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ABSTRACT

A Probabilistic Morphological Analyzer for Syriac

Peter J. McClanahan

Department of Computer Science

Master of Science

We show that a carefully crafted probabilistic morphological analyzer significantly outper-
forms a reasonable, naı̈ve baseline for Syriac. Syriac is an under-resourced Semitic language for
which there are no available language tools such as morphological analyzers. Such tools are widely
used to contribute to the process of annotating morphologically complex languages. We introduce
and connect novel data-driven models for segmentation, dictionary linkage, and morphological
tagging in a joint pipeline to create a probabilistic morphological analyzer requiring only labeled
data. We explore the performance of this model with varying amounts of training data and find
that with about 34,500 tokens, it can outperform the baseline trained on over 99,000 tokens and
achieve an accuracy of just over 80%. When trained on all available training data, this joint model
achieves 86.47% accuracy — a 29.7% reduction in error rate over the baseline.

Keywords: Segmentation, dictionary linkage, morphological tagging, Syriac, Semitic languages,
probabilistic models, joint pipelines
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Chapter 1

Morphological Annotation

Scholars at the Neal A. Maxwell Institute for Religious Scholarship at BYU and at the

Oriental Institute at Oxford University are jointly working on a project called the Comprehensive

Syriac Corpus project, with the goal of creating a comprehensive, labeled corpus of classical Syr-

iac. Syriac is an under-resourced Semitic language of the Christian Near East and a dialect of

Aramaic. It is currently almost entirely a liturgical language but was a true spoken language up

until the eighth century. During that time period many prolific authors wrote in Syriac, and even

today there are texts still being composed in or translated into Syriac. The goal of the Comprehen-

sive Syriac Corpus project is to annotate this corpus with information to facilitate systematic study

of Syriac and its grammar. Such studies would be useful to linguists, Syriac students, and scholars

of Syriac, the Near East, and Eastern Christianity.

Labeling Syriac (and other languages) can be extremely timeconsuming. The Way Inter-

national Foundation, a Biblical research, teaching, and fellowship ministry, spent 15 years labeling

the Syriac New Testament by hand. It was labeled with grammatical information similar to that

desired for the comprehensive corpus (see Kiraz [1994]). The larger goal in which this thesis plays

a part is to aid the creators of the corpus in developing a system by which human annotators can

more efficiently label large corpora. Benefits are expected tocome through utilization of machine-

learned models that will enable annotators to correct the mistakes of the models rather than label

each word from scratch. In addition, active learning will bea key in further reducing the cost of

this endeavor. The scope of this thesis is to aid the creatorsof the corpus by developing a model

that can be used to assist human annotation. This thesis is that a probabilistic data-driven frame-
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Figure 1.1: An example of a Syriac word. This word is transliteratedLMLCCONand means “to
your king”.

work can be used for segmentation, dictionary linkage, and morphological tagging for Syriac, and

can significantly outperform a reasonable, naı̈ve baseline. In the following sections we will define

each part of this thesis statement and motivate its importance.

1.1 Syriac

Syriac is an ancient language of the Christian Near East, a Semitic language, and a dialect of

Aramaic. As a Semitic language, Syriac is closely related toArabic and Hebrew. It is written right

to left, and its alphabet consists of 22 consonants. An example word is shown in Figure 1.1. This

word means “to your (masculine plural) king” and is transliterated asLMLCCONaccording to the

transliteration developed by Kiraz [1994]. In this transliteration, all capital letters and symbols

are mapped to consonants, includingA (olaph), O (waw), and the symbol of a semi-colon (;),

representing yod. In order to simplify the preparation of this thesis, we transliterate all Syriac

according to this mapping. Syriac is an abjad, which means that the writing system does not

require vowels; in most cases vowels are omitted entirely. The data we use in this thesis does not

contain vowels.

Since there is no standardized nomenclature for the parts ofa Syriac word, we define the

following terms to aid in the definitions of segmentation, dictionary linkage, and morphological

tagging:

• word token - The contiguous characters delimited by whitespace. This is what most people

would think of as a word.

• stem - The main part of the word token. It is to this that prefixes and suffixes can be attached.

2



• prefix - The characters placed before the stem.

• suffix - The characters placed after the stem.

• baseform - The form from which the stem is derived.1

• root - The form from which the baseform is derived. This is typically the triliteral root.2

To clarify, we will continue with the example word tokenLMLCCON, which means “to

your (masculine plural) king”. For this word, the stem isMLC; the baseform isMLCA “king”;

and the root isMLC. In English, the stem is an inflected baseform, and is not necessarily a word.

For example, the stem of “producing” is “produc”. The root has no English equivalent; however,

the same rootMLC is the foundation for other Syriac words in addition to king,such as promise,

counsel, deliberate, reign, queen, kingdom, and realm.

1.2 Segmentation

Segmentation is the process of dividing a word token into itsprefixes, suffixes, and stem. For

Syriac, each word token has exactly one stem. This word tokenmay have from zero to three

prefixes, with each prefix being exactly one character in length. Since it is trivial to take a group of

prefixes and divide them into one-character elements, we treat the concatenated group of prefixes

as a single prefix. Each word token has zero or one suffix. The suffixes are more complex than the

prefixes. They may be multiple characters in length, and the set of possible suffixes is much larger

than the set of possible prefixes.

Suffixes also encode the morphological attributes of suffix gender, suffix person, suffix

number, and suffix contraction. The attribute of suffix contraction encodes whether the suffix is

normal or contracted. Morphological attributes of a word are used to describe its morphemes

(semantic meaning) and other syntactic functions. For example, the English wordunbreakablehas

1Linguistic derivation is the formation of one word form fromanother word (e.g., glorify and glory, happiness and
happy).

2Almost all words in Syriac are derived from a triliteral root, a root consisting of 3 consonants.
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three morphemes: (1)un, (2) break, and (3)able. Each of these parts would be the value of some

morphological attribute.

Segmentation, therefore, takes in a word token as input and produces, as the output, the

prefixes, stem, and suffix. For the word tokenLMLCCON, the input is the word token itself, and

segmentation produces a prefixL, a stemMLC, and a suffixCON. Another way of viewing the seg-

mentation process is the identification of the prefix-stem boundary and the stem-suffix boundary.

1.3 Dictionary Linkage

Dictionary linkage is the process of linking a stem to its associated baseform and root. Each Syriac

stem has exactly one baseform from which it is derived, and each baseform has exactly one root

from which it is derived. There may be many stems linked to each baseform, and many baseforms

may link to one root. This linkage may be thought of as two separate processes: (1) a baseform

linkage, where the stem is mapped to a baseform and (2) a root linkage, where the baseform is

mapped to the root.

The baseform linkage task takes a stem as input and produces abaseform. Root linkage

takes a baseform and produces a root. For the example wordLMLCCON, the baseform linker takes

the stemMLC and returns the baseformMLCA. The root linker takesMLCA and returns the root

MLC. As shown in this example, the transition from the stem to thebaseform or from baseform to

root often requires deleting and inserting characters, in this case, “A”.

1.4 Morphological Tagging

Morphological tagging is the process of labeling each word token with its morphological attributes.

For Syriac, scholars have defined this set of morphological attributes, consisting of 12 attributes for

each stem and 4 attributes for each suffix. A list of the morphological attributes and their possible

values is found in Table 1.3. Each prefix has exactly the same morphological information (namely,

that it is a prefix), and is therefore trivial to label. As withdictionary linkage, this problem may be

thought of as two separate tagging tasks: tagging the stem and tagging the suffix.

4



Tag Value

Grammatical Category noun
Verb Conjugation N/A

Aspect N/A
State emphatic

Number singular
Person N/A
Gender masculine

Pronoun Type N/A
Demonstrative Category N/A

Noun Type common
Numeral Type N/A
Participle Type N/A

Table 1.1: The values for the morphological tags of the stemMLC (king).

Tag Value

Suffix Gender masculine
Suffix Person second
Suffix Number plural

Suffix Contraction normal suffix

Table 1.2: The values for the morphological tags of the suffixCON(your, masculine plural).

5



Morphological Tag Values

Grammatical Category verb, participle, noun, pronoun, number, adjective, particle, ad-
verb, idiom

Verb Conjugation n/a, peal, ethpeal, pael, ethpael, aphel, ettaphal, shaphel, esh-
taphal, saphel, estaphal, p, ethp, palpel, ethpalpal

Aspect n/a, perfect, imperfect, imperative, infinitive, participle
State n/a, absolute, construct, emphatic
Number n/a, singular, plural
Person n/a, first, second, third
Gender n/a, common, masculine, feminine
Pronoun Type n/a, personal, demonstrative, interrogative
Demonstrative Categoryn/a, near, far
Noun Type n/a, proper, common
Numeral Type n/a, cardinal, ordinal, cipher
Participle Type n/a, active, passive
Suffix Contraction n/a, normal suffix, contracted suffix
Suffix Gender n/a or common, masculine, feminine
Suffix Person n/a, first, second, third
Suffix Number n/a or singular, plural

Table 1.3: Possible values for the morphological attributes of Syriac words.

