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ABSTRACT

A Probabilistic Morphological Analyzer for Syriac

Peter J. McClanahan
Department of Computer Science

Master of Science

We show that a carefully crafted probabilistic morpholaed@nalyzer significantly outper-
forms a reasonable, ne baseline for Syriac. Syriac is an under-resourced $efariguage for
which there are no available language tools such as morgitalanalyzers. Such tools are widely
used to contribute to the process of annotating morphaddigicomplex languages. We introduce
and connect novel data-driven models for segmentatiotiodary linkage, and morphological
tagging in a joint pipeline to create a probabilistic morioigical analyzer requiring only labeled
data. We explore the performance of this model with varyingpants of training data and find
that with about 34,500 tokens, it can outperform the basdtliained on over 99,000 tokens and
achieve an accuracy of just over 80%. When trained on allavailtraining data, this joint model
achieves 86.47% accuracy — a 29.7% reduction in error raetbe baseline.

Keywords: Segmentation, dictionary linkage, morpholagtagging, Syriac, Semitic languages,
probabilistic models, joint pipelines
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Chapter 1

Morphological Annotation

Scholars at the Neal A. Maxwell Institute for Religious Sehehip at BYU and at the
Oriental Institute at Oxford University are jointly worlgron a project called the Comprehensive
Syriac Corpus project, with the goal of creating a comprelentabeled corpus of classical Syr-
iac. Syriac is an under-resourced Semitic language of théstzir Near East and a dialect of
Aramaic. It is currently almost entirely a liturgical larage but was a true spoken language up
until the eighth century. During that time period many grolauthors wrote in Syriac, and even
today there are texts still being composed in or translatedSyriac. The goal of the Comprehen-
sive Syriac Corpus project is to annotate this corpus withrmftion to facilitate systematic study
of Syriac and its grammar. Such studies would be useful tulsts, Syriac students, and scholars
of Syriac, the Near East, and Eastern Christianity.

Labeling Syriac (and other languages) can be extremely ¢onsuming. The Way Inter-
national Foundation, a Biblical research, teaching, andvieship ministry, spent 15 years labeling
the Syriac New Testament by hand. It was labeled with grameaiahformation similar to that
desired for the comprehensive corpus (see Kiraz [1994p.|atger goal in which this thesis plays
a part is to aid the creators of the corpus in developing asy&ty which human annotators can
more efficiently label large corpora. Benefits are expect@dioe through utilization of machine-
learned models that will enable annotators to correct trstakes of the models rather than label
each word from scratch. In addition, active learning willdbkey in further reducing the cost of
this endeavor. The scope of this thesis is to aid the creafdise corpus by developing a model

that can be used to assist human annotation. This thesiatia fprobabilistic data-driven frame-
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Figure 1.1: An example of a Syriac word. This word is traesitedLMLCCONand means “to
your king”.

work can be used for segmentation, dictionary linkage, aarphological tagging for Syriac, and
can significantly outperform a reasonableivedbaseline. In the following sections we will define

each part of this thesis statement and motivate its impoetan

1.1 Syriac

Syriac is an ancient language of the Christian Near East, atiSdanguage, and a dialect of
Aramaic. As a Semitic language, Syriac is closely relatefirabic and Hebrew. It is written right
to left, and its alphabet consists of 22 consonants. An el@amprd is shown in Figure 1.1. This
word means “to your (masculine plural) king” and is tramesttted a$ MLCCONaccording to the
transliteration developed by Kiraz [1994]. In this tratesiation, all capital letters and symbols
are mapped to consonants, includiAgolaph), O (waw), and the symbol of a semi-color),(
representing yod. In order to simplify the preparation a$ tiesis, we transliterate all Syriac
according to this mapping. Syriac is an abjad, which meaasttie writing system does not
require vowels; in most cases vowels are omitted entirely data we use in this thesis does not
contain vowels.

Since there is no standardized nomenclature for the padsSyfiac word, we define the

following terms to aid in the definitions of segmentatiorgtdinary linkage, and morphological

tagging:

e word token - The contiguous characters delimited by whaesp This is what most people

would think of as a word.

e stem - The main part of the word token. Itis to this that prefixed suffixes can be attached.



prefix - The characters placed before the stem.

suffix - The characters placed after the stem.

baseform - The form from which the stem is derived.

root - The form from which the baseform is derived. This isi¢atly the triliteral root?

To clarify, we will continue with the example word tokéMLCCON which means “to
your (masculine plural) king”. For this word, the stemM&.C; the baseform isMLCA “king”;
and the root isMLC. In English, the stem is an inflected baseform, and is notgsacgy a word.
For example, the stem of “producing” is “produc”. The roosep English equivalent; however,
the same rooMLC is the foundation for other Syriac words in addition to kisgch as promise,

counsel, deliberate, reign, queen, kingdom, and realm.

1.2 Segmentation

Segmentation is the process of dividing a word token intqrefixes, suffixes, and stem. For
Syriac, each word token has exactly one stem. This word tokay have from zero to three
prefixes, with each prefix being exactly one character intlengince it is trivial to take a group of
prefixes and divide them into one-character elements, va¢ tine concatenated group of prefixes
as a single prefix. Each word token has zero or one suffix. THigesiare more complex than the
prefixes. They may be multiple characters in length, andehefgossible suffixes is much larger
than the set of possible prefixes.

Suffixes also encode the morphological attributes of sufrdgr, suffix person, suffix
number, and suffix contraction. The attribute of suffix caotion encodes whether the suffix is
normal or contracted. Morphological attributes of a word ased to describe its morphemes

(semantic meaning) and other syntactic functions. For @kanthe English wordinbreakabléhas

Linguistic derivation is the formation of one word form framother word (e.g., glorify and glory, happiness and

happy).
2Almost all words in Syriac are derived from a triliteral rpatroot consisting of 3 consonants.



three morphemes: (1, (2) break and (3)able Each of these parts would be the value of some
morphological attribute.

Segmentation, therefore, takes in a word token as input asdlipes, as the output, the
prefixes, stem, and suffix. For the word toleMLCCON the input is the word token itself, and
segmentation produces a prdfixa stemMLC, and a suffixCON Another way of viewing the seg-

mentation process is the identification of the prefix-stemnmiolary and the stem-suffix boundary.

1.3 Dictionary Linkage

Dictionary linkage is the process of linking a stem to itsoassted baseform and root. Each Syriac
stem has exactly one baseform from which it is derived, anth baseform has exactly one root
from which it is derived. There may be many stems linked tdhdmseform, and many baseforms
may link to one root. This linkage may be thought of as two sa&gaprocesses: (1) a baseform
linkage, where the stem is mapped to a baseform and (2) aink@ige, where the baseform is
mapped to the root.

The baseform linkage task takes a stem as input and produzaseform. Root linkage
takes a baseform and produces a root. For the exampleliit@ CON the baseform linker takes
the stemMLC and returns the baseformMLCA. The root linker take$1LCA and returns the root
MLC. As shown in this example, the transition from the stem tdodseform or from baseform to

root often requires deleting and inserting characterd)i;xdase, A”.

1.4 Morphological Tagging

Morphological tagging is the process of labeling each woket with its morphological attributes.
For Syriac, scholars have defined this set of morphologttdbates, consisting of 12 attributes for
each stem and 4 attributes for each suffix. A list of the molqdioal attributes and their possible
values is found in Table 1.3. Each prefix has exactly the saorpmological information (namely,

that it is a prefix), and is therefore trivial to label. As witlttionary linkage, this problem may be

thought of as two separate tagging tasks: tagging the stertagging the suffix.

4



| Tag | Value |

Grammatical Categoryy  noun
Verb Conjugation N/A
Aspect N/A
State emphatic
Number singular
Person N/A
Gender masculine
Pronoun Type N/A
Demonstrative Category  N/A
Noun Type common
Numeral Type N/A
Participle Type N/A

Table 1.1: The values for the morphological tags of the $#& (king).

| Tag | Value |
Suffix Gender masculine
Suffix Person second
Suffix Number plural
Suffix Contraction| normal suffix

Table 1.2: The values for the morphological tags of the s@fd\ (your, masculine plural).



Morphological Tag | Values |

Grammatical Category | verb, participle, noun, pronoun, number, adjective, pkatiad-
verb, idiom

Verb Conjugation n/a, peal, ethpeal, pael, ethpael, aphel, ettaphal, shaptie
taphal, saphel, estaphal, p, ethp, palpel, ethpalpal

Aspect n/a, perfect, imperfect, imperative, infinitive, partiep

State n/a, absolute, construct, emphatic

Number n/a, singular, plural

Person n/a, first, second, third

Gender n/a, common, masculine, feminine

Pronoun Type n/a, personal, demonstrative, interrogative

Demonstrative Categoryn/a, near, far

Noun Type n/a, proper, common

Numeral Type n/a, cardinal, ordinal, cipher

Participle Type n/a, active, passive

Suffix Contraction n/a, normal suffix, contracted suffix

Suffix Gender n/a or common, masculine, feminine

Suffix Person n/a, first, second, third

Suffix Number n/a or singular, plural

Table 1.3: Possible values for the morphological attribwiEeSyriac words.

