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A B S T R A C T

Conventional research methods for understanding sources of individual differences in word-problem solving
(WPS) only permit estimation of average relations between component processes and outcomes. The purpose of
the present study was instead to examine whether and if so how the component processes engaged in WPS differ
along the spectrum of WPS performance. Second graders (N=1130) from 126 classrooms in 17 schools were
assessed on component processes (reasoning, in-class attentive behavior, working memory, language compre-
hension, calculation fluency, word reading) and WPS. Multilevel, unconditional quantile multiple regression
indicated that 3 component processes, calculation fluency, language comprehension, and working memory, are
engaged in WPS differentially depending on students’ overall word-problem skill. The role of calculation fluency
and language comprehension was stronger with more competent word-problem solving ability. By contrast, the
role of working memory was stronger with intermediate-level than for strong problem solving. Results deepen
insight into the role of these processes in WPS and provide the basis for hypothesizing how instructional stra-
tegies may be differentiated depending on students’ overall level of WPS competence.

1. Introduction

Word-problem solving (WPS), which represents a major emphasis in
almost every strand of the mathematics curriculum, is also the best
school-age predictor of employment and wages in adulthood (Bynner,
1997; Every Child a Chance Trust, 2009). Yet, WPs are a stumbling
block for many students, and WPS presenting challenges even when
calculation skill is adequate (Fuchs et al., 2008; Swanson, Jerman, &
Zheng, 2008). Specific WP difficulty may occur because the cognitive
processes involved in WPs differ from and are more numerous than
those underlying calculation skill (e.g., Fuchs, Zumeta, et al., 2010;
Fuchs et al., 2006, 2008). Thus, WP difficulty may be determined by
multiple factors and may be difficult to prevent or improve once stu-
dents have fallen behind peers.

For these reasons, it is important to understand the foundational
academic and cognitive processes underlying individual differences in
performance. In this paper, we refer to these processes as component
processes. Such understanding may help guide effective methods to
screen students for early intervention and shed light on potentially
productive methods for teaching WPs and reducing performance gaps

that have been established.
Toward this end, a growing body of research has identified com-

ponent processes that foster WPS (e.g., Anderson, 2007; Bernardo,
1999; Fuchs et al., 2006, 2010a, 2010b, 2016; Lee, Ng, Ng, & Lim,
2004; Peng, Namkung, Barnes, & Sun, in press; Raghubar, Barnes, &
Hecht, 2010; Swanson, 2016; Swanson & Beebe-Frankenberger, 2004;
Van der Schoot, Bakker Arkema, Horsley, & Van Lieshout, 2009). Yet,
conventional analyses used to understand sources of individual differ-
ences in WPS outcomes (e.g., standard multiple regression, structural
equation modeling) only permit estimation of average relations be-
tween component processes and outcomes (Petscher & Logan, 2014).
And as demonstrated by Purpura and Logan (2015) when they focused
on approximate number system outcomes, conventional regression
methods may fail to capture nuances in the component processes that
depend on the sophistication of students’ WPS performance. Although
some studies investigate nonlinear relations using statistical interac-
tions within conventional regression analysis, as Bonny and Lourenco
(2013) did when investigating approximate number system outcomes,
we identified none focused on WPS outcomes. Moreover, conventional
regression methods for exploring the nature of interactions involve
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forming subgroups of students, whose data are fit to a slope that best
conforms to individuals in that subgroup, to derive mean relations for
that subgroup.

In the present study, we extended this literature on the foundational
academic and cognitive processes underlying individual differences in
WP performance with quantile regression analysis, which allows testing
this question without forming subgroups and without constraining the
functional form of relations between variables. Even without dividing
the sample into decile subgroups, quantile analysis results may provide
the basis for formulating hypotheses on instructional differentiation
strategies that map more authentically to the small-group or center-
stationed instruction schools provide on the basis of low-, inter-
mediate-, and high-level performance on the relevant domain.

Our research question was, How do the processes engaged in WPS
differ along the spectrum of the WP outcome? Our focus included six
component processes: four foundational cognitive processes (in-class
attentive behavior, working memory, reasoning, language comprehen-
sion) and two foundational academic skills (calculation fluency, word
reading). We focused on second grade, after the first-grade burst of WPS
skill has produced a broad range of individual differences (Fuchs et al.,
2013).

We begin this introduction by the WPS model described by Kintsch
and colleagues’ (Cummins, Kintsch, Reusser, & Weimer, 1988; Kintsch
& Greeno, 1985; Nathan, Kintsch, & Young, 1992). This provides the
theoretical framework and frames the component processes targeted for
the present investigation. After describing the text processing that oc-
curs during WPS in ways that make engagement of foundational cog-
nitive processes and foundational academic skills transparent, we
document that each of these processes has been established via con-
ventional analyses as a source of individual WPS differences. We then
explain how the present study extends the literature.

2. Word-problem solving model

To target the component processes for investigation, we relied on
Kintsch et al.’s model of WPS (e.g., Cummins et al., 1988; Kintsch &
Greeno, 1985; Nathan et al., 1992), which suggests WPS is a complex
undertaking. The model first assumes that general features of the text
comprehension process apply across stories, essays, and WP statements,
but that the comprehension strategies, the nature of the required
knowledge structures, and the form of resulting macrostructures and
situation and problem models differ by text type.