The stem tagger produces all 12 morphological attributes (or tags) for the given stem. The

suffix tagger produces the 4 tags for a given suffix. For the word LMLCCON, the stem tagger takes

MLC and produces the attributes found in Table 1.1. Table 1.2 shows the results for the suffix

tagger, which takes the suffixCONas input.

The values for verb conjugation, aspect, person, pronoun type, demonstrative category,

numeral type, and particle type in Table 1.1 are “N/A.” This is because certain morphological

attributes are defined only for certain grammatical categories. Verb conjugation, for example, is

defined only for verbs. Since this particular word is a noun, the value for that attribute is “N/A”.

Table 1.4 shows the possible morphological attributes for each grammatical category.

1.5 Data-Driven Framework

We refer to the implementations that produce segmentation,dictionary linkage, and morphological

tagging as segmenters, linkers, and taggers, respectively. A data-driven framework means that the

6



Attribute Verb Participle Noun Pron. Num. Adj. Particle Adv. Idiom

Verb Conjugation X X X X X
Aspect X X X X X
State X X X X X X X X
Number X X X X X X X X X
Person X X X X X X
Gender X X X X X X X X X
Pronoun Type X
Demonstrative
Category

X

Noun Type X
Numeral Type X
Participle Type X X X X X

Table 1.4: Representation of the applicable morphological attributes for the stem tagger (X’s mean
the field applies for the given grammatical category)

segmenter, linkers, and taggers are built from data alreadyannotated with segmentation, linkage,

and tagging information. Aside from this annotated data, the framework does not require additional

language tools that most previous works use. In a machine learning framework, this means that the

implementations (segmenter, linkers, and taggers) are models that are trained from annotated data

and evaluated on test data.

1.6 The Low-Resource Scenario

Since Syriac is an under-resourced language, data is scarce. To compensate, as part of the Com-

prehensive Syriac Concordance project we are investigatingthe process of active learning for gath-

ering annotated data. Active learning is a process where a model chooses which items (sentences)

the humans should annotate. The learned model is used to select and request annotations for max-

imal benefit in its learning process. During the annotation process, automatic pre-annotation, or

the predictions from the model developed in this thesis, will be shown to the annotators in order to

expedite their annotation process. For active learning, asthe amount of annotated data increases,

the models become increasingly accurate, thus increasing the quality of the pre-annotation.

7



We explore the performance of models with varying amounts oftraining data in order

to gain a better understanding of how well the models performwith different amounts of data.

Although learning curves (line graphs of accuracy plotted against increasing amounts of training

data) are not not directly comparable with the performance of active learning, they roughly show

how these models could perform in an active learning setting.

1.7 Validation

We test the performance of the probabilistic morphologicalanalyzer (which we callprob-morph)

in a joint pipeline framework, where the models (segmenter,linkers, and taggers) are combined

to create a single joint model. This joint model is explainedin more detail in chapter 3. The

reasonable baseline model is created by inserting a baseline model for each of theprob-morph

sub-models into the same joint pipeline. By comparing these two approaches (baseline andprob-

morph), we will demonstrate that theprob-morph approach can significantly outperform the

näıve approach.

The baseline implementation of segmentation is to choose the most-frequent label: For a

given word, the baseline predicts the segmentation with which that word appeared most frequently

during training. For unknown words, it chooses the largest prefix and the largest suffix that is

possible for that word from the list of prefixes and suffixes seen during training.

A similar baseline exists for dictionary linkage. It is the same most-frequent model with

an altered unknown word approach. For unknown words, this baseline predicts a baseform equal

to that of the stem. The baseline root linker uses a most-frequent model to predict roots for those

baseforms that were seen during training. The approach for unknown words for this model predicts

the first three characters of the baseform as the root, since almost all roots contain only three

characters.

For both the suffix and stem taggers, there are two most-frequent tagger baselines.

The first, which we call the monolithic baseline, treats the morphological attributes (all seven

for the stem tagger) as a unit. For the stem tagger in our example, the monolithic tag is

8



noun#N/A#N/A#emphatic#singular#N/A#masculine#N/A#N/A#common#N/A#N/A, where # is

the attribute delimiter. The most-frequent tagger then works as expected using the monolithic

tag as a basic unit. For unknown words, the model predicts theattributes to be those from the

monolithic tag that were seen most in training.

The second baseline we call an independent baseline becauseeach morphological attribute

is assumed to be independent. A separate most-frequent tagger is trained for each attribute with

the task of predicting solely that attribute. This model is ignorant of the other morphological

attributes. The best prediction of each of these taggers (12for stem tagging) is combined naı̈vely

with no notion of what combinations may be valid or invalid.

In chapter 2, we review related work. Chapter 3 consists of a separate, stand-alone pa-

per submitted for publication at the 2010 Conference on Empirical Methods on Natural Language

Processing (EMNLP). This paper contains the heart of this thesis and presents our solution and

methodology. As this is a stand-alone publication, parts ofchapter 1 and chapter 2 will be re-

peated, as necessary. Chapter 4 contains additional and morecomprehensive results that did not fit

in chapter 3 including statistical validation. Chapter 5 offers conclusions and makes recommenda-

tions for future work.
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Chapter 2

Related Work

There is much previous work related to the different aspectsof this task, namely segmenta-

tion, dictionary linkage, and morphological tagging. We will review prior work in these areas. We

will then briefly mention previous or current projects that have had or have similar goals to those

of the larger scope of this project (outside this thesis), since we believe they will help motivate our

approach.

2.1 Segmentation

Segmentation is generally not considered a task in and of itself. It is mostly used only as a prelim-

inary approach, or as an approach coupled with other tasks, where the segmentation is only part of

the output. Stemming is a related task that is almost identical to segmentation. The difference is

that segmentation returns the segmented text, while stemming removes any prefixes and suffixes

and returns only the stem.

Lee et al. [2003] is the most relevant work for segmentation,since they segment Arabic,

a language related to Syriac, with a data-driven approach. Because of the linguistic similarities

between Arabic and Syriac, there are only subtle differences in segmenting them. Lee et al. use

manually segmented data with an unsupervised algorithm which learns the segmentation for Arabic

without any additional language resources. At the heart of the algorithm is a word-level trigram

language model, which they use to learn the correct weights for prefixes and suffixes. They report

an accuracy of 97%.
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Rogati et al. [2003] use an unsupervised learning approach tostemming. They claim their

approach is low-resource, as its only language tools are an English stemmer, a small parallel corpus

(10,000 words), and where available, simple language rules. Their approach agreed with a state-

of-the-art Arabic segmenter (their method of validation) on 87.5% of the words.

Chinese and Japanese texts are not delimited by whitespace, and segmentation lends itself

nicely to finding word boundaries for these languages. Like Semitic languages, these languages

require segmentation as an early step for further computational linguistic analysis. Peng et al.

[2004] segment Chinese text into word boundaries using a linear-chain conditional random field

(CRF). They add 24 word- and character-based lists to aid segmentation, as well as introduce a

model for dealing with unseen words. This additional language knowledge in conjunction with the

new model allows them to achieve state-of-the-art results for Chinese segmentation.

There are many other approaches that combine segmentation with other tasks

(see Bar-haim et al. [2008], Diab et al. [2004], Habash and Rambow [2005], Kudo et al. [2004],

Petkevǐc [2001], Smith et al. [2005]). These typically utilize a morphological analyzer. A mor-

phological analyzer is a linguistic tool that, given a word,produces all possible segmentations that

that word could have according to the grammar of the language. In addition, most morphological

analyzers also give corresponding baseforms and morphological information. These approaches

that utilize a morphological analyzer are different from under-resourced approaches in that they

choose among a limited number of possible segmentations given by a language tool instead of

considering all possible segmentations that were previously seen during training. If the correct

output is not enumerated by the morphological analyzer, it cannot be predicted.

Of these approaches, only Diab et al. [2004] and Habash and Rambow [2005] were applied

to a Semitic language. As of June 2010, Habash et al. currently have the state-of-the-art segmen-

tation for Arabic, achieving an accuracy of 99.7%. Lee et al.have the best approach not requiring

additional language tools, with an accuracy of 97%.
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2.2 Dictionary Linkage

Most previous work in dictionary linkage is found under the term lemmatization. Baseforms are

often called lexemes or lemmas, and in the literature all three are used interchangeably. Lemmati-

zation is therefore strictly baseform dictionary linkage.Little work has been done in classifying the

root, possibly because the notion of root is used mainly in Semitic languages, and comparatively

little work has been done in Semitic languages.

Chrupała et al. [2008] is the only previous low-resource approach for dictionary linkage.

