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A B S T R A C T

Strategic processes are a form of procedural knowledge in which a child knows how to enact a given strategy that
improves their capability in problem solving or learning. The solution strategies children use are critical com-
ponents of their learning, especially in mathematics. Children vary substantially in their knowledge and use of
different strategies, and much research has focused on intraindividual strategy variability. However, we do not
know if classrooms that evince a broader variety of strategies across children are related to higher mathematics
achievement. We investigated the diversity of arithmetical strategies within classrooms and examined the re-
lations between strategy diversity and mathematical achievement as children moved from preschool to kin-
dergarten and first grade. These analyses were applied to data from a large-scale experiment involving 1305
children from 42 schools and 106 classrooms. We created and applied a new method of measuring classroom
strategy diversity and related this measure to children’s concurrent and subsequent math achievement. We found
that early strategy diversity was strongly related to achievement, but in subsequently, less diversity was so
related. We compared these results to the predictions of three theoretical categories and found that our results
mainly supported one.

Cognitive strategies are goal-directed and effortful procedures that
children employ to aid in the regulation, execution, or evaluation of a
problem or task (Alexander & Judy, 1988; Alexander, Grossnickle,
Dumas, & Hattan, 2018). As such, strategic processes represent a form
of procedural knowledge in which a child knows how to enact a given
strategy that improves their capability in problem solving or learning
(Dinsmore, 2017; Dumas, 2019). The solution strategies children use in
mathematics are a particularly critical component of their learning in
that domain (e.g., Biddlecomb & Carr, 2011; Carr, Jessup, & Fuller,
1999; Fennema et al., 1996; Pang & Kim, 2018; Sherin & Fuson, 2005;
Wansart, 1990). Children’s invented strategies may contribute to ac-
curacy, problem-solving ability, base-ten number concepts, and flex-
ibility in transferring knowledge in arithmetic (Carpenter, Franke,
Jacobs, Fennema, & Empson, 1998).

When the same tasks are posed to multiple children, they often

differ in the strategic procedures they employ to solve them (Magliano,
Trabasso, & Graesser, 1999; Rhodes et al., 2019). Most research has
focused on these as individual differences of strategy employment as
well as on intraindividual strategy variability (although sometimes
called “diversity” in the literature, we will use “variability” for in-
traindividual variety and reserve “diversity” for classroom, or inter-
individual, variety of strategies for clarity). Far less is known about the
influence of classroom-level strategic diversity—the number of dif-
ferent strategies used within the classroom learning context.

Further, previous research has perennially considered the differ-
ential effectiveness of various strategic processes to improve student
performance at the level of the individual student (Hickendorff, van
Putten, Verhelst, & Heiser, 2010; Pressley & Harris, 2006). Specific
instruction in mathematical strategies has been shown to be effective
(Franke, Kazemi, & Battey, 2007; Jacobs & Empson, 2016), especially
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for children with special needs (e.g., Fuchs et al., 2010; Naglieri &
Johnson, 2000; Powell & Fuchs, 2015; Rockwell, Griffin, & Jones,
2011), although there are exceptions (e.g., Clearinghouse, 2017).
However, these studies took quite different pedagogical approaches,
from direct teaching of strategies to consistent evocation of a variety of
strategies. Similarly, teachers receive conflicting messages regarding
the benefits of eliciting diverse strategies and the different approaches
to strategy instruction (Carpenter et al., 1998).

In summary, there is little research that investigates whether
classrooms that evince a broader variety of strategies are related to
higher mathematics achievement than classrooms with less diversity.
That is, if children within a given classroom spontaneously enact stra-
tegies that differ from one another, would the level of strategic diversity
be a positive or negative predictor of child performance in that class-
room, and would that predictive relation vary depending on other
factors (e.g., level of schooling, or individual characteristics)? In the
current study, we investigate this question by measuring the diversity of
mathematical strategies within classrooms and examine the relations
between such strategy diversity and mathematical achievement as
children moved from preschool to kindergarten and first grade. This age
range is particularly appropriate because these are the years that ar-
ithmetic strategies are first developing for most children.

1. Background

We briefly discuss key findings from the literature because these
findings contribute to the psychological foundation of our research. To
ground our discussion in a specific mathematical context, we use ar-
ithmetic learning as a basis for describing how children develop various
mathematical strategies. We then turn to issues of children’s learning of
arithmetical strategies and classroom strategy diversity.

1.1. Intra-individual variability of strategies

As children develop arithmetical competencies, they will use mul-
tiple strategies and choose among these strategies adaptively. This
process supports their future learning (Coyle, 2001). Learning and de-
velopment involve an ongoing competition among alternative strate-
gies, with faster and more accurate strategies gradually becoming
dominant (Kerkman & Siegler, 1993; Minsky, 1986; Siegler, 1993).
Intraindividual variability tends to be greatest during periods of rapid
learning (although substantial variability is present in relatively stable
periods as well, Siegler, 2006). Intraindividual variability also tends to
be cyclical as periods of lesser and greater variability alternate over the
course of learning (Siegler, 2006). For instance, a child learning to solve
simple addition or subtraction problems by counting all objects versus
counting on from one addend may oscillate between the two strategies
until the child becomes comfortable exclusively using the more efficient
counting on strategy.

One can ask whether possessing a larger number of different stra-
tegies as an individual is developmentally advantageous. Siegler (1995)
reported that early variability predicts later achievement and posited
the moderate experience hypothesis: use of multiple strategies is most
likely when people have moderate amounts of experience with the
problems being addressed. This leads to an inverted-U for the number,
and therefore intra-individual variability, of strategies of individual
children.

However, consideration of variability alone may not be suffi-
cient–strategies must be efficient and especially flexible/adaptable
(Baroody & Dowker, 2003; Torbeyns, Verschaffel, & Ghesquière, 2005;
Verschaffel, Torbeyns, De Smedt, Luwel, & Dooren, 2007). Adaptation
of strategies to different contexts is viewed as a positive aspect of
mathematics development (Baroody & Dowker, 2003; Lemaire &
Siegler, 1995). Children tend to choose strategies adaptively; even if
they have had fewer opportunities to learn and thus use less sophisti-
cated strategies, children are as adaptive as children with more

sophisticated strategies (Kerkman & Siegler, 1993). Further, when
provided opportunities to develop content knowledge, the former
children’s levels of accuracy, speed, and strategy use were comparable
(Siegler, 1993).