Based on theories of text comprehension and discourse processing
(e.g., van Dijk & Kintsch, 1983), the model further posits that WP re-
presentations have three components. The first involves constructing a
coherent microstructure and deriving a hierarchical macrostructure to
capture the text’s essential ideas. Second, the situation model supple-
ments the text using inferences based on the problem solver’s world
knowledge, which includes relationships between quantities.

The problem solver uses this information to identify the third
component, the problem model or schema, in which the structural re-
lations among the quantities are formalized. This schema drives the
problem solver’s solution strategies. At second grade, three schemas are
most common: combine WPs (two or more parts are combined to create
a total), compare WPs (two quantities are compared), and change WPs
(an event changes a starting amount to create a new ending amount).
Missing information may occur in any slot of the number sentence re-
presenting the schema (e.g., in the example of the combine schema
below, the total or one of the parts may be the unknown quantity).

The Kintsch model specified that building the propositional text
structure, inferencing, schema induction, and applying solution strate-
gies makes strong demands on short-term memory and language com-
prehension. In subsequent work (e.g., Fuchs, Fuchs, Seethaler, &
Barnes, 2019), short-term memory has been reframed as working
memory, because WPS requires not only briefly storing information but
also sequentially updating that information in memory as the problem

solver processes segments of the WP statement. This reframing is
grounded in studies showing that working memory is engaged in WPS
(Anderson, 2007; Lee et al., 2004; Peng et al., in press; Raghubar et al.,
2010; Swanson & Beebe-Frankenberger, 2004; Swanson et al., 2008;
Swanson & Sachse-Lee, 2001; Swanson, 2016; Swanson, Moran, Lussier,
& Fung, 2014).

Additionally, in light of related correlational research demon-
strating the role of in-class attentive behavior and reasoning in WPS
(Fuchs et al., 2006, 2010a, 2010b; Swanson & Beebe-Frankenberger,
2004), the model has been expanded to include these cognitive pro-
cesses. In-class attentive behavior reflects students’ capacity to engage
throughout the problem-solving process. Via careful attending and ac-
cess to information stored in working memory, students engage in
reasoning to integrate newly encountered information with information
stored in working memory to logically induce relations between objects
and actions described in the WP narrative and distinguish between
relevant and irrelevant information.

We clarify the role of in-class attentive behavior, working memory,
and reasoning ability by explaining the problem-solving process in
which a competent problem solver might solve the following combine
problem (Part 1 plus Part 2 equals Total or P1+ P2=T): Joe has 3
baseballs. Tom has 2 footballs and 2 baseballs. How many baseballs do the
boys have in all? The problem solver processes the first sentence’s pro-
positional text base to identify that the object is baseballs, the quantity
is 3, the actor is Joe, but Joe’s role is to be determined. This information
is held in working memory. In the second sentence, propositions are
similarly coded and placed in working memory, but the word footballs
fails to match the object code in the prior sentence, signaling the
number 2 footballs as perhaps irrelevant; this is added to working
memory. In the last sentence (the problem’s question), the quantitative
proposition how many baseballs and the phrase in all cues the problem
solver to identify the combine schema as the problem type that links the
information saved within working memory; assign the role of superset
(Total) to the question; assign subset roles (Parts 1 and Part 2) to the to-
be-determined quantities in working memory; and reject 2 footballs.

Filling in these slots of the schema in this way triggers the specifi-
cation of a number sentence with a missing quantity (i.e., 3+ 2= ___);
then the problem solver calculates the solution. With typical school
instruction, children gradually induce the combine schema as a “pro-
blem type” on their own (this is rarely explicitly taught), just as they
devise their own strategies for managing the attentional, working
memory, and reasoning demands posed by this problem-solving se-
quence.

The fourth cognitive resource involved in WPS is language com-
prehension. According to Kintsch and Greeno (l985), children enter
school understanding important vocabulary and language construc-
tions; with arithmetic and WP instruction, they learn to treat these
words in a math-specific way (e.g., more becomes the more complicated
construction more than involving sets) via mathematics instruction,
which includes classroom discussions designed to sustain inquiry-based
discussion and argumentation (Yackel & Cobb, 1996). In a computa-
tional simulation, Cummins et al. (1988) determined that WP re-
presentation depended heavily on language comprehension and that
altering wording in minor ways dramatically affected solution accu-
racy.

To illustrate how WPS depends on and taxes language comprehen-
sion, consider this problem: Joe has 3 cows. Tom has 2 barns and 3 goats.
How many animals do the farmers have in all? Compared to the first
combine problem, which presented similar demands for inducing the
schema, the vocabulary and constructions involving this scenario’s
objects increase demands on language comprehension for assigning
roles in the propositional text structure. Increased language compre-
hension demands arise from more sophisticated representations of vo-
cabulary involving taxonomic relations at superordinate levels and
subtle distinctions among categories (cows and goats are animals; barns
are not animals).
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This model of WPS thus identifies in-class attentive behavior,
working memory, reasoning, and language comprehension as key
cognitive processes engaged in WPS. Additionally, computational skill
is transparently required to succeed with the problem-solving task, and
word-reading skill should facilitate access to the text (even when pro-
blems are read aloud while presented to students, as done in the present
study). We targeted these six component processes in the present in-
vestigation.