They have developed a system called Morfette that couples morphological tagging and lemma-

tization. This system builds off of Chrupała’s [2006] data-driven lemmatization approach and

combines lemmatization and morphological analysis for Spanish, Polish, and Romanian. These

languages have distinct differences from Syriac, such as the fact that no segmentation is required,

and they are read left to right. Chrupała’s lemmatization is atwo-pass method that first finds

lemma-classes, and then assigns each lemma-class to a word the way a typical sequence labeler

would. A lemma-class is formed by looking at the minimum editdistance between the baseform

(lemma) and the word token. Since Spanish, Polish, and Romanian do not require segmentation,

their lemmatization task maps from word token to baseform instead of stem (word token stripped

of prefixes and suffix) to baseform, as baseform linkage does in Syriac. The transformation from

word token to lemma is then used as the class the model tries topredict. For example,pedir is

the baseform of the Spanish wordpidieron. Instead of a model predictingpedir given pidieron,

it would predict the lemma class, which is the transformation from pidieron to pedir. Chrupała

has encoded that transformation for this example as{(D, i, 2), (I, e, 3), (D, e, 5), (D, o, 7), (D,

n, 8)} where (D, i, 2) means deletei at position 2, and (I, e, 3) means inserte at position 3. All

transformations are encoded using insertions and deletions and are created by first reversing both

baseform and word.

Since Chrupała et al. did not have text labeled with baseforms, they used the minimum

edit distance technique to acquire the baseforms. They thenused a maximum entropy classifier
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to predict these labels. Their lemmatization accuracies range from 93.0% – 98.5% depending on

language and dataset.

Al-Shammari and Lin [2008] produced the first Arabic lemmatizer in a resource-rich set-

ting by using language rules in a series of eight steps: (1) simple noun identification, (2) suffix and

prefix removal, (3) noun dictionary generation, (4) verb identification, (5) verb dictionary gener-

ation, (6) finding all noun tokens, (7) stop word removal, and(8) root extraction for verbs. They

evaluate by comparing the quality of clustering using wordsstemmed with a previously existing

Arabic stemmer with the quality of clustering using words lemmatized by their method. Since a

goal of lemmatization is to get the baseform of the word, and not just the stem, the hope is that

lemmatization does a better job of finding the underlying base than stemming. Their hope was that

this, in turn, would produce purer clusters and a higher cluster quality. They report a cluster quality

of 70.8% using lemmatized documents and a cluster quality of58% using stemmed documents.

Unfortunately, no mention of lemmatization accuracy is presented.

Daya et al. [2008] use the notion of roots and patterns in their framework to find roots for

Semitic texts. In this framework, words are created by combining a pattern and a root, or inserting

the root letters into a pattern. Since roots generally have three consonants, a pattern will often

have three spaces where the consonants of the root fit. The downside to this approach is that it

works only for words conforming to the patterns available. While their approach does not utilize

a morphological analyzer, it does require a list of roots, lists of common prefixes and suffixes, and

“knowledge of word-formation processes, and behavior of the weak roots in certain paradigms,”

placing it in the resource-rich category. On their best models, they achieve an F-score (another

measure of accuracy) ranging between 86.92% and 91.64%.

2.3 Morphological Disambiguation

Almost all morphological disambiguation approaches require the use of a morphological analyzer,

making them resource-rich approaches. Habash and Rambow [2005] even claim that Arabic mor-

phological disambiguation “cannot be done successfully using methods for English.” In addition,
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Wintner [2004] noted that morphological analyzers were “possible — indeed, necessary” to further

morphological disambiguation of Hebrew. Where morphological analyzers are available, the ben-

efits are large. In addition to providing linguistically possible morphological information for each

word, morphological analyzers also give segmentation and baseform information. Unfortunately,

these tools are time consuming to build and require advancedlinguistic knowledge of the language.

For Syriac, a morphological analyzer is not available. Kiraz [2000] created a Syriac morphological

analyzer; however, this morphological analyzer was developed on outdated equipment and is no

longer working or available to us.

Hajič and Hladḱa [1998] were among the first to do morphological disambiguation. They

worked with Czech and treated the problem as a sequence-labeling problem, given the many simi-

larities between morphological tagging and part-of-speech (POS) tagging. With the aid of a mor-

phological analyzer to reduce the number of possible outputclasses for a given word, they intro-

duced the notion of ambiguity classes. An ambiguity class isa set of possible ambiguous classes

a classifier needs to resolve. For example, the wordjen has three possible morphological tag-

gings, or set of tags:TT-----------, NNIS1-----A--, andNNIS4-----A--. Here, each

character represents a value for a morphological attribute(for Czech there are 13 morphological

attributes) determined by the position in the string. The dash means that attribute is not applicable.

For this word, there are six ambiguity classes (NT, NT, -I, -S, -14, -A). Ambiguity classes are

determined by the possible unique values for each morphological attribute. For example, the first

ambiguity class (NT) is determined by the number of unique values for the first morphological at-

tribute in the three morphological taggings shown above. The second ambiguity class is the same

as the first for this word. The third has unique values- andI, creating the third ambiguity class

of (-I). Where there is no ambiguity (e.g., the sixth morphologicalattribute), an ambiguity class

is not created. Hajič and Hladḱa constructed a separate classifier for each ambiguity classthat

needed to be learned, for a total of 378 models. They combinedthe output of these models in a

way that uses only valid combinations and achieves an accuracy of 92.0% compared to the baseline

of 77.8%.
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Habash and Rambow [2005] currently have the best-known results for morphological dis-

ambiguation on Arabic. Instead of using ambiguity classes,Habash and Rambow took a sim-

pler approach — to use a separate classifier for each morphological attribute. The difficulty is in

combining the outputs from the classifiers to make the best possible joint tag. With the aid of a

morphological tagger, they showed different methods for combination that most closely matched

a possible tagging given by the morphological analyzer. This approach proved quite successful, as

they achieved an overall tag accuracy of 97.6%.

Hlaváčová [2001] looks at solving the problem of unknown words (specifically those for

which a morphological analyzer does not provide any results) for Czech. He improved the number

of words to which the morphological analyzer could offer analyses by 60% – 70% depending on

the corpus.

Feldman and Hana [2010] provide an overview of current resource-poor NLP-related work.

They also show work on Russian, Czech, and Romance languages. They approach morphological

tagging with a morphological analyzer of Czech to tag Russian,to approach the problem from a

cross-language point of view. To further augment the system, they provide a list of cognates and

alter the Czech training data to look more like Russian. With these improvements, they report

accuracies of up to 80%.

Others (Bar-haim et al. [2008], Kudo et al. [2004], Mansour etal. [2007], Petkevǐc [2001],

and Smith et al. [2005]) have used similar approaches that also utilize morphological analyzers to

reduce the number of output classes. These approaches are done on a variety of languages, with

differing techniques, but still, all use morphological analyzers.

There is little previous work regarding morphological disambiguation in an under-

resourced setting. To our knowledge, only Chrupała et al. [2008] and K̈ubler [2010a, 2010b] do

not use a morphological analyzer or any other language resources. Chrupała et al. used maximum

entropy classifiers to predict baseforms and morphologicalattributes. Depending on the language

and dataset, their morphological disambiguation accuracies range from 84.9% – 98.8%, with Span-
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ish and Romanian both achieving accuracies over 95%. Polish accuracies are not as strong, since

Polish is a Slavic language with more morphological complexity than Spanish or Romanian.

Mohamed and K̈ubler report on closely related work for morphological tagging. They

use a data-driven approach to find the POS tags for Arabic, using both word tokens and segmented

words as inputs for their system. Although their segmentation performance is high, they report that

accuracy is low when first segmenting word tokens. They use TiMBL, a memory-based learner, as

their model and report an accuracy of 94.74%.

2.4 Similar Projects

As mentioned above, this thesis is a small part of a larger project being undertaken by the Neal

A. Maxwell Institute in which they will gather texts and annotate them via active learning. Many

other organizations are interested in developing labeled corpora, and they use varied amounts of

computational assistance in their tasks.

The Perseus Project began in 1998 and has continued since then gathering and annotating

Greek and Latin texts. The project uses machine learning to asmall degree, but does not use it for

annotation prediction. It utilizes machine learning models for data and text mining. The Thesaurus

Linguae Graecae (TLG) is a similar project, with the aim of creating a digital Greek library. The

TLG, begun in 1972, created a Greek morphological analyzer to do its annotation.

The Maxwell Institute previously created a Dead Sea ScrollsElectronic Corpus, but this

project also did not leverage machine learning. Their annotations were collected by scholars over

a number of years. Turgama is yet another project that uses manual annotations. This project

focuses on Syriac texts and does use computers to aid annotation (in the form of linguistic rules),

but it uses additional Syriac data, such as a lexicon and descriptions of morphology. Also, the

scope of Turgama is rather limited compared to that of the comprehensive Syriac concordance

project.