The stem tagger produces all 12 morphological attributeta@gs) for the given stem. The
suffix tagger produces the 4 tags for a given suffix. For thelitLCCON the stem tagger takes
MLC and produces the attributes found in Table 1.1. Table 1.@shbe results for the suffix
tagger, which takes the suff@ONas input.

The values for verb conjugation, aspect, person, pronope, tdemonstrative category,
numeral type, and particle type in Table 1.1 are “N/A.” Thesbiecause certain morphological
attributes are defined only for certain grammatical categorVerb conjugation, for example, is
defined only for verbs. Since this particular word is a notwe, \talue for that attribute is “N/A”.

Table 1.4 shows the possible morphological attributesd&herammatical category.

1.5 Data-Driven Framework

We refer to the implementations that produce segmentatiotionary linkage, and morphological

tagging as segmenters, linkers, and taggers, respectivelgta-driven framework means that the

6



| Attribute | Verb | Participle| Noun | Pron.| Num. | Adj. | Particle| Adv. | Idiom |

Verb Conjugation, X X X X X

Aspect X X X X X

State X X X X X X X X
Number X X X X X X X X X
Person X X X X X X

Gender X X X X X X X X X
Pronoun Type X

Demonstrative X

Category

Noun Type X

Numeral Type X

Participle Type X X X X X

Table 1.4: Representation of the applicable morphologitabates for the stem tagger (X’'s mean
the field applies for the given grammatical category)

segmenter, linkers, and taggers are built from data alreadptated with segmentation, linkage,
and tagging information. Aside from this annotated da@ftamework does not require additional
language tools that most previous works use. In a machineitepframework, this means that the
implementations (segmenter, linkers, and taggers) areeladicat are trained from annotated data

and evaluated on test data.

1.6 TheL ow-Resource Scenario

Since Syriac is an under-resourced language, data is sCBmampensate, as part of the Com-
prehensive Syriac Concordance project we are investigtengrocess of active learning for gath-
ering annotated data. Active learning is a process wheredeehohooses which items (sentences)
the humans should annotate. The learned model is used th aetbrequest annotations for max-
imal benefit in its learning process. During the annotatioycess, automatic pre-annotation, or
the predictions from the model developed in this thesid,lv@lshown to the annotators in order to
expedite their annotation process. For active learningh@smount of annotated data increases,

the models become increasingly accurate, thus increasenguality of the pre-annotation.



We explore the performance of models with varying amountsraihing data in order
to gain a better understanding of how well the models perfaith different amounts of data.
Although learning curves (line graphs of accuracy plottgdi@ast increasing amounts of training
data) are not not directly comparable with the performaricctve learning, they roughly show

how these models could perform in an active learning setting

1.7 Validation

We test the performance of the probabilistic morphologacedlyzer (which we calprob-mor ph)

in a joint pipeline framework, where the models (segmeiitgkers, and taggers) are combined
to create a single joint model. This joint model is explaimednore detail in chapter 3. The
reasonable baseline model is created by inserting a basellel for each of thprob-morph
sub-models into the same joint pipeline. By comparing thesegpproaches (baseline apibb-
morph), we will demonstrate that thprob-morph approach can significantly outperform the
naive approach.

The baseline implementation of segmentation is to choasenibst-frequent label: For a
given word, the baseline predicts the segmentation witlthvtiiat word appeared most frequently
during training. For unknown words, it chooses the largesfiyp and the largest suffix that is
possible for that word from the list of prefixes and suffixesrsduring training.

A similar baseline exists for dictionary linkage. It is thense most-frequent model with
an altered unknown word approach. For unknown words, theelivee predicts a baseform equal
to that of the stem. The baseline root linker uses a mosts&negmodel to predict roots for those
baseforms that were seen during training. The approachiarawn words for this model predicts
the first three characters of the baseform as the root, sineestall roots contain only three
characters.

For both the suffix and stem taggers, there are two mostémqtagger baselines.
The first, which we call the monolithic baseline, treats therphological attributes (all seven

for the stem tagger) as a unit. For the stem tagger in our efeantipe monolithic tag is



noun#N/A#N/A#emphatic#singular#N/A#masculine#N/AAKMcommon#N/A#N/A, where # is
the attribute delimiter. The most-frequent tagger thenka@as expected using the monolithic
tag as a basic unit. For unknown words, the model predictatindutes to be those from the
monolithic tag that were seen most in training.

The second baseline we call an independent baseline beeacisenorphological attribute
is assumed to be independent. A separate most-frequerdrtegained for each attribute with
the task of predicting solely that attribute. This modelgadrant of the other morphological
attributes. The best prediction of each of these tagger$ofl&em tagging) is combined ively
with no notion of what combinations may be valid or invalid.

In chapter 2, we review related work. Chapter 3 consists ofparsgée, stand-alone pa-
per submitted for publication at the 2010 Conference on BogliMethods on Natural Language
Processing (EMNLP). This paper contains the heart of thesithand presents our solution and
methodology. As this is a stand-alone publication, partshafpter 1 and chapter 2 will be re-
peated, as necessary. Chapter 4 contains additional anccoropehensive results that did not fit
in chapter 3 including statistical validation. Chapter feddfconclusions and makes recommenda-

tions for future work.



Chapter 2

Related Work

There is much previous work related to the different aspafdisis task, namely segmenta-
tion, dictionary linkage, and morphological tagging. Wél waview prior work in these areas. We
will then briefly mention previous or current projects thavé had or have similar goals to those
of the larger scope of this project (outside this thesisigesiwe believe they will help motivate our

approach.

2.1 Segmentation

Segmentation is generally not considered a task in andedf.itsis mostly used only as a prelim-
inary approach, or as an approach coupled with other taslexanthe segmentation is only part of
the output. Stemming is a related task that is almost idaintocsegmentation. The difference is
that segmentation returns the segmented text, while steghremoves any prefixes and suffixes
and returns only the stem.

Lee et al. [2003] is the most relevant work for segmentatsinge they segment Arabic,
a language related to Syriac, with a data-driven approaclcaigs® of the linguistic similarities
between Arabic and Syriac, there are only subtle differemcesegmenting them. Lee et al. use
manually segmented data with an unsupervised algorithrolwbarns the segmentation for Arabic
without any additional language resources. At the heamefalgorithm is a word-level trigram
language model, which they use to learn the correct weightgrefixes and suffixes. They report

an accuracy of 97%.

10



Rogati et al. [2003] use an unsupervised learning approastetoming. They claim their
approach is low-resource, as its only language tools araghdb stemmer, a small parallel corpus
(10,000 words), and where available, simple language .rdiasir approach agreed with a state-
of-the-art Arabic segmenter (their method of validation)3y.5% of the words.

Chinese and Japanese texts are not delimited by whitespateggmentation lends itself
nicely to finding word boundaries for these languages. Ligmfic languages, these languages
require segmentation as an early step for further compunaitilinguistic analysis. Peng et al.
[2004] segment Chinese text into word boundaries using atinkain conditional random field
(CRF). They add 24 word- and character-based lists to aid sagtien, as well as introduce a
model for dealing with unseen words. This additional larggienowledge in conjunction with the
new model allows them to achieve state-of-the-art resatt€hinese segmentation.

There are many other approaches that combine segmentatitn other tasks
(see Bar-haim et al. [2008], Diab et al. [2004], Habash and R&nR005], Kudo et al. [2004],
PetkevE [2001], Smith et al. [2005]). These typically utilize a mpbological analyzer. A mor-
phological analyzer is a linguistic tool that, given a wauthduces all possible segmentations that
that word could have according to the grammar of the langubgaddition, most morphological
analyzers also give corresponding baseforms and morpicaldgformation. These approaches
that utilize a morphological analyzer are different frondanresourced approaches in that they
choose among a limited number of possible segmentatiomh diy a language tool instead of
considering all possible segmentations that were prelyigeen during training. If the correct
output is not enumerated by the morphological analyzegnnot be predicted.

Of these approaches, only Diab et al. [2004] and Habash andh&ap2005] were applied
to a Semitic language. As of June 2010, Habash et al. cuyrkatile the state-of-the-art segmen-
tation for Arabic, achieving an accuracy of 99.7%. Lee ehale the best approach not requiring

additional language tools, with an accuracy of 97%.

11



2.2 Dictionary Linkage

Most previous work in dictionary linkage is found under teemt lemmatization. Baseforms are
often called lexemes or lemmas, and in the literature adlelare used interchangeably. Lemmati-
zation is therefore strictly baseform dictionary linkagétle work has been done in classifying the
root, possibly because the notion of root is used mainly mife languages, and comparatively
little work has been done in Semitic languages.