3. Prior research and how the present study extends that
literature

Prior research, which has focused exclusively on the estimation of
average relations between component processes and WP outcomes,
provides evidence for a unique role for in-class attentive behavior (e.g.,
Fuchs et al., 2006, 2010), working memory (e.g., Geary & Widaman,
1991; Swanson & Beebe-Frankenberger, 2004; Swanson et al., 2008;
Swanson & Sachse-Lee, 2001), reasoning (e.g., Fuchs et al., 2012), and
language comprehension (e.g., Fuchs et al., 2006, 2010; Swanson,
2006). The contribution of calculation and word-reading skill has also
been established (e.g., Fuchs et al., 2006, 2007; Swanson, 2006).

What extends the present study beyond earlier work is that instead
of using conventional multiple regression analysis, we employed
quantile multiple regression to examine the engagement of each com-
ponent process as a function of WPS ability, while controlling for the
effects of the other five component processes. Quantile regression is
well suited for answering questions about differential effects along the
distribution of an outcome skill, when the interest is subgroups of
learners. Purpura and Logan (2015), who assessed the effects of the
approximate number system and mathematical language on preschool
mathematics knowledge, contrasted the use of conventional regression
against quantile regression. They illustrated that the mean effects re-
vealed via conventional regression analysis failed to detect the more
nuanced pattern of effects detected with quantile regression.

In the present study, the interest was deepening insight on the
component processes engaged at varying levels of WPS sophistication.
The hope is that findings provide direction for hypothesizing and then
testing potential strategies for differentiating instruction for low-level
problem solvers versus intermediate-level problem solvers versus high-
level problem solvers. This parallels schools’ reliance on special edu-
cation or small-group Tier 2 intervention within responsiveness-to-in-
tervention (RTI) or a multi-tier system of supports (MTSS) to meet the
needs of students with identified or at risk for mathematics learning
disabilities. In many schools, RTI or MTSS intervention occurs during a
school-wide block, where students are grouped by low-, intermediate-,
and high-level levels of academic performance to differentiate among
the needs of these groups (Fuchs & Fuchs, 2016).

Quantile regression answers questions about differential effects
along the distribution of an outcome skill in subgroups of learners in a
way that maximizes information in the analytic sample (Koenker &
Bassett, 1978). Rather than categorizing students into ability subgroups
and then comparing those groups, it compares students at different
points along the distribution using all available data to make the esti-
mation. Quantiles are the cut-points dividing the range of observations
into equal, continuous intervals; in this study 10 quantiles (or deciles).
Data points closer to the quantile of interest are weighted more than
data points farther away. The quantile regression parameter estimates
the change in a specified quantile on the outcome variables (in this
study, WPS) by a one unit change in each predictor variable (in this
study, each component process). This allows comparing quantiles
(percentiles) on WPS may be more or less affected by each predictor
variable. (For additional information on quantile analysis, see Koenker,
2015.)

It is important to note that in the present study, to avoid results that
fail to generalize across quantiles, as is the case with conditional
quantile regression, we relied on unconditional quantile regression

models. In conditional quantile regression, effects are difficult to in-
terpret when they vary between conditional quantiles because the
weights or coefficients do not “aggregate” to the population quantile
values. Unconditional quantile regression instead permits regression
logic in terms of quantiles. Our analyses also accounted for the nested
structure of the database to control for the effects of schools, teachers,
and classrooms.

4. Method

4.1. Participants

Data collection for the original intervention study (Fuchs et al.,
2014) was approved by the university’s Institutional Review Board.
Teachers and parents provided written consent; students provided
verbal assent. Consent rates were 100% for teachers, 78% for parents,
and 98% for students. In the original study, we selected participants
from 1917 children with parent or guardian consent and child assent in
127 second-grade classrooms taught by 96 teachers in 18 schools in a
metropolitan school district across four cohorts (one per year for
4 years; some teachers participated in more than one cohort, with some
teachers having more than one classroom in the study, hence the dis-
crepancy between number of classrooms and teachers).

Selection of the sample occurred in three steps. First, we conducted
whole-class screening with these 1917 children on WP and calculation
measures. The WP measure was the outcome measure used in the
present study’s quantile analysis (see Measures). The calculation mea-
sure was one subtest (Sums to 12) of the calculation fluency component
process used in the present study (see Measures); in this sample,
Cronbach’s alpha (α) for this one subtest was 0.85–0.93. Addressing
both domains in the context of the present analysis to identify the
sample is helpful because it promotes generalizability to students who
are identified for mathematics intervention in schools, which have a
heavy focus on calculations in their screening for math intervention.

In the second screening step, we randomly sampled from these
strata to achieve a sample that oversampled at-risk students but re-
presented the entire distribution, as called for in the original study
design. Third, we excluded children scoring below the 9th percentile on
both of two intelligence subtests of the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999); this was to ensure students had
the requisite abilities to participate in a meaningful way. Note that
some children completed none or only a small portion of pretesting
because they moved early in the school year or became unavailable due
to school scheduling changes.