1.2. Classroom strategy diversity and children’s learning of arithmetic

Although many educators consider strategic development central to
learning, their goals for diverse strategy use by children differ sub-
stantially. Because distinct learning goals have strong effects on
strategy development (Clements, Agodini, & Harris, 2013; McNeal,
1995), we consider three categories of approaches to children’s
learning. Before we define these categories, however, we clarify the
relations of our classification structure to the more general framework
of discovery learning versus learning from direct instruction to avoid
any confusion. Theory and research on the latter framework often use
three categories as well: unassisted discovery learning, enhanced dis-
covery learning, and learning from direct or explicit instruction (Alfieri,
Brooks, Aldrich, & Tenenbaum, 2010). Our research focuses specifically
on classroom strategy diversity with possible implications for pedago-
gical approaches (although we do not measure teacher instruction here,
these will be a proper subset of the larger discovery/explicit instruction
debate). However, although our categories relate to this general fra-
mework, there is not a direct mapping, as we delineate in this and the
final section.

Our first category values as much diversity as possible. Consistent
with this, researchers have shown the benefits of teachers’ noticing,
encouraging, and discussing children’s different solution strategies
(e.g., Choppin, 2011; Stein, Engle, Smith, & Hughes, 2008). As an ex-
ample in early arithmetic, some children may solve 3 + 5 with a
counting-all procedure, counting out a set of three items, then counting
out five more items, and then counting all those starting at “1,” re-
porting “8.” Others may count on from the initial number to the total,
keeping track of the number added on the fingers, as in “3…5, 6, 7, 8!”
Still, others might put up three fingers on one hand and five on the
other then recognize the total. This category implies the prediction that
more diversity at every time point will correlate with higher achieve-
ment at the early time point (concurrently) and at subsequent time
points because it supports children’s creative thinking and use of stra-
tegies that are most meaningful to them (Kam, 2017). Note that in this
approach, as well as the other two approaches, such inter-individual
diversity does not necessarily imply or depend on intraindividual
strategy variability; for example, children may use one “favorite”
strategy, but that strategy may differ from child to child.

The second category includes the competing perspective that edu-
cation is more efficient and mathematically rigorous if children learn
accurate definitions and demonstrate a single prescribed, accurate
mathematical procedure for a certain type of problem, obviating the
need for children to invent or experience multiple strategies (see
Carnine, Jitendra, & Silbert, 1997; Clark, Kirschner, & Sweller, 2012;
Wu, 2011). Research findings on children’s learning is mixed, but there
is evidence supporting this approach to children’s learning (Carnine
et al., 1997; Clark et al., 2012; Gersten, 1985; Heasty, McLaughlin,
Williams, & Keenan, 2012). This category implies the prediction that
less diversity at every time point would correlate with higher achieve-
ment at early and subsequent time points.

A third category is a combination of the first two. Here, strategy
diversity is an early goal, with subsequent funneling of children’s
strategic use to more effective strategies (not aimed at diversity per se).
For example, in a Japanese approach to teaching first grade arithmetic
(Murata & Fuson, 2006), teachers first elicit, value, and discuss child-
invented strategies and encourage children to use diverse strategies to
solve a variety of problems. However, later in the year, teachers focus
on and encourage a particularly effective method (Henry & Brown,
2008; Murata & Fuson, 2006). This approach is consistent with the
notion that variability supports early phases of learning, but expertise
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brings decreasingly variable performance across children (Siegler,
1994). Thus, this category implies the prediction that early diversity
would correlate with higher achievement at an early time point (for
material children were beginning to learn) as well as at subsequent time
points, but that at subsequent time points less diversity in strategies
(e.g., because a class coalesced around fewer, sophisticated strategies)
would be positively related concurrently.

This study compared the implications of these three categories.
Thus, our research question was: Which of the three categories’ pre-
diction is most consistent with the empirical results regarding the re-
lations of strategy diversity in classrooms to children’s concurrent and
subsequent math achievement? That is, how does classroom-level
strategy diversity relate to children’s mathematics achievement, both
concurrently and at later time points? Such a question has important
implications both for research and practice.

1.3. Present study

Although the three categories contribute to the wider debate re-
garding general categories of unassisted discovery learning, enhanced
discovery learning, and learning from direct or explicit instruction
(Alfieri et al., 2010), each of the three could be used in tandem with
more than one of these general categories, meaning that research on
classroom strategy diversity is a theoretically and empirically distinct
subfield.

Given that both intraindividual strategy variability and inter-in-
dividual strategy diversity are theoretically most important from in-
fancy through the early childhood years (Siegler, 1994), we addressed
our research questions in the earliest years of mathematics instruction.
Data for this study came from the experimental study of the TRIAD
(Technology-enhanced, Research-based, Instruction, Assessment, and
professional Development) scale-up model. This model evaluated the
implementation of a preschool math program (Clements, Sarama,
Spitler, Lange, & Wolfe, 2011; Sarama, Lange, Clements, & Wolfe,
2012) and the first year of implementation of a follow-through inter-
vention at the end of kindergarten (Sarama, Clements, Wolfe, & Spitler,
2012). At the preschool level (called pre-K hereafter to denote the pre-
kindergarten year), the two experimental conditions were identical.
Evaluations revealed a substantial and significant effect at the end of
pre-K (effect size, g = 0.72, Clements et al., 2011). One experimental
condition was assigned to experience a follow-through intervention into
the kindergarten and first-grade years, in which teachers were taught
about the pre-K intervention and ways to build upon it using learning
trajectories. Kindergartners in both the follow-through condition
(g = 0.38) and non-follow-through condition (g = 0.30) scored sta-
tistically significantly higher than children in the control condition,
although the effect sizes were about half of that at the end of the pre-K
year (Sarama, Clements, et al., 2012). Similarly, first graders in both the
follow-through condition scored significantly higher than control chil-
dren (g = 0.51 for those who received follow through intervention in
kindergarten and first grade; g = 0.28 for non-follow through) and
follow-through children scored significantly higher than non-follow-
through children (g = 0.24, Clements, Sarama, Wolfe, & Spitler, 2013).
Analyses used a Rasch score that incorporated two types of scores:
correctness for all items and, for those with observable and variable
strategies, a strategy-sophistication score. Because the mathematical
assessment recorded the specific strategies children used, it allowed us
to create a new measure of the diversity of strategies used within each
class, at least in an individual assessment context, and relate this
measure to the Rasch scores, concurrently and predictively. Most no-
tably, the primary benefit of using extant TRIAD data for the present
study is that the implementation of multiple interventions ensured a
variety of pedagogical activities and teaching strategies, contributing to
our analyses.

2. Method

Data from the TRIAD cluster randomized experiment was used for
the current study, which included 42 schools in two cities that were
randomly assigned to one of the three conditions.