Chrupata et al. [2008] is the only previous low-resource apphn for dictionary linkage.
They have developed a system called Morfette that couplephotogical tagging and lemma-
tization. This system builds off of Chrupata’s [2006] datas«n lemmatization approach and
combines lemmatization and morphological analysis for$ta Polish, and Romanian. These
languages have distinct differences from Syriac, suchaaitt that no segmentation is required,
and they are read left to right. Chrupata’s lemmatization tsv@-pass method that first finds
lemma-classes, and then assigns each lemma-class to aheondy a typical sequence labeler
would. A lemma-class is formed by looking at the minimum elitance between the baseform
(lemma) and the word token. Since Spanish, Polish, and R@mald not require segmentation,
their lemmatization task maps from word token to baseforsteiad of stem (word token stripped
of prefixes and suffix) to baseform, as baseform linkage do&yiiac. The transformation from
word token to lemma is then used as the class the model tripgetbct. For examplepedir is
the baseform of the Spanish wopdtieron Instead of a model predictingedir given pidieron,
it would predict the lemma class, which is the transfornmafimom pidieron to pedir. Chrupata
has encoded that transformation for this exampl¢(&s i, 2), (I, e, 3), (D, e, 5), (D, o, 7), (D,
n, 8)} where (D, i, 2) means deleteat position 2, and (I, e, 3) means inserat position 3. All
transformations are encoded using insertions and detetind are created by first reversing both
baseform and word.

Since Chrupala et al. did not have text labeled with basefothey used the minimum

edit distance technique to acquire the baseforms. Theyubed a maximum entropy classifier
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to predict these labels. Their lemmatization accuraciegedrom 93.0% — 98.5% depending on
language and dataset.

Al-Shammari and Lin [2008] produced the first Arabic lemrmatiin a resource-rich set-
ting by using language rules in a series of eight steps: fdplei noun identification, (2) suffix and
prefix removal, (3) noun dictionary generation, (4) vernitfecation, (5) verb dictionary gener-
ation, (6) finding all noun tokens, (7) stop word removal, é)droot extraction for verbs. They
evaluate by comparing the quality of clustering using watgsnmed with a previously existing
Arabic stemmer with the quality of clustering using wordshieatized by their method. Since a
goal of lemmatization is to get the baseform of the word, aoidjust the stem, the hope is that
lemmatization does a better job of finding the underlyingelthan stemming. Their hope was that
this, in turn, would produce purer clusters and a highertehguality. They report a cluster quality
of 70.8% using lemmatized documents and a cluster qualig886 using stemmed documents.
Unfortunately, no mention of lemmatization accuracy isspreed.

Daya et al. [2008] use the notion of roots and patterns i fhemework to find roots for
Semitic texts. In this framework, words are created by caoinlia pattern and a root, or inserting
the root letters into a pattern. Since roots generally haueet consonants, a pattern will often
have three spaces where the consonants of the root fit. Thesttevto this approach is that it
works only for words conforming to the patterns available.iM/their approach does not utilize
a morphological analyzer, it does require a list of rootslof common prefixes and suffixes, and
“knowledge of word-formation processes, and behavior efileak roots in certain paradigms,”
placing it in the resource-rich category. On their best ngdbey achieve an F-score (another

measure of accuracy) ranging between 86.92% and 91.64%.

2.3 Morphological Disambiguation

Almost all morphological disambiguation approaches negtiie use of a morphological analyzer,
making them resource-rich approaches. Habash and Rambo®][@@en claim that Arabic mor-

phological disambiguation “cannot be done successfullygusiethods for English.” In addition,
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Wintner [2004] noted that morphological analyzers weres§ble — indeed, necessary” to further
morphological disambiguation of Hebrew. Where morpholaly@alyzers are available, the ben-
efits are large. In addition to providing linguistically pdse morphological information for each
word, morphological analyzers also give segmentation aseéform information. Unfortunately,
these tools are time consuming to build and require advairggastic knowledge of the language.
For Syriac, a morphological analyzer is not available. K[2000] created a Syriac morphological
analyzer; however, this morphological analyzer was deeoon outdated equipment and is no
longer working or available to us.

Haji¢ and Hladka [1998] were among the first to do morphological disambiguatThey
worked with Czech and treated the problem as a sequencénigipebblem, given the many simi-
larities between morphological tagging and part-of-shg@©S) tagging. With the aid of a mor-
phological analyzer to reduce the number of possible outjastses for a given word, they intro-
duced the notion of ambiguity classes. An ambiguity clagssst of possible ambiguous classes
a classifier needs to resolve. For example, the wenchas three possible morphological tag-
gings, or setoftagstT----------- ,NNI' S1- - - - - A--,andNNlI $4- - - - - A- - . Here, each
character represents a value for a morphological attriffateCzech there are 13 morphological
attributes) determined by the position in the string. Thehdaeans that attribute is not applicable.
For this word, there are six ambiguity classB8,(NT, - | , - S, - 14, - A). Ambiguity classes are
determined by the possible unique values for each morpluabattribute. For example, the first
ambiguity classNT) is determined by the number of unique values for the firstphological at-
tribute in the three morphological taggings shown aboves §écond ambiguity class is the same
as the first for this word. The third has unique valueand| , creating the third ambiguity class
of (- 1 ). Where there is no ambiguity (e.g., the sixth morphologataibute), an ambiguity class
is not created. Haji and Hladl constructed a separate classifier for each ambiguity thass
needed to be learned, for a total of 378 models. They comhmedutput of these models in a
way that uses only valid combinations and achieves an acgof®2.0% compared to the baseline

of 77.8%.
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Habash and Rambow [2005] currently have the best-knowntssfulmorphological dis-
ambiguation on Arabic. Instead of using ambiguity clas$tahyash and Rambow took a sim-
pler approach — to use a separate classifier for each momgbalattribute. The difficulty is in
combining the outputs from the classifiers to make the bessiple joint tag. With the aid of a
morphological tagger, they showed different methods fonlomation that most closely matched
a possible tagging given by the morphological analyzers @pproach proved quite successful, as
they achieved an overall tag accuracy of 97.6%.

Hlavatova [2001] looks at solving the problem of unknown words (sfieally those for
which a morphological analyzer does not provide any residtCzech. He improved the number
of words to which the morphological analyzer could offerlgsas by 60% — 70% depending on
the corpus.

Feldman and Hana [2010] provide an overview of current nesspoor NLP-related work.
They also show work on Russian, Czech, and Romance languagasapproach morphological
tagging with a morphological analyzer of Czech to tag Russ@approach the problem from a
cross-language point of view. To further augment the systeay provide a list of cognates and
alter the Czech training data to look more like Russian. Wigs¢ghimprovements, they report
accuracies of up to 80%.

Others (Bar-haim et al. [2008], Kudo et al. [2004], Mansoueilef2007], Petkexd [2001],
and Smith et al. [2005]) have used similar approaches thatullize morphological analyzers to
reduce the number of output classes. These approachesreg@da@ variety of languages, with
differing techniques, but still, all use morphological brzars.

There is little previous work regarding morphological dgaguation in an under-
resourced setting. To our knowledge, only Chrupata et aD§2@nd Kibler [2010a, 2010b] do
not use a morphological analyzer or any other language ressuChrupata et al. used maximum
entropy classifiers to predict baseforms and morphologittébutes. Depending on the language

and dataset, their morphological disambiguation accasaginge from 84.9% — 98.8%, with Span-
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ish and Romanian both achieving accuracies over 95%. Pal@lracies are not as strong, since
Polish is a Slavic language with more morphological comipfethan Spanish or Romanian.
Mohamed and Kibler report on closely related work for morphological tagg They
use a data-driven approach to find the POS tags for Arabiog sith word tokens and segmented
words as inputs for their system. Although their segmeoigtierformance is high, they report that
accuracy is low when first segmenting word tokens. They us#Li, a memory-based learner, as

their model and report an accuracy of 94.74%.

24 Similar Projects

As mentioned above, this thesis is a small part of a larggeprdeing undertaken by the Neal
A. Maxwell Institute in which they will gather texts and arnate them via active learning. Many
other organizations are interested in developing labebedara, and they use varied amounts of
computational assistance in their tasks.

The Perseus Project began in 1998 and has continued sincgdtteering and annotating
Greek and Latin texts. The project uses machine learningtoal degree, but does not use it for
annotation prediction. It utilizes machine learning madel data and text mining. The Thesaurus
Linguae Graecae (TLG) is a similar project, with the aim afatng a digital Greek library. The
TLG, begun in 1972, created a Greek morphological analyzdotits annotation.