The present analysis hence incorporated children who had complete
data on the variables of interest, which were collected at the start of
second grade, with 1130 children from 126 classrooms (95 teachers) in
17 schools. (Because data were collected before intervention began,
intervention condition is not relevant in this report.) The sample was
51% female; 14% non-native English speaking; 84% receiving sub-
sidized school lunch; and 42% African-American, 24% white Hispanic,
27% white non-Hispanic, 3% Kurdish, and 4% other. Students were
8.72 years on average in the second month of second grade, with a
mean IQ of 93.60 (SD=13.22) as measured on the WASI (Wechsler,
1999); a mean reading standard score of 100.14 (SD=15.79) on the
Wide Range Achievement Test (WRAT; Wilkinson, 1993); and a mean
WRAT-Arithmetic standard score of 93.88 (SD=12.79). Average
standard scores on other norm-referenced tests employed in this ana-
lysis were each within 1 SD of the norming sample’s mean.

4.2. Measures

All reliability estimates refer to α unless otherwise noted.

4.2.1. Descriptive measures
WASI (Wechsler, 1999) was used to index general cognitive ability
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(split-half reliability= 0.92). It includes the Vocabulary and Matrix
Reasoning subtests. The Wide Range Achievement Test (WRAT-3;
Wilkinson, 1993) was used to index mathematics performance. It re-
quires children to write answers to calculation problems of increasing
difficulty. In this sample, α was 0.93.

4.2.2. Quantile analysis outcome
Following Jordan and Hanich (2000), Word Problems comprises 14

brief word problems involving change, combine, compare, and equalize
relationships and requiring single-digit addition or subtraction for so-
lution (i.e., sums of 7, 8, or 9 or subtrahends of 6, 7, 8, or 9; there are no
addends or minuends of zero or one; answers to the subtraction pro-
blems are from 2 to 6). The tester reads each item aloud; students have
30 sec to respond and can ask for re-reading(s) as needed. The score is
the number of correct answers. In this sample, α was 0.89.

4.2.3. Quantile analysis component processes.
In-class attentive behavior was indexed using the SWAN, an 18-item

teacher rating scale (Swanson et al., 2012) sampling items from the
Diagnostic and Statistical Manual of Mental Disorders-IV (APA, l994)
criteria for Attention-Deficit/Hyperactivity Disorder for inattention
(items 1–9) and hyperactivity/impulsivity (items 10–18). Validity is
supported in the literature (Arnett et al., 2013; Lakes, Swanson, &
Riggs, 2012; Swanson et al., 2012). Teachers rated each item as 1=Far
Below, 2=Below, 3= Slightly Below; 4=Average, 5= Slightly
Above, 6=Above, 7= Far Above. We report data for the in-class at-
tentive behavior subscale as the average rating across the nine items
that index the ability to maintain focus of attention. This score corre-
lates well with other dimensional assessments of behavior related to
attention (Swanson et al.). In this sample, α was 0.99.

To index calculation fluency, we administered two subtests of
single-digit addition and two subtests of single-digit subtraction from
the Calculations Battery (Fuchs, Hamlett, & Powell, 2003): Sums to 12,
Sums to 18, Minuends to 12, and Minuends to 18. For each, students have
1min to complete 25 problems. We combined the subtests to create one
score. On a sub-sample of 79 students, test-retest reliability was 0.91.

To measure language comprehension, we used the Listening
Comprehension subtest of the Woodcock Diagnostic Reading Battery
(Woodcock, 1997), which measures the ability to understand sentences
or passages. With 38 items, students supply the word missing at the end
of sentences or passages that progress from simple verbal analogies and
associations to discerning implications. Split-half reliability is 0.80 at
ages 5–18.

For reasoning, we relied on the Wechsler Abbreviated Scale of
Intelligence – Matrix Reasoning (Wechsler, 1999), which includes items
of pattern completion, classification, analogy, and serial reasoning. We
opted for a nonverbal measure of reasoning to avoid confounding
verbal reasoning with language ability. For each of the 32 items, chil-
dren select one of five options that best completes a visual pattern. As
reported in the test manual, test-retest reliability for children ages
6–11 years is 0.76. The standard error of measurement reported for this
instrument ranges from 2–4 for 6 to 11-year-old children.

To indexworking memory, we used the dual-task central executive
Listening Recall subtest from the Working Memory Test Battery for
Children (WMTB-C; Pickering & Gathercole, 2001), with which the child
determines if each sentence in a series is true and then recalls the last
word in each sentence. It has six items at span levels from 1–6 to 1–9.
Passing four items at a level moves the child to the next level. At each
span level, the number of items to be remembered increases by one.
Failing three items at a given span terminates the subtest. We used the
trials correct score. Test-retest reliability on 82 students was 0.84.

We indexed word-reading skill with the Wide Range Achievement
Test (WRAT-3; Wilkinson, 1993), with which students read a list of
words in increasing difficulty. In this sample, α was 0.98.

4.3. Procedure

Testers were trained to criterion and used standard directions for
administration. All testers were graduate students pursuing a degree in
an education-related field or full-time research coordinators. Testers
participated in a 1-day training in which they learned how to admin-
ister all tests. Before administration of the individual assessments, each
tester administered the test battery to one of the full-time research
coordinators. The testers conducted assessments in the second and third
months of second grade: the calculations and word-problem test in
large groups; the other measures individually. For 15% of group-ad-
ministered tests, paper protocols were double-scored to index agree-
ment, which exceeded 99%. All individual sessions were audiotaped;
15% of tapes, stratified by tester, were re-scored by an independent
scorer. Scoring accuracy exceeded 99%.