The Comprehensive Syriac Corpus project plans to use active learning and pre-annotation

to aid human annotation. For this cause, we are interested inexploring the performance of models

16



with varying amounts of training data. Additionally, the project hopes to utilize computational

linguistic methods as much as possible.
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Chapter 3

A Probabilistic Morphological Analyzer for Syriac

Paper Submitted to EMNLP 2010

3.1 Abstract

We define a probabilistic morphological analyzer using a data-driven approach for Syriac in order

to facilitate the creation of an annotated corpus. Syriac isan under-resourced Semitic language

for which there are no available language tools such as morphological analyzers. We introduce

and connect novel probabilistic models for segmentation, dictionary linkage, and morphological

tagging in a pipeline to create a probabilistic morphological analyzer requiring only labeled data.

We explore the performance of models with varying amounts oftraining data and find that with

about 34,500 labeled tokens, we can outperform a reasonablebaseline trained on over 99,000

tokens and achieve an accuracy of just over 80%. When trained on all available training data, our

joint model achieves 86.47% accuracy — a 29.7% reduction in error rate over the baseline.

3.1.1 Syriac Background

Our objective is to facilitate the annotation of a large corpus of classical Syriac (referred to simply

as Syriac throughout the remainder of this work). Syriac is an under-resourced Semitic language

of the Christian Near East and a dialect of Aramaic. It is currently almost entirely a liturgical

language but was a true spoken language up until the eighth century, during which time many

prolific authors wrote in Syriac. Even today there are texts still being composed in or translated

into Syriac. By annotating these texts with useful information, we will facilitate systematic study

by scholars of Syriac, the Near East, and Eastern Christianity.
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Our desired annotations include morphological segmentation, links to dictionary entries,

and morphological attributes. Typically, annotations of this kind are made with the assistance of

language tools, such as morphological analyzers, segmenters, or part-of-speech (POS) taggers.

Such tools do not exist for Syriac, but some labeled data doesexist. Kiraz [1994] compiled an

annotated version of the Peshitta New Testament British and Society [1920] and a concordance

thereof. We aim to replicate this on a much larger scale with more modern tools, building up

from the labeled New Testament data, our only resource. As such, our learning and annotation

framework requires only labeled data. Additionally, the approach described in this paper may be

useful for the analysis of other morphologically rich languages.

We approach the problem of Syriac morphological annotationby creating five probabilistic

sub-models that can be trained in a supervised fashion and combined in a joint model of mor-

phological annotation. We introduce novel algorithms for segmentation, dictionary linkage, and

morphological tagging. We then combine these sub-models into a jointn-best pipeline. This joint

model outperforms a strong, though naı̈ve, baseline for all amounts of training data over about

9,900 word tokens. Since Syriac is an abjad, its writing system does not require vowels. As a

dialect of Aramaic, it is written right-to-left and has a templatic morphology, based on a system of

triliteral roots, with prefixes, suffixes, infixes, and enclitic particles.

For the purposes of this work, all Syriac is transliterated according to the Kiraz [1994]

transliteration1 and is written left-to-right whenever transliterated; theSyriac appearing in the Serto

script in this paper is shown right-to-left.

Since there is no standardized nomenclature for the parts ofa Syriac word, we define the

following terms to aid in the definitions of segmentation, dictionary linkage, and morphological

tagging:

• word token - contiguous characters delimited by whitespace

• stem - the main part of a word token to which prefixes and suffixes can be attached

1According to this transliteration all capital letters includingA (olaph) andO (waw) are consonants. Additionally,
the semi-colon (;), representing yod, is also a consonant.
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• baseform - the form from which the stem is derived; also knownas a lexeme or lemma

• root - the form from which the baseform is derived

To clarify, we will use an example word tokenLMLCCON, which means “to your (mas-

culine plural) king”. For this word, the stem isMLC; the baseform isMLCA “king”; and the root

is MLC. The stem is an inflected baseform and does not necessarily form a word on its own. In

Syriac, the same rootMLC is the foundation for other words such as promise, counsel, deliberate,

reign, queen, kingdom, and realm.

3.1.2 Sub-tasks

Segmentation, or tokenization as it is sometimes called (e.g., Habash and Rambow [2007]), is the

process of dividing a word into its prefixes, a stem, and suffixes. For Syriac, each word token

consists of exactly one stem, from zero to three prefixes, andzero or one suffix. Each prefix is

exactly one character in length. While segmenting Syriac, wecan treat all prefixes as a single unit.

Suffixes may be multiple characters in length and encode the morphological attributes of suffix

gender, suffix person, suffix number, and suffix contraction.The attribute of suffix contraction

encodes whether the suffix is normal or contracted. For the example wordLMLCCON, the prefix

is L “to”, the stem isMLC “king”, and the suffix isCON“(masculine plural) your”.

Dictionary linkage is the process of linking a stem to its associated baseform and root. In

most Syriac dictionaries, all headwords are either baseforms or roots, and for a given word these are

the only relevant entries in the dictionary. Each Syriac stem has exactly one baseform from which

it is derived, and each baseform has exactly one root from which it is derived. As such, linkage

may be thought of as two separate processes: (1) baseform linkage, where the stem is mapped

to a baseform; and (2) root linkage, where the baseform is mapped to a root. For our example

LMLCCON, baseform linkage would map stemMLC to baseformMLCA, and root linkage would

map baseformMLCA to rootMLC.

Morphological tagging is the process of labeling each word token with its morphological

attributes. Morphological tagging may be thought of as two separate tagging tasks: (1) tagging the
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Attribute Value

Grammatical Category noun
Verb Conjugation N/A

Aspect N/A
State emphatic

Number singular
Person N/A
Gender masculine

Pronoun Type N/A
Demonstrative Category N/A

Noun Type common
Numeral Type N/A
Participle Type N/A

Table 3.1: The values for the morphological attributes of the stemMLC, “king”.

Attribute Value

Gender masculine
Person second
Number plural

Contraction normal suffix

Table 3.2: The values for the morphological attributes of the suffix CON, “(masculine plural)
your”.
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stem and (2) tagging the suffix. For Syriac, scholars have defined for this task a set of morpholog-

ical attributes consisting of 12 attributes for the stem and4 attributes for the suffix. The attributes

for the stem are as follows: grammatical category, verb conjugation, aspect, state, number, person,

gender, pronoun type, demonstrative category, noun type, numeral type, and participle type. The 4

morphological attributes for the suffix are suffix contraction, suffix person, suffix gender, and suffix

number. These morphological attributes were heavily influenced by those used by Kiraz [1994],

but were streamlined in order to focus directly on grammatical function. During morphological

tagging, each stem is labeled with a value (i.e., “tag” or “label”) for each of the 12 stem attributes,

and the suffix is labeled with a value for each of the 4 suffix attributes. For a given grammatical

category, or POS, only a subset of the morphological attributes is applicable. For those morpho-

logical attributes (both of the stem and of the suffix) that donot apply, the correct label is “N/A”

(not applicable). Tables 3.1 and 3.2 show the correct stem and suffix tags for the wordLMLCCON.

The remainder of the paper will proceed as follows: Section 3outlines our approach. In

Section 4, we describe our experimental setup; we present results in Section 5. Section 6 con-

tains previous work relevant to our approach. Finally, in Section 7 we briefly conclude and offer

directions for future work.

3.2 The Syromorph Approach

Since we have no language tools, but we do have labeled data, we focus on automatically annotat-

ing Syriac text in a data-driven fashion. We desire the sub-models to influence each other, since

segmentation, linkage, and morphological tagging are not mutually independent tasks. To accom-

modate these requirements, we use a joint pipeline model Finkel et al. [2006]. In this section, we

will first discuss this joint pipeline model, which we callsyromorph. We then examine each of

the individual sub-models.
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3.2.1 Joint Pipeline Model

Our approach is to create a joint pipeline model consisting of a segmenter, a baseform linker,

a root linker, a suffix tagger, and a stem tagger. Figure 3.1 shows the dependencies among the

sub-models in the pipeline for a single word. Each sub-model(oval) has access to the data and

predictions (rectangles) indicated by the arrows. For example, for a given word, the stem tagger

has access to the previously predicted stem, baseform, root, and suffix tag. The baseform linker

has access to the segmentation — specifically the stem.

Figure 3.1: Thesyromorph model. Each rectangle is an input or output and each oval is a process
employing a sub-model.
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The training ofsyromorph is straightforward. Each of the individual sub-models is trained

separately on the true labeled data. Features are extractedfrom the local context in the sentence.

The local context consists first of predictions for the entire sentence from upstream sub-models.