The Maxwell Institute previously created a Dead Sea ScHlkstronic Corpus, but this
project also did not leverage machine learning. Their aatrmis were collected by scholars over
a number of years. Turgama is yet another project that usesiahannotations. This project
focuses on Syriac texts and does use computers to aid aondjatthe form of linguistic rules),
but it uses additional Syriac data, such as a lexicon andrigésas of morphology. Also, the
scope of Turgama is rather limited compared to that of theprehensive Syriac concordance
project.

The Comprehensive Syriac Corpus project plans to use activeitgy and pre-annotation

to aid human annotation. For this cause, we are interestexpioring the performance of models
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with varying amounts of training data. Additionally, theopact hopes to utilize computational

linguistic methods as much as possible.
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Chapter 3

A Probabilistic Morphological Analyzer for Syriac
Paper Submitted to EMNLP 2010

3.1 Abstract

We define a probabilistic morphological analyzer using a-dhiven approach for Syriac in order
to facilitate the creation of an annotated corpus. Syrisamisinder-resourced Semitic language
for which there are no available language tools such as notwgital analyzers. We introduce
and connect novel probabilistic models for segmentatiacticshary linkage, and morphological
tagging in a pipeline to create a probabilistic morpholaganalyzer requiring only labeled data.
We explore the performance of models with varying amountsashing data and find that with
about 34,500 labeled tokens, we can outperform a reasobalkdine trained on over 99,000
tokens and achieve an accuracy of just over 80%. When trainedl available training data, our

joint model achieves 86.47% accuracy — a 29.7% reductionror eate over the baseline.

3.1.1 Syriac Background

Our objective is to facilitate the annotation of a large emrpf classical Syriac (referred to simply
as Syriac throughout the remainder of this work). Syriamisiader-resourced Semitic language
of the Christian Near East and a dialect of Aramaic. It is quifyealmost entirely a liturgical
language but was a true spoken language up until the eigintiurge during which time many
prolific authors wrote in Syriac. Even today there are tetitisk®ing composed in or translated
into Syriac. By annotating these texts with useful informatiwe will facilitate systematic study

by scholars of Syriac, the Near East, and Eastern Christianit
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Our desired annotations include morphological segmemtatinks to dictionary entries,
and morphological attributes. Typically, annotationsto$ kind are made with the assistance of
language tools, such as morphological analyzers, segmemtepart-of-speech (POS) taggers.
Such tools do not exist for Syriac, but some labeled data driss. Kiraz [1994] compiled an
annotated version of the Peshitta New Testament British angk®y [1920] and a concordance
thereof. We aim to replicate this on a much larger scale witdrermodern tools, building up
from the labeled New Testament data, our only resource. AB,saur learning and annotation
framework requires only labeled data. Additionally, thergach described in this paper may be
useful for the analysis of other morphologically rich laages.

We approach the problem of Syriac morphological annotdijoareating five probabilistic
sub-models that can be trained in a supervised fashion amébined in a joint model of mor-
phological annotation. We introduce novel algorithms fegreentation, dictionary linkage, and
morphological tagging. We then combine these sub-mod&saifpintn-best pipeline. This joint
model outperforms a strong, thoughivea baseline for all amounts of training data over about
9,900 word tokens. Since Syriac is an abjad, its writingeystioes not require vowels. As a
dialect of Aramaic, it is written right-to-left and has a telatic morphology, based on a system of
triliteral roots, with prefixes, suffixes, infixes, and eticlparticles.

For the purposes of this work, all Syriac is transliteratedoading to the Kiraz [1994]
transliteratiof and is written left-to-right whenever transliterated; 8yiac appearing in the Serto
script in this paper is shown right-to-left.

Since there is no standardized nomenclature for the padsSyfiac word, we define the

following terms to aid in the definitions of segmentatiorgtainary linkage, and morphological

tagging:

e word token - contiguous characters delimited by whitespace

e stem - the main part of a word token to which prefixes and sufcean be attached

1According to this transliteration all capital letters inding A (olaph) andO (waw) are consonants. Additionally,
the semi-colon;(, representing yod, is also a consonant.
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e baseform - the form from which the stem is derived; also knaw@a lexeme or lemma

e root - the form from which the baseform is derived

To clarify, we will use an example word tokertMLCCON which means “to your (mas-
culine plural) king”. For this word, the stem MLC; the baseform i$LCA “king”; and the root
is MLC. The stem is an inflected baseform and does not necessamtydavord on its own. In
Syriac, the same ro®LC is the foundation for other words such as promise, counséhetate,

reign, queen, kingdom, and realm.

3.1.2 Sub-tasks

Segmentation, or tokenization as it is sometimes calleg,(Babash and Rambow [2007]), is the
process of dividing a word into its prefixes, a stem, and sedfixFor Syriac, each word token
consists of exactly one stem, from zero to three prefixes,zana or one suffix. Each prefix is
exactly one character in length. While segmenting Syriaccavetreat all prefixes as a single unit.
Suffixes may be multiple characters in length and encode tpmological attributes of suffix
gender, suffix person, suffix number, and suffix contractidhe attribute of suffix contraction
encodes whether the suffix is normal or contracted. For taengie wordLMLCCON the prefix

is L “to”, the stem isMLC “king”, and the suffix iSCON“(masculine plural) your”.

Dictionary linkage is the process of linking a stem to itscassted baseform and root. In
most Syriac dictionaries, all headwords are either basefar roots, and for a given word these are
the only relevant entries in the dictionary. Each Syriaocsbas exactly one baseform from which
it is derived, and each baseform has exactly one root fronchwitiis derived. As such, linkage
may be thought of as two separate processes: (1) basefdkagénwhere the stem is mapped
to a baseform; and (2) root linkage, where the baseform ispedpo a root. For our example
LMLCCON baseform linkage would map stavlLC to baseformMLCA, and root linkage would
map basefornMLCAto rootMLC.

Morphological tagging is the process of labeling each wofeth with its morphological

attributes. Morphological tagging may be thought of as tejesate tagging tasks: (1) tagging the
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| Attribute | Value |

Grammatical Categoryl noun
Verb Conjugation N/A
Aspect N/A
State emphatic
Number singular
Person N/A
Gender masculine
Pronoun Type N/A
Demonstrative Category N/A
Noun Type common
Numeral Type N/A
Participle Type N/A

Table 3.1: The values for the morphological attributes efstemMLC, “king”.

| Attribute |  Value |
Gender masculine
Person second
Number plural
Contraction| normal suffix

Table 3.2: The values for the morphological attributes @& sffix CON, “(masculine plural)
your”.
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stem and (2) tagging the suffix. For Syriac, scholars havaeefior this task a set of morpholog-
ical attributes consisting of 12 attributes for the stem 4rmdtributes for the suffix. The attributes
for the stem are as follows: grammatical category, verbuggatjon, aspect, state, number, person,
gender, pronoun type, demonstrative category, noun typaenral type, and participle type. The 4
morphological attributes for the suffix are suffix contrantisuffix person, suffix gender, and suffix
number. These morphological attributes were heavily imibeel by those used by Kiraz [1994],
but were streamlined in order to focus directly on gramnadticnction. During morphological
tagging, each stem is labeled with a value (i.e., “tag” ob&#) for each of the 12 stem attributes,
and the suffix is labeled with a value for each of the 4 suffiklaites. For a given grammatical
category, or POS, only a subset of the morphological ate#is applicable. For those morpho-
logical attributes (both of the stem and of the suffix) thathdb apply, the correct label is “N/A”
(not applicable). Tables 3.1 and 3.2 show the correct stehsaffix tags for the word MLCCON
The remainder of the paper will proceed as follows: Secti@mutines our approach. In
Section 4, we describe our experimental setup; we preseultsan Section 5. Section 6 con-
tains previous work relevant to our approach. Finally, icti®& 7 we briefly conclude and offer

directions for future work.

3.2 The Syromorph Approach

Since we have no language tools, but we do have labeled dat@cws on automatically annotat-
ing Syriac text in a data-driven fashion. We desire the swiolets to influence each other, since
segmentation, linkage, and morphological tagging are nataily independent tasks. To accom-
modate these requirements, we use a joint pipeline modkeFat al. [2006]. In this section, we
will first discuss this joint pipeline model, which we callromor ph. We then examine each of

the individual sub-models.
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3.2.1 Joint Pipeline M odel

Our approach is to create a joint pipeline model consistihg segmenter, a baseform linker,
a root linker, a suffix tagger, and a stem tagger. Figure 3olvshithe dependencies among the
sub-models in the pipeline for a single word. Each sub-méalel) has access to the data and
predictions (rectangles) indicated by the arrows. For e@tanfor a given word, the stem tagger
has access to the previously predicted stem, baseform,andtsuffix tag. The baseform linker

has access to the segmentation — specifically the stem.

