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ABSTRACT

Cluster Expansion Models Via Bayesian Compressive Sensing

Lance J. Nelson
Department of Physics and Astronomy, BYU

Doctor of Philosophy

The steady march of new technology depends crucially on our ability to discover and design
new, advanced materials. Partially due to increases in computing power, computational methods
are now having an increased role in this disovery process. Advances in this area speed the dis-
covery and development of advanced materials by guiding experimental work down fruitful paths.
Density functional theory (DFT) has proven to be a highly accurate tool for computing material
properties. However, due to its computational cost and complexity, DFT is unsuited to performing
exhaustive searches over many candidate materials or for extracting thermodynamic information.
To perform these types of searches requires that we construct a fast, yet accurate model. One model
commonly used in materials science is the cluster expansion, which can compute the energy, or
another relevant physical property, of millions of derivative superstructures quickly and accurately.
This model has been used in materials research for many years with great success.

Currently the construction of a cluster expansion model presents several noteworthy challenges.
While these challenges have obviously not prevented the method from being useful, addressing
them will result in a big payoff in speed and accuracy. Two of the most glaring challenges encoun-
tered when constructing a cluster expansion model include: (i) determining which of the infinite
number of clusters to include in the expansion, and (ii) deciding which atomic configurations to
use for training data. Compressive sensing, a recently-developed technique in the signal process-
ing community, is uniquely suited to address both of these challenges. Compressive sensing (CS)
allows essentially all possible basis (cluster) functions to be included in the analysis and offers a
specific recipe for choosing atomic configurations to be used for training data. We show that cluster
expansion models constructed using CS predict more accurately than current state-of-the art meth-
ods, require little user intervention during the construction process, and are orders-of-magnitude
faster than current methods. A Bayesian implementation of CS is found to be even faster than the
typical constrained optimization approach, is free of any user-optimized parameters, and naturally
produces error bars on the predictions made. The speed and hands-off nature of Bayesian com-
pressive sensing (BCS) makes it a valuable tool for automatically constructing models for many
different materials. Combining BCS with high-throughput data sets of binary alloy data, we auto-
matically construct CE models for all binary alloy systems. This work represents a major stride in
materials science and advanced materials development.

Keywords: cluster expansion, density functional theory (DFT), compressive sensing, Bayesian
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Chapter 1

Introduction

The field of computational solid state physics/materials science is largely concerned with

the understanding and predicting of the physical properties of solid material via computer calcula-

tions and simulations. The material in question could be something as small as a nanoparticle or

as large as a bulk alloy. The drive for materials research in general stems from the ever-increasing

demand for new technologies, which rely heavily on the discovery and successful fabrication of

high-performing materials. Due to remarkable advances in computing power as well as significant

methodological/algorithmic strides, the role of computation in materials research has increased

dramatically over the last half century. Computational findings in the materials arena are a boon to

metallurgists and experimental scientists, providing valuable direction for materials synthesis and

avenues for future research.

In theory, all physical properties of a material can be obtained by solving the Schrödinger

equation for the system comprised of all ions and electrons that make up the material. As any

undergraduate physics student knows, the solution to this equation can be easily obtained for many

simple problems (i.e., particle in a box, harmonic oscillator, hydrogen atom, etc). However, solv-

ing Schrödinger’s equation for even the simplest of materials problems presents a considerable

challenge. For example, if we were interested in a single molecule of CO2, the electronic wave-

function would be 66-dimensional, 3 dimensions for each of the 22 electrons. Consideration of

nanoclusters, which can consist of thousands of atoms, requires the determination of an electron

wavefunction that has hundreds of thousands of dimensions. This should give the reader a first

clue as to the complexity of this problem.

In 1998 Walter Kohn and John Pople were jointly awarded the Nobel prize in chemistry for

their discovery of density functional theory (DFT) and quantum chemistry computer code devel-

opment. The class of numerical methods they discovered has benefited the field of computational

1



1976 1980 1985 1990 1995 2000 2005 2010
Year

2000

4000

6000

8000

10000

12000

14000

 of Publications

Figure 1.1: Publications in com-
putational materials science over
the last 37 years. The increased ac-
tivity in this area can be attributed
to increases in computing power
and to the discovery of density
functional theory, which made the
many-body problem tractable.

materials research immensely. As a side note, it was the first time in history that a nobel prize was

awarded for a numerical method rather than a purely scientific discovery. The theorems of DFT

were put forth by Hohenberg, Kohn, and Sham in the 1960’s, and reduced the many-interacting-

electron problem to a system of independent electrons without any approximations. First, Hohen-

berg and Kohn proved that the ground state energy is a unique functional of the electron density

and that this density can be found by minimizing the functional with respect to the density. To

make the minimization tractable Kohn and Sham proposed considering a fictitious system of in-

dependent electrons. The variational principle is applied to the resulting functional to produce a

Schrödinger-like equation for single electrons. All errors introduced by considering the electrons

as classical, independent particles are wrapped into an exchange-correlation energy, which must be

approximated. DFT has become a pillar of modern-day computational materials science and most

modern-day computational materials research methods employ DFT-based calculations in some

way (see Figure 1.1). Chapter 1 in this dissertation reviews modern-day density functional theory,

the theorems that form its foundation, and some practical details.