2.1. Participants

Participants were the 1305 children from the original 42 schools
and 106 classrooms in Buffalo, NY, and Boston, MA who had both a
pretest and posttest in pre-K (Clements et al., 2011), and the pre-K and
kindergarten teachers in those schools. At the pretest of the pre-K year,
children ranged in age from 44 to 64 months, with a mean age of
52.06 months (SD = 4.09). 24.5% (n = 319) of children were identi-
fied as bilingual, and 51% (n = 664) of them were female. In addition,
2% of children reported their ethnicity as Native American; 53% of
children reported their ethnicity as African-American; 4% reported
their ethnicity as Asian/Pacific Islander; 22% reported their ethnicity as
Hispanic; 19% reported their ethnicity as White non-Hispanic and<
1% other. From the pre-K year to first-grade year, the total attrition
rate in this study was 13.74% (n = 179), and the attrition was un-
related to child demographic variables of bilingualism (χ2 = 0.02,
df = 1, p = .89), gender (χ2 = 0.20, df = 1, p = .65), and race/
ethnicity (χ2 = 6.75, df = 5, p = .24).

2.2. Assessments

The Research-based Elementary Math Assessment (REMA,
Clements, Sarama, Wolfe, & Day-Hess, 2008/2019) measures core
mathematical abilities of children from age 3–8 years using an in-
dividual interview format with standardized administration protocol,
videotaping, coding and scoring procedures. Abilities are assessed ac-
cording to theoretically- and empirically-based developmental pro-
gressions (National Research Council, 2007; Sarama & Clements, 2009).
Topics in number include verbal counting, object counting, subitizing,
number comparison, number sequencing, connection of numerals to
quantities, number composition and decomposition, adding and sub-
tracting, and place value. Geometry topics include shape recognition,
shape composition and decomposition, congruence, construction of
shapes, and spatial imagery, as well as geometric measurement, pat-
terning, and reasoning. The developmental progression of items as well
as the fit of individual items has been reported in earlier research
(Clements, Sarama, & Liu, 2008). The REMA measures mathematical
competence as a latent trait in Item Response Theory (IRT), yielding a
score that locates children on a common ability scale with a consistent,
justifiable metric (allowing accurate comparisons, even across ages and
meaningful comparison of change scores, even when initial scores
differ, Wright & Stone, 1979). The 225 items are ordered by Rasch item
difficulty; children stop after four consecutive errors on each of the
number and geometry sections.

Beyond correctness, the REMA also collects, codes, and scores
children’s strategies when those are observable and relevant (e.g.,
processes of perceptual subitizing, or quick recognition of the number
of objects in a set, would be neither). Arithmetic problems are a main
sources of such strategies. An example item, including strategies that
are common to many REMA items, is provided in Fig. 1. As an example
of quite different strategies, Fig. 2 presents an item that assesses geo-
metric composition of two-dimensional geometric shapes. These stra-
tegies are recoded into three levels of sophistication for submission to
the Rasch model. Until this study, no other analyses were made of the
diversity of the strategies.

Training sessions for REMA assessors included orientation, demon-
stration, and practice, with a focus on standardized delivery.
Subsequent individual practice sessions were taped and critiqued, with
98–100% error-free delivery required for certification. All assessment
sessions were videotaped, and each item coded by a trained coder for
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correctness and for solution strategy; 10% of the assessments were
double-coded. Both assessors and coders were blind to the group
membership of the children. Continuous coder calibration by an expert
coder (one tape per coder per week) militated against drift. Calibration
feedback was sent to coders, alerting them to any variance from coding
protocols. Previous analysis of the assessment data showed that its re-
liability ranged from 0.93 to 0.94 on the total test scores (Clements
et al., 2008); the reliability was 0.92 with the present population. In
addition, the REMA had a correlation of 0.86 with a different measure
of preschool mathematics achievement (Clements et al., 2008), the
Child Math Assessment: Preschool Battery (Klein, Starkey, & Wakeley,
2000), and a correlation of 0.74 with the Woodcock-Johnson Applied
Problems subscale for a pre-K specific subset of 19 items (Weiland et al.,
2012).

2.3. Intervention

We briefly describe the intervention used in the original experiment
to elucidate the level of understanding early childhood teachers in our
sample possessed regarding mathematics instruction. The TRIAD in-
tervention helps schools implement the Building Blocks pre-K mathe-
matics curriculum (Clements & Sarama, 2007/2013) that was designed
using a comprehensive Curriculum Research Framework (Clements,
2007) to address numeric/quantitative and geometric/spatial ideas and
skills. Woven throughout the Building Blocks curriculum are mathema-
tical processes. That is, Building Blocks is structured on learning tra-
jectories that were designed to develop teachers’ content knowledge by
explicating the mathematical concepts, principles, and processes in-
volved in each level and the relationships across levels and topics. As an
arithmetical example, children may first “count all” as in solving a story
problem involving 3 + 2 by counting out three chips, then counting out
two, then counting all five starting at 1. They then extend their
counting skills to larger numbers, enabling them to solve problems such

as 5 + 3. At a higher level in the developmental progression, they
understand that starting a counting sequence at the first number can
“stand in for” counting out the first addend–the number word sub-
stitutes for the counting acts from 1 to 5. That is, saying “fiiiive…” is a
way of reifying that quantity. Children can then count on from that
number, counting on through second addend (“fiiiive…, six, seven, eight.
Eight!”). They may use a “rhythm of three” (“Doo – Day – Doo”) to
create the sequence “six, seven, eight.” At the following level of the
developmental progression, children use anticipatory thinking to keep
track of those counts (especially when a rhythmic pattern is difficult,
such as adding 5 + 7). For example, starting at 5 and counting seven
counting words, while putting one finger up for each count until a
finger pattern of 5 (five fingers on one hand, two on the other) is
reached (or putting up seven fingers to begin, and lowering one finger
for each count). Later, children learning de/composition strategies,
such as 5 + 7 = 5 + 5 + 2 = 10 + 2 = 12 and so forth.

Such learning trajectories were intended to develop teachers’
knowledge of children’s developmental progressions in learning that
content. They were designed to develop teachers’ knowledge of the
instructional activities created to teach children the content and pro-
cesses defining the level of thinking in those progressions and to inform
teachers of the rationale for the instructional design of each (e.g., why
the curriculum teaches children to start at numbers other than one and
keep counting and why it shows and then hides chips representing the
first addend to encourage counting on). The learning trajectories assist
curriculum enactment with fidelity in that they connect the develop-
mental progressions to the instructional tasks, providing multiple
guidelines or sources of stability in teachers’ instantiation of the in-
structional activities. They were also designed to motivate and support
the use of formative assessment. The TRIAD scale-up model included
extensive professional development, both training and coaching (for
details see Clements et al., 2011).