4.4. Data analysis

We used unconditional quantile regression to evaluate the extent to
which the component processes involved in WPS for average students
are engaged similarly for students at different levels of the WPS mea-
sure. As noted in the introduction, ordinary least squares regression
consistently estimates the impact of an independent variable, X, on the
unconditional mean of an outcome variable, Y. Quantile regression (QR)
“goes beyond the mean,” allowing model estimates at points along Y
other than (or in addition to) its mean, by computing a distribution’s
quantiles.

However, whereas in regular OLS, conditional means average to the
relevant population mean (i.e., the unconditional mean), quantiles in
QR do not average to their unconditional population analogue.
Therefore, QR estimates generally do not represent the impact of X on
the conditional quantiles that comprise the distribution of Y. Although
the QR framework provides a pragmatic approach to understanding the
differential impacts of covariates along the distribution of an outcome,
the framework that pervades the applied literature relies on a condi-
tional QR method. By assessing the impact of a covariate on a quantile
of the outcome conditional on specific values of other covariates, con-
ditional QR may generate results that do not generalize across all
quantiles, to the extent that conditional quantiles vary.

Unconditional QR (UQR), by contrast, yields interpretable results
because it marginalizes (i.e., estimates values in the subset of variables
without reference to values of the other variables) the effect over the
distributions of other covariates in the model. This is accomplished by
defining quantiles prior to fitting regressions (Killewald & Bearak,
2014; Porter, 2015). In the present analysis, we fit UCR models (Firpo,
Fortin, & Lemieux, 2009) to understand the relation between compo-
nent processes (reasoning, in-class attentive behavior, working
memory, language comprehension, calculation fluency, and word
reading) and WPS across the unconditional quantiles representing the
WPS distribution.

We relied on Firpo el al.’s (2009) two-step approach, (a) calculating
a re-centered influence function (RIF) for each quantile of interest
(here, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90) and (b)
conducting separate regressions for each quantile with the RIFs as de-
pendent variables. This two-step process allows for estimates of the
independent variable’s effect and, more importantly, how that effect
differs across the distribution of the dependent variable (Porter, 2015).

We followed the UQR models with three comparisons for each
predictor (i.e., component process): the conditional coefficients at the
0.20 versus 0.50 quantiles, at the 0.20 versus 0.80 quantiles, and at the
0.50 versus 0.80 quantiles. These percentile values were selected to
represent low, average, and high performance, which corresponds to
the basis on which students are often grouped for instructional differ-
entiation in schools. To ease interpretation, all variables were z-trans-
formed prior to analysis.

In all models, we accounted for variance associated with the nested
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data structure. Students were nested in classes/teachers (i.e., subsets of
students shared the same class/teacher); classes/teachers were nested
in schools (i.e., subsets of classes/teachers shared the same school); and
classes were crossed with teachers (i.e., the 126 classes were led by 95
teachers, some of whom participated in multiple years of the cohort
study, meaning that multiple classes shared – or were crossed with – the
same teacher). We fit an unconditional multilevel model with WPS as
the outcome, random effects at level 3 (school) and level 2 (teachers
and classes). Because variance at the teacher level was 0, the model was
rerun with the level 2 random effect removed. For schools, the ICC was
0.10; for classes, 0.14. We modeled variance at the school and class
levels as multilevel mixed-effects regression in STATA V. 15, using the
rifreg command to create RIFs and the mixed command to fit multilevel
regressions.

5. Results

We report raw score means, SDs, and correlations in Table 1 and
report UQR parameters in Table 2. Descriptively, the smallest to largest
coefficient, averaged across the nine quantiles, was word reading
(0.07), reasoning (0.16), working memory (0.18), in-class attentive

behavior (0.19), language comprehension (0.23), and calculation flu-
ency (0.30). We interpret one coefficient here as a guide for interpreting
other coefficients: In the 0.10 quantile model, a 1 SD increase in cal-
culation fluency was associated with a 0.32 SD increase in WPS, con-
trolling for the effect of other component processes.

Controlling for the effect of other predictors, calculation fluency and
reasoning were significantly related to WPS across the distribution, but
the strength of these associations differed across some quantiles.
Controlling for the effects of other predictors, in-class attentive beha-
vior and language comprehension were significantly related to WPS at
every quantile except 0.10; working memory at every quantile except
the 0.90; and word-reading skill only at 0.10, 0.20, and 0.80.

Fig. 1 presents a visualization of the UQR results. The x-axes re-
present deciles, and the y-axes are the UQR coefficients, with the graphs
illustrating the association between each component process and WPS
as a function of decile. The figure shows, for example, that the unique
predictive utility of language comprehension for WPS tends to increase
from the 0.10 (coefficient= 0.08) to the 0.80 (coefficient= 0.37)
quantile, whereas the importance of word reading for word-problem
solving trends lower as the quantile increases.