Many materials problems of practical importance find themselves well beyond the scope

of DFT-based methods. For example, one subset of computational materials problems involves

exploring all crystal structures whose atoms are restricted to lie on a parent lattice, called derivative

superstructures. The motivation for studying such groups of materials stems from the fact that

many experimentally observed crystal structures fall into this category. However, the number of

unique derivative superstructures for any given lattice increases rapidly with the unit cell size to
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include millions of atomic configurations. The sheer size of such searches put them well beyond

the reach of computationally-costly, DFT-based methods.

To perform large searches, one approach is to build a model, trained from DFT data, but

which is much simpler mathematically and can therefore compute much faster. One such model

commonly used to explore derivative superstructures is the cluster expansion. The cluster expan-

sion expresses the energy of any atomic configuration (restricted to the parent lattice) as a linear

combination of cluster energies, or energies of small clusters of atoms on the lattice. Due to its

mathematical simplicity, the cluster expansion model can accurately compute the energies of mil-

lions of derivative superstructures in only minutes, a vast speed-up over DFT.

Assessing the thermodynamic stability and physical usefulness of a material at tempera-

tures greater than zero requires consideration of the free energy: F = U � T S. This is beyond the

scope of time-independent DFT, and a common approach for computing the free energy involves

Monte-Carlo-like simulations which can require millions of energy calculations. These simulations

would be unfeasible to perform without a fast model for computing energies, providing another key

motivator for wanting a fast, accurate model.

Several noteworthy practical challenges currently exist in the cluster expansion construc-

tion process. The first is deciding how to truncate the expansion. This is challenging because the

number of unique clusters is very large and there is no way to know a priori which terms will be

dominant contributors for a given system. Most modern techniques for accomplishing this involve

the use of physical intuition and/or complex algorithms. The second challenge is deciding which

crystal structures to use as training data. A subtle point here is that these two challenges are not

independent of one another, but must be addressed jointly. Design of robust, efficient methods to

address these questions has remained a challenge for many years. Chapter 3 of this dissertation

provides a description of the mathematical foundation of the cluster expansion and a summary of

the prevailing methods for constructing such models.

Since the number of possibly-relevant basis functions (clusters) is much larger than the

number of DFT calculations that are feasible to perform for a single system, the problem of con-

structing a cluster expansion model naturally emerges as an underdetermined linear algebra prob-

lem,

Ax = b, (1.1)
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where each column (row) in A corresponds to a basis function (training data point/DFT calcu-

lation), and the number of rows is much less than the number of columns. An underdetermined

problem is challenging to solve because there are an infinite number of solutions that are consistent

with the data provided.

A recently-developed technique from the signal processing community, compressive sens-

ing (CS), proposes solving this underdetermined problem by constraining the solution search to

solutions whose `1 norm is minimal. Of all the solutions that are consistent with the data, the `1

norm constraint identifies the solution with the fewest non-zero coefficients, or most sparse solu-

tion. This new paradigm presented by CS is uniquely well-suited to solve the above-mentioned

cluster expansion challenges. CS solves the truncation problem by including essentially all pos-

sible basis functions. The mathematical theorems forming the foundation of CS also dictate the

form of the matrix A, providing a mathematically proven recipe for choosing training data. CS is

robust and provides an efficient method for identifying relevant basis functions (out of a very large

pool of contenders), and computing their associated coefficients.

Various mathematical implementations of CS currently exist. In a one-parameter formu-

lation, a constrained minimization problem is recast as an unconstrained problem, with the single

parameter controlling the sparseness of the solution. Another implementation of CS involves the

use of Bayesian statistics. This implementation offers a parameterless framework (automatic), vast

speed increases from current state-of-the art methods, and error bars on solutions. A weighted

formulation of CS further enhances the sparsity of the solution and reduces the amount of training

data needed. Chapters 4 and 5 in this dissertation provide further details about these implementa-

tions in the context of cluster expansion models. A comparison between CS-based CEs and other

prevailing methods is also given. CS is found to produce cluster expansion models that predict

more accurately than current state-of-the art methods, and are orders of magnitude faster than the

current state-of-the-art.