Kindergarten and first-grade teachers in schools assigned to TRIAD’s

Fig. 1. Example arithmetic item with strategies.
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follow-through condition were taught about the pre-K intervention and
ways to build upon it. That is, they were shown the mathematics many
of their entering children had learned. Teachers were also taught about
the learning trajectories that extended through the kindergarten curri-
culum, including the developmental progressions and how to modify
their extant curricula to more closely match the levels of thinking of
their children; however, they were not provided with any specific ac-
tivities (for details see Sarama, Clements, et al., 2012). Although dis-
cussion of strategies was encouraged in the TRIAD intervention, there
was no focus on diversity of strategies per se at any grade, so none of

the treatment conditions were a priori aligned with the three categories.
(Further, the impact of intervention on diversity scores across four
time-points is small; at T1 and T3 they are statistically significant, but
not at T2 and T4. Most important, the effect sizes were small; partial η2

ranges from 0.01 to 0.07). The control teachers taught a curriculum
that, like the treatment conditions, was connected to standards and thus
addressed the same topics, in approximately the same proportion.

Of course, teachers in all three treatment conditions taught
mathematics differently, with variance in their evocation, discussion,
and support of different mathematical strategies (as indicated by

Fig. 2. Example geometry item with strategies.
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teacher observations, Clements et al., 2011; Clements et al., 2013;
Sarama, Clements, et al., 2012).

2.4. Teacher training and classroom observations

Pre-K teachers in schools randomly selected to receive the inter-
vention completed seven days of professional development (PD) the
year before data collection, during which time they implemented the
Building Blocks curriculum in a non-stressful context. They received an
additional five days of professional development during the following
year. They also received coaching about two times per month for both
years. The kindergarten teachers received seven days of PD that started
in the fall when they received the cohort from the preschool interven-
tion. Assessors administered the REMA to all children in the fall of their
pre-K year before the intervention started, at the end of their pre-K
year, and at the end of their kindergarten year.

2.5. Quantification of strategic diversity

Given that literature currently focuses on intra-individual strategy
variability, addressing our research questions meant facing the meth-
odological challenge of quantifying inter-individual strategy diversity
displayed by children within a particular classroom or school. Recall
that the REMA was designed to be flexibly administered to children of
varying levels of mathematical competence and it features previously
validated (Clements et al., 2008, 2019) start- and stop-rules that allow
the test-administrator to determine which REMA items a child will at-
tempt, given their ability level. For practical considerations in the
creation of a scoring algorithm for the quantification of strategic di-
versity, this aspect of the REMA meant that participants each attempted
different items, and different numbers of items at that. In addition, the
codes used by test administrators to indicate which strategy a child
utilized were nominal in nature and reflected a unique way to solve that
math problem (i.e., they were not ordinal, although in later stages of
analyses they were recoded into three levels of sophistication for Rasch
scoring.). Further, the REMA items also featured different total numbers
of possible strategies, such that a single set of nominally coded strategic
processes was impossible to define across all the items.

Although item response theory (IRT) methods for estimating a latent
psychological attribute from nominal data exist (Darrell Bock, 1972),
these methods are more adept at estimating latent attributes in rela-
tively large sample sizes both in terms of participants and the number of
items administered. Nominal IRT approaches also produce more readily
interpretable scores if all participants are administered the same items
and those items feature the same nominal categories (Nering & Ostini,
2011), which are not characteristics of our REMA data. In addition,
some items on the REMA have 10 or more possible strategic process
codes, which would be more nominal categories than are typically re-
commended for use in a nominal IRT model. Moreover, the focus of this
investigation is not on the latent attribute of strategic ability per se, but
on the inter-individual variance in the deployment of strategies within a
salient group of children (e.g., a classroom). Although nominal IRT
models estimate variances for the latent attributes being measured, that
latent variance would represent the degree to which children varied
along the latent continuum, and would not necessarily indicate stra-
tegic diversity within the classroom in the way that is intended in this
investigation. Therefore, we conceptualized and developed a novel
procedure for quantifying strategic diversity within a classroom based
on REMA nominal strategy codes.

To enact this method, the existing REMA strategy codes for every
item (j) were dis-aggregated into a number of new dichotomously coded
variables, where zero indicated the absence of that strategy, and 1 in-
dicated the use of that strategy. In this way, the number of possible
strategy codes that were available for any given item dictated the
number of newly created dichotomously coded strategy variables (k) for
that REMA item. Then, following a common distributional assumption

in psychometrics (e.g., Bauer & Hussong, 2009), each of these new di-
chotomously scored strategy variables were assumed to follow a Ber-
noulli distribution, a special-case of the binomial distribution for a
single variable in which the variance of that dichotomously coded
variable is represented by Eq. (1), where p is the mean of the dichot-
omously coded variable (i.e., the proportion of 1′s coded for that
variable in the dataset). Because this investigation was focused on the
creation of diversity scores that represented the variety of strategies
employed by children within each particular classroom in the dataset,
these strategy variances were calculated individually for every dichot-
omously coded strategy variable (k), which had been dis-aggregated
from every REMA item (j) within each individual classroom (c) in the
dataset following Eq. (1), below:

= × −σ p p(1 )jkc jkc jkc
2

(1)

After calculating these variances following Eq. (1), they were
summed within every classroom (c) to create a quantity that re-
presented the total variance on the strategy codes within that class-
room. Then, to correct for the fact that classrooms differed in the
number of items (N) that children attempted as well as the number of
strategies that were available for each of those items, the summed
variances were divided by the median number of dichotomously scored
strategy variables that were available on the REMA to the children
within that classroom. Finally, the resulting decimal was multiplied by
100 for scale. In effect, this strategy diversity score is the degree to
which children within a particular classroom varied inter-individually
on their strategy usage on the items they were exposed to. The calcu-
lation of this diversity score is presented in Eq. (2).
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These strategy diversity scores were saved for every classroom in
the analytic dataset and analyzed as described in the following Results
section. It should be noted that the diversity scores have the common
property of being influenced by the number of individual children
within a given classroom. For instance, hypothetically, if only one child
were present in a classroom, the diversity score would necessarily be
zero because inter-individual variance is impossible in that case. Given
the focus of this investigation on inter-individual diversity in strategic
processing, such a property of the diversity scores was not considered
problematic; however, further analysis was limited to classrooms with
at least five study children to provide meaningful inferences about
strategy diversity.