The upstream sub-models of a given sub-model are those sub-models upon which the given sub-

model depends. We created the dependencies shown in Figure 3.1 taking into account the difficulty

of the tasks and natural dependencies in the language. In addition to the predictions for the entire

sentence from previous sub-tasks, the local context also includes the previouso tags of the current

sub-task, as the standard ordero Markov model does. When the stem tagger is being trained, for

example, the local context consists of the predicted segmentation, predicted baseforms, predicted

roots, and predicted suffix tags for each word in the sentence. In addition, the local context for

stem tagging contains the words of the sentence and the stem labels for the previouso stems. Since

features are extracted from the local context: for stem tagging, for example, we extract features

such as current stem, previous stem, current baseform, previous baseform, current root, previous

root, current suffix tags, and previous suffix tags. “Previous” in this case refers to labels on the

immediately preceding word token.

3.2.2 Segmentation

The syromorph segmentation model is a hybrid word- and consonant-level model adapted from

a model used for data-driven diacritization Haertel et al. [2010]. Like Haertel et al., we employ

maximum entropy Markov models for each of our probabilisticsequence models. Their models

distinguish between words that are rare and words that are not rare, and they showed that the

distribution over labels is different for known words and unknown words. In this work, we consider

only unknown words to be rare and words seen during training to be non-rare. For each of the non-

rare word types, a separate model is trained with the purposeof choosing the best segmentation

given that word. This approach is closely related to the ideaof ambiguity classes mentioned in

Hajič and Hladḱa [1998].
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For those words that are considered rare, since there is no word type–specific model, we

back off to a consonant-level model. Our consonant-level segmentation model uses the notion of

BI (Beginning and Inside) tags, which have proved successful in named-entity recognition. Since

there are three labels in which we are interested (prefix, stem, and suffix), we apply the beginning

and inside notion to each of them to create six tags: BEGINNING-PREFIX, INSIDE-PREFIX,

BEGINNING-STEM, INSIDE-STEM, BEGINNING-SUFFIX, and INSIDE-SUFFIX. We train a

maximum entropy Markov model to predict one of these six tagsfor each consonant. Furthermore,

we constrain the model to allow only legal possible transitions given the current prediction, so

that prefixes must come before stems and stems before suffixes. We then transform the guessed

consonant-level hypotheses to a word-level tag. In order tocapture the unknown word distributions,

we train the consonant-level model on words occurring only once during training.

We call this word- and consonant-level segmentation modelhybrid. As far as we are aware,

this is a novel approach to segmentation.

3.2.3 Dictionary Linkage

For dictionary linkage, we divide the problem into two separate tasks: baseform linkage and root

linkage. For each of these tasks, we explore two different hybrid models. These hybrid models are

similar tohybrid for segmentation, in that they use a similar type of model fornon-rare (known)

words, namely a collection of separate models for each word type (either a stem or baseform,

depending on the linker). The approach for non-rare words isthe same for both hybrid models.

For rare (unknown) words, there are two separate approachesto linkage. The first rare

approach is based on the work of Chrupała [2006] including theMorfette system. Instead of

predicting a baseform given a stem, we predict what Chrupała calls a lemma-class. A lemma-class

is the transformation formed by the minimum edit distance between the baseform (which he calls

a lemma) and the stem. The transformation is a series of tuples, where each tuple includes (1)

whether it was an insertion or deletion, (2) the letter inserted or deleted, and (3) the position of

the insertion or deletion in the string. For example, the transformation ofXE;N to XEAwould be
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{(D, ;, 2), (I, A, 2), (D,N, 3)}. This transformation means delete; andN from positions 2 and 3,

respectively, and insertA into position 2. Applying this transformation toXE;N results inXEA.

We transform all baseforms into their corresponding lemma-classes in baseform linkage,

and we do the same for the roots in root linkage. The predictedtransformation is then applied to the

stem or baseform in order to construct the actual prediction(baseform or root, respectively). The

advantage here is that common transformations are grouped into a single class, thereby allowing

the model to adequately predict baseforms and roots that have not been seen during training, but

whose transformations have been seen. We call this hybrid modelhybrid-morfette. This model is

trained on all words in order to capture as many transformations as possible.

The second approach for rare (unknown) words uses a maximum entropy Markov model

trained on all words seen in training. One disadvantage of this model is that it predicts only

baseforms and roots that were seen in training data. This approach is just like the unknown-

word approach used by Toutanova and Manning [2000] for POS tagging. This approach is called

hybrid-maxent.

3.2.4 Morphological Tagging

For morphological tagging, we break the task into two separate tasks: tagging the suffix and tag-

ging the stem. Since there are a number of values that need to be predicted, we define two ways

to approach the problem. We call the first approach the monolithic approach, where the label is

the concatenation of all the morphological attribute values. In Table 3.3, the stem tag and suffix

tag columns contain the monolithic tags for stem tagging andsuffix tagging. We use a maximum

entropy Markov model to predict a monolithic tag for each stem or suffix and call this model

maxent-mono.

The second approach is to assume that morphological attributes are independent of each

other. We call this the independent approach. Here, each tagis predicted by a tagger for a single

morphological attribute. For example, the gender model is ignorant of the other 11 sub-tags during

stem tagging. Using its local context (which does not include other stem sub-tags), the model
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predicts the best gender for a given word. The top predictionof each of these taggers (12, for stem

tagging) is then combined naı̈vely with no notion of what combinations may be valid or invalid.

We use maximum entropy Markov models for each of the single-attribute taggers. This model is

calledmaxent-ind.

3.2.5 Decoding

Whereas Viterbi decoding produces the most probable sequence of labels given a sequence of

unlabeled words, our per-task decoders are beam decoders, with beam-size equal tob. In particular,

we limit the number of per-stage back-pointers tob due to the large size of the tagset for many of

our sub-models.

Decoding insyromorph consists of extending the per-task decoders to allow transitions

from each sub-model to the next sub-model in the pipe. For example, in our pipeline, the first

sub-model is segmentation. We predict the topn segmentations for the sentence (i.e., sequences

of segmentations), wheren is the number of transitions to maintain between each sub-task. Then,

we run the remaining sub-tasks with each of then sequences as a possible context. After each

sub-task is completed, we narrow the number of possible contexts back ton. We sweptb andn for

various values, and foundb = 5 andn = 5 to be good values that balanced between accuracy and

time; larger values saw only minute gains in accuracy.

3.3 Experimental Setup

We are using the Syriac Peshitta New Testament in the form compiled by Kiraz [1994]. The

Way International, a Biblical research ministry, annotatedthis version of the New Testament by

hand and required 15 years to do so. This data is segmented, annotated with baseform and root,

and labeled with morphological attributes. Kiraz and others in the Syriac community refined and

corrected the original annotation while preparing a digital and print concordance of the New Tes-

tament. We augmented Kiraz’s version of the data by segmenting suffixes and by streamlining the

tagset.
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Transliteration Pre. Stem Suffix Baseform Root Suff. Tags Stem Tags

OEBDT O EBDT EBD EBD 0000 011012200000
ANON ANON HO HO 0000 300023222000
LALHN L ALH N ALHA ALH 1011 200310200200
MLCOTA MLCOTA MLCOTA MLC 0000 200310300200
OCHNA O CHNA CHNA CHN 0000 200320200200
OMLCA O MLCA MLCA MLC 0000 200320200200

Table 3.3: A labeled Syriac sentenceOEBDT ANON LALHN MLCOTA OCHNA OMLCA, “And
you have made them a kingdom and kings and priests for our God.” (Revelation 5:10)

Table 3.3 shows part of a tagged Syriac sentence using this tagset. The suffix and stem tag

values are indices representing morphological attributes. In the example sentence the suffix tag

1011 represents the values “masculine”, “N/A”, “plural”, “normal suffix” for the attributes suffix

gender, suffix person, suffix number, and suffix contraction.Each value of0 for each stem and

suffix attribute represents a value of “N/A”, except for thatof grammatical category, which always

must have a value other than “N/A”. Therefore, the suffix tag0000 means there is no suffix.

For the stem tags, the attribute order is the same as that shown in Table 3.1 from top to bot-

tom. The following describes the interpretation of the stemvalues represented in Table 3.3. Gram-

matical category values0, 2, and3 represent “verb”, “noun”, and “pronoun”, respectively. The

verb conjugation value1 represents “peal conjugation”. Aspect value1 represents “perfect”. State

value3 represents “emphatic”. Number values1 and2 represent “singular” and “plural”. Person

values2 and3 represent “second” and “third” person. Gender values2 and3 represent “mascu-

line” and “feminine”. Pronoun type value2 represents “demonstrative”. Demonstrative category

value2 represents “far”. Finally, noun type2 represents “common”. The last two columns of0

represent “N/A” for numeral type and particle type.

This dataset consists of 109,640 word tokens. Since we are focusing on under-resourced

circumstances, we sweep our results for varying amounts of data to better understand how our

models perform in such circumstances. For each point on a learning curve, we take a percentage

of the data as training, and test on a fixed development test set.
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We implement five sub-tasks: segmentation, baseform linkage, root linkage, suffix tagging,

and stem tagging. We compare each sub-task to a naı̈ve approach as a baseline. In addition to

desiring good sub-models, we also want a joint pipeline model that significantly outperforms the

näıve joint approach, which is formed by using each of the following baselines in the pipeline

framework.