To evaluate whether the utility of each predictor component process
reliably differs at key points in the spectrum of WPS ability, we con-
trasted conditional coefficients for the same component process at low
(0.20), intermediate (0.50), and high (0.80) quantiles. Table 3 shows
results. The relation between language comprehension and WPS dif-
fered significantly for each contrast: It was significantly stronger at the
intermediate versus the low quantiles, at the high versus the low
quantiles, and at the higher versus the intermediate quantiles. The re-
lation between calculation fluency with WPS was stronger at the high
than at the intermediate quantile. In reverse direction, however, the
relation between working memory and WPS was stronger at the inter-
mediate than at the high quantile.

6. Discussion

The Kintsch model (Cummins et al., 1988; Kintsch & Greeno, 1985;
Nathan et al., 1992) suggests WPS is a complex undertaking, which
requires building the propositional text structure, formulating in-
ferences based on world knowledge, deriving the problem model or
schema, and applying solution strategies. As Kintsch et al. originally
hypothesized and with later extensions to that model (e.g., Fuchs,
Gilbert, Fuchs, Seethaler, & Martin, 2018), this undertaking makes
strong demands on in-class attentive behavior, working memory, rea-
soning ability, and language comprehension.

Table 1
Means, Standard Deviations (SDs), and correlations.

Correlations

Mean SD AB CF LC R WM

In-class attentive behavior
(AB)

38.25 (12.16)

Calculation fluency (CF) 21.93 (11.45) 0.38
Language Comprehension

(LC)
16.79 (4.76) 0.25 0.21

Reasoning (R) 11.87 (5.89) 0.29 0.29 0.24
Working memory (WM) 7.13 (3.59) 0.32 0.22 0.42 0.33
Word-reading skill (WR) 26.26 (5.20) 0.45 0.34 0.31 0.30 0.35

Note. In-class attentive behavior is Strengths and Weaknesses of ADHD
Symptoms and Normal Behavior rating scale (Swanson et al., 2012). Calcula-
tion fluency is Second-Grade Calculations Battery: Sums to 12, Sums to 18,
Minuends to 12, Minuends to 18 (Fuchs et al., 2003). Language comprehension
is Woodcock Diagnostic Reading Battery - Listening Comprehension
(Woodcock, 1997). Reasoning is Wechsler Abbreviated Scale of Intelligence -
Matrix Reasoning (Wechsler, 1999). Working memory is Working Memory Test
Battery for Children - Listening Recall (Pickering & Gathercole, 2001). Word
reading is Wide Range Achievement Test – Reading (Wilkinson, 1993).

Table 2
Unconditional quantile regression results.

Quantiles of word-problem solving

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

In-class attentive behavior Estimate 0.08 0.18 0.15 0.15 0.20 0.26 0.31 0.19 0.18
SE 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05

Calculation fluency Estimate 0.32 0.28 0.27 0.26 0.27 0.33 0.38 0.37 0.18
SE 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

Language comprehension Estimate 0.09 0.15 0.17 0.16 0.24 0.29 0.33 0.37 0.28
SE 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05

Reasoning Estimate 0.11 0.14 0.21 0.20 0.13 0.15 0.18 0.13 0.17
SE 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

Working memory Estimate 0.26 0.19 0.18 0.17 0.23 0.23 0.27 0.11 −0.03
SE 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

Word-reading skill Estimate 0.15 0.10 0.06 0.05 0.06 0.06 0.06 0.11 0.08
SE 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05

Note. Coefficients in bold are statistically significant at p < .05. In-class attentive behavior is Strengths and Weaknesses of ADHD Symptoms and Normal Behavior
rating scale (Swanson et al., 2012). Calculation fluency is Second-Grade Calculations Battery: Sums to 12, Sums to 18, Minuends to 12, Minuends to 18 (Fuchs et al.,
2003). Language comprehension is Woodcock Diagnostic Reading Battery - Listening Comprehension (Woodcock, 1997). Reasoning is Wechsler Abbreviated Scale of
Intelligence - Matrix Reasoning (Wechsler, 1999). Working memory is Working Memory Test Battery for Children - Listening Recall (Pickering & Gathercole, 2001).
Word reading is Wide Range Achievement Test – Reading (Wilkinson, 1993).
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Prior studies document how each of these cognitive processes, as
well as calculation fluency (Swanson & Beebe-Frankenberger, 2004)
and word-reading skill (Fuchs et al., 2006), contribute to individual
differences in WPS performance. Yet, prior work is limited to the esti-
mation of average relations across the spectrum of WPS skill. In the
present study, we extended this literature by instead asking how the
engagement of each process differs as a function of second-grade WPS,
while controlling for the effects of each of the other five component
processes as well as variance attributable to schools, classrooms, and
teachers.

We first corroborated prior work by demonstrating a role for five of
the six component processes. Controlling for the effect of other pre-
dictors, all but the one component process was significantly related to

the WPS outcome at each quantile, with only a few exceptions.
Calculation fluency and reasoning were significantly related to WPS at
each quantile; in-class attentive behavior and language comprehension
at every quantile except the 0.10; working memory at every quantile
except 0.90. By contrast, the hypothesized sixth component process,
word-reading skill, was significantly related to WPS only at the 0.10,
20, and 0.80 quantiles. This was surprising given prior evidence (Fuchs
et al., 2006) of a relation between word-reading skill and WPS, even
when problems are read aloud to students as in the present study. This
suggests the possibility that the positive unique contribution detected
via more conventional analysis is attributable to the significant relation
at the low- and high-end quantiles, without being robustly applicable.
This was not, however, born out by the tests of differences between
coefficients, and explanation awaits findings of future work designed to
probe the role of word reading in WPS, perhaps via experimental
methods.