3. Results

Correlations and multi-level linear regression analyses were con-
ducted to examine the three predictions regarding relations of strategy
diversity in classrooms to children’s concurrent and subsequent math
achievement. To address our research questions, we conducted an
analysis of the resulting classroom strategy diversity scores that un-
folded in three general stages. First, we examined changes in strategy
diversity across time points (i.e. pre-K through first grade) through a
comparison of the average diversity scores across classrooms within
each time-point. Then, we tested bivariate correlations among strategy
diversity and standardized mathematics achievement across the four
time-points included in this study. Third, we conducted two-level linear
models with random intercepts to examine the predictive power of
classroom diversity scores in predicting mathematics achievement at
each time-point, while also adjusting for the classroom-nested structure
of these educational data. Furthermore, multi-level models in-
corporating child background characteristics as level-one covariates
(i.e., baseline mathematics achievement, age, socio-economic status,
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intervention versus control condition, and bilingualism) were per-
formed to fully model the pattern of influence of classroom-level stra-
tegic diversity scores on math achievement. Results of each stage of this
investigation follow.

3.1. Score description

Table 1 presents means and standard deviations of math achieve-
ment and diversity scores at four-time points: pre- and posttest of the
pre-K year (T1 and T2) and posttests at the end of the kindergarten and
first-grade years (T3 and T4). As can be seen, children’s average stan-
dardized math scores gradually increased across time (M
range = −3.22 to −0.07, SD range = 0.68–0.82) while the average
classroom strategy diversity scores, as well as their level of variation
(i.e., standard deviation), decreased from the end of the pre-K year to
the first-grade year (M range = 9.33–11.13, SD range = 2.51–8.31).
The decreases in diversity scores were statistically significant, [F (2,
1458) = 410.79, p < 0.001, partial η2 = 0.36]. In other words,
strategy use within classrooms was significantly more diverse in the
earlier learning phases (T1 and T2) than the later learning phases (T3
and T4), and, meanwhile, the level of strategy diversity across different
classrooms became less heterogenous (i.e., SDs decreased).

3.2. Bivariate correlations

3.2.1. Concurrent time point analysis
The bivariate correlations (presented in Table 1) revealed positive

and significant correlations between classroom strategy diversity and
concurrent achievement at pretest (r = 0.24, p < .01) and posttest
(r = 0.11, p < .01) in the pre-K year. However, at the later time points
(i.e., the end of kindergarten and end of first grade) diversity in stra-
tegies turned to be negatively correlated with the concurrent math
achievement scores (r = −0.16, p < .01 for kindergarten; r = −0.08,
p < .05 for first grade).

3.2.2. Subsequent time point analysis
Furthermore, diversity scores at the pre-K year positively and sig-

nificantly correlated with math achievement at subsequent time points
(r ranging from 0.17 to 0.27, p < .01) while strategy diversity of the
kindergarten year negatively correlated with achievement at 1st grade
(r = −0.19, p < .01).

3.3. Multi-level linear regression analyses

The intraclass correlations (ICC, Raudenbush & Bryk, 2002) in the
predictions of child-level math achievement at the three time-points
(T2, T3, and T4) were 19.29%, 26.13%, and 35.18%, respectively, which

indicated that a non-trivial amount of the variation in math achieve-
ment occurred between classrooms. Therefore, multi-level regression
analysis was considered appropriate to account for the classroom-
nested structure of these data.

3.3.1. Means-as-outcomes models
To initially investigate how diversity scores can contribute to pre-

dicting math achievement at the classroom level, means-as-outcomes
models that only contained the classroom-level predictor (i.e., class-
room strategic diversity scores) were performed. See Table 2 for the
specific coefficients discussed in this section. After controlling for the
classroom diversity scores, the clustering effects were reduced (condi-
tional ICCT2 = 13.26%, conditional ICCT3 = 14.29%, and conditional
ICCT4 = 13.26%), which indicated that less variation of math
achievement occurred between classrooms at each time-point, after
accounting for classroom level strategic diversity.

In the analysis predicting math achievement at the end of the pre-K
year, the proportion of variance explained (PVE) by the model with
diversity scores at T1 and T2 was equal to 35.93%. That is, about 36% of
the between-classroom variance in math achievement was accounted
for by the combination of diversity scores at two time-points.
Specifically, more classroom strategy diversity at the pretest of pre-K
predicted higher achievement scores at the pre-K posttest (B = 0.021,
SE = 0.004, z = 5.57, p < .001), and the concurrent diversity score of
the pre-K posttest was not a significant predictor.

Then, in the multi-level regression analysis predicting math
achievement at the end of the kindergarten year, a larger amount of the
true between-classroom variance (PVE = 55.57%) in math achieve-
ment was accounted by diversity scores at T1, T2, and T3. The three
diversity scores were all significant predictors of math achievement at
the end of the kindergarten year (BT1 = 0.015, SE = 0.003, z = 4.84,
p < .001; BT2 = 0.012, SE= 0.005, z= 2.24, p= .025; BT3 = -0.027,
SE = 0.008, z = -3.34, p = .001). However, they yielded different
directions in that prediction. Specifically, children from classrooms
with more strategy diversity in the earlier learning phases (pre- and
posttest of the pre-K year) demonstrated higher math achievement at
the end of kindergarten, but children in classrooms with higher di-
versity at the end of kindergarten demonstrated lower concurrent
achievement.

Lastly, in the analysis predicting math achievement at the end of the
first-grade year, an increasingly larger amount of the between-class-
room variance (PVE = 59.78%) in math achievement was accounted
for by classroom diversity scores at T1, T2, T3, and T4. The diversity
scores at the pre-K and kindergarten year all predicted first-grade math
achievement (BT1 = 0.015, SE = 0.004, z = 4.12, p < .001;
BT2 = 0.013, SE = 0.006, z = 2.28, p = .023; BT3 = −0.024,
SE = 0.007, z = -3.35, p = .001), while the concurrent diversity score

Table 1
Descriptive statistics and bivariate correlations.

