η (acmd ...)) 99K∗c (σ′ η′ ())

(µ σ η (select r ...) ck)→t (µ σ′ η′ tcmd ck)

Tail Call
(idx ...) = arguments(µ, id)
(r ...) = rules(µ, id) (σ η () (ae ...))→∗es (σ η (v ...) ()) η′ = ∅[idx 7→ v] ...

(µ σ η (tail−call id (ae...)) ck)→t (µ σ η′ (select r ...) ck)

Call with continuation
(σ η () (aek ...))→∗es (σ η (vk ...) ())

(µ σ η (call/k id0 (ae0 ...) idk (aek ...)) ck)→t

(µ σ η (tail−call id0 (ae0 ...) (call idk (vk ...)→ ck))

Continuation call
(µ σ η ret (call id (v...)→ ck))→t

(µ σ ∅ (tail−call id (v...)) ck)

Omega

(µ σ η ret (ω id))→t (µ σ ∅ (tail−call id ()) (ω id))

Figure 4.6: Thread Machine reductions (→t)

Thread Machine The thread machine runs a sequence of API calls by looking up the appropriate transi-

tion in the transition registry and then using the atomic block machine to execute the transition block. Since

it makes use of the transition registry, we specify it at this time. The syntax of both is given in Figure 4.5.

The transition registry (µ) consists of a specification of the initial store (s) followed by a sequence

of normal (t) and daemon (d) transitions. Transitions have labels, input arguments, and a sequence of rules.

Daemons are only distinguished by their lack of input arguments.

Rules (r) consist of an enabling condition expression and a command sequence. There is no dis-

tinction in transitions for error rules. Instead, the compiler from full 4M includes a negated-or of all error

conditions in each non-error rule to ensure that they are never enabled when an error rule is enabled.

Command sequences are a list of commands that will execute atomically before a single thread

command; they are effectively basic blocks with explicit control transitions at the end. This style is the

outcome of the compiler from the full 4M language and is not present in that language.

Thread commands (tcmd) are either non-deterministic rule selection, branching to a transition with

an explicit continuation, branching to a transition with no further action, or return.

The state of the thread machine is the read-only transition registry, the store, an environment, a

single thread command, and a continuation stack. Continuation are either the top continuation, an infinitely

called daemon transition (ω id), or call frame.

The reductions of the machine are shown in Figure 4.6, are quite subtle, and merit further discussion

below.
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Select non-deterministically chooses a rule, ensures that its precondition is enabled, then atomically

applies its basic block and replaces the select command with the thread command of the chosen rule. (We

use 99K∗c to clarify that the outcome of this atomic block is also non-deterministic.) The evaluation of the

atomic block may effect the store and can populate an environment with identifiers for use in the thread

command.

The select rule shows why it is important that the expression machine is totally deterministic and

non-deterministic choice is part of the atomic block machine: the effects of a rule depend on the pre-condition

evaluating to true, but if the pre-condition could have evaluated to either true or false, then it would not be

an invariant the effect could rely on. If the expression machine were non-deterministic, but we enforced that

every execution of the pre-condition evaluated to true, then many common non-deterministic pre-conditions

(such as there is some non-empty mailbox) would never be enabled, and thus not useful.

A tail-call looks up the parameters of the transition, evaluates the arguments with the expres-

sion machine, constructs a new environment binding them, and replaces the thread command with a non-

deterministic selection of the transition’s rules. Arguments are restricted to atomic expressions, which are

only values or identifiers. This restriction ensures that they cannot depend on the store and thus are auto-

matically schedule-independent.

A non-tail call evaluates the arguments of the second call (remember that arguments are atomic and

pure) and pushes the frame onto the stack, then transforms the thread command into a tail-call.

A return to a call frame introduces a new tail-call command and pops the stack. A return to an ω

frame introduces a new call to the daemon transition, but does not pop the stack, so the transition will be

called infinitely.

mstate ::= (µ σ (thread ...) (thread ...))
thread ::= (η tcmd ck)

Figure 4.7: System Machine syntax

System Machine The entire state of the system is managed by the system machine. Its syntax is specified

in Figure 4.7. The state of the system machine consists of a transition registry, a store, and two lists of

thread states. Each thread state has an environment, a thread command, and a thread continuation. One

list of threads represents user threads and one list represents daemon threads.

The reduction rules for the system machine are given in Figure 4.8. When the system machine

transitions, it may select any thread and run one transition of the thread machine for that thread, then

reintegrate the new store and new thread state. Daemon threads are only selected if there is at least one
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System Step (non-daemon)

(µ σ η1 tcmd1 ck1 ) 99Kt (µ σ′ η′1 tcmd1
′ ck1

′)

(µ σ (thread0 ... (η1 tcmd1 ck1) thread2 ...) threadsd)→m

(µ σ′ (thread0 ... (η′1 tcmd ′1 ck ′1) thread2 ...) threadsd)

System Step (daemon)

active(threadsu) (µ σ η1 tcmd1 ck1 ) 99Kt (µ σ′ η′1 tcmd1
′ ck1

′)

(µ σ threadsu (thread0 ... (η1 tcmd1 ck1) thread2 ...))→m

(µ σ′ threadsu (thread0 ... (η′1 tcmd ′1 ck ′1) thread2 ...))

Figure 4.8: System Machine reductions (→m)

active user thread. This constraint ensures that the machine cannot compute forever with only daemon

transitions.

Evaluation A 4M program is specified as a transition registry and a list of initial thread stacks. A program

can be evaluated by constructing an initial system machine state. This state includes the transition registry;

the initial store specified therein; a list of thread states where each has an empty environment, ret for the

thread command, and the appropriate initial stack; and a daemon thread state for each daemon transition

with (ω id) for the initial stack.

Summary The 4M semantics allows us to formally reason about the behavior of concurrent API scenarios.

A system machine state can represent: the initial state of the API prior to the scenario’s execution; any

intermediate state that is not otherwise observable in normal implementations of the API; and all possible

final states.

The real power comes from our ability to control the evolution of the API state by carefully selecting

the reduction of interest from those reductions allowed by the system machine. For small scenarios, this is

plausible by hand, but not enjoyable. For realistic scenarios, we require a more mechanized approach. The

next section provides one possible architecture for deploying 4M.
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Chapter 5

Drop-In Architecture

Our architecture for drop-in replacement of APIs in C programs is divided into four different com-

ponents: an implementation of 4M, a mechanism for capturing and rewinding the state of the C program, a

strategy for exploring the possible system states, and a technique for efficiently storing intermediate system

states in a state database. These components are connected as follows.

As the C program runs, it makes API calls. Those calls transfer control to the drop-in. The drop-in

waits for each thread to enter its control. At that point, it may capture the state of each thread for potential

rewinding during exhaustive exploration. In any case, after each thread is waiting for the drop-in to return

the result of each API call, the drop-in is free to resolve those calls in accord with the API specification.

The meaning of the API specification is brokered by an implementation of 4M. At any given point

in the execution, a 4M system machine could be constructed to resolve allowable next states of the entire

system. The drop-in does just this, by transforming the set of pending API calls and the states of the C

threads into the form required by the 4M implementation. The implementation component computes these

allowable next states.

The search strategy selects some next state to explore from the set of all available next states,

including those generated by this transition and any previously unexplored states recorded in the state

database.

After the search strategy has selected a next state, two types of adjustment must be made to the C

program. First, the C program’s stack and heap may need to be rewound to an earlier point if the search

strategy is backtracking. Second, the changes in state computed by the 4M system machine are reified into

the running C program. For example, if the global store is modified by API communication, that modification

must be reflected in the actual C heap. Some state changes are not reflected, because they are internal to

the API; however, they are preserved until the next state transition.

At this point, some C threads are resumed if the new state represents a completion of their API

call. In practice, most new states only reflect the completion of a single API call, so only a single thread
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is resumed. Other threads remain in a quiescent state in the drop-in. The process begins again once the

resumed threads return control to the drop-in.

In the following subsection we discuss the details for transferring control to the drop-in and reifying

the 4M system machine state into the C runtime. Subsequently, we discuss instantiation options for the four

components.

Transferring Control The C program calls into the drop-in through thin wrappers that replicate the

interface of the API. The responsibility of the wrappers is to convert data types and parameters as needed,

register memory shared by the C program and API, then communicate the call to the drop-in where the

state capture component takes over. Once the next state has been computed and reified into the C program,

the drop-in returns control to the wrappers. The wrappers then interpret data as necessary before returning

to the caller.

Data conversion may be necessary where C datatypes do not match 4M core datatypes. For example,

C distinguishes between integer and floating-point numbers while 4M does not. C also allows arrays of bytes,

while 4M has only strings. The details are important, but trivial and tedious.

Reification of 4M State Some parameters to an API function may be pointers into C memory. These

need to be registered with the drop-in to include them in the heap state copied between the C runtime

and the 4M runtime. The wrappers also must translate between a C function with a return value and 4M

transitions without return values. The wrapper function registers a pointer to a new local variable to use

as a parameter to the 4M transition, from which the return value will be extracted and returned once the

wrapper function regains control.