The baseline implementation of segmentation is to choose the most-frequent label: for a

given word, the baseline predicts the segmentation with which that word appeared most frequently

during training. For unknown words, it chooses the largest prefix and largest suffix that is possible

for that word from the list of prefixes and suffixes seen duringtraining.

For dictionary linkage, the baseline is similar: both baseform linkage and root linkage use

the most-frequent label approach. Given a stem, the baseline baseform linker predicts the baseform

with which the stem was seen most frequently during training; likewise, the baseline root linker

predicts the root from the baseform in a similar manner. For the unknown stem case, the baseline

baseform linker predicts the baseform to be identical to thestem. For the unknown baseform case,

the baseline root linker predicts a root identical to the first three consonants of the baseform, since

for Syriac the root is exactly three consonants in a large majority of the cases.

The baselines for stem and suffix tagging are the most-frequent label approaches. These

baselines are similar tomaxent-mono andmaxent-ind, using the monolithic and independent ap-

proaches used bymaxent-mono andmaxent-ind. The difference is that instead of using maximum

entropy, the näıve most-frequent approach is used in its place.

The joint baseline tagger uses each of the component baselines in then-best joint pipeline

framework. Because this framework is modular, we can trivially swap in and out different models

for each of the sub-tasks.

3.4 Experimental Results

We evaluate our method by calculating the average accuracy of ten-fold cross validation. The

reported task accuracy requires the entire output for that task to be correct in order to be counted
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as correct. For example, during stem tagging, if one of the sub-tags is incorrect, then the entire tag

is said to be incorrect. Furthermore, forsyromorph, the outputs of every sub-task must be correct

in order for the word token to be counted as correct.

Moving beyond token-level metrics, in order to understand performance of the system at

the level of individual decisions (including N/A decisions), we compute decision-level accuracy:

we call this metrictotal-decisions. For thesyromorph method reported here, there are a total

of 20 decisions: 2 for segmentation (prefix and suffix boundaries), 1 for baseform linkage, 1 for

root linkage, 4 for suffix tagging, and 12 for stem tagging. This accuracy helps us to assess the

number of decisions a human annotator would need to correct,if data were pre-annotated by a

given model. Excluding N/A decisions, we compute per-decision coverage and accuracy. These

metrics are calledapplicable-coverage andapplicable-accuracy.

We show results on both the individual sub-tasks and the entire joint task. Since previ-

ous sub-tasks can adversely affect tasks further down in thepipeline, we evaluate the sub-models

by placing them in the pipeline with other (simulated) sub-models that correctly predict every

instance. For example, when testing a root linker, we place the root linker to be evaluated in

the pipeline with a segmenter, baseform linker, and taggersthat return the correct label for every

prediction. This gives an upper-bound for the individual model, removes the possibility of error

propagation, and shows how well that model performs withoutthe effects of the other models in

the pipeline.

For our results, unknown accuracy is the accuracy of unknowninstances, specific to the

task, at training time. In the case of baseform linkage, for example, a stem is considered unknown

if that stem was not seen during training. It is therefore possible to have a known word with an

unknown stem and vice versa.

3.4.1 Baseline Results

Each of the baselines performs surprisingly well. Table 3.4is grouped by sub-task and reports the

results of each of the baseline sub-tasks in the first row of each group. The accuracies of most of
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Model Total Known Unk

S
E

G baseline 96.75 99.64 69.11
hybrid 98.87 99.70 90.83

B
F

baseline 95.64 98.45 22.28
hybrid-morfette 96.19 98.05 78.4
hybrid-maxent 96.19 99.15 67.86

R
T

baseline 98.84 99.56 80.20
hybrid-morfette 99.05 99.44 88.86
hybrid-maxent 98.34 99.45 69.30

S
U

F

monolithic baseline 98.75 98.75 N/A
independent baseline96.74 98.78 0.01
maxent-mono 98.90 98.90 N/A
maxent-ind 98.90 98.90 N/A

S
T

E
M

monolithic baseline 83.08 86.26 0.01
independent baseline53.24 86.90 0.00
maxent-mono 89.48 92.87 57.04
maxent-ind 88.43 90.26 40.59

Table 3.4: Results of the individual sub-models used in our approach.

the tasks are so high because the ambiguity of the labels given the instance is quite low. Ambiguity

rates for segmentation, baseform and root linkage, and stemand suffix tagging are 1.01, 1.05,

1.02, 1.47, and 1.35, respectively. Preliminary experiments indicated that if we had not separated

these tasks, the tagging accuracy would have been lower. Theunknown tagging accuracy for the

monolithic suffix tagger is not applicable, because there were no suffixes that were not seen during

training. This makes sense, considering that the baseline segmenter chooses only suffixes that were

seen during training.

3.4.2 Individual Models

Table 3.4 also shows the results for the individual models. In the table, SEG, BFL, RTL, SUF-

FIX, and STEM represent segmentation, baseform linkage, root linkage, suffix tagging, and stem

tagging, respectively. Even though the baselines were high, each individual model outperformed

its respective baseline, with the exception of the root linker. Two of the most interesting results

are the known accuracy of the baseform linkershybrid-maxent andhybrid-morfette. As hybrid
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Model Total Known Unk

Baseline 80.76 85.74 28.07
Morfette Monolithic 85.96 89.85 44.86
Maxent Monolithic 86.47 90.77 40.93

Table 3.5: Word-level accuracies for various jointsyromorph models.

models, the difference between them lies only in the treatment of unknown words; however, the

known accuracy of the morfette model drops fairly significantly. This is due to the unknown words

altering the weights for features in which those words occur. For instance, if the previous word

is unknown and a word that was never seen was predicted, then the weights for all features that

contain that unknown word will be quite different than if that previous word were a known word.

It is also worth noting that the stem tagger is by far the worstmodel in this group of models,

but it is also the most difficult task. The largest gains in improving the entire system would come

from focusing attention on that task.

3.4.3 Joint Model

Table 3.5 shows the accuracies for the joint models. The joint model incorporating “maxent”

variants performs best overall and on known cases. The jointmodel incorporating the “morfette”

variants performs best on unknown cases.

Decision-level metrics for thehybrid / hybrid-maxent / maxent-mono model are as fol-

lows: for total-decisions, the model achieves an accuracy of 97.08%, compared to 95.50% ac-

curacy for the baseline, yielding a 35.11% reduction in error rate; forapplicable-coverage and

applicable-accuracy this model achieved 93.45% and 93.81%, respectively, compared to the base-

line’s 90.03% and 91.44%.

Figures 3.2, 3.3, and 3.4 show learning curves for total, known, and unknown accuracies

for the joint pipeline model. As can be seen in Figure 3.2, by the time we reach 10% of the training

data,syromorph is significantly better than the baseline. In fact, at 35% of the training data, our

joint pipeline model outperforms the baseline trained withall available training data.
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Figure 3.2: Learning curve for the total accuracy of the joint model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

K
no

w
n 

A
cc

ur
ac

y

Percentage of Training Data

baseline
hybrid / hybrid-maxent / maxent-mono

hybrid / hybrid-morfette / maxent-mono

Figure 3.3: Learning curve for the known accuracy of the joint model.
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Figure 3.4: Learning curve for the unknown accuracy of the joint model.

Figure 3.3 shows the baseline performing quite well with very low amounts of data. Since

the x-axis varies the amount of training data, the meaning of“known” and “unknown” evolves as

we move to the right of the graph; consequently, the left and right sides of the graph are incompa-

rable. When the percentage of training data is very low, the percentage of unknown words is high,

and the number of known words is relatively low. On this dataset, the more frequent words tend to

be less ambiguous, giving the most-frequent taggers an advantage in a small random sample. For

this reason, the baseline performs very well on known accuracy with lower amounts of training

data.

Figure 3.4 clearly shows thathybrid-morfette linkers outperformhybrid-maxent; how-

ever, Figure 3.2 shows that between 25% and 40% of the data, the hybrid-morfette’s advantage

on unknown words (and disadvantage on known words) allowshybrid-maxent to surpass it.
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3.5 Related Work

The most-closely related work to our approach is the Morfette tool for labeling inflectional mor-

phology Chrupała et al. [2008]. Chrupała et al. created a tool that labels Polish, Romanian, and

Spanish with morphological information as well as baseforms. It is a supervised learning approach

that requires data labeled with both morphological tags andbaseforms. This approach creates two

separate models (a morphological tagger and a lemmatizer) and combines the decoding process in

order to create a joint model that predicts both morphological tags and the baseform. Morfette uses

maximum entropy Markov models for both models and has accessto predicted labels in the fea-

ture set. Reported accuracy rates are 96.08%, 93.83%, and 81.19% for joint accuracy on datasets

trained with fewer than 100,000 tokens for Romanian, Spanish, and Polish, respectively. The ma-

jor difference between this work and ours is the degree of morphological analysis required by the

languages. Chrupała et al. neglect segmentation, a task not as intuitive for their languages as it is

for Syriac. These languages also require only linkage to a baseform, as no root exists.