Bivariate Correlations

Variable Mean SD Math Achievement Strategy Diversity

T1 T2 T3 T4 T1 T2 T3 T4

Math Achievement T1 −3.22 0.82 1.00
T2 −1.97 0.71 0.57** 1.00
T3 −1.09 0.68 0.55** 0.76** 1.00
T4 −0.07 0.70 0.54** 0.73** 0.81** 1.00

Strategy Diversity T1 11.13 8.31 0.24** 0.26** 0.27** 0.26** 1.00
T2 15.02 5.16 0.14** 0.11** 0.17** 0.17** 0.27** 1.00
T3 10.87 3.67 −0.11** −0.12** −0.16** −0.19** −0.07* 0.01 1.00
T4 9.33 2.51 −0.09* −0.03 −0.06 −0.08* 0.06 0.03 0.18** 1.00

Note. T1 = pretest of pre-K year; T2 = posttest of pre-K year; T3 = posttest of Kindergarten year; T4 = posttest of 1st grade year.
** p < .01.
* p < .05.
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at T4 was not a significant predictor (BT4 = .−017, SE = 0.015,
z = −1.11, p = .266). In terms of the directions of these coefficients,
more classroom strategy diversity in the earlier learning phases (T1 and
T2) and less during the later learning phases (T3 and T4) appears to
support children’s math achievement, given the results of this class-
room level model.

3.3.2. Full multi-level models with random intercepts
To further verify the observed patterns of mathematics achievement

prediction, baseline math scores, age, socio-economic status, interven-
tion versus control condition, and bilingualism, were included as child-
level covariates in the two-level models. The mean-centering of pre-
dictor variables within multi-level models in educational research has
been a much-discussed topic within the methodological literature (for
technical treatments of this issue see Plewis, 1989; Raudenbush, 1989).
However, there is currently not a clear rule of thumb for this modeling
decision (Paccagnella, 2006). In this study, we did not impose centering
strategies to the continuous predictors at level-one for a number of
reasons. For example, interpreting level-one predictors is not a primary
goal of the present study, and there was no strong collinearity among all
predictors, making mean-centering extraneous. Table 3 presents the
specific coefficients discussed in this section.

Compared to the previous models with classroom-level predictors
only, the significance and strength of the coefficients associated with
the diversity scores was weakened after accounting for all of these
child-level control variables in predicting math achievement of children
in kindergarten and first-grade years. The child-level covariates altered
the pattern of significance of the diversity scores in predicting pre-K
math achievement (see Table 3 for specific coefficients). Nevertheless,
the directions of diversity score parameters from the kindergarten and
first grade regression models remained as in the previous model, which
provided further evidence for the observed pattern that more strategy
diversity in the earlier years (T1 and T2) and less in the later years (T3

and/or T4) within math classrooms could help children achieve better
math learning outcomes, even after controlling for a variety of child-
level covariates.

4. Discussion and implications

Most educators agree that the strategies children use to solve
mathematical problems are an important component of their learning
(Biddlecomb & Carr, 2011; Carpenter et al., 1998; Carr et al., 1999;
Fennema et al., 1996; Pang & Kim, 2018; Sherin & Fuson, 2005;
Wansart, 1990). Pedagogically, instruction focused on arithmetic stra-
tegies can be effective for all children (Franke et al., 2007; Jacobs &
Empson, 2016) including, and perhaps especially, for those with special
needs (e.g., Fuchs et al., 2010; Naglieri & Johnson, 2000; Powell &
Fuchs, 2015; Rockwell et al., 2011). However, there is little research
that investigates whether classrooms that evince a broader diversity of
strategies engender higher mathematics achievement. We begin by
discussing the results in terms of the predictions of the three categories
of approaches to children’s learning of strategies, especially diverse
strategies. Although we did not measure teachers’ instruction, the re-
sults have important implications because there are quite different
pedagogical approaches for teaching strategies to children that have
different goals and approaches have a strong effect on strategy devel-
opment (Clements, Agodini, & Harris, 2013; McNeal, 1995). Therefore,
we discuss the pedagogies used in each of the three categories and draw
implications for them from our findings.

4.1. Classroom strategy diversity predicting children’s learning

We examined patterns between class-level diversity and children’s
achievement in light of three possible categories. The first category
values strategy diversity at every time point of mathematical learning;
the second category suggests that children should use a single, preferred

Table 2
Summary of multi-level linear regression predicting early mathematics (Means-as-Outcomes Models, Level 2 Predictors only).

Parameters Estimates SE z p PVE ρ ( ̂ρ )

Predicting Math Achievement at the End of Pre-K Year
Fixed Effects
Diversity Score T1 0.021 0.004 5.570 <0.001***

Diversity Score T2 0.007 0.006 1.130 0.259

Random Effects (variance components)
Intercept, μ0j 0.063 0.014 4.597 <0.001*** 35.93% 19.29%
Residual, rij 0.409 0.017 24.366 <0.001*** (13.26%)

Predicting Math Achievement at the End of Kindergarten Year
Fixed Effects
Diversity Score T1 0.015 0.003 4.840 <0.001***

Diversity Score T2 0.012 0.005 2.240 0.025*
Diversity Score T3 −0.027 0.008 −3.340 0.001**

Random Effects (variance components)
Intercept, μ0j 0.055 0.013 4.143 <0.001*** 55.57% 26.13%
Residual, rij 0.332 0.016 20.402 <0.001*** (14.29%)

Predicting Math Achievement at the End of First-Grade Year
Fixed Effects
Diversity Score T1 0.015 0.004 4.120 <0.001***

Diversity Score T2 0.013 0.006 2.280 0.023*
Diversity Score T3 −0.024 0.007 −3.350 0.001**

Diversity Score T4 −0.017 0.015 −1.110 0.266

Random Effects (variance components)
Intercept, μ0j 0.074 0.018 4.015 <0.001*** 59.78% 35.81%
Residual, rij 0.325 0.019 17.381 <0.001*** (18.56%)

Note. T1 = pretest of pre-K year; T2 = posttest of pre-K year; T3 = posttest of kindergarten year; T4 = posttest of first-grade year, PVE = portion of variance
explained, ρ = intraclass correlation, ̂ρ = conditional intraclass correlation.
*** p < .001.
** p < .01.
* p < .05.
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strategy and thus evince less diversity at the classroom-level; the third
category indicates that children will use a diverse array of strategies
when first learning material and then coalesce around a smaller set of
strategies as they master material—and thus, early diversity would be
related to mathematical achievement at subsequent time points. We
used multi-level regression analyses to (1) investigate how diversity
scores can contribute to predicting math achievement at the classroom
level and to (2) confirm the patterns of mathematics achievement
prediction after controlling for child-level covariates including baseline
math scores, age, socio-economic status, intervention versus control
condition, and bilingualism using two-level models. Both sets of models
reveal similar patterns between class-level diversity scores and chil-
dren’s achievement.

We found that children’s standardized mathematics scores increased
through the four time points, but the average classroom strategy di-
versity scores, as well as their level of variation, increased in the pre-
school year, and then decreased at the two subsequent time points.