Implementing 4M An implementation of 4M must define an encoding of system machine states and a

function from one state to a set of next states after one step of the system machine. In all likelihood, C—the

language we assume the API is used from—is not appropriate for an obviously correct implementation of 4M.

Our architecture allows this possibility by compartmentalizing the interaction between the C program and

4M into a single location in the drop-in. The drop-in may therefore call-out to an external implementation

of 4M, through, e.g., pipe or network communication. The details of the encoding and the communication

are opaque to the rest of the architecture.

Reification of C State The drop-in architecture relies on a reification of a C program’s state to allow

search strategies to backtrack. In this case, both the control state (stack) and the data state (heap) must

be reified for correct resumption.
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Reification of control state is a well-studied area where it is commonly called continuation capture.

As such, a drop-in can apply any continuation capture method. In particular, conversion to continuation-

passing style and direct duplication of the stack. This technology is implemented and readily available in

many programming language implementations and user-level thread runtimes.

Reification of data state is more subtle. For programs that rely entirely on the API for data, the

reification of their state is already present in the encoding of the 4M system machine state. For other

data, using single-static assignment and lambda-lifting can turn data capture into continuation capture.

Additionally, techniques for memory monitoring used in software transactional memory systems could be

applied.

Finally, dynamic model checkers often address both these issues by re-executing the program from

the beginning with a record of the branching decisions made in a previous run to restore an earlier state.

These techniques are equally applicable in our architecture.

Search Strategy The simplest search strategy is random walk down a single concurrent execution with

no memory of prior states. More involved search strategies are depth-first, breadth-first, or guided search.

The more involved searches rely on the state database to memoize previously seen states and the mechanism

to capture and rewind the C program state. Advanced search strategies may implement full linear temporal

logic verification, partial order reduction, or other model checking analysis methods to verify properties or

combat state explosion.

State Database The most direct state database is forgetful and only remembers the current state. A näıve

state database stores everything in every state. More refined state databases employs full heap symmetry

reduction, thread symmetry reduction, or other novel encoding techniques to maximize sharing. The state

database may also be instantiated with hash compaction, bit-state hashing (i.e., super-trace or bloom filters),

or other probabilistic techniques to track visited states. It is also possible to use an iterative process such

as successive over/under approximation through predicate abstraction over the state vocabulary.

Summary This generic, role-based drop-in API architecture is flexible enough to support a variety of

applications, including single-step execution, random walk single execution, replay for testing and debugging,

full exhaustive search, as well as a myriad of sophisticated dynamic model-checking techniques, through the

role specialization and instantiation.

As we discuss in the next section, we instantiated this architecture, applied it with a real API and

real running C programs, and validated that it works not only in theory, but in practice as well.
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Chapter 6

Instantiation and Validation

We instantiate our architecture (Fig. 6.1) with the components discussed below. Usage of our drop-

in requires compilation of the API specification written in 4M (Fig. 6.1(a)) into 4M core and thin API

wrappers, and linking the user program (Fig. 6.1(b)) with the drop-in.

Implementing 4M Our implementation of the 4M machine (Fig. 6.1(g)) in Racket (Flatt and PLT [2010])

uses pipes to communicate with the C drop-in runtime.

Our 4M implementation is written in PLT Redex (Felleisen et al. [2009]), a domain-specific language

that ships with Racket for encoding operational semantics as rewriting systems. Since 4M is defined in exactly

this way, the encoding is obvious. In fact, the figures we used to present 4M (e.g. Fig. 4.2) are automatically

generated from the Redex sources. This correspondence increases our confidence that we have implemented

4M correctly.

This Redex model of 4M is used purely syntactically by the drop-in runtime: on each transition, the

drop-in constructs the syntax-tree for the system state and the Redex rewriting engine returns the possible

evolutions of the state after a single step of the system machine.

Our initial Redex implementation of 4M was too slow to be usable. For example, a single message

send and receive with the MCAPI spec took about 12 minutes to find a single execution path. However, we

were able to construct a new compiler for Redex and use it on our 4M implementation. This new compiler

ran the same test in less than half a second. In fact, the time to start the process and load the bytecode was

longer than the computation of the execution path.

Control Transfer and Data Reification Since we use a pipe to communicate between C and Racket

runtimes, the data sent along this pipe must be encoded. A message is formatted per transition invocation.

Most data is converted into a string representation.

Fig. 6.2 is an example of a wrapper (Fig. 6.1(c)). It demonstrates data conversion and passing

control from the wrappers to the drop-in by use of the function gem call on line 7–8. The wrapper indicates

the transition to call, what the parameters are, and what the data formats should be per parameter. Line
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Figure 6.1: The Drop-In architecture. Blue boxes are in the C runtime while green boxes are in the Racket
runtime.

1 mbox t mbox( int id , s t a t u s t ∗ s t a tu s ) {
2 char r e s u l t [ 2 4 ] = {0} ;
3 char s t a t u s s t r [ 8 ] = {0} ;
4 int r e s u l t add r = reg va r ( r e su l t , 24) ;
5 int s t a tu s addr = reg va r ( s t a t u s s t r , 8) ;
6
7 gem ca l l ( "make_mailbox (%d %v %v)" ,
8 id , s tatus addr , r e s u l t add r ) ;
9

10 ∗ s t a tu s = a t o i ( s t a t u s s t r ) ;
11 return a t o i ( r e s u l t ) ;
12 }

Figure 6.2: An example wrapper for the mbox function.

10 is an example of reification to convert data types back, in this case, from a string representation of a

number into a C integer. Lines 4 and 11 show the creation and registration of a local variable to contain the

return result, then returning the contents of this temporary variable.

Reification of C State Our implementation uses an explicit conversion to continuation-passing style to

capture the control state (Fig. 6.1(d)) and assumes that the API state fully reflects the relevant data state.

When this is not true, we assume an appropriate transformation has occurred to reflect all data in the

environment of the continuation.

Search Strategy The implementation has two possible search strategies (Fig. 6.1(e)): random-walk and

bounded depth-first search. Random walk explores a single execution and reports the corresponding random

seed that produced the execution. The depth-first search, as expected, runs to the ascribed bound (or

termination) before backtracking to the most recent decision point. The search is randomized to avoid
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pitfalls in default-search order with the random seed reported at the end of execution. The depth-first

search also stores its own backtrack points and only uses the state database to detect duplicate states rather

than to retrieve full states for backtracking.

State Database The state database (Fig. 6.1(f)) employs bit-state hashing on a single bit to only detect

duplicate states based on computed key values (Holzmann [1998]). The database is implemented as a Racket

hash-table and uses the default key computation over the machine system state to store a single bit in the

entry. A collision in the hash-table is assumed to imply a previously seen state.

Validation The process is validated on the connectionless message passing portion of the MCAPI com-

munications library (The Multicore Association). There are 43 API calls in the library registry, and 18 of

those are related to the connectionless message passing. We implement the 12 most relevant calls that cover

the bulk of the functionality. The 4M comprises 488 lines of code (without comments) utilizing 3 distinct

daemon transitions for internal house keeping on the library. The API state itself only contains 6 unique

variables—two of which encode the library version and error status. The 4M descriptions compiles into 284

lines of 4M core.

Running times are measured with the Unix time command on an Intel Core 2 Quad 2.4 GHz machine

with 4 GB of memory running Ubuntu 10.04. Running the scenario in Fig. 3.1(b) directly in Racket (not

through the C runtime) in single execution mode takes 1.6 seconds. The same single execution through the

C runtime takes 14.8 seconds which includes the overhead to setup and tear down the server. The bulk of

the runtime appears to be in the pipe communication and state construction code that is currently näıvely

implemented. As a reference point, the running time for the MCAPI dynamic verifier MCC on a simpler

scenario with 3 threads, two of which perform parallel sends, and the third making two sequential receives is

under 1 second (Sharma et al. [2009]). The tool, though, does rely critically on a reference implementation,

which as discussed previously, does not include all the behavior allowed in the API.
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Chapter 7

Related Work

There are several general purpose and purpose-built specification languages with complete frame-

works for analysis and model checking. These include Promela, Murphi, TLA+, Z, Alloy, and B, to name a

few (Holzmann [1997], Dill et al. [1992], Lamport, Spivey [1989], Jackson [2006], Abrial [1996]). There are

two differentiators as related to the proposed approach in this paper: first, the connection in other solutions

between the mathematical semantic definition of the language and the runtime is not clear whereas the math

is the implementation in our solution; and second, the other solutions target analysis in the runtime whereas

our work is intended as a drop-in API replacement.

There are several attempts to model MPI in existing specification languages including tools to convert

from C programs using MPI to the chosen specification language (Siegel and Avrunin [2003], Georgelin et al.