Meanwhile, the tests of differences between coefficients, which
provide greater stringency for considering significance versus non-
significance in relations as a function of WPS ability, provided inter-
esting insights. For working memory, results indicated a significantly
higher regression weight for the role of working memory at the inter-
mediate than at the high quantile. This negative association suggests
that students with intermediate WPS skill, relative to those with high
WPS skill, rely more on working memory when solving WPs. This de-
monstration of inconsistency for this relation depending on overall WPs
competence, revealed in the present study’s sample, echoes the in-
dividual differences literature: Some studies document such a role (e.g.,
Swanson & Beebe-Frankenberger, 2004; Swanson et al., 2008; Swanson
& Sachse-Lee, 2001) while others do not (e.g., Fuchs et al., 2008,
2010b). The UQR finding suggests that such inconsistency in the lit-
erature reflects different levels of WPS competence among samples.
This possibility is supported in a meta-analytic finding (Peng et al., in
press), in which a stronger relation between working memory and
mathematics performance was demonstrated for students with com-
plicated mathematics learning disabilities than for students with math-
only learning disabilities or for typically developing students.

Working memory may demonstrate a stronger relation with WPS for
students with intermediate WP skill compared to those with stronger
WP skill because intermediate-level WPS is more effortful and less

Fig. 1. UQR results showing the unique relation of each predictor to the WPS outcome. Error bars represent 95% confidence intervals. The focal quantiles are coded
as follows: solid bars= low-level WPS quantile; light gray bars= intermediate-level WPS quantile; clear bars= high-level WPS quantile. Note that although the bars
may appear fixed, they are not the same; they are dynamic.

Table 3
Comparison of coefficients across quantiles.

0.50 vs.
0.20

0.80 vs.
0.50

0.80 vs.
0.20

In-class attentive behavior Estimate 0.01 −0.01 0.00
SE 0.05 0.05 0.06

Calculation fluency Estimate 0.00 0.10 0.10
SE 0.05 0.05 0.06

Language comprehension Estimate 0.10 0.13 0.24
SE 0.05 0.05 0.06

Reasoning Estimate 0.00 −0.01 −0.01
SE 0.04 0.05 0.06

Working memory Estimate 0.03 −0.12 −0.09
SE 0.05 0.05 0.06

Word-reading skill Estimate −0.03 0.04 0.01
SE 0.05 0.05 0.06

Note. Coefficients in bold are statistically significant at p < .05. In-class at-
tentive behavior is Strengths and Weaknesses of ADHD Symptoms and Normal
Behavior rating scale (Swanson et al., 2012). Calculation fluency is Second-
Grade Calculations Battery: Sums to 12, Sums to 18, Minuends to 12, Minuends
to 18 (Fuchs et al., 2003). Language comprehension is Woodcock Diagnostic
Reading Battery - Listening Comprehension (Woodcock, 1997). Reasoning is
Wechsler Abbreviated Scale of Intelligence - Matrix Reasoning (Wechsler,
1999). Working memory is Working Memory Test Battery for Children - Lis-
tening Recall Pickering & Gathercole, 2001). Word reading is Wide Range
Achievement Test – Reading (Wilkinson, 1993).
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fluent than is the case for stronger problem solvers. Part of this more
effortful WPS involves greater reliance on working memory as inter-
mediate-level problem solvers sequentially process information chunks
within WP statements. Meanwhile, stronger engagement of working
memory for intermediate- over high-level problem solvers, but not for
low over intermediate- or high-level problem solvers, may reflect lim-
ited working memory capacity or less effective reliance on working
memory capacity for low-level problem solvers.

At the same time, a different pattern of findings emerged for lan-
guage comprehension, whereby its relation with WPS was significantly
weaker at the 0.20 than at the 0.50 quantile, at the 0.20 than at the 0.80
quantile, and at the 0.50 than at the 0.80 quantile. These positive as-
sociations mirror the general trend, reflected in Fig. 1, in which the
unique predictive value of language comprehension for WPS tends to
increase from the 0.10 (URQ coefficient= 0.08) to the 0.80 (UQR
coefficient= 0.37) quantile. Finding higher levels of language com-
prehension engagement for higher WPS quantiles corroborates corre-
lational studies indicating that as language comprehension improves, so
does WPS (Bernardo, 1999; Fuchs et al., 2016, 2018, 2010; Swanson &
Beebe-Frankenberger, 2004; Van der Schoot et al., 2009).

The present UQR analysis deepens insight into the power of this
relation by revealing constrained language comprehension processing
for low-level problem solvers, even as the moderate recruitment of
language comprehension for intermediate-level problem solvers is more
constrained than for high-level problem solvers. That is, for high-level
WPS, more sophisticated language comprehension reflects the range of
language processing necessary to provide the strongest relation between
language comprehension and WPS of the three quantiles.