In the first set of means-as-outcomes models, pre-K fall strategy
diversity was positively and significantly related to spring achievement
in the pre-K and kindergarten years. Additionally, kindergarten di-
versity scores were positively and significantly related to first-grade
spring achievement. Taken together, these findings imply that children

from classrooms with higher levels of diverse child-generated strategies
at early time points have higher math achievement scores.

The same set of means-as-outcomes models also indicated that di-
versity was either unrelated or negatively and significantly related to
concurrent achievement (not including the pre-K pretest). For instance,
in the pre-K year, spring (posttest) diversity was positively yet non-
significantly related to spring pre-K math achievement. The same pat-
tern held for spring first grade diversity and spring first grade
achievement. In kindergarten, spring diversity was significantly and
negatively related to spring achievement. In comparison to the pre-
viously described findings between early diversity and later achieve-
ment, these findings suggest that concurrent diversity does appear to
have the same benefits for concurrent achievement.

In the second set of multi-level models, we found that after con-
trolling for baseline score, age, intervention, socio-economic status, and
bilingual status, greater classroom strategy diversity at the pretest of
pre-K was positively but not significantly related to higher achievement
scores at the pre-K posttest. Additionally, the concurrent diversity score
of the pre-K posttest was not a significant predictor. Higher diversity in
the fall of pre-K predicted higher achievement in the spring of kinder-
garten, after controlling for the same set of covariates, but concurrent
spring diversity in kindergarten was not related to spring achievement.
Counter to our earlier findings, only spring first-grade diversity pre-
dicted spring first-grade achievement. Recall that these results ac-
counted for a substantial portion of the variance, even after controlling
for a variety of child-level covariates.

These analyses, therefore, provide support most consistent with the
approach of the third category. That is, early diversity predicted higher
achievement for material that children were just beginning to learn as
well as their subsequent learning. However, in the later phases of
learning, less diversity in strategies was positively related concurrently,
perhaps because the children in a class coalesced around fewer, more
sophisticated strategies.

4.2. Teaching arithmetical strategies and classroom strategy diversity

Each of the three categories not only make unique predictions re-
garding the relationship of strategy diversity in classrooms to children’s
concurrent and subsequent achievement but have very different im-
plications for curriculum and teaching. These are important, given the
variety of messages teachers receive regarding the type of instruction
(i.e., ranging from direct instruction to unassisted discovery) that is best
for children’s learning. To explicate these pedagogical implications, we
use a gardening metaphor that has the goal of creating healthy and
beautiful trees and shrubs.

The first category aligns with unchecked development, which posits
the benefits of providing nutrients and sunshine and otherwise allowing
the plants to grow as they will naturally. In education, this pedagogical
approach values as much strategy diversity as possible and favors a
consistent evocation and sharing of a variety of child-generated stra-
tegies and alternative strategies (e.g., Carpenter, Fennema, Franke,
Levi, & Empson, 2014; Choppin, 2011; Stein et al., 2008). A goal of such
constructivist-based approaches is for children to use and share such
different strategies (e.g., Carpenter et al., 2014), thus encouraging
classroom strategy diversity, with beneficial effects on learning, pre-
sumably based on increases in conceptual understanding (e.g., obser-
ving that different strategies yield the same mathematical result) and
access to different, often more effective and efficient strategies
(Carpenter et al., 1998; Gersten, Beckmann, Clarke, Foegen, Marsh,
Star, & Witzel, 2009; Peterson, Carpenter, & Fennema, 1989). This
pedagogical approach was advised by Paulos (1991): Stress a few basic
principles and leave most of the details to the student (from Baroody,
Lai, & Mix, 2006; 1991). This approach may appear aligned with un-
assisted discovery learning, but it could easily be used in enhanced
discovery approaches using the enhancements of generation and eli-
cited explanations (Alfieri et al., 2010).

Table 3
Summary of multi-level linear regression analysis (full model) early mathe-
matics.

Parameters Estimates SE z p

Predicting Math Achievement at the End of Pre-K Year
Level 1 Predictors
Baseline 0.436 0.022 19.890 <0.001***

Age 0.026 0.004 5.840 <0.001***

Bilingual 0.100 0.042 2.390 0.017*
FRL −0.155 0.045 −3.430 0.001**

Intervention 0.424 0.052 8.110 <0.001***

Level 2 Predictors
Diversity Score T1 0.004 0.003 1.250 0.212
Diversity Score T2 −0.003 0.005 −0.680 0.497

Predicting Math Achievement at the End of Kindergarten Year
Level 1 Predictors
Baseline 0.686 0.024 28.360 <0.001***

Age 0.009 0.004 2.200 0.028*
Bilingual 0.139 0.037 3.770 <0.001***

FRL −0.127 0.042 −3.050 0.002**

Intervention −0.114 0.045 −2.500 0.012*

Level 2 Predictors
Diversity Score T1 0.005 0.002 1.990 0.046*
Diversity Score T2 0.006 0.004 1.720 0.086
Diversity Score T3 −0.008 0.005 −1.460 0.144

Predicting Math Achievement at the End of First-Grade Year
Level 1 Predictors
Baseline 0.770 0.027 28.150 <0.001***

Age −0.003 0.004 −0.780 0.437
Bilingual 0.008 0.040 0.190 0.848
FRL −0.217 0.044 −4.900 <0.001***

Intervention −0.023 0.042 −0.540 0.586

Level 2 Predictors
Diversity Score T1 0.003 0.002 1.070 0.286
Diversity Score T2 0.004 0.004 1.250 0.210
Diversity Score T3 −0.008 0.005 −1.750 0.080
Diversity Score T4 −0.016 0.007 −2.110 0.035*

Note. T1 = pretest of pre-K year; T2 = posttest of pre-K year; T3 = posttest of
kindergarten year; T4 = posttest of first-grade year, FRL = Free/Reduced price
lunch status.
*** p < .001.
** p < .01.
* p < .05. Bilingual, FRL, and whether received TRIAD Intervention were

coded as 1(Yes) and 0 (No).
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The second category aligns with shearing, or consistently cutting
only the top bits of growth to shape the plants into formal hedges for
aesthetic or privacy purposes. In education, this competing pedagogy
promotes direct instruction as more efficient and mathematically rig-
orous (see Carnine et al., 1997; Clark et al., 2012; Wu, 2011). In a
similar vein, many educators believe that one must teach grade-level
goals directly, in contrast to an approach that considers learning tra-
jectories (e.g., see Clements & Sarama, 2014; Sarama & Clements, 2009)
in which instruction is based on levels of thinking that most children
develop as they build up to competence in such grade-level goals (e.g.,
Confrey, 2019). The research on such direct teaching and enforcement
of specific efficient strategies is contradictory. There is a good body of
evidence supporting this approach (Carnine et al., 1997; Clark et al.,
2012; Gersten, 1985; Heasty et al., 2012); however, others indicate that
teaching formal strategies such as arithmetical algorithms, even with
manipulatives, leaves some children even into fourth grade with limited
conceptual structures and alternative strategies (Biddlecomb & Carr,
2011).