[1999], Palmer et al. [2007], Li et al. [2008]). Recent work takes CUDA and C to SMT languages (Wang

et al. [2009], Li et al. [2010], Elwakil and Yang [2010b,a]). Such implementations are only suitable to scenario

evaluation and not drop-in API replacement and have the extra burden of proving a correct translation to

the analysis language.

Recent work in dynamic verification uses the program artifact directly as the model with the actual

API implementation to perform model checking (Godefroid [1997], Mercer and Jones [2005], Pǎsǎreanu

et al. [2008], Musuvathi and Qadeer [2007], Wang et al. [2008], Vakkalanka et al. [2008]). Although the

exhaustive search through continuations rather than repeated program invocation is similar to (Mercer

and Jones [2005], Pǎsǎreanu et al. [2008]), the proposed work in this paper does not critically rely on

an existing runtime implementation; thus, it is able to elicit all behaviors captured in the specification and

directly control internal API behavior. Without such control, verification results are dependent on the chosen

implementation, even then, on just those implementation aspects that are controllable. For example, it is

not possible to affect arbitrary buffering in the MPI or MCAPI runtime libraries and as a result, behaviors

such as those in our example scenario are omitted in the analysis (Sharma et al. [2009]).
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Chapter 8

Conclusion

English specification of concurrent APIs catalog interfaces and list effects of correct and incorrect

calls to those interfaces. They also abstract the internal API state providing flexibility in implementing the

intent of the API. At the same time they provide no framework with which a programmer or even a designer

might experiment to further understand the API in the presence of many concurrent calls. Although it is

possible to provide such framework in a formal specification, the specification is rarely created, and when it

is, it is rarely used beyond the API designer to understand simple scenarios. Regardless, it does not provide

an instance of the API suitable for exploration, test and debug, or exhaustive search for proof construction.

The work in this paper provides a drop-in replacement for concurrent APIs by

• creating a specification language, 4M, implemented as a term rewriting system that is suited for API

specification;

• designing a novel role-based architecture to directly connect the C runtime to the 4M runtime to use

the specification as an instance of the API that is explorable, testable, and capable of exhaustive search;

• providing an implementation of the rewriting system in Racket that is a direct embodiment of the

mathematical description of the semantics; and

• validating the process in a portion of the MCAPI communication API.

The result is that when an API is now formally specified, it is possible to use the same specification with

native programs written against the API to explore system-wide program behavior that existing solutions

cannot reason about.

Future work includes (i) adapting reductions from model checking that combat the state explosion

resulting from data and scheduling non-determinism; (ii) improving the code between different runtimes

to reduce overhead; and (iii) case study in larger programs and APIs. For (i) we intend to implement a

full partial order reduction for the 4M core that employs SMT technology to compute equivalence classes

between concurrent schedules as in (Wang et al. [2009]). A particular challenge is modeling the API state

in SMT and defining the partial order extent in the 4M core. We also intend to implement symmetry
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reduction in both data and threads. For (ii), we intend to look critically at search order and undo stacks

for the heap to minimize the flow of data between the 4M implementation and runtime environment for

the program itself. We also hope to leverage understanding of the partial order relationship in 4M core to

implement macro-steps so scheduling only occurs at dependency points. And finally, for (iii), we hope to

test the implementation against larger codes and different APIs. Of particular interest is the MCA API for

resource allocation that manages shared memory regions for thread-like shared objects. It is not clear how

the current approach needs to adapt to keep shared memory regions consistent in the internal API state

without rewriting memory operations in the application code. We suspect that we can use some form of

memory mapping to capture the effects of writes to common address spaces.
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Appendix A

Syntax

This appendix presents the syntax of the full, human-readable form of 4M. The structure is similar

to the 4M core in that a specification consists of state, transitions, and daemons. In addition, macros are

added and a few syntactic-sugar operations are provided. Fig. A.1 presents this syntax. Fig. A.2 shows the

conversion from syntactic sugar forms into other 4M language forms.

There are three kinds of macros allowed in full 4M. The first two types are function and procedure

macros. These are invoked in a notation similar to function calling in most languages, where the bound macro

identifier is given with parameters following in parentheses. Textual replacement is performed, substituting

values of parameters into the macro body and then substituting that body into the application site. function

macros produce expressions while procedure macros produce commands.

The third kind is a let macro, distinct from the let expression for local binding in the scope of

the expression evaluation, and distinct from the let command for local binding in the scope of command

evaluation. A let macro is similar, but applies to the scope of a transition or daemon and is substituted

non-hygienically — specifically, that identifiers may capture variables bound in the scope of the application

site that would not be in scope of the macro definition. These are useful to reduce the length of transitions

which would otherwise repeat an expression in multiple locations (in rule guards and effects) and to give

names to expressions for enhanced readability. Furthermore, 4M full syntax allows only identifiers on the

left-hand-side of an assignment statement, whereas 4M core accepts any expression (so long as it evaluates

to an address). Thus let macros allow naming an expression and using this name on the left-hand-side of

an assignment statement.
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specification ::= (state | transition | function | procedure)*
state ::= state

(ID = expr)*
end

transition ::= (transition | daemon) ID
(input ID (, ID)*)?
macro*
(rule rule* end)?
(errors rule* end)?

end

function ::= function ID ( (ID (, ID)*)? )

expr
end

procedure ::= procedure ID ( (ID (, ID)*)? )

command
end

rule ::= expr ==> command command*
command ::= ID ( (expr (, expr)*)? ) ;

| (@)? ID’ := expr ;

| call ID ( (expr (, expr)*)? ) ;

| tmp ID ;

| choose ID in e ;

| let ID = e ;

macro ::= let ID = expr
expr ::= value | ID | ID’ | @ ID

| unaop expr
| expr binop expr
| if expr then expr else expr fi

| let ID = expr in expr
| ( (\E | \A) pattern in expr : expr )

| ( pattern in expr : expr )

| { (| expr |)? pattern in expr : expr }
| { (expr (, expr)*)? }
| [ (expr (, expr)*)? ]

| expr . NUMBER
| ( expr )

value ::= NUMBER | STRING | BOOLEAN | ERROR
pattern ::= ID

| [ ID (, ID)* ]

binop → + - * / ^ % /\ \/ \in \notin \U \int \ = != > < >= <=
truncate

unaop → - ! deset typeof

BOOLEAN → true | false

NUMBER → -? [0-9]+ (. [0-9]+)?
STRING → " ([^”] | \" )* "

ID → [a-Z ] [a-Z0-9 ]*
COMMENT → #.*\n | (#.*#)

Figure A.1: The syntax of 4M.

Sugar Form De-sugared Form

(\E x in S : p(x)) {x in S : p(x)} != {}

(\A x in S : p(x)) {x in S : !p(x)} = {}

(x in S : p(x)) deset {x in S : p(x)}

a notin b !(a in b)

Figure A.2: Removal of syntactic sugar, largely dealing with quantification.
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Appendix B

Full 4M Core

The description of 4M core in Chapter 4 excludes some of the rewrite rules for the expression

machine. These are included here, along with the rest of the rules for convenience.

astate ::= (σ η (acmd ...))
acmd ::= (choose id e)

| (let ([id e] ...))
| (alloc id)
| (upd (@ e e)...)

Figure B.1: Atomic Block Machine syntax

Choose
(σ η e ret)→∗e (σ η (const−set v0 ... v v1 ...) ret)

(σ η ((choose id e) acmd ...))→c

(σ (η[id 7→ v]...) (acmd ...))

Let
(σ η () (e ...))→∗es (σ η (v ...) ())

(σ η ((let ([id e] ...)) acmd ...))→c

(σ (η[id 7→ v]...) (acmd ...))

Alloc
address = σmalloc(σ)

(σ η ((alloc id) acmd ...))→c

((σ [address 7→ 0]) (η [id 7→ (addr address)]) (acmd ...))

Store Update
(σ η () (eid ... e ...))→∗es (σ η ((addr address) ...0 v ...0) ())

σ′ = σ[address 7→ v] ...

(σ η ((upd (eid e) ...0) acmd ...))→c (σ′ η (acmd ...))