Work by Lee et al. [2003] is the most relevant work for segmentation, since they segment

Arabic, closely related to Syriac, with a data-driven approach. Lee et al. use an unsupervised

algorithm bootstrapped with manually segmented data to learn the segmentation for Arabic without

any additional language resources. At the heart of the algorithm is a word-level trigram language

model, which captures the correct weights for prefixes and suffixes. They report an accuracy of

97%. We opted to use our own segmenter because we felt we couldachieve higher accuracy with

thehybrid segmenter.

Mohamed and K̈ubler [2010a, 2010b] report on closely related work for morphological

tagging. They

use a data-driven approach to find the POS tags for Arabic, using both word tokens and

segmented words as inputs for their system. Although their segmentation performance is high,

they report that accuracy is lower when first segmenting wordtokens. They employ TiMBL, a

memory-based learner, as their model and report an accuracyof 94.74%.
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Habash and Rambow [2005] currently have the most accurate approach for Arabic mor-

phological analysis using additional language tools. Theyfocus on morphological disambiguation

(tagging), but get segmentation for free in the output of themorphological analyzer. For each word,

they first run it through the morphological analyzer to reduce the number of possible outputs. They

then train a separate Support Vector Machine (SVM) for each morphological attribute (10). They

look at different ways of combining these outputs to match anoutput from the morphological

analyzer. For their best model, they report an overall tag accuracy of 97.6%.

Others have used morphological analyzers and other language tools for morphological dis-

ambiguation coupled with segmentation. The following works exemplify this approach: Diab et al.

[2004] use a POS tagger to jointly segment, POS tag, and chunkbase-phrases for Arabic with

SVMs. Kudo et al. [2004] use SVMs to morphologically tag Japanese. Smith et al. [2005] use

SVMs for segmentation, lemmatization, and POS tagging for Arabic, Korean, and Czech. Petkevič

[2001] used a morphological analyzer and additional simplerules for morphological disambigua-

tion of Czech. Mansour et al. [2007] and Bar-haim et al. [2008] both use hidden Markov Models

to POS tag Hebrew, with the latter including segmentation aspart of the task.

For Syriac, a morphological analyzer is not available. Kiraz [2000] created a Syriac mor-

phological analyzer using finite-state methods; however, this morphological analyzer was devel-

oped on outdated equipment and is no longer working or available to us.

3.6 Conclusions and Future Work

We have shown that we can effectively model segmentation, linkage to headwords in a dictio-

nary, and morphological tagging with a joint model calledsyromorph. We have introduced novel

approaches for segmentation, dictionary linkage, and morphological tagging. Each of these ap-

proaches has outperformed its corresponding naı̈ve baseline. Furthermore, we have shown that

for Syriac, a data-driven approach seems to be an appropriate way to solve these problems in an

under-resourced setting.
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We hope to use this combined model for pre-annotation in an active learning setting to aid

annotators in labeling a large Syriac corpus. This corpus will contain data spanning multiple cen-

turies and a variety of authors and genres. Future work will require addressing issues encountered

in this corpus. In addition, there is much to do in getting theentire tag accuracy closer to the

accuracy of individual decisions. Feature engineering forthe stem tagger and the exploration of

possible new morphological tagging techniques we leave forfuture work.
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Chapter 4

Additional Results

In this chapter, we expound on results highlighted in chapter 3 and discuss those which did

not fit in chapter 3. We will discuss clustering for stem tagging, then further examine the individual

models. Finally, we will describe statistical validation.

4.1 Clustering

One experiment not mentioned in Chapter 3 is the clustering ofmorphological attributes for the

stem tagger. With 12 attributes (or tags) to predict per stem, assuming total independence or no

independence (monolithic) among the attributes both have drawbacks. The independent approach

sometimes forms combinations that are linguistically impossible, due to poor independence as-

sumptions. The disadvantages of the monolithic approach are that it is memory-intensive to train

(since there are over 2,500 tag types seen during training) and that it suffers from data sparsity.

To try to offset these two problems, we use hierarchical agglomerative clustering to group

the morphological attributes into clusters, allowing a compromise between independence assump-

tions and data sparsity problems. We then train one model foreach cluster, assuming independence

between clusters, but allowing for dependence within clusters. Again, we combine the outputs of

the models in a naı̈ve way, choosing the best prediction from each model.

We examine single-link, complete-link, and average-link hierarchical agglomerative clus-

tering techniques in which we use pairwise mutual information between the morphological at-

tributes as the distance for clustering. For each of the clustering techniques, we create a dendro-

gram (see Figure 4.1 for the complete-link dendrogram). By drawing a horizontal cut through any
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Figure 4.1: The dendrogram for complete link hierarchical agglomerative clustering of stem mor-
phological attributes. The indices of the nodes represent the following morphological attributes
in order, from 0 to 11: verb conjugation, aspect, state, number, person, gender, pronoun type,
demonstrative category, noun type, numeral type, participle type, grammatical category.

part of the dendrogram, one can arrive at any number of clusterings (groups of clusters) ranging

from one to the number of leaf nodes. Clusters consist of the groups of nodes that are connected in

the graph below the horizontal threshold. Notice that at theextremes — a horizontal line just above

the leaf nodes or through the trunk of the dendrogram — the clustering is equivalent to our inde-

pendent or monolithic approaches, respectively. There exist many clusterings for which single-,

complete-, and average-link yielded the same clusterings.These clusterings, are perhaps stronger,

since the same clusterings were achieved by different techniques. We refer to these models by

the first letter of their algorithm (A, C, or S) followed by the number of clusters. For example,

S-4 would be single-link with four clusters and C-11 would be complete-link with eleven clusters.

Table 4.1 shows the accuracies for each clustering according to these clustering algorithms.

Clustering the stem morphological attributes was not effective on the front end. As the

table reveals, Each time independence is introduced, by breaking the monolithic tag into at least

two clusters, the accuracy drops. Although the unknown accuracy is higher on some of the more

independent approaches, the increase in unknown accuracy is not enough to increase the total
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Cluster Total Accuracy Known Accuracy Unknown Accuracy

ACS - 1 89.48 92.87 57.04
ACS - 2 89.41 92.83 56.60
AC - 3 89.46 92.87 56.85
S - 3 89.44 92.87 56.56
AC - 4 88.95 92.41 55.89
S - 4 88.92 92.35 56.08
AS - 5 88.95 92.41 55.89
C - 5 88.91 92.09 58.49
AS - 6 88.91 92.09 58.49
C - 6 88.73 91.96 57.82
AC - 7 88.73 91.96 57.82
S - 7 88.87 92.08 58.20
AC - 8 88.69 91.34 57.63
S - 8 88.64 91.92 57.24
AC - 9 88.61 91.88 57.33
S - 9 88.34 91.55 57.72
ACS - 10 88.33 91.54 57.62
ACS - 11 88.53 91.60 59.17
ACS - 12 88.43 91.54 58.59

Table 4.1: Results for different clusterings of the stem morphological attributes
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accuracy. No clustering at all worked best; hence, that scenario receives primary focus in chapter

3, with the independent scenario for contrast.

4.2 Additional Sub-Model Results

Results not mentioned in chapter 3 include how well individual models performed using predicted

values instead of truth as input. The following figures show the accuracies of each sub-model

within the context of theprob-morph joint model. Figures 4.2, 4.3, 4.4, 4.5, and 4.6 show learning

curves for the sub-models for total tag accuracy on the tokenlevel. Figures 4.7, 4.8, 4.9, 4.10, and

4.11 show similar results, but for known tag accuracy. Finally, Figures 4.12, 4.13, 4.14, 4.15, and

4.16 show learning curves for the sub-models for unknown tagaccuracy. It is clear that for each

sub-model, after the 10% of training data mark, theprob-morph models are superior to the naı̈ve

approach.

4.2.1 Total Accuracy

Figures 4.2, 4.3, 4.4, 4.5, and 4.6 show the learning curves for each of the sub-models for to-

tal tag accuracy. Figure 4.2 shows that the linkage modelshybrid-maxent andhybrid-morfette

have very little effect on thehybrid segmenter, which performs considerably better than the naı̈ve

segmenter baseline. As mentioned previously, Figure 4.3 indicates thathybrid-morfette does bet-

ter thanhybrid-maxent for lower amounts of training data (where there is a greater percentage

of unknown words). The crossover point, wherehybrid-maxent starts performing equally well,

or better, is at about 60% of the data, where the percentage ofunknown words is about 12.2%.