Finding greater engagement of language comprehension in higher-
level WPS, where language comprehension is stronger than for inter-
mediate range problem solvers who in turn rely more on language
comprehension than lower-level problem solvers, may seem counter-
intuitive. One might assume that stronger language comprehension
means less need to recruit that ability. Yet, in many walks of life, a
seemingly effortless and sophisticated performance relies on competent
execution of component processes or subskills. For example, stealing a
basketball to drive across court and dunk the ball presents an effortless
picture, even though it engages a sophisticated set of subskills, without
which the intended action fails. Present findings suggest the same ap-
plies to the recruitment of language comprehension in competent WPS.
At the same time, one would expect that the expert basketball player
relies less on working memory to execute the maneuver than would be
the case for the intermediate- or low-level basketball player’s attempt at
the same maneuver.

Similar (not identical) to the pattern that emerged for language
comprehension, the final significant difference in correlational strength
as a function of quantile indicates a weaker relation between calcula-
tion fluency and WPS at the 0.20 and 0.50 quantiles than at the 0.80
quantile. Restricted calculation skill among these low- and inter-
mediate-level second graders, compared to high-level problem solvers,
may help explain the weaker relation here. This would argue for the
importance of instructional focus designed to promote both the number
knowledge that underlies competent arithmetic reasoning via reflective
discourse (Cobb, Boufi, McClain, & Whitenack, 1997) and the strategies
that support efficient calculations as paths toward improving WPS
(Fuchs et al., 2013).

Alternatively, however, the weaker association with calculation
fluency and WPS for low- and intermediate- versus high-level problem
solvers may be due to a common and error-fraught approach observed
in immature WPS, whereby children add the numbers in WP statements
without engaging in mathematical reasoning to first build a problem
statement. This produces WP errors approximately 50% of the time
(because half the problems require subtraction) even if the calculation
accuracy for that incorrect operation is correct. This alternative possi-
bility underscores the importance of promoting mathematical reasoning
to support the building of problem models when solving mathematical

WPs.
With respect to educational implications for the present study’s

findings on working memory and language comprehension, it is im-
portant to note evidence of limited transfer from isolated cognitive
process training to academic performance (e.g., Melby-Lervåg & Hulme,
2013). Therefore, when addressing limitations in these cognitive or
linguistic processes, compensatory strategies may be required. For
working memory, this might include, for example, teaching students
strategies to compensate for constrained working memory capacity,
such as circling or highlighting information in the problem narrative as
they are identified as relevant; crossing out irrelevant information as
they are identified as irrelevant; selecting and underlining within the
narrative a good candidate word label for the problem answer; and
drafting a visual or number sentence representation of the problem
model as children listen or read and revising that representation as
additional information comes on line.

With respect to language comprehension, it is interesting to con-
sider results in light of prior work demonstrating that simplifying the
wording of WP statements dramatically affects average solution accu-
racy by facilitating access to the problem’s meaning (e.g., Cummins,
1991; Davis-Dorsey, Ross, & Morrison, 1991; De Corte et al., 1985;
Vicente, Orarntia, & Verschaffel, 2007). Present UQR findings suggest
such simplification may support performance not just at the mean, but
instead throughout the spectrum of WPS ability. This reveals the need
for future studies to explore whether WPS skill moderates the im-
provement in WPS performance accomplished via re-wording of WP
statements. If the phenomenon proves robust across, then graduated re-
wording of WP statements, designed to systematically sensitize students
to salient language constructions for understanding WPs, may prove an
innovative and helpful strategy for improving WP comprehension and
solution accuracy across the range of learners. In the meantime, present
findings indicate the need to build students’ language comprehension to
facilitate understanding of and increased reliance on the math-laden
vocabulary and grammatical constructions found in WP narratives to
support WP-model building. This includes teacher-led language class-
room discussions designed to sustain inquiry-based discussion and ar-
gumentation for students across the spectrum of WPS ability (e.g.,
Yackel & Cobb, 1996), as well as structured mathematics intervention
shown to support low-level problem solvers’ development (e.g., Fuchs
et al., 2014).

We conclude that this study extends the individual differences lit-
erature on the role of component cognitive processes and academic
skills in WPS by asking whether and if so how the engagement of these
processes differs as a function of second-grade WPS ability, while
controlling for variance attributable to schools, classrooms, and tea-
chers. We found evidence that three component processes, working
memory, language comprehension, and calculation fluency, are en-
gaged differentially depending on students’ WP skill. For calculation
fluency and language comprehension, the role of the component pro-
cess was stronger with more competent WPS ability. By contrast, the
role of working memory was stronger with intermediate- than for
strong-level problem solving. Results deepen insight into the role of
these processes in WPS and provide the basis for hypothesizing how
instructional strategies may be differentiated depending on students’
overall level of WPS competence.

These conclusions must, however, be understood within the con-
straints of three study limitations. First, considering additional cogni-
tive processes, such as other forms of working memory (inhibition and
updating; Miyake & Shah, 1999), 3-D spatial visualization (Tolar,
Lederberg, & Fletcher, 2009), and analogical or inferential reasoning
(e.g., Holyoak & Thagard, 1997), may produce insights into how ad-
ditional processes may be engaged differentially as a function of WPS
ability. Second, we measured each construct with a particular measure.
Including multiple measures to permit use of latent constructs is pre-
ferable, and this should be pursued. Third, conclusions about causality
should be avoided because our methods were correlational.
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