Figure B.2: Atomic Block Machine reductions (→c).
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estate ::= (σ η e k)
σ ::= ∅ | (σ [ address 7→ v ])

η ::= ∅ | (η [ id 7→ v ])

ae ::= v | id
e ::= ae | (@ e)
| (setop (pattern in e) e)
| (if e e e)
| (let ([id e]) e)
| (op e e ...)

v ::= number
| true | false
| error
| string
| (addr address)
| (const-set v ...)
| (const-tuple v ...)

pattern ::= id | (tuple id ...)
op ::= binop | unaop | set | tuple

setop ::= setFilter | setBuild
k ::= ret

| (@ * -> k)
| (setop (pattern in *) e -> k)
| (if * e e -> k)
| (pop η k)
| (let ([id *]) e -> k)
| (op (v ...)* (e ...)-> k)

Figure B.3: Expression Machine syntax
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Dereference cont
(σ η (@ e) k)→e

(σ η e (@ * → k))

setop cont
(σ η (setop (pattern in es) eb) k)→e

(σ η es (setop (pattern in ∗) eb → k))

if cont
(σ η (if ec et ef ) k)→e

(σ η ec (if ∗ et ef → k))

let cont
(σ η (let ([id ei ]) eb) k)→e

(σ η ei (let ([id ∗]) eb → k))

apply cont
(σ η (op e0 e1 ...) k)→e

(σ η e0 (op () (e1 ...)→ k))

argument eval
(σ η v1 (op (v0 ...) ∗ (e0 e1 ...) k)→e

(σ η e0 (op (v0 ...v1 ) ∗ (e1 ...)→ k))

pop eta

(σ η1 v (pop η0 k))→e (σ η0 v k)
Variable lookup

(σ η id k)→e (σ η η(id) k)

Dereference

(σ η (addr address) (@ * → k))→e (σ η σ(address) k)

Binary Op
vres = vlhs binop vrhs

(σ η vrhs (binop (vlhs) * ()→ k))→e (σ η vres k)

Unary Op
vres = unaop vrhs

(σ η vrhs (unaop () * ()→ k))→e (σ η vres k)

Set Expr
(v ...) = (vbefore ... vlast)
vset = removedups((const−set v ...))

(σ η vlast (set (vbefore ...) * ()→ k))→e (σ η vset k)

Tuple Expr
(v ...) = (vbefore ... vlast)

(σ η vlast (tuple (vbefore ...) * ()→ k))→e

(σ η const−tuple v ... k)

If expression (true)

(σ η true (if () * (etrue efalse)→ k))→e (σ η etrue k)

If expression (false)

(σ η false (if () * (etrue efalse)→ k))→e (σ η efalse k)

Let expression

(σ η v (let ([id ∗]) e→ k))→e (σ (η [id 7→ v]) e (pop η k))

Set Filter - empty set

(σ η (const−set) (setFilter (pattern in *) e→ k))→e (σ η (const−set) k)

Set Filter - one element
(σ η (const−set v1 v ...) (setFilter (pattern in *) e→ k))→e

(σ η (union (if (pattern−let pattern v1 e) (const−set v1) (const−set))
(setFilter (pattern in (const−set v ...)) e)) k)

Set Build - empty set

(σ η (const−set) (setBuild (pattern in *) e→ k))→e (σ η (const−set) k)

Set Build - one element
(σ η (const−set v1 v ...) (setBuild (pattern in *) e→ k))→e

(σ η (union (set (pattern−let pattern v1 e)) (setBuild (pattern in (const−set v ...)) e)) k)

Eval Leftmost
(σ η etarget ret)→e (σ η vtarget ret)

(σ η (v ...) (etarget e ...))→es (σ η (v ... vtarget) (e ...))

Figure B.4: Expression Machine reductions (→e)
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µ ::= s (t | d) ...
s ::= ((address v)...)
t ::= (transition id (id...)(r...))
d ::= (daemon id ()(r...))
r ::= (e c)
c ::= (acmd ... tcmd)

tcmd ::= (select r ...)
| (call/k id (ae ...) id (ae ...))
| (tail-call id (ae ...))
| ret

tstate ::= (µ σ η tcmd ck)
ck ::= ret

| (ω id)
| (call id (v ...) -> ck)

Figure B.5: Thread Machine syntax

Select
(r0 ... r1 r2 ...) = (r ...) epre = precondition(r1)
(σ η epre ret)→∗e (σ η true ret) (acmd ... tcmd) = effects(r1) (σ η (acmd ...)) 99K∗c (σ′ η′ ())

(µ σ η (select r ...) ck)→t (µ σ′ η′ tcmd ck)

Tail Call
(idx ...) = arguments(µ, id)
(r ...) = rules(µ, id) (σ η () (ae ...))→∗es (σ η (v ...) ()) η′ = ∅[idx 7→ v] ...

(µ σ η (tail−call id (ae...)) ck)→t (µ σ η′ (select r ...) ck)

Call with continuation
(σ η () (aek ...))→∗es (σ η (vk ...) ())

(µ σ η (call/k id0 (ae0 ...) idk (aek ...)) ck)→t

(µ σ η (tail−call id0 (ae0 ...) (call idk (vk ...)→ ck))

Continuation call
(µ σ η ret (call id (v...)→ ck))→t

(µ σ ∅ (tail−call id (v...)) ck)

Omega

(µ σ η ret (ω id))→t (µ σ ∅ (tail−call id ()) (ω id))

Figure B.6: Thread Machine reductions (→t)

mstate ::= (µ σ (thread ...) (thread ...))
thread ::= (η tcmd ck)

Figure B.7: System Machine syntax
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System Step (non-daemon)

(µ σ η1 tcmd1 ck1 ) 99Kt (µ σ′ η′1 tcmd1
′ ck1

′)

(µ σ (thread0 ... (η1 tcmd1 ck1) thread2 ...) threadsd)→m

(µ σ′ (thread0 ... (η′1 tcmd ′1 ck ′1) thread2 ...) threadsd)

System Step (daemon)

active(threadsu) (µ σ η1 tcmd1 ck1 ) 99Kt (µ σ′ η′1 tcmd1
′ ck1

′)

(µ σ threadsu (thread0 ... (η1 tcmd1 ck1) thread2 ...))→m

(µ σ′ threadsu (thread0 ... (η′1 tcmd ′1 ck ′1) thread2 ...))

Figure B.8: System Machine reductions (→m)
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Appendix C

4M Compilation

Full 4M is compiled into 4M core in which the semantics of 4M are specified. This compilation uses

a top-down LL(k) parser and several transformation passes. These passes are: Parsing, Macro Expansion,

De-sugaring, Kernel Preparation, Parenthetical Output. Each is described below.

Parsing The parser is defined in an ANTLR top-down LL(k) grammar (Parr and Quong [1995]). Rules are

appropriately factored to handle recursion, associativity, and precedence. Tokens are created to disambiguate

between binary minus and unary negation, as well as tokens for other helpful markers in the standard ANTLR

abstract syntax tree (AST).

Macro Expansion Macros are expanded in two passes during this phase. The first pass collects macros,

the second replaces them. let macros are expanded during the first pass, since the grammar restricts there

definitions to the beginning of the transition or daemon in which their scope operates, thus they are defined

before any application site. Macros are replaced repeatedly until a fixed point is reached. Macros cannot be

recursive since cycle detection prevents this as well as any infinite macro replacement loop.

Note that the grammar for each of these transformation phases is simplified since associativity and

precedence are already encoded in the AST. The grammars are “tree grammars” as they operate on tokens

in the AST rather than on lexer tokens.

De-sugaring Fig. A.2 gives a list of de-sugaring transformations that occur in terms of the full 4M syntax.

In addition to these, set construction expressions that define an output pattern (between vertical bars) in

addition to a search pattern are converted to a “set-build” operation with an inner “set-filter” operation. Set

construction expressions without the output pattern are merely filters, and thus are already in the “set-filter”

form. These are the two set operations shown in the 4M core.

Kernel Preparation This phase converts a 4M AST into 4M core AST. It builds a symbol table for state

variables so that address locations may be assigned i the next phase. The required transformations for this

phase are:
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1. Separate lists of success and error rules are combined into a single list of rules.

2. The effects of a rule are converted into CPS.

3. A sequence of updates becomes a single multi-update.

The first transformation builds a negated disjunction of the rule guards for all error rules in a

transition or daemon to union with the rule guard of each success rule. This ensures that success rules are

enabled only if no error rule is enabled, preserving the semantics of full 4M which states that error rules

have precedence.

The second transformation is affected by creating new transitions with unique names for the rest of

the computation (the “continuation”) of a command list following a call command. A call command may

indicate guards that prevent forward progress until met. These are placed as the rule guard in the generated

transition. Alternatively, the call command may be followed by a list of rules to handle alternative outputs

of the transition call. These rules become the body of the generated transition. It is an error, enforced by

this phase, to have further commands after a call command that gives a list of rules. Transition calls that

give only progress guards (or no guards) may have following commands. If there are no following commands,

a 4M core tail-call command is generated instead of a call/w.

The third transformation proceeds by iterating over the commands in a rule’s effect, keeping the

tmp, let, and choose commands while queuing up the upd commands rather than outputting them in the

new AST. When the command list is finished or a call command is reached, all the queued upd commands

are combined into a single multi-update and output.

As a help to the user, this phase also keeps a symbol table to report undefined (or misspelled)

symbols, and performs minimal type checking. The type system assigns a type to constants and the special

type “any” to transition parameters and state variables. Type rules for each operator accept the correct

types or the “any” type. Most type proofs quickly become type “any”, but any type errors that are obvious

are detected. Although a full type-inference phase may prove helpful, this minimal checking was helpful in

developing the MCAPI 4M specification.