One modern approach to uncovering high-performing materials is to simply compute, using

DFT, the property of interest for all candidate materials (as stability is of fundamental importance,

the chemical energy is routinely computed). By identifying those crystal structures which appear

most frequently in nature, a database of candidate crystal structures can be assembled. Using

an automatic framework for performing DFT calculations, the energy is computed for all crystal
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structures in the database and for all possible combinations of atoms. The resulting database of

first-principles data can then be mined for new, advanced materials. This approach is commonly

referred to as high throughput and it relies heavily on being able to automatically perform large

numbers of calculations with minimal human oversight. Results from high-throughput studies have

been fruitful and beneficial [2].

Previously, the inclusion of materials models, like the cluster expansion, in high-throughput

databases has not been possible. This is mostly because the aforementioned challenges have made

the model building process cumbersome and human-time-intensive, requiring hours of user time

to construct a high-quality model for a single system. However, the discovery of CS as a fast,

efficient, and automatic way to build CE models has made the inclusion of material models in

high-throughput databases feasible. Chapter 6 discusses the details of this endeavor and the asset

this database will be to the materials science community.
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Chapter 2

Density functional theory

2.1 The many-body Schrödinger equation

One common goal of materials scientists is to understand and predict the physical prop-

erties of material. While experimental results are insightful, the materials science theorist seeks

to predict or compute materials properties starting from basic physical and mathematical theories.

The material of interest could be as simple as a single atom or as complex as a bulk solid made up

of a large array of atoms. This complex arrangement of atomic particles is inherently a quantum

mechanical problem, and requires finding a solution to Schrödinger’s equation. As we shall see, for

everything except the most simple systems, a straight-forward solution to Schrödinger’s equation

is impossible.

Consider a system comprised of N atoms. To define where an atom is located requires

that we define both where the nucleus and the atom’s electrons are. A quantity of fundamental

importance is the energy of the atomic configuration and perhaps how this energy changes as the

atoms move to different positions. This energy can be found by finding a solution to the time-

independent, non-relativistic Schrödinger equation which, for such a system, is given by

HY(R1,R2..RN,r1,r2..rn) = EY(R1,R2..RN,r1,r2..rn), (2.1)

where Ri is the position of ion i and r j is the position of electron j. A key realization is that the

ions are orders of magnitude heavier than the electrons and therefore react much more slowly to

changes in their environment. This allows the problem to be divided into two parts. First, the

massive ions are assumed to remain fixed in their positions. The resulting problem is solved and

the wavefunction describes the behavior of the electrons moving in the presence of the potential

created by the ions and the other electrons. Changes in energy as the ionic positions change can be

6



explored by performing multiple calculations, each one with the ions fixed in different locations.

The division of this problem into two parts is called the Born-Oppenheimer approximation, which

reduces the dimensionality of the problem from 3M + 3MN (for M atoms and N electrons per

atom) to 3N. Under this approximation the Schrödinger equation becomes

HY(r1,r2..rN) = EY(r1,r2..rN), (2.2)

where N is the number of electrons in the material. Notice that the wavefunction is a function of

the electronic positions but not the ionic positions. The Born-Oppenheimer approximation reduces

the dimensionality of the wavefunction to 3N variables, 3 coordinates for each electron, which is

still an extremely large number even for few-atom materials such as a molecule or nanoparticle.

The Hamiltonian operator, H, consists of three terms: The kinetic energy of the electrons, the

interaction of the electrons with the external potential, and the electron-electron interaction

H = T +Vext +Vee (2.3)

=
N

Â
i

� h̄2—2
i

2m
+Vext + Â

i< j

q2

|ri � rj|
. (2.4)

For solids, the external potential is the interaction between the ions and electrons in the solid

Vext = Â
i,k

Qq
|ri �Rk|

. (2.5)

Here, ri is the position of electron i and Rk is the location of ion k and the double sum is over all

electrons and ions in the solid. Note that this term in the Hamiltonian is the only term involving

interactions between particles other than electrons, and is the only way to distinguish between a

lattice decorated with Ag and Pt atoms and a lattice decorated with Ni and Al atoms, for example.

The operators T and Vee are independent of the external potential as they only involve the electrons

and not the ions.