Data

A 4

Segmentation

Prefix Stem Suffix

A 4

A 4

Baseform — Suffix Tags

A 4

Root Linkage

Root

A4 A 4

Stem Tagging

Stem Tags

Figure 3.1: Thesyromorph model. Each rectangle is an input or output and each ovalrie@eps
employing a sub-model.
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The training ofsyromor ph is straightforward. Each of the individual sub-models &rted
separately on the true labeled data. Features are extfaotedhe local context in the sentence.
The local context consists first of predictions for the entientence from upstream sub-models.
The upstream sub-models of a given sub-model are those sdblsnupon which the given sub-
model depends. We created the dependencies shown in FigusekBg into account the difficulty
of the tasks and natural dependencies in the language. ltcedih the predictions for the entire
sentence from previous sub-tasks, the local context atdodas the previoustags of the current
sub-task, as the standard orddviarkov model does. When the stem tagger is being trained, for
example, the local context consists of the predicted setatien, predicted baseforms, predicted
roots, and predicted suffix tags for each word in the sentehrcaddition, the local context for
stem tagging contains the words of the sentence and the abens for the previousstems. Since
features are extracted from the local context: for stemitegdor example, we extract features
such as current stem, previous stem, current baseformppeelsaseform, current root, previous
root, current suffix tags, and previous suffix tags. “Presian this case refers to labels on the

immediately preceding word token.

3.2.2 Segmentation

The syromor ph segmentation model is a hybrid word- and consonant-levelainadapted from
a model used for data-driven diacritization Haertel et2010]. Like Haertel et al., we employ
maximum entropy Markov models for each of our probabiliseguence models. Their models
distinguish between words that are rare and words that arean®, and they showed that the
distribution over labels is different for known words an&koown words. In this work, we consider
only unknown words to be rare and words seen during trairtgtnon-rare. For each of the non-
rare word types, a separate model is trained with the purpbsboosing the best segmentation
given that word. This approach is closely related to the mfeambiguity classes mentioned in

Haji¢ and Hladla [1998].
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For those words that are considered rare, since there is mb type—specific model, we
back off to a consonant-level model. Our consonant-levgingatation model uses the notion of
Bl (Beginning and Inside) tags, which have proved successfoamed-entity recognition. Since
there are three labels in which we are interested (prefiry,st@d suffix), we apply the beginning
and inside notion to each of them to create six tags: BEGINNRREFIX, INSIDE-PREFIX,
BEGINNING-STEM, INSIDE-STEM, BEGINNING-SUFFIX, and INSIDISUFFIX. We train a
maximum entropy Markov model to predict one of these six fageach consonant. Furthermore,
we constrain the model to allow only legal possible traossi given the current prediction, so
that prefixes must come before stems and stems before sufiMeshen transform the guessed
consonant-level hypotheses to a word-level tag. In ordespdure the unknown word distributions,
we train the consonant-level model on words occurring onlyeoduring training.

We call this word- and consonant-level segmentation miogedid. As far as we are aware,

this is a novel approach to segmentation.

3.2.3 Dictionary Linkage

For dictionary linkage, we divide the problem into two septartasks: baseform linkage and root
linkage. For each of these tasks, we explore two differehtidymodels. These hybrid models are
similar tohybrid for segmentation, in that they use a similar type of modehfam-rare (known)
words, namely a collection of separate models for each wgd {either a stem or baseform,
depending on the linker). The approach for non-rare wortlseisame for both hybrid models.
For rare (unknown) words, there are two separate approdoheskage. The first rare
approach is based on the work of Chrupata [2006] includingMogfette system. Instead of
predicting a baseform given a stem, we predict what Chrugdls.@ lemma-class. A lemma-class
is the transformation formed by the minimum edit distandsvben the baseform (which he calls
a lemma) and the stem. The transformation is a series ofgupleere each tuple includes (1)
whether it was an insertion or deletion, (2) the letter itestior deleted, and (3) the position of

the insertion or deletion in the string. For example, thegfarmation ofXE;N to XEAwould be
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{(D,;, 2), (I,A 2), (D,N, 3)}. This transformation means deletandN from positions 2 and 3,
respectively, and inseA into position 2. Applying this transformation XE;N results inXEA

We transform all baseforms into their corresponding lenutaases in baseform linkage,
and we do the same for the roots in root linkage. The predicéedformation is then applied to the
stem or baseform in order to construct the actual predi¢baseform or root, respectively). The
advantage here is that common transformations are grompea isingle class, thereby allowing
the model to adequately predict baseforms and roots that iatvbeen seen during training, but
whose transformations have been seen. We call this hybretehhgbrid-morfette. This model is
trained on all words in order to capture as many transfoonatas possible.

The second approach for rare (unknown) words uses a maximtnopg Markov model
trained on all words seen in training. One disadvantage isfrtiodel is that it predicts only
baseforms and roots that were seen in training data. Thigapp is just like the unknown-
word approach used by Toutanova and Manning [2000] for PQ&ng. This approach is called

hybrid-maxent.

3.24 Morphological Tagging

For morphological tagging, we break the task into two sdpaasks: tagging the suffix and tag-
ging the stem. Since there are a number of values that neeslficeblicted, we define two ways
to approach the problem. We call the first approach the mimolapproach, where the label is
the concatenation of all the morphological attribute valulm Table 3.3, the stem tag and suffix
tag columns contain the monolithic tags for stem taggingsaurifix tagging. We use a maximum
entropy Markov model to predict a monolithic tag for eachrster suffix and call this model
maxent-mono.

The second approach is to assume that morphological ddslare independent of each
other. We call this the independent approach. Here, eacis fagdicted by a tagger for a single
morphological attribute. For example, the gender modgnsiant of the other 11 sub-tags during

stem tagging. Using its local context (which does not inelather stem sub-tags), the model
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predicts the best gender for a given word. The top prediafa@ach of these taggers (12, for stem
tagging) is then combined neely with no notion of what combinations may be valid or ilwa
We use maximum entropy Markov models for each of the sintiféate taggers. This model is

calledmaxent-ind.

3.25 Decoding

Whereas Viterbi decoding produces the most probable sequahiabels given a sequence of
unlabeled words, our per-task decoders are beam decodérbeam-size equal to In particular,
we limit the number of per-stage back-pointers tue to the large size of the tagset for many of
our sub-models.

Decoding insyromorph consists of extending the per-task decoders to allow tiansi
from each sub-model to the next sub-model in the pipe. Fomel& in our pipeline, the first
sub-model is segmentation. We predict the topegmentations for the sentence (i.e., sequences
of segmentations), whereis the number of transitions to maintain between each ssk-fEhen,
we run the remaining sub-tasks with each of theequences as a possible context. After each
sub-task is completed, we narrow the number of possibleegtsback to:. We swepb andn for
various values, and fourtid= 5 andn = 5 to be good values that balanced between accuracy and

time; larger values saw only minute gains in accuracy.

3.3 Experimental Setup

We are using the Syriac Peshitta New Testament in the fornpitedhby Kiraz [1994]. The

Way International, a Biblical research ministry, annotatad version of the New Testament by
hand and required 15 years to do so. This data is segmenteatased with baseform and root,
and labeled with morphological attributes. Kiraz and asharthe Syriac community refined and
corrected the original annotation while preparing a digitad print concordance of the New Tes-
tament. We augmented Kiraz’s version of the data by segngstiffixes and by streamlining the

tagset.
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| Transliteration| Pre.| Stem | Suffix | Baseform | Root | Suff. Tags| Stem Tags |

OEBDT O EBDT EBD EBD | 0000 011012200000
ANON ANON HO HO | 0000 300023222000
LALHN L ALH N ALHA ALH | 1011 200310200200
MLCOTA MLCOTA MLCOTA | MLC | 0000 200310300200
OCHNA O | CHNA CHNA CHN | 0000 200320200200
OMLCA O MLCA MLCA MLC | 0000 200320200200

Table 3.3: A labeled Syriac sentenc&BDT ANON LALHN MLCOTA OCHNA OMLCAANnd
you have made them a kingdom and kings and priests for our’ @®evelation 5:10)

Table 3.3 shows part of a tagged Syriac sentence using tgsttal he suffix and stem tag
values are indices representing morphological attributegshe example sentence the suffix tag
1011 represents the values “masculine”, “N/A’, “plural”, “noahsuffix” for the attributes suffix
gender, suffix person, suffix number, and suffix contractiBach value oD for each stem and
suffix attribute represents a value of “N/A’, except for tbhgrammatical category, which always
must have a value other than “N/A". Therefore, the suffix@@®0 means there is no suffix.

For the stem tags, the attribute order is the same as thansholable 3.1 from top to bot-
tom. The following describes the interpretation of the st@hues represented in Table 3.3. Gram-
matical category valueB, 2, and3 represent “verb”, “noun”, and “pronoun”, respectively. €rh
verb conjugation valué represents “peal conjugation”. Aspect valueepresents “perfect”. State
value3 represents “emphatic”. Number valuksind2 represent “singular” and “plural”. Person
values2 and3 represent “second” and “third” person. Gender valResd3 represent “mascu-
line” and “feminine”. Pronoun type valu2 represents “demonstrative”. Demonstrative category
value?2 represents “far”. Finally, noun typ2 represents “common”. The last two columnsQOof
represent “N/A” for numeral type and particle type.