Parenthetical Output The output format is an AST serialized as tuples grouped by parentheses. This

phase walks the transformed AST to output each transition and daemon. As it encounters a state variable it

replaces it with the address assigned in the symbol table computed in the preceding phase. The final output

includes the initial store first followed by each transition and daemon.
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Appendix D

MCAPI 4M Specification

Below is the full code listing (with most comments removed) of the 4M specification of MCAPI. It

implements 14 of the 18 connectionless API calls, our of 43 total API calls. We wrote wrappers only for 12,

ignoring two endpoint attribute functions. We chose this subset as the most interesting, since connection-

oriented communication calls do not lead to deadlocks and rarely have interesting properties to observe.

Since they are simpler than message passing they can be trivially added, requiring merely author time.

In the next sections we discuss the implementation of MCAPI in 4M in detail, serving as an in-depth

look at implementing a real API, as well as giving insight into the MCAPI 4M specification and drop-in

which may be useful for designers, implementers, and users of the drop-in.

D.1 Interesting Behaviors

We focused our specification modeling efforts on areas that contain interesting behaviors. Connection-

oriented communication, like the packet and scalar channels in MCAPI, are simple and do not lead to

deadlocks. Connectionless communication primitives like send and receive, however, provide many interesting

behaviors. MCAPI receives will receive a message sent from any thread, thus races and deadlocks can occur

when message order is not what the programmer intended. Non-determinism in the reception order of

messages was shown in the example in Chapter 3 where the message is copied to internal buffers, passed,

and then eventually copied into the receiving buffer, leaving opportunities for messages to be delayed in

transit and other messages to be delivered first.

Since connectionless communication operations are the most interesting, we defined them in our 4M

specification – both blocking and non-blocking variants – with the other calls necessary for initialization,

endpoint creation, and finalization.

D.2 Data Structures

4M requires the internal state of the API to be explicitly declared. Lines 1–8 of the MCAPI 4M specification

show this state. Next to each is a comment indicating what the variable should contain. 4M does not have
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complex types, nor does it include type annotations or contracts. The specification writer must therefore

manage what type of information is kept in each variable.

Lines 10–84 show the macros used to help manage these data structures. For example, lines 20–

23 give functions for accessing elements of a tuple that constitutes an endpoint record. This allows the

specification writer to abstract the specific tuple indexes and instead treat the tuple as a record with named

fields. Lines 24–26 show a macro for creating new endpoint records. Lines 27–29 show a macro that allows

updating one member of an endpoint record (the one member that needs to be updated). Lines 11–19 show

helper functions to look up data in the internal state, such as getNodeId which looks up a node (thread or

process) in the internal ActiveNodes state variable and returns the corresponding ID.

Endpoints use a FIFO queue for received messages. This data structure is implemented functionally

in lines 59–81. Line 60 shows the state of an empty FIFO queue: it contains a set with index-value pairs that

acts as a map, a minimum index, and a maximum index. The minimum points at the first element in the

queue, the maximum indicates the last index added. Thus the maximum starts as -1 when the list is empty.

Adding an element to the queue inserts a pair into the map with the next largest index (maximum plus

one), then increases the maximum (as seen in lines 62–65). Getting the next element searches the map for

the element with the index indicated by minimum (lines 70–73). Removing this element uses set subtraction

then increments the minimum value to point to the new head of the list (lines 74–81).

This encoding of a FIFO queue is used, rather than a linked list, because a linked list would require

recursion for some FIFO queue operations, yet 4M macros cannot be recursive. Linked lists work for a stack,

and are thus used in some 4M specifications, like the example in Fig. 3.2.

The use of macros to implement data structures abstracts the details and keeps the remainder of

the 4M specification clean.

D.3 Blocking Calls

MCAPI includes both blocking and non-blocking variants of the send and receive operations. The blocking

version returns after the message has been copied out of or into the node’s buffer. The non-blocking version

returns immediately and the node must call wait to determine when the buffer can be reused. A blocking

call is equivalent to a non-blocking call followed by a wait.

In our 4M specification of MCAPI, we model blocking calls precisely in this way: a transition for

a blocking call makes a sub-call to the transition for the non-blocking call followed by a sub-call to the

transition for wait. An example of this is the msg send call in lines 415–431. Since the non-blocking

msg send i returns a request object, the msg send rule creates a temporary variable RequestAddr to hold
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this (line 420). It then passes this request on to wait (line 426). wait has a return value and also gives the

message size. msg send does not need those, but creates temporary variables (lines 421–422) to pass in to

wait and then ignores the values.

One catch to this implementation is that msg send i may fail. The MCAPI English specification

indicates that the list of errors from msg send is the same as those returned by msg send i combined with

those of wait. Thus if either sub-call fails, the error status should be returned to the caller of msg send. This

is accomplished by passing StatusAddr from msg send’s parameters into each sub-call. However, msg send

must still check whether msg send i has errored before calling wait. This is why the branching continuation

rules in lines 425–428 are necessary. Lines 427–428 represent the case where an error occurred, in which case

the continuation is to do nothing (indicated by the useless let nop) and allow the error to be reported to

the caller in the StatusAddr variable.

D.4 Non-blocking Calls

The non-blocking calls must return immediately, but also must remember the work to do later and have a

way of completing this work. Line 4 shows the API state variable Requests which contains all the pending

work from non-blocking calls. The non-blocking calls simply insert their data into the Requests list and

return. A daemon transition will later complete the request non-deterministically.

msg send i, on lines 366–405, is an example of a non-blocking call. After checking all the possible

error conditions for this call (lines 376–404), it places a “msg send” request in the list (lines 371–372), returns

the request id which will serve as the request object handle (line 373), and returns a success status (line

374).

finish msg send i is the corresponding daemon to msg send i. This daemon must non-

deterministically select a request that can be completed, then do so. There may be zero, one, or many

such requests. The transition guard must be able to determine whether there is at least one, then the effect

needs to non-deterministically select one to use. Lines 433–446 are a local macro that constructs the set of

all pending, valid “msg send” requests for which the send can be completed. Lines 437–445 are the portion

that indicate the request can be completed. We will further discuss these lines in the next section. The

rule guard simply checks whether this set is non-empty. Line 452 shows the use of choose to bind the local

variable req to a non-deterministically chosen element from that set. Finally lines 455-457 copy the message

to the receiving endpoint’s queue and mark the request as finished.

42



D.5 Message Non-Overtaking

Message non-overtaking is the property that two messages sent from the same endpoint to the same endpoint

will arrive in order. Only messages sent from different sources may be reordered. This property is of

vital importance to the semantics of MCAPI. We confirmed its meaning through discussions with MCAPI

designers.

The 4M specification implements message non-overtaking in the daemons that process sends and

receives. Lines 437–445 in the send daemon and lines 517–523 in the receive daemon are the key lines to

note. In the send daemon, after a request has been identified as a pending, valid request of the right type,

a term in the set builder predicate asserts that there is not another request that should be received first

(lines 437–438). The next lines are the predicate determining if another message should be sent first. Line

442 says “sending from the same place”, line 443 says “and to the same place”, line 444 says “and this one

was sent first”. Line 444 asserts the order by appealing to the monotonically-increasing request ids. These

three properties are those required by the definition of message non-overtaking, as indicated in the previous

paragraph.

Lines 517–523 in the receive daemon operate similarly, to ensure that when multiple receives are

posted for the same endpoint – for example, two non-blocking receives in a row before the call to wait –

that messages read from the endpoint queue in order are also assigned to receive requests in order. This

exposes another property of MCAPI semantics, which is that a wait on the second non-blocking receive (for

the same endpoint) will ensure that both receives have completed.

D.6 Implementation Specific Properties

MCAPI is defined loosely on purpose to allow the greatest freedom for implementers to adapt. Due to this

freedom, some properties of MCAPI will be implementation dependent. These include: internal memory

limits, endpoint attributes, message priorities, API version number, and various failure errors.

The specification for msg send i includes errors for no more internal buffers (MCAPI ENO BUFFER),

no more request handles (MCAPI ENO REQUEST), and no more memory (MCAPI ENO MEM). These are shown in

the 4M specification on lines 385–392. Since they are implementation dependent, we instead model a system

with arbitrarily large memory so the rule guards are simply false to disable them. They could, however,

be modeled by tracking the number of buffers, number of requests, or amount of memory usage consumed

by the current set of requests and comparing to limits adjusted to match some specific implementation.

Endpoint attributes allow implementation-specific properties on endpoints. These are not interesting

so we ignore them. A model of a specific implementation might include some specific attributes.
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Messages can be given a priority in MCAPI, but the MCAPI specification does not make any

statements about the use of this property. Priority can be completely ignored by an implementation. In our

4M specification we do ignore it, since that provides the greater range of API behaviors.

The API version number is handled by setting a state variable (line 6). This value is returned in

the initialization call. It should be changed to match whichever version of MCAPI the model represents.