Supporting a more moderate implementation of this second cate-
gory, studies suggest that explicitly teaching specific strategies can have
a positive impact on children’s numerical and arithmetical knowledge
(Clarke, Doabler, Nelson, & Shanley, 2014), such as specific teaching of
the counting on procedure (Saxton & Cakir, 2006) or teaching a specific
sequence of strategies (e.g., Thornton, 1979). These approaches are
well aligned with general explicit instruction, although their goals
differ as far as teaching one or multiple strategies (Alfieri et al., 2010).

The third category aligns with pruning, a synthesis of these two. That
is, the goal in gardening is to support natural growth but also to se-
lectively trim branches that are not working and develop an increas-
ingly healthy plant with an aesthetic structure. In education, this would
favor an early encouragement and support of child-generated strategies,
and only considerably later selectively focusing support on new or
strong branches, thus allowing (children’s) abandonment of branches
that are not growing or sustaining as well. Thus, pruning combines
pedagogical approaches that encourage strategy diversity with sub-
sequent support for children to construct more effective strategies (not
aimed at diversity per se). Elaborating on the Japanese approach to
teaching first-grade arithmetic mentioned previously, teachers first
encourage child- invented strategies then focus on and support a par-
ticularly effective method later in the year (Henry & Brown, 2008;
Murata & Fuson, 2006), in particular the break-apart to make ten
strategy (BAMT, such as 9 + 6—what is needed to add to 9 to make 10,
subtract 1 from the 6, then add 10 and 5). The BAMT strategy is
carefully extended to more challenging numbers and reintroduced in
additional contexts. Thus, the classrooms start with a diversity of
strategies, but then narrow their focus to shared, effective strategies.
This approach does not align with discovery, enhanced discovery, or
explicit instruction (Alfieri et al., 2010), but combines these differently
at separate phases of the learning process.

In most cases, results from this study aligned more with the pruning
approach than with the unchecked development or the shearing ap-
proaches. That is, across both sets of models, the earliest phases of
learning classroom strategy diversity tended to be positively related to
concurrent achievement (contrary to the shearing approach). However,
at subsequent time points strategy diversity was usually negatively re-
lated or unrelated to concurrent achievement (contrary to the un-
checked development approach). Classroom strategy diversity was
predictive of achievement from one to three time periods in the future
(again contrary to the shearing approach). These relationships were
consistent with the implications of pruning approach with one excep-
tion in the multi-level linear regression models: we expected kinder-
garten classroom diversity to positively and significantly predict first-
grade achievement. It may be that the range of problems that most
children attempted was too narrow and thus restricted the achievement
measure. If true, future research examining a wider range of more
difficult (e.g., multiplicative) arithmetic problems may reveal different

patterns. We note that in the means-as-outcomes models, patterns of
findings conformed more precisely to the pruning approach.

It is easy for a lay person to see the results of pruning and shearing
as indistinguishable in both gardening and education. However, the
processes and the effects are distinct. Shearing is a more rigid inter-
vention, including cutting the leader, selecting a new terminal bud,
setting the taper of the tree, trimming side branches, and removing
growth seen as problematic because it does not fit a pre-determined
shape. It can leave mutilated branches and restrict new growth to the
outside of the plants, which results in dead, unhealthy, leafless inter-
iors. Educationally, shearing may help children use mathematically
accurate procedures, but curiosity, creativity, and individual develop-
ment may be curtailed (Baroody & Dowker, 2003; Clements & Sarama,
2014; Kamii & Dominick, 1998; Steffe, 1994; Torbeyns et al., 2005).
Pruning, on the other hand, adheres to the plant's natural growth habit
and selectively abandons branches anywhere in the shrub where
growth is stalled, thus opening up the center of the plant, allowing air
and light to maintain healthy growth. In education, then, pruning
supports children in creatively inventing their own procedures and then
later letting go of unsuccessful and less sophisticated strategies to de-
velop those that are both consistent with children’s natural develop-
ment and stronger mathematically. This could be done via direct in-
struction but may be more positively with enhanced-discovery
instruction featuring carefully selected and scaffolded arithmetical
problems, opportunities for children to explain their ideas, and the
provision of timely feedback (Alfieri et al., 2010). In both gardening
and education, pruning is a more difficult process than shearing.

4.3. Caveats and future research

This is an exploratory study and there are several limitations. First,
while the data justify claims about the amount of strategy diversity
evident in children’s responses, we did not specifically measure teacher
instruction of various mathematical strategies1. Future research can
examine the links between strategy instruction, class-level strategy di-
versity, and children’s mathematical achievement over time. Ad-
ditionally, although the broader study was a cluster randomized trial,
classroom strategy diversity was not randomly assigned, and thus re-
sults are only correlational. Further, diversity was examined in chil-
dren’s responses to an assessment. Future research, therefore, could
examine children’s strategies during instruction, as well as randomly
assigning classrooms to interventions embodying the three pedagogical
approaches identified here. Such research might also investigate gen-
eralizability to other-aged children and thus other topics and levels of
mathematical content. Of course, not all instruments collect data on
strategies; the present results suggest this may be a useful assessment
practice for future research.

4.4. Summary

Keeping these caveats in mind, the findings have important im-
plications for research and practice. They do not support one goal for
strategy diversity or a single pedagogical approach. Indeed, they sup-
port the pruning approach that synergistically combines the other two
approaches and allows multiple general pedagogical stances. Future
research is needed, on strategy diversity per se as in the present study as
well as via experimental studies with treatments that align to the three
pedagogical approaches, unchecked development, shearing, and
pruning. We also caution that some children will likely do quite well in
an unchecked development environment and perhaps others with
shearing approaches. Nevertheless, the evidence of this study suggests

1 Including, as one reviewer pointed out, variables such as other aspects of
teachers' behavior that may be related but not dealing with strategies explicitly,
such as autonomy-supportive versus controlling behavior.
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that the combination of approaches—children’s invention in a guided
discovery setting with teachers who encourage diverse strategy use for
a considerable period, followed by more focused support on mathe-
matically sophisticated and effective strategies–may be superior for
most young children.
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