This dataset consists of 109,640 word tokens. Since we atssifoy on under-resourced
circumstances, we sweep our results for varying amountsataf tb better understand how our
models perform in such circumstances. For each point onraiteacurve, we take a percentage

of the data as training, and test on a fixed development test se
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We implement five sub-tasks: segmentation, baseform lekawpt linkage, suffix tagging,
and stem tagging. We compare each sub-task tohaerapproach as a baseline. In addition to
desiring good sub-models, we also want a joint pipeline rthde significantly outperforms the
naive joint approach, which is formed by using each of the feilg baselines in the pipeline
framework.

The baseline implementation of segmentation is to choasentbst-frequent label: for a
given word, the baseline predicts the segmentation witlthvtiiat word appeared most frequently
during training. For unknown words, it chooses the largestiyand largest suffix that is possible
for that word from the list of prefixes and suffixes seen dutmaging.

For dictionary linkage, the baseline is similar: both baseflinkage and root linkage use
the most-frequent label approach. Given a stem, the badadiseform linker predicts the baseform
with which the stem was seen most frequently during trainiikgwise, the baseline root linker
predicts the root from the baseform in a similar manner. Rerunknown stem case, the baseline
baseform linker predicts the baseform to be identical testhen. For the unknown baseform case,
the baseline root linker predicts a root identical to thd flieee consonants of the baseform, since
for Syriac the root is exactly three consonants in a largertgjof the cases.

The baselines for stem and suffix tagging are the most-fredabel approaches. These
baselines are similar tmaxent-mono andmaxent-ind, using the monolithic and independent ap-
proaches used bypaxent-mono andmaxent-ind. The difference is that instead of using maximum
entropy, the nive most-frequent approach is used in its place.

The joint baseline tagger uses each of the component baséfirihen-best joint pipeline
framework. Because this framework is modular, we can tiliwglvap in and out different models

for each of the sub-tasks.

3.4 Experimental Results

We evaluate our method by calculating the average accuratgnefold cross validation. The

reported task accuracy requires the entire output for Hskt to be correct in order to be counted
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as correct. For example, during stem tagging, if one of tletags is incorrect, then the entire tag
is said to be incorrect. Furthermore, syromor ph, the outputs of every sub-task must be correct
in order for the word token to be counted as correct.

Moving beyond token-level metrics, in order to understaadgrmance of the system at
the level of individual decisions (including N/A decisigns/e compute decision-level accuracy:
we call this metrictotal-decisions. For thesyromorph method reported here, there are a total
of 20 decisions: 2 for segmentation (prefix and suffix bouieddr 1 for baseform linkage, 1 for
root linkage, 4 for suffix tagging, and 12 for stem tagging.isTéiccuracy helps us to assess the
number of decisions a human annotator would need to coifetdta were pre-annotated by a
given model. Excluding N/A decisions, we compute per-denigoverage and accuracy. These
metrics are calledpplicable-cover age andapplicable-accur acy.

We show results on both the individual sub-tasks and theeejdint task. Since previ-
ous sub-tasks can adversely affect tasks further down ipitiedine, we evaluate the sub-models
by placing them in the pipeline with other (simulated) subd®ls that correctly predict every
instance. For example, when testing a root linker, we plaeervot linker to be evaluated in
the pipeline with a segmenter, baseform linker, and tagdpatsreturn the correct label for every
prediction. This gives an upper-bound for the individuald®lp removes the possibility of error
propagation, and shows how well that model performs wittlbeteffects of the other models in
the pipeline.

For our results, unknown accuracy is the accuracy of unkniostances, specific to the
task, at training time. In the case of baseform linkage, xaneple, a stem is considered unknown
if that stem was not seen during training. It is thereforesgae to have a known word with an

unknown stem and vice versa.

3.4.1 BasdineResults

Each of the baselines performs surprisingly well. TableiS@grouped by sub-task and reports the

results of each of the baseline sub-tasks in the first row cf ggoup. The accuracies of most of
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| | Model | Total | Known | Unk |

8 baseline 96.75] 99.64 | 69.11
v | hybrid 98.87 | 99.70 | 90.83
baseline 95.64| 98.45 | 22.28
L% [ hybrid-morfette 96.19 | 98.05 | 784
hybrid-maxent 96.19 | 99.15 | 67.86
baseline 98.84| 99.56 | 80.20
b2 [ hybrid-morfette 99.05 | 99.44 | 88.86
hybrid-maxent 98.34| 99.45 | 69.30
monolithic baseline | 98.75| 98.75 | N/A
% | independent baseline96.74| 98.78 | 0.01
» | maxent-mono 98.90 | 98.90 | N/A
maxent-ind 98.90 | 98.90 | N/A
monolithic baseline | 83.08| 86.26 | 0.01
E independent baseline53.24 | 86.90 | 0.00
¥ | maxent-mono 89.48 | 92.87 | 57.04
maxent-ind 88.43| 90.26 | 40.59

Table 3.4: Results of the individual sub-models used in opragrch.

the tasks are so high because the ambiguity of the labels tireanstance is quite low. Ambiguity
rates for segmentation, baseform and root linkage, and atedrsuffix tagging are 1.01, 1.05,
1.02, 1.47, and 1.35, respectively. Preliminary expertserdicated that if we had not separated
these tasks, the tagging accuracy would have been lowerufkmeown tagging accuracy for the
monolithic suffix tagger is not applicable, because thenewe suffixes that were not seen during
training. This makes sense, considering that the basagraesnter chooses only suffixes that were

seen during training.

3.4.2 Individual Models

Table 3.4 also shows the results for the individual modetsthé table, SEG, BFL, RTL, SUF-
FIX, and STEM represent segmentation, baseform linkags,lirckage, suffix tagging, and stem
tagging, respectively. Even though the baselines were, leigth individual model outperformed
its respective baseline, with the exception of the rootdmklwo of the most interesting results

are the known accuracy of the baseform linkeybrid-maxent andhybrid-morfette. As hybrid
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| Model | Total | Known | Unk |
Baseline 80.76| 85.74 | 28.07
Morfette Monolithic| 85.96| 89.85 | 44.86
Maxent Monolithic | 86.47 | 90.77 | 40.93

Table 3.5: Word-level accuracies for various jasgtomor ph models.

models, the difference between them lies only in the treatraeunknown words; however, the
known accuracy of the morfette model drops fairly signifibarT his is due to the unknown words
altering the weights for features in which those words océwr instance, if the previous word
is unknown and a word that was never seen was predicted, tieendights for all features that
contain that unknown word will be quite different than if tipmevious word were a known word.
Itis also worth noting that the stem tagger is by far the worstlel in this group of models,
but it is also the most difficult task. The largest gains iniiaying the entire system would come

from focusing attention on that task.

3.4.3 Joint Model

Table 3.5 shows the accuracies for the joint models. The joiodel incorporating “maxent”
variants performs best overall and on known cases. Theneaatel incorporating the “morfette”
variants performs best on unknown cases.

Decision-level metrics for thbybrid / hybrid-maxent / maxent-mono model are as fol-
lows: for total-decisions, the model achieves an accuracy of 97.08%, compared to @baad
curacy for the baseline, yielding a 35.11% reduction in rerate; forapplicable-coverage and
applicable-accur acy this model achieved 93.45% and 93.81%, respectively, coedda the base-
line’s 90.03% and 91.44%.

Figures 3.2, 3.3, and 3.4 show learning curves for totalwkmand unknown accuracies
for the joint pipeline model. As can be seen in Figure 3.2 higytime we reach 10% of the training
data,syromor ph is significantly better than the baseline. In fact, at 35%heftraining data, our

joint pipeline model outperforms the baseline trained waitlavailable training data.
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Figure 3.3 shows the baseline performing quite well withytew amounts of data. Since
the x-axis varies the amount of training data, the meanirfgradwn” and “unknown” evolves as
we move to the right of the graph; consequently, the left agtt sides of the graph are incompa-
rable. When the percentage of training data is very low, tmegm¢éage of unknown words is high,
and the number of known words is relatively low. On this datathe more frequent words tend to
be less ambiguous, giving the most-frequent taggers am&aya@in a small random sample. For
this reason, the baseline performs very well on known acgunath lower amounts of training
data.