Properties for memory limits may also be represented as state variables that a user of the 4M specification

can change to match a specific MCAPI implementation.

There are other error messages allowed by MCAPI calls that depend on implementation details or

that can only occur under certain situations that may not arise in some implementations. For example,

lines 394–396 report an invalid priority for a message send, but the list of valid priorities is implementation

dependent. (In our 4M specification, any positive integer is considered valid.) Lines 381–383 indicate a limit

on the maximum size of a message, which is handled with the configuration state variable MaxMsgSize. Lines

201–203 indicate an error in creating an endpoint on a node that is not allowed to create endpoints, yet

there is nothing in the official MCAPI specification to indicate a node cannot do so, this is implementation

dependent. Finally, each call may report an invalid status parameter error. An implementation may have

requirements for the type of data structure used as a status parameter. However, if the status parameter is

simply a null-pointer it cannot be used to report the status! Hence on lines 113–114 and similarly in other

transitions we set an error flag to indicate this error, since there is no other way to report it. A verification

tool may add a monitor on this variable to report when this error occurs.

D.7 Tricky Timeout

The MCAPI wait call allows an application to specify timeout values. Our 4M specification ignores this.

There is no measure of time in 4M, thus it cannot be correctly implemented. Adding a notion of time is

difficult. Counting real time allows the program to observe the slower performance of the drop-in architecture

versus an actual implementation, causing timeouts to occur more often than they should or causing the

programmer to increase the timeout bounds just for use with the drop-in. Counting a false notion of time

breaks the smooth transition from the C program to the drop-in as well, requiring the program to change

or some form of translation from real time to model time. We chose simply to avoid the issue.

Timeout could, however, be modeled as one more non-deterministic choice available by giving the

timeout rule an always-enabled guard as long as the timeout parameter is set. This would allow exploration

of both behaviors. However, it would be problematic for the random-walk exploration using the drop-in,

since timeouts would occur frequently whereas they should occur rarely in an running actual program. It
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would be difficult for a user to explore a complete execution trace when each wait call had a random chance

of timing out. Some users may prefer this option, since it would encourage defensive programming. The 4M

specification could be modified to include this behavior, however we chose not to for the time being.

D.8 Full MCAPI 4M specification

1 state
2 ActiveNodes = {} #Map of Node -> NodeId
3 Endpoints = {} #Set of [NodeId , PortId , EndpointId , Messages]
4 AssignedAttributes = {} #Set of [EndpointId , AttrNum , value]
5 Requests = {} #Set of [RequestType , RequestId , Status , Valid , CreatorNode , Data]
6 _LibraryVersion = 1
7 ErrorStatus = false
8 end
9

10 ## Data Structure functions ##
11 function getNodeId(Node)
12 ([node , nodeId] in ActiveNodes : node = Node).1
13 end
14 function getNode(NodeId)
15 ([node , nodeId] in ActiveNodes : nodeId = NodeId).0
16 end
17 function getEndpoint(EpId)
18 (ep in Endpoints : ep_id(ep) = EpId )
19 end
20 function ep_node_id(Ep) Ep.0 end
21 function ep_port(Ep) Ep.1 end
22 function ep_id(Ep) Ep.2 end
23 function ep_msgs(Ep) Ep.3 end
24 function newEndpoint(NodeId , Port)
25 [NodeId , Port , getMaxEndpointId () + 1, fifo_empty ()]
26 end
27 function changeEpQueue(ep, newq)
28 [ep.0, ep.1, ep.2, newq]
29 end
30 function getMaxEndpointId ()
31 if Endpoints = {} then
32 -1
33 else
34 ep_id( (ep in Endpoints : (\A ep2 in Endpoints : ep_id(ep) >= ep_id(ep2) )) )
35 fi
36 end
37 function getRequest(ReqId)
38 (req in Requests : req_id(req) = ReqId) #old FSpec had /\ valid = true
39 end
40 function req_type(Req) Req.0 end
41 function req_id(Req) Req.1 end
42 function req_status(Req) Req.2 end
43 function req_valid(Req) Req.3 end
44 function req_creator(Req) Req.4 end
45 function req_data(Req) Req.5 end
46 function newRequest(Type , CreatorNode , Data)
47 [Type , getMaxRequestId () + 1, "Pending", true , CreatorNode , Data]
48 end
49 function getMaxRequestId ()
50 if Requests = {} then
51 -1
52 else
53 req_id( (req in Requests : (\A req2 in Requests : req_id(req) >= req_id(req2) )) )
54 fi
55 end
56 function hasRequest(ReqId)
57 (\E req in Requests : req_id(req) = ReqId) #old FSpec had /\ valid = true
58 end
59 function fifo_empty ()
60 [{}, 0, -1] #map of index=>value , min-index , max-index
61 end
62 function fifo_add(lst , value)
63 let list = lst in
64 [list.0 \U {[list.2 + 1, value]}, list.1, list.2 + 1]
65 end
66 function fifo_hasNext(lst)
67 let list = lst in
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68 list.1 <= list.2
69 end
70 function fifo_next(lst)
71 let list = lst in
72 (pair in list.0 : pair.0 = list.1).1
73 end
74 function fifo_remove(lst)
75 let list = lst in
76 if fifo_hasNext(list) then
77 [list.0 \ {pair in list.0 : pair.0 = list.1}, list.1 + 1, list.2]
78 else
79 list
80 fi
81 end
82 function min(a, b)
83 if a < b then a else b fi
84 end
85
86 ### MCAPI CALLS ###
87
88 ## INITIALIZATION
89 transition initialize
90 input Node , NodeId , VersionAddr , StatusAddr
91 rule
92 true ==>
93 @StatusAddr ’ := "MCAPI_SUCCESS";
94 @VersionAddr ’ := _LibraryVersion;
95 ActiveNodes ’ := ActiveNodes \U {[Node , NodeId]};
96 end
97 errors
98 false (#could not initialize #) ==>
99 @StatusAddr ’ := "MCAPI_ENO_INIT";

100
101 ValidStatusParam(StatusAddr) /\
102 (\E [n, nid] in ActiveNodes : n = Node ) ==>
103 @StatusAddr ’ := "MCAPI_INITIALIZED";
104
105 ValidStatusParam(StatusAddr) /\
106 (!ValidNode(Node) \/ (\E [n, nid] in ActiveNodes : nid = NodeId )) ==>
107 @StatusAddr ’ := "MCAPI_ENODE_NOTVALID";
108
109 ValidStatusParam(StatusAddr) /\
110 !ValidVersionParam(VersionAddr) ==>
111 @StatusAddr ’ := "MCAPI_EPARAM";
112
113 !ValidStatusParam(StatusAddr) ==>
114 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
115 end
116 end
117 function ValidStatusParam(StatusAddr)
118 ValidAddr(StatusAddr)
119 end
120 function ValidVersionParam(VersionAddr)
121 ValidAddr(StatusAddr)
122 end
123 function ValidAddr(Addr)
124 typeof(Addr) = "address"
125 end
126 function ValidNode(Node)
127 true #whatever we’re using as node identifiers , just accept it
128 end
129 function ValidRequestParam(RequestAddr)
130 ValidAddr(RequestAddr)
131 end
132 function ValidBufferParam(BufferAddr)
133 ValidAddr(BufferAddr)
134 end
135
136 transition finalize
137 input Node , StatusAddr
138 let pending = { req in Requests: req_status(req) = "Pending" /\ req_creator(req) = Node }
139 let nodeId = getNodeId(Node)
140 let canceled = { | [req_type(r), req_id(r), "Canceled", req_valid(r), req_creator(r),
141 req_data(r)] | r in pending : true }
142 rule
143 true ==>
144 ActiveNodes ’ := ActiveNodes \ { [node , nid] in ActiveNodes : node = Node };
145 @StatusAddr ’ := "MCAPI_SUCCESS";
146 Endpoints ’ := Endpoints \ { ep in Endpoints : ep_node_id(ep) = nodeId };
147 Requests ’ := (Requests \ pending) \U canceled;
148 end