The root accuracy learning curve (see Figure 4.4) corroborates the relationship betweenhybrid-

maxent andhybrid-morfette discussed in chapter 3, and in this case is more pronounced, with

hybrid-morfette dominating the entire learning curve. Figure 4.5 shows thatthe baseline simply

does not perform as well as either of the joint models, which for this sub-model are indistinguish-

able. Figure 4.6 looks most similar to the total joint accuracy, since stem tagging is the sub-model
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that performs the worst of the sub-models and pulls the totalaccuracy down the most. The picture

here is clear:hybrid-maxent is superior tohybrid-morfette, and both outperform the baseline.
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Figure 4.2: The learning curve for the total accuracy of segmentation models in the joint pipeline.
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Figure 4.3: The learning curve for the total accuracy of baseform linker in the joint pipeline.
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Figure 4.4: The learning curve for the total accuracy of rootlinker in the joint pipeline.
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Figure 4.5: The learning curve for the total accuracy of suffix tagger in the joint pipeline
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Figure 4.6: The learning curve for the total accuracy of stemtagger in the joint pipeline.
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4.2.2 Known Accuracy

Figures 4.7, 4.8, 4.9, 4.10, and 4.11 show the learning curves for each of the sub-models for

known tag accuracy. The learning curve for segmentation known accuracy (Figure 4.7) looks noisy,

but the scale on the y-axis is very small. It seems as though the prob-morph approaches edge

out the baseline, but the difference may not be significant. Figure 4.8 again shows howhybrid-

morfette does well on unknown words, but suffers with known accuracy.The root linkage does not

appear to have this problem, as both models consistently outperform the baseline (see Figure 4.9).

Figure 4.10 shows the superiority of our approaches over thebaseline for suffix tagging, while

Figure 4.11 shows the interesting behavior explained in chapter 3 for the total accuracy of the joint

model.
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Figure 4.7: The learning curve for the known accuracy of segmentation models in the joint pipeline.
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Figure 4.8: The learning curve for the known accuracy of baseform linker in the joint pipeline.
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Figure 4.9: The learning curve for the known accuracy of rootlinker in the joint pipeline.
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Figure 4.10: The learning curve for the known accuracy of suffix tagger in the joint pipeline
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Figure 4.11: The learning curve for the known accuracy of stem tagger in the joint pipeline.
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4.2.3 Unknown Accuracy

The final five Figures (4.12, 4.13, 4.14, 4.15, 4.16) show the learning curves of unknown accuracy

for each of the sub-models. It is in these learning curves that the greatest difference between

baseline andprob-morph approaches can be observed. Figure 4.12 shows a very large difference

between the baseline approaches and the joint models; the joint models seem to perform equally

well for segmentation. For baseform linkage (Figure 4.13),the baseline performs very well with

little data, because the unknown approach for baseline baseform linkage is to predict the stem as

the baseform. This is a good naı̈ve approach and is true for many non-rare words. With little

training data, however, many words which are generally known happen to be unknown, due to

the small amount of training data. Therefore, as the number of unknown words diminishes over

time (as training data increases), this naı̈ve approach worsens. The same sort of effect is seen in

root linkage in Figure 4.14. These two figures also show just how much betterhybrid-morfette

performs thanhybrid-maxent. For suffix tagging, both joint pipeline approaches are nearly equal,

and the baseline is non-existent, since all suffixes in the test data had been seen during training.

The final graph of unknown accuracy for stem tagging shows thesame decay in the baseline as the

amount of training data grows larger and larger.
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Figure 4.12: The learning curve for the unknown accuracy of segmentation models in the joint
pipeline.
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Figure 4.13: The learning curve for the unknown accuracy of baseform linker in the joint pipeline.
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Figure 4.14: The learning curve for the unknown accuracy of root linker in the joint pipeline.
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Figure 4.15: The learning curve for the unknown accuracy of suffix tagger in the joint pipeline
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Figure 4.16: The learning curve for the unknown accuracy of stem tagger in the joint pipeline.
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4.3 Arc N and State N

Briefly mentioned in chapter 3 was the notion of two parametersb andn that we now refer to as

Arc N (b) and State N (n). Arc N is the parameter that represents the beam with duringViterbi

decoding. State N represents the number of contexts to keep after each sub-model has finished

predicting. We swept each of these values between 2 and 40 andcomputed the decision-level

metrics (total-decisions, na-coverage, na-accuracy), as well as the token-level accuracies (total,

known, and unknown). Figures 4.17, 4.18, and 4.19 show the results for the decision-level metrics

and Figures 4.20, 4.21, and 4.22 show the total, known, and unknown accuracy, respectively.
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Figure 4.17: The decision-level accuracy (total-decisions) for various values of Arc N and State
N.

52



State N

5 10 15 20 25 30 35 40

Arc N

2468101214161820

A
p
p
lica

b
le

 C
o
v
e
ra

g
e

93.40

93.45

93.50

93.55

Figure 4.18: The decision-level coverage (na-coverage) for various values of Arc N and State N.
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Figure 4.19: The decision-level N/A accuracy (na-accuracy) for various values of Arc N and State
N.
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Figure 4.20: The total accuracy for various values of Arc N and State N.
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Figure 4.21: The known accuracy for various values of Arc N and State N.
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Figure 4.22: The unknown accuracy for various values of Arc Nand State N.
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4.4 Decision-Level Analysis

Learning curves for the decision-level accuracies are not shown in chapter 3 due to space con-

straints. In this section we present the learning curves forall three decision-level metrics. For each

of these metrics, there exists a learning curve for total accuracy, known accuracy, and unknown ac-

curacy. These are shown in Figures 4.23, 4.24, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, and 4.31. These

results are quite similar to the learning curves of the token-level accuracies; however, with respect

to decision-level metrics,hybrid-maxent only slightly outperformshybrid-morfette with the full

amount of training data. The crossover point betweenhybrid-maxent andhybrid-morfette is also

much later on the learning curve. As seen before,hybrid-morfette is clearly better for unknown

words throughout the entire process. Allprob-morph models also outperform the baseline after

10%. This indicates that it is advantageous to useprob-morph models over the baseline when

considering the number of decisions correctly chosen.
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Figure 4.23: The learning curve for decision-level total accuracy.
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Figure 4.24: The learning curve for decision-level known accuracy.
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Figure 4.25: The learning curve for decision-level unknownaccuracy.
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Figure 4.26: The learning curve for decision-level total applicable coverage.
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Figure 4.27: The learning curve for decision-level known applicable coverage.
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Figure 4.28: The learning curve for decision-level unknownapplicable coverage.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

T
ot

al
 A

pp
lic

ab
le

 A
cc

ur
ac

y

Percentage of Training Data

baseline
hybrid / hybrid-maxent / maxent-mono

hybrid / hybrid-morfette / maxent-mono

Figure 4.29: The learning curve for decision-level total applicable accuracy.
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Figure 4.30: The learning curve for decision-level known applicable accuracy.
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Figure 4.31: The learning curve for decision-level unknownapplicable accuracy.
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4.5 Statistical Validation

In order to determine if theprob-morph models out-perform the naı̈ve approaches, we use sta-

tistical validation methods to compare the different algorithms. We compare the results of the

best-known joint pipeline model (hybrid segmenter,hybrid-maxent baseform and root linkers,

andmaxent-mono taggers) to the baseline pipeline model. The baseline pipeline model uses the

respective baselines in place of theprob-morph models, keeping the same dependencies between

sub-tasks.

For validation, we use a paired t-test, with the pair of each sample as the accuracy for each

model. For each model, we perform 10-fold cross validation,giving 10 samples for each accu-

racy level. We found that from training-data sizes of 10% (about 9,900 word tokens) and above,

both Morfette and maxent approaches significantly outperform the näıve approach. Therefore, as

long as there are approximately 9,900 or more annotated tokens, it makes sense to use theprob-

morph models. Until that point, the baseline approach performs aswell as the moreprob-morph

approach.
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Chapter 5

Conclusions and Future Work

We have shown that a probabilistic data-driven framework can be used for segmentation,

dictionary linkage, and morphological tagging for Syriac,and that it can significantly outperform

the näıve approach. We have introduced novel approaches for segmentation, dictionary linkage,

and morphological tagging. Each of these approaches has outperformed its corresponding base-

line. Furthermore, for Syriac, a data-driven approach seems to be an appropriate way to solve the

problem of segmentation, dictionary linkage, and morphological annotation in an under-resourced

setting, especially when considering the total number of correct decisions, and not solely the accu-

racy of the entire label.

The Maxwell Institute and the Oriental Institute at Oxford University will use this com-

bined model for pre-annotation in an active learning setting to aid annotators in labeling a large

Syriac corpus. This corpus will contain data spanning multiple centuries, and a variety of authors

and genres. Future work will require addressing these issues. In addition, there is much to do in

getting the entire tag accuracy closer to the accuracy of individual decisions. Feature engineer-

ing, specifically the stem tagging, or introducing new morphological tagging techniques seem the

logical place to start, as this sub-task under performs all others.
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