Figure 3.4 clearly shows thétybrid-morfette linkers outperformhybrid-maxent; how-
ever, Figure 3.2 shows that between 25% and 40% of the dataybrid-morfette’'s advantage

on unknown words (and disadvantage on known words) allosesid-maxent to surpass it.
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3.5 Related Work

The most-closely related work to our approach is the Mafedbl for labeling inflectional mor-
phology Chrupata et al. [2008]. Chrupata et al. created a twadl labels Polish, Romanian, and
Spanish with morphological information as well as basefortnis a supervised learning approach
that requires data labeled with both morphological tagskasgforms. This approach creates two
separate models (a morphological tagger and a lemmatizérd@nbines the decoding process in
order to create a joint model that predicts both morphokidags and the baseform. Morfette uses
maximum entropy Markov models for both models and has adogssedicted labels in the fea-
ture set. Reported accuracy rates are 96.08%, 93.83%, ah@P8Ior joint accuracy on datasets
trained with fewer than 100,000 tokens for Romanian, Spaaisti Polish, respectively. The ma-
jor difference between this work and ours is the degree ophmaipgical analysis required by the
languages. Chrupata et al. neglect segmentation, a tasls muiugtive for their languages as it is
for Syriac. These languages also require only linkage tcsafbam, as no root exists.

Work by Lee et al. [2003] is the most relevant work for segragah, since they segment
Arabic, closely related to Syriac, with a data-driven apgio Lee et al. use an unsupervised
algorithm bootstrapped with manually segmented data ta k@ segmentation for Arabic without
any additional language resources. At the heart of the ithgoiis a word-level trigram language
model, which captures the correct weights for prefixes affiikes. They report an accuracy of
97%. We opted to use our own segmenter because we felt we achileve higher accuracy with
thehybrid segmenter.

Mohamed and Kibler [2010a, 2010b] report on closely related work for naipgical
tagging. They

use a data-driven approach to find the POS tags for Arabingusith word tokens and
segmented words as inputs for their system. Although tregmentation performance is high,
they report that accuracy is lower when first segmenting wwokéns. They employ TiMBL, a

memory-based learner, as their model and report an accaf&ely74%.
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Habash and Rambow [2005] currently have the most accurat®agp for Arabic mor-
phological analysis using additional language tools. Tioeys on morphological disambiguation
(tagging), but get segmentation for free in the output oftleephological analyzer. For each word,
they first run it through the morphological analyzer to regltiee number of possible outputs. They
then train a separate Support Vector Machine (SVM) for eactphological attribute (10). They
look at different ways of combining these outputs to matchoatput from the morphological
analyzer. For their best model, they report an overall tagi@cy of 97.6%.

Others have used morphological analyzers and other laegoats for morphological dis-
ambiguation coupled with segmentation. The following veoekemplify this approach: Diab et al.
[2004] use a POS tagger to jointly segment, POS tag, and chas&-phrases for Arabic with
SVMs. Kudo et al. [2004] use SVMs to morphologically tag Jegse. Smith et al. [2005] use
SVMs for segmentation, lemmatization, and POS tagging fab#, Korean, and Czech. Petkévi
[2001] used a morphological analyzer and additional simiples for morphological disambigua-
tion of Czech. Mansour et al. [2007] and Bar-haim et al. [20G&hluse hidden Markov Models
to POS tag Hebrew, with the latter including segmentatiopaasof the task.

For Syriac, a morphological analyzer is not available. Kif2000] created a Syriac mor-
phological analyzer using finite-state methods; howeVes, morphological analyzer was devel-

oped on outdated equipment and is no longer working or dlaila us.

3.6 Conclusionsand Future Work

We have shown that we can effectively model segmentatioRatje to headwords in a dictio-
nary, and morphological tagging with a joint model calgdomor ph. We have introduced novel
approaches for segmentation, dictionary linkage, and hwggical tagging. Each of these ap-
proaches has outperformed its correspondinigenhaseline. Furthermore, we have shown that
for Syriac, a data-driven approach seems to be an apprepvayt to solve these problems in an

under-resourced setting.
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We hope to use this combined model for pre-annotation in awedearning setting to aid
annotators in labeling a large Syriac corpus. This corpliscantain data spanning multiple cen-
turies and a variety of authors and genres. Future work agllire addressing issues encountered
in this corpus. In addition, there is much to do in getting &#mtire tag accuracy closer to the
accuracy of individual decisions. Feature engineeringherstem tagger and the exploration of

possible new morphological tagging techniques we leavéutare work.
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Chapter 4

Additional Results

In this chapter, we expound on results highlighted in chatnd discuss those which did
not fit in chapter 3. We will discuss clustering for stem tanggithen further examine the individual

models. Finally, we will describe statistical validation.

4.1 Clustering

One experiment not mentioned in Chapter 3 is the clusteringafphological attributes for the
stem tagger. With 12 attributes (or tags) to predict per s&sauming total independence or no
independence (monolithic) among the attributes both healibhcks. The independent approach
sometimes forms combinations that are linguistically isgble, due to poor independence as-
sumptions. The disadvantages of the monolithic approaeithat it is memory-intensive to train
(since there are over 2,500 tag types seen during trainimgyjteat it suffers from data sparsity.

To try to offset these two problems, we use hierarchical@gegrative clustering to group
the morphological attributes into clusters, allowing a ppomise between independence assump-
tions and data sparsity problems. We then train one modekici cluster, assuming independence
between clusters, but allowing for dependence within elgstAgain, we combine the outputs of
the models in a n@e way, choosing the best prediction from each model.

We examine single-link, complete-link, and average-lindr&rchical agglomerative clus-
tering techniques in which we use pairwise mutual infororatbetween the morphological at-
tributes as the distance for clustering. For each of thealing techniques, we create a dendro-

gram (see Figure 4.1 for the complete-link dendrogram). Byvdrg a horizontal cut through any
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Figure 4.1: The dendrogram for complete link hierarchiggjlamerative clustering of stem mor-
phological attributes. The indices of the nodes repregentdllowing morphological attributes
in order, from 0 to 11: verb conjugation, aspect, state, remmperson, gender, pronoun type,
demonstrative category, noun type, numeral type, paléitype, grammatical category.
part of the dendrogram, one can arrive at any number of elogge(groups of clusters) ranging
from one to the number of leaf nodes. Clusters consist of thepy of nodes that are connected in
the graph below the horizontal threshold. Notice that ae#ieemes — a horizontal line just above
the leaf nodes or through the trunk of the dendrogram — th&teting is equivalent to our inde-
pendent or monolithic approaches, respectively. Therst exany clusterings for which single-,
complete-, and average-link yielded the same clusterifiggse clusterings, are perhaps stronger,
since the same clusterings were achieved by different tgabs. We refer to these models by
the first letter of their algorithm (A, C, or S) followed by the@mber of clusters. For example,
S-4 would be single-link with four clusters and C-11 would benplete-link with eleven clusters.
Table 4.1 shows the accuracies for each clustering acaptdithese clustering algorithms.
Clustering the stem morphological attributes was not dffeain the front end. As the
table reveals, Each time independence is introduced, aking the monolithic tag into at least
two clusters, the accuracy drops. Although the unknownr@aoyus higher on some of the more

independent approaches, the increase in unknown accwauyt ienough to increase the total
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| Cluster | Total Accuracy| Known Accuracy| Unknown Accuracy|

ACS-1 89.48 92.87 57.04
ACS -2 89.41 92.83 56.60
AC-3 89.46 92.87 56.85
S-3 89.44 92.87 56.56
AC-4 88.95 92.41 55.89
S-4 88.92 92.35 56.08
AS-5 88.95 92.41 55.89
C-5 88.91 92.09 58.49
AS-6 88.91 92.09 58.49
C-6 88.73 91.96 57.82
AC-7 88.73 91.96 57.82
S-7 88.87 92.08 58.20
AC-8 88.69 91.34 57.63
S-8 88.64 91.92 57.24
AC-9 88.61 91.88 57.33
S-9 88.34 91.55 57.72
ACS - 10 88.33 91.54 57.62
ACS-11 88.53 91.60 59.17
ACS -12 88.43 91.54 58.59

Table 4.1: Results for different clusterings of the stem rhotpgical attributes
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accuracy. No clustering at all worked best; hence, thatasoeneceives primary focus in chapter

3, with the independent scenario for contrast.

4.2 Additional Sub-Model Results

Results not mentioned in chapter 3 include how well individoadels performed using predicted

values instead of truth as input. The following figures shbe &ccuracies of each sub-model
within the context of therob-morph joint model. Figures 4.2, 4.3, 4.4, 4.5, and 4.6 show legnin
curves for the sub-models for total tag accuracy on the tédesl. Figures 4.7, 4.8, 4.9, 4.10, and
4.11 show similar results, but for known tag accuracy. lné&ligures 4.12, 4.13, 4.14, 4.15, and
4.16 show learning curves for the sub-models for unknowratagiracy. It is clear that for each

sub-model, after the 10% of training data mark, pneb-mor ph models are superior to theiva

approach.