46



149 errors
150 ValidStatusParam(StatusAddr) /\
151 !(\E [node , nid] in ActiveNodes: node = Node) \/ false (#could not finalize #) ==>
152 @StatusAddr ’ := "MCAPI_ENO_FINAL";
153
154 !ValidStatusParam(StatusAddr) ==>
155 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
156 end
157 end
158 transition get_node_id
159 input Node , StatusAddr , ResultAddr
160 rule
161 true ==>
162 @ResultAddr ’ := getNodeId(Node);
163 @StatusAddr ’ := "MCAPI_SUCCESS";
164 end
165 errors
166 ValidStatusParam(StatusAddr) /\
167 !(\E [node , nid] in ActiveNodes: node = Node) ==>
168 @StatusAddr ’ := "MCAPI_ENODE_NOTINIT";
169
170 !ValidStatusParam(StatusAddr) ==>
171 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
172 end
173 end
174
175 ## Endpoints
176 transition create_endpoint
177 input Node , PortId , StatusAddr , ResultAddr
178 rule
179 true ==>
180 @StatusAddr ’ := "MCAPI_SUCCESS";
181 Endpoints ’ := Endpoints \U {newEndpoint(getNodeId(Node), PortId)};
182 @ResultAddr ’ := getMaxEndpointId () + 1; #previous max + 1 is new EpId
183 end
184 errors
185 ValidStatusParam(StatusAddr) /\
186 !ValidPortId(PortId) ==>
187 @StatusAddr ’ := "MCAPI_EPORT_NOTVALID";
188
189 ValidStatusParam(StatusAddr) /\
190 (\E ep in Endpoints: [Node ,ep_node_id(ep)] \in ActiveNodes /\ ep_port(ep) = PortId) ==>
191 @StatusAddr ’ := "MCAPI_EENDP_ISCREATED";
192
193 ValidStatusParam(StatusAddr) /\
194 !(\E [node , nodeId] in ActiveNodes: node = Node) ==>
195 @StatusAddr ’ := "MCAPI_ENODE_NOTINIT";
196
197 ValidStatusParam(StatusAddr) /\
198 false (# Max endpoints exceeded #) ==>
199 @StatusAddr ’ := "MCAPI_EENDP_LIMIT";
200
201 ValidStatusParam(StatusAddr) /\
202 false (# can ’t make endpoints on this node #) ==>
203 @StatusAddr ’ := "MCAPI_EEP_NOT_ALLOWED";
204
205 !ValidStatusParam(StatusAddr) ==>
206 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
207 end
208 end
209 function ValidPortId(PortId)
210 PortId >= 0
211 end
212
213 transition get_endpoint_i
214 input Node , NodeId , PortId , EndpointAddr , RequestAddr , StatusAddr
215 rule
216 true ==>
217 Requests ’ := Requests \U {newRequest("get_endpoint", Node ,
218 [StatusAddr , NodeId , PortId , EndpointAddr])};
219 @RequestAddr ’ := getMaxRequestId () + 1;
220 @StatusAddr ’ := "MCAPI_SUCCESS";
221 end
222 errors
223 ValidStatusParam(StatusAddr) /\
224 !ValidNodeId(NodeId) ==>
225 @StatusAddr ’ := "MCAPI_ENODE_NOTVALID";
226
227 ValidStatusParam(StatusAddr) /\
228 !ValidPortId(PortId) ==>
229 @StatusAddr ’ := "MCAPI_EPORT_NOTVALID";
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230
231 !ValidStatusParam(StatusAddr) ==>
232 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
233 end
234 end
235 function ValidNodeId(NodeId)
236 NodeId >= 0
237 end
238 transition get_endpoint
239 input Node , NodeId , PortId , StatusAddr , ResultAddr
240 let EndpointAddr = ResultAddr #alias name for clarity.
241
242 rule
243 true ==>
244 tmp RequestAddr;
245 tmp SizeAddr;
246 tmp Result2Addr;
247 call get_endpoint_i(Node , NodeId , PortId , EndpointAddr , RequestAddr , StatusAddr) {
248 @StatusAddr = "MCAPI_SUCCESS" ==>
249 call wait(Node , RequestAddr , SizeAddr , StatusAddr , 0(# timeout #), Result2Addr);
250 @StatusAddr != "MCAPI_SUCCESS" ==>
251 let nop = 0;
252 };
253 end
254 end
255
256 daemon _finish_get_endpoint_i
257 let reqs = {req in Requests :
258 req_valid(req) = true
259 /\ req_status(req) = "Pending"
260 /\ req_type(req) = "get_endpoint"
261 /\ (\E ep in Endpoints : ep_node_id(ep) = req_data(req).1 /\ ep_port(ep) = req_data(req)

.2)
262 }
263 let EpAddr = req_data(req).3
264 let StatusAddr = req_data(req).0
265 rule
266 reqs != {}
267 ==>
268 choose req in reqs;
269 @EpAddr ’ := ep_id( (ep in Endpoints : ep_node_id(ep) = req_data(req).1 /\ ep_port(ep) =

req_data(req).2) );
270 Requests ’ := (Requests \ {req}) \U { [req.0, req.1, "Finished", req.3, req.4, req.5] };
271 @StatusAddr ’ := "MCAPI_SUCCESS";
272 end
273 end
274 transition delete_endpoint
275 input Node , Endpoint , StatusAddr
276 let endp = (ep in Endpoints : ep_id(ep) = Endpoint)
277 rule
278 true ==>
279 Endpoints ’ := Endpoints \ {endp};
280 @StatusAddr ’ := "MCAPI_SUCCESS";
281 end
282 errors
283 ValidStatusParam(StatusAddr) /\
284 endp = ERROR ==>
285 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
286
287 ValidStatusParam(StatusAddr) /\
288 getNode(ep_node_id(endp)) != Node ==>
289 @StatusAddr ’ := "MCAPI_ENOT_OWNER";
290
291 !ValidStatusParam(StatusAddr) ==>
292 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
293 end
294 end
295
296 ## Endpoint Attributes
297 transition get_endpoint_attribute
298 input Node , Endpoint , AttributeNum , AttributeAddr , AttributeSize , StatusAddr
299 let ExistingValue = {[eid , attrn , val] in AssignedAttributes:
300 [eid , attrn , val] \in AssignedAttributes
301 /\ eid = Endpoint
302 /\ attrn = AttributeNum}
303 rule
304 true ==>
305 @AttributeAddr ’ := if ExistingValue = {} then 0 else ExistingValue fi;
306 @StatusAddr ’ := "MCAPI_SUCCESS";
307 end
308 errors
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309 ValidStatusParam(StatusAddr) /\
310 !ValidEndpointId(Endpoint) ==>
311 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
312
313 ValidStatusParam(StatusAddr) /\
314 false (# Unknown attribute number #) ==>
315 @StatusAddr ’ := "MCAPI_EATTR_NUM";
316
317 ValidStatusParam(StatusAddr) /\
318 false (# incorrect attribute size#) ==>
319 @StatusAddr ’ := "MCAPI_EATTR_SIZE";
320
321 !ValidStatusParam(StatusAddr) ==>
322 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
323 end
324 end
325 function ValidEndpointId(EndpointId)
326 if EndpointId >= 0
327 /\ (\E ep in Endpoints : ep_id(ep) = EndpointId)
328 then true
329 else false fi
330 end
331
332 transition set_endpoint_attribute
333 input Node , Endpoint , AttributeNum , Attribute , AttributeSize , StatusAddr
334 let ExistingValue = {[eid , attrn , val] in AssignedAttributes:
335 [eid , attrn , val] \in AssignedAttributes
336 /\ eid = Endpoint
337 /\ attrn = AttributeNum}
338 rule
339 true ==>
340 AssignedAttributes ’ := (AssignedAttributes \ ExistingValue) \U {[Endpoint , AttributeNum ,

Attribute]};
341 @StatusAddr ’ := "MCAPI_SUCCESS";
342 end
343 errors
344 ValidStatusParam(StatusAddr) /\
345 !ValidEndpointId(Endpoint) ==>
346 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
347
348 false (# Unknown attribute number #) ==>
349 @StatusAddr ’ := "MCAPI_EATTR_NUM";
350
351 false (# incorrect attribute size#) ==>
352 @StatusAddr ’ := "MCAPI_EATTR_SIZE";
353
354 !ValidStatusParam(StatusAddr) ==>
355 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
356
357 false (# endpoint is connected #) ==>
358 @StatusAddr ’ := "MCAPI_ECONNECTED";
359
360 false (#read only attribute #) ==>
361 @StatusAddr ’ := "MCAPI_EREAD_ONLY";
362 end
363 end
364
365 ## Message passing
366 transition msg_send_i
367 input Node , SendEndpoint , ReceiveEndpoint , BufferAddr , BufferSize ,
368 Priority , RequestAddr , StatusAddr
369 rule
370 true ==>
371 Requests ’ := Requests \U {newRequest("msg_send", Node ,
372 [SendEndpoint , ReceiveEndpoint , BufferAddr , BufferSize , Priority])};
373 @RequestAddr ’ := getMaxRequestId () + 1; #return the request id, serves as handle
374 @StatusAddr ’ := "MCAPI_SUCCESS"; #Means msg is queued to send
375 end
376 errors
377 ValidStatusParam(StatusAddr) /\
378 !ValidEndpointId(SendEndpoint) \/ !ValidEndpointId(ReceiveEndpoint) ==>
379 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
380
381 ValidStatusParam(StatusAddr) /\
382 BufferSize > _MaxMsgSize ==>
383 @StatusAddr ’ := "MCAPI_EMESS_LIMIT";
384
385 false (# no more buffers #) ==>
386 @StatusAddr ’ := "MCAPI_ENO_BUFFER";
387
388 false (# no more request handles #) ==>
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389 @StatusAddr ’ := "MCAPI_ENO_REQUEST";
390
391 false (# out of memory #) ==>
392 @StatusAddr ’ := "MCAPI_ENO_MEM";
393
394 ValidStatusParam(StatusAddr) /\
395 !ValidPriority(Priority) ==>
396 @StatusAddr ’ := "MCAPI_EPRIO";
397
398 ValidStatusParam(StatusAddr) /\
399 !ValidRequestParam(RequestAddr) ==>
400 @StatusAddr ’ := "MCAPI_EPARAM";
401
402 !ValidStatusParam(StatusAddr) ==>
403 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
404 end
405 end
406 function ValidPriority(priority)
407 if priority >= 0 /\ priority < 1024 #TODO: what is a valid priority ???
408 then true
409 else false fi
410 end
411 state
412 _MaxMsgSize = 100000000000
413 end
414
415 transition msg_send
416 input Node , SendEndpoint , ReceiveEndpoint , BufferAddr , BufferSize ,
417 Priority , StatusAddr
418 rule
419 true ==>
420 tmp RequestAddr;
421 tmp SizeAddr;
422 tmp ResultAddr;
423 call msg_send_i(Node , SendEndpoint , ReceiveEndpoint , BufferAddr , BufferSize ,
424 Priority , RequestAddr , StatusAddr) {
425 @StatusAddr = "MCAPI_SUCCESS" ==>
426 call wait(Node , RequestAddr , SizeAddr , StatusAddr , 0(# timeout #), ResultAddr);
427 @StatusAddr != "MCAPI_SUCCESS" ==>
428 let nop = 0; #already is returning error code
429 };
430 end
431 end
432 daemon _finish_msg_send_i
433 let reqs = {req in Requests :
434 req_valid(req) = true
435 /\ req_status(req) = "Pending"
436 /\ req_type(req) = "msg_send"
437 /\ !(
438 (\E r in Requests:
439 req_type(r) = "msg_send"
440 /\ req_status(r) = "Pending"
441 /\ req_valid(r)
442 /\ req_data(r).0 = req_data(req).0 #Sending from the same place
443 /\ req_data(r).1 = req_data(req).1 #and to the same place
444 /\ req_id(r) < req_id(req)) #and this one was sent first
445 )
446 }
447 let RecvEndp = (ep in Endpoints : ep_id(ep) = req_data(req).1) #Find the receiving endpoing
448 let RecvEndpQueue = ep_msgs(RecvEndp) #we ’ll need to append to this queue (functionally)
449 let sendBuf = req_data(req).2 #we’ll find the message to send here
450 let msgSize = req_data(req).3
451 rule
452 reqs != {} #Has at least one pending request to satisfy
453 ==>
454 choose req in reqs;
455 Endpoints ’ := (Endpoints \ {RecvEndp }) \U
456 {changeEpQueue(RecvEndp , fifo_add(RecvEndpQueue , [@sendBuf , msgSize]))};
457 Requests ’ := (Requests \ {req}) \U { [req.0, req.1, "Finished", req.3, req.4, req.5] };
458 end
459 end
460 transition msg_recv_i
461 input Node , RecvEndp , BufferAddr , BufferSize , RequestAddr , StatusAddr
462 rule
463 true ==>
464 Requests ’ := Requests \U {newRequest("msg_recv", Node ,
465 [RecvEndp , BufferAddr , BufferSize])};
466 @RequestAddr ’ := getMaxRequestId () + 1; #return the request id, serves as handle
467 @StatusAddr ’ := "MCAPI_SUCCESS"; #Means recv_i is queued , no data yet
468 end
469 errors
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470 ValidStatusParam(StatusAddr) /\
471 !ValidEndpointId(RecvEndp) ==>
472 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
473
474 false (# message size exceeds BufferSize #) ==>
475 @StatusAddr ’ := "MCAPI_ETRUNCATED";
476
477 false (# no more request handles #) ==>
478 @StatusAddr ’ := "MCAPI_ENO_REQUEST";
479
480 ValidStatusParam(StatusAddr) /\
481 !ValidRequestParam(RequestAddr) \/ !ValidBufferParam(BufferAddr) ==>
482 @StatusAddr ’ := "MCAPI_EPARAM";
483
484 !ValidStatusParam(StatusAddr) ==>
485 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
486
487 ValidStatusParam(StatusAddr) /\
488 ep_node_id(getEndpoint(RecvEndp)) != getNodeId(Node) ==>
489 @StatusAddr ’ := "MCAPI_ENOT_ENDP";
490 end
491 end
492 transition msg_recv
493 input Node , ReceiveEndpoint , BufferAddr , BufferSize , RecvSizeAddr , StatusAddr
494 rule
495 true ==>
496 tmp RequestAddr;
497 tmp ResultAddr;
498 call msg_recv_i(Node , ReceiveEndpoint , BufferAddr , BufferSize ,
499 RequestAddr , StatusAddr) {
500 @StatusAddr = "MCAPI_SUCCESS" ==>
501 call wait(Node , RequestAddr , RecvSizeAddr , StatusAddr , 0(# timeout #), ResultAddr)

;
502 @StatusAddr != "MCAPI_SUCCESS" ==>
503 let nop = 0; #already is returning error code
504 };
505 end
506 end
507 daemon _finish_msg_recv
508 let Endp = (ep in Endpoints : ep_id(ep) = req_data(req).0 )
509 let EndpQueue = ep_msgs(Endp)
510 let recvBuf = req_data(req).1
511 let recvBufSize = req_data(req).2
512 let reqs = {req in Requests :
513 req_valid(req) = true
514 /\ req_status(req) = "Pending"
515 /\ req_type(req) = "msg_recv"
516 /\ !(
517 (\E r in Requests:
518 req_type(r) = "msg_recv"
519 /\ req_status(r) = "Pending"
520 /\ req_valid(r)
521 /\ req_data(r).0 = req_data(req).0 #Receiving on the same endpoint
522 /\ req_id(r) < req_id(req)) #and this one was registered first
523 )
524 /\ fifo_hasNext(EndpQueue) #and has a message waiting to receive
525 }
526 rule
527 reqs != {} #has at least one request to process
528 ==>
529 choose req in reqs;
530 let msg = fifo_next(EndpQueue);
531 @recvBuf ’ := truncate(msg.0, recvBufSize); #copy msg
532 Endpoints ’ := (Endpoints \ {Endp}) \U
533 {changeEpQueue(Endp , fifo_remove(EndpQueue))}; #remove msg from queue
534 Requests ’ := (Requests \ {req}) \U {
535 [req.0, req.1, "Finished", req.3, req.4,
536 [req.5.0,
537 req.5.1,
538 #Change the size to the actual message size , so we can report it
539 min(recvBufSize , msg.1)]]
540 };
541 end
542 end
543
544 ## Non-blocking operations
545 transition wait
546 input Node , RequestAddr , SizeAddr , StatusAddr , Timeout , ResultAddr
547 let req = getRequest(@RequestAddr)
548 rule
549 req_type(req) \notin {"msg_send","msg_recv"} /\ req_status(req) = "Finished" ==>
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550 @ResultAddr ’ := true;
551 @StatusAddr ’ := "MCAPI_SUCCESS";
552
553 # For Send / Recv , we also respond with the buffer size specified
554 req_type(req) = "msg_send" /\ req_status(req) = "Finished" ==>
555 @SizeAddr ’ := req_data(req).3; #request has the message size here
556 @ResultAddr ’ := true;
557 @StatusAddr ’ := "MCAPI_SUCCESS";
558
559 req_type(req) = "msg_recv" /\ req_status(req) = "Finished" ==>
560 @SizeAddr ’ := req_data(req).2; #the size in the req was updated to actual message size
561 @ResultAddr ’ := true;
562 @StatusAddr ’ := "MCAPI_SUCCESS";
563 end
564 errors
565 ValidStatusParam(StatusAddr) /\
566 !hasRequest(@RequestAddr) ==>
567 @StatusAddr ’ := "MCAPI_ENOTREQ_HANDLE";
568 @ResultAddr ’ := false;
569
570 ValidStatusParam(StatusAddr) /\
571 req_status(req) = "Canceled" ==>
572 @StatusAddr ’ := "MCAPI_EREQ_CANCELED";
573 @ResultAddr ’ := false;
574
575 ValidStatusParam(StatusAddr) /\
576 Timeout != "MCAPI_INFINITE" /\ false (# timeout #) ==>
577 @StatusAddr ’ := "MCAPI_EREQ_TIMEOUT";
578 @ResultAddr ’ := false;
579
580 ValidStatusParam(StatusAddr) /\
581 SizeAddr = 0 ==>
582 @StatusAddr ’ := "MCAPI_EPARAM";
583 @ResultAddr ’ := false;
584
585 !ValidStatusParam(StatusAddr) ==>
586 ErrorStatus ’ := "MCAPI_EPARAM"; #Can ’t actually report this...
587 @ResultAddr ’ := false;
588 end
589 end
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