4.2.1 Total Accuracy

Figures 4.2, 4.3, 4.4, 4.5, and 4.6 show the learning curvegdch of the sub-models for to-
tal tag accuracy. Figure 4.2 shows that the linkage mdugisid-maxent andhybrid-morfette
have very little effect on thaybrid segmenter, which performs considerably better than theena
segmenter baseline. As mentioned previously, Figure 4liBates thahybrid-morfette does bet-
ter thanhybrid-maxent for lower amounts of training data (where there is a greadecgntage
of unknown words). The crossover point, whéngorid-maxent starts performing equally well,
or better, is at about 60% of the data, where the percentagaksfown words is about 12.2%.
The root accuracy learning curve (see Figure 4.4) corrabsithe relationship betwedybrid-
maxent andhybrid-morfette discussed in chapter 3, and in this case is more pronoundgtd, w
hybrid-morfette dominating the entire learning curve. Figure 4.5 shows tthebaseline simply
does not perform as well as either of the joint models, whastttis sub-model are indistinguish-

able. Figure 4.6 looks most similar to the total joint aceyraince stem tagging is the sub-model
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that performs the worst of the sub-models and pulls the smta@liracy down the most. The picture

here is clearhybrid-maxent is superior tchybrid-morfette, and both outperform the baseline.
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4.2.2 Known Accuracy

Figures 4.7, 4.8, 4.9, 4.10, and 4.11 show the learning suimeeach of the sub-models for
known tag accuracy. The learning curve for segmentatiowkraxcuracy (Figure 4.7) looks noisy,
but the scale on the y-axis is very small. It seems as thouglprtbb-morph approaches edge
out the baseline, but the difference may not be significaiguré 4.8 again shows hotwbrid-
morfette does well on unknown words, but suffers with known accurdatye root linkage does not
appear to have this problem, as both models consistenthedorm the baseline (see Figure 4.9).
Figure 4.10 shows the superiority of our approaches ovebéseline for suffix tagging, while

Figure 4.11 shows the interesting behavior explained iptee for the total accuracy of the joint

model.
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Figure 4.7: The learning curve for the known accuracy of sagation models in the joint pipeline.
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Figure 4.8: The learning curve for the known accuracy of fuaselinker in the joint pipeline.
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4.2.3 Unknown Accuracy

The final five Figures (4.12, 4.13, 4.14, 4.15, 4.16) showehening curves of unknown accuracy
for each of the sub-models. It is in these learning curves tthea greatest difference between
baseline angbrob-morph approaches can be observed. Figure 4.12 shows a very |digyedce
between the baseline approaches and the joint models;itltanjodels seem to perform equally
well for segmentation. For baseform linkage (Figure 4.18,baseline performs very well with
little data, because the unknown approach for baselinddrasdinkage is to predict the stem as
the baseform. This is a goodina approach and is true for many non-rare words. With little
training data, however, many words which are generally knbappen to be unknown, due to
the small amount of training data. Therefore, as the numbanknown words diminishes over
time (as training data increases), thisv@aapproach worsens. The same sort of effect is seen in
root linkage in Figure 4.14. These two figures also show jost much bettehybrid-morfette
performs tharmybrid-maxent. For suffix tagging, both joint pipeline approaches are Iyesgual,
and the baseline is non-existent, since all suffixes in thedata had been seen during training.
The final graph of unknown accuracy for stem tagging showsainge decay in the baseline as the

amount of training data grows larger and larger.
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Figure 4.12: The learning curve for the unknown accuracyegih®entation models in the joint
pipeline.
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Figure 4.13: The learning curve for the unknown accuracyas&liorm linker in the joint pipeline.
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Figure 4.14: The learning curve for the unknown accuracyof linker in the joint pipeline.

l T T T T T T T T T
0.8 ]
* * ¥
> 06 ., « .
% .
£ : % * ¥ * *
I : \ X
° : N .
=04 K
X
%
02 f i
L baseline —+—
hybrid / hybrid-maxent / maxent-mono
0 . . . . Ihybrid / h){brid-morffette / max:ant-mono X
0 10 20 30 40 50 60 70 80 90 100

Percentage of Training Data

Figure 4.15: The learning curve for the unknown accuracyuéibstagger in the joint pipeline
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4.3 ArcN and State N

Briefly mentioned in chapter 3 was the notion of two paramétensdn that we now refer to as
Arc N (b) and State N+{). Arc N is the parameter that represents the beam with du/ftegbi
decoding. State N represents the number of contexts to Kempeach sub-model has finished
predicting. We swept each of these values between 2 and 4@angduted the decision-level
metrics (otal-decisions, na-cover age, na-accuracy), as well as the token-level accuracies (total,
known, and unknown). Figures 4.17, 4.18, and 4.19 show thdtesfor the decision-level metrics

and Figures 4.20, 4.21, and 4.22 show the total, known, akidawn accuracy, respectively.
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Figure 4.17: The decision-level accuratgtél-decisions) for various values of Arc N and State
N.
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N.
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Figure 4.21: The known accuracy for various values of Arc N State N.
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4.4 Decision-Level Analysis

Learning curves for the decision-level accuracies are hotva in chapter 3 due to space con-
straints. In this section we present the learning curvealf@hree decision-level metrics. For each
of these metrics, there exists a learning curve for totalieary, known accuracy, and unknown ac-
curacy. These are shown in Figures 4.23, 4.24, 4.25, 4.28, 4.28, 4.29, 4.30, and 4.31. These
results are quite similar to the learning curves of the telesel accuracies; however, with respect
to decision-level metric$yybrid-maxent only slightly outperformdybrid-morfette with the full
amount of training data. The crossover point betwagdsr id-maxent andhybrid-morfetteis also
much later on the learning curve. As seen befbgdyrid-morfette is clearly better for unknown
words throughout the entire process. ptlob-morph models also outperform the baseline after
10%. This indicates that it is advantageous to piseb-morph models over the baseline when

considering the number of decisions correctly chosen.
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Figure 4.23: The learning curve for decision-level totadlaacy.
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Figure 4.24: The learning curve for decision-level knowouaacy.
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Figure 4.25: The learning curve for decision-level unkn@enuracy.
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Figure 4.26: The learning curve for decision-level totghlagable coverage.
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Figure 4.27: The learning curve for decision-level knowplaable coverage.
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Figure 4.28: The learning curve for decision-level unkn@gpplicable coverage.
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Figure 4.29: The learning curve for decision-level totghlaqable accuracy.

59



100 T T T T T T T T T
L

80 ]
>
(8]
o
3
8 60 i
<
Q
Q
I
L
a
<
c 40 ]
2
(o]
=
¥4

20 ]

baseline —+—
hybrid / hybrid-maxent / maxent-mono
| | | | Ihybrid / h)I/brid—morflette / maxlent—mono | K-
0

0 10 20 30 40 50 60 70 80 90 100
Percentage of Training Data

Figure 4.30: The learning curve for decision-level knowplagable accuracy.
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45 Statistical Validation

In order to determine if th@rob-morph models out-perform the inge approaches, we use sta-
tistical validation methods to compare the different aidpons. We compare the results of the
best-known joint pipeline modehybrid segmenterhybrid-maxent baseform and root linkers,
andmaxent-mono taggers) to the baseline pipeline model. The baselineipgetodel uses the
respective baselines in place of fwb-mor ph models, keeping the same dependencies between
sub-tasks.

For validation, we use a paired t-test, with the pair of eashe as the accuracy for each
model. For each model, we perform 10-fold cross validatgiving 10 samples for each accu-
racy level. We found that from training-data sizes of 10%o(&l®,900 word tokens) and above,
both Morfette and maxent approaches significantly outperfine naéve approach. Therefore, as
long as there are approximately 9,900 or more annotatech$okiemakes sense to use feob-
mor ph models. Until that point, the baseline approach performsedkas the morgrob-morph

approach.
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Chapter 5

Conclusions and Future Work

We have shown that a probabilistic data-driven frameworkloa used for segmentation,
dictionary linkage, and morphological tagging for Syriand that it can significantly outperform
the ndve approach. We have introduced novel approaches for segtios, dictionary linkage,
and morphological tagging. Each of these approaches hasrbatmed its corresponding base-
line. Furthermore, for Syriac, a data-driven approach seenbe an appropriate way to solve the
problem of segmentation, dictionary linkage, and morpgigial annotation in an under-resourced
setting, especially when considering the total number afewb decisions, and not solely the accu-
racy of the entire label.

The Maxwell Institute and the Oriental Institute at Oxforaitkrsity will use this com-
bined model for pre-annotation in an active learning sgttmaid annotators in labeling a large
Syriac corpus. This corpus will contain data spanning rpldtcenturies, and a variety of authors
and genres. Future work will require addressing these $ssmeaddition, there is much to do in
getting the entire tag accuracy closer to the accuracy abishaal decisions. Feature engineer-
ing, specifically the stem tagging, or introducing new maiphgical tagging techniques seem the

logical place to start, as this sub-task under performsthérs.
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