Putting everything together yields the following many-body Schrödinger equation

 
N

Â
i

� h̄2—2
i

2m
+Â

i,k

Qq
|ri �Rk|

+ Â
i< j

q2

|ri � rj|

!
Y(r1,r2..rN) = EY(r1,r2..rN). (2.6)
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While conceptually simple, finding a solution to this equation using straight-forward techniques

is practically impossible. Specifically, the second and third terms add considerable complexity

because they involve physical interactions with electrons. In order to fully express these terms,

the locations of the electrons must be known. But the locations of the electrons can only be

obtained from the yet-unknown electron wavefunction. Thus, in addition to being extremely high

dimensional, the exact form of the Hamiltonian can’t even be fully expressed without first knowing

the answer. In other words, the Schrödinger equation is a many-body problem.

One way to attack this problem is to assume that the electron-electron energy can be ap-

proximated as

VH(r) = e2
Z n(r0)

|r� r0|dr0 . (2.7)

This energy, called the Hartree energy, says that each electron feels the average, rather than instan-

taneous, effect of the other electrons. The many-body wavefunction is then constructed as a Slater

determinant of one-particle orbitals, y j(xi)

Y(r1,r2..rN) = y1(r1)y2(r2) · · ·yN(rN)�y1(r2)y2(r1) · · ·yN(rN)+ · · · (2.8)

=

���������������

y1(r1) y1(r2) . . . y1(r3)

y2(r1) y2(r2) . . . y2(r3)

. . .

. . .

yN(r1) yN(r2) . . . yN(r3)

���������������

. (2.9)

This construction ensures that the wavefunction satisfies the Pauli exclusion principle which re-

quires that the sign of Y change when two of its arguments interchange. Use of this form of

the wavefunction leads to a set of single-electron equations known as the Hartree-Fock equations.

These equations include a complicated exchange term involving integrals of the form

Z
V (r,r0)y(r0)dr0. (2.10)

This term adds considerable complexity to the problem and generally makes a straightforward

solution quite impossible.
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2.2 Density functional theory: An alternative to solving the Schrödinger equation

In 1964 Hohenberg and Kohn proved two theorems that provided an alternative to solving

the many-body Schrödinger equation while still remaining formally exact [3]. As the name sug-

gests these theorems focus on finding the electron density instead of the many-body wavefunction

and are the foundation of modern-day density functional theory (DFT). The following is a brief

review of the mathematical foundation of DFT. The discussion employed here generally follows

the same as Hart [4] and Sholl [5].

The first theorem states that the ground-state energy is a unique functional of the electron

density. A functional is similar to a function, except instead of mapping a number to a number,

a functional maps a function to a number. To distinguish it from a normal function, brackets

instead of parenthesis are used to enclose the arguments of the functional. For example, the energy

functional can be written as E[n(r)] and takes as input the density function and returns the energy.

This theorem establishes a link between the three-dimensional electron density and the

ground-state energy of the system of electrons. If the density corresponding to the ground-state

of the system can somehow be determined, then from it can also be determined the ground-state

energy. From this it follows that the Hamiltonian operator and ground-state wavefunction are also

fully specified from a knowledge of the electron density alone. This theorem is useful because it

shifts our focus away from searching for the many-electron wavefunction (3N-dimensional) and

redirects it towards finding the electron density (3-dimensional).

2.2.1 Proof of first H-K theorem

Briefly stated, Hohenberg and Kohn’s first theorem is that:

The ground state energy is a unique functional of the electron density

The proof of this theorem is straightforward and proceeds by reductio ad absurdum, which means

that a false, or absurd result follows from a denial of the theorem. Let’s assume that there are

two potentials, Vext(r) and V 0
ext(r) which both result in the same electronic density n0(r). In other

words, let’s first assume that the theorem is incorrect, and see what emerges from this assumption.

The Hamiltonian operators, H and H 0, for these two external potentials are

H = T +Vee(r)+Vext(r), (2.11)
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H 0 = T +Vee(r)+V 0
ext(r). (2.12)

The ground-state energy of the unprimed Hamiltonian can be expressed as

E0 = hYgs|H|Ygsi. (2.13)

Now, if we replace the un-primed wavefunctions with the primed ones, we would expect that the

result would be greater than the ground-state energy of the un-primed system

E0 < hY0
gs|H|Y0

gsi. (2.14)

We can write the un-primed Hamiltonian in terms of the primed Hamiltonian as:

H = H 0 �V 0 +V. (2.15)

Inserting this into equation (2.14)

E0 < hY0
gs|H 0 �V 0 +V |Y0

gsi (2.16)

= E 0
0 +

Z
n(r)

�
V �V 0�d3r. (2.17)

We can exchange the prime with the un-primed and get a similar result

E 0
0 < hYgs|H �V +V 0|Ygsi (2.18)

= E0 �
Z

n(r)
�
V �V 0�d3r. (2.19)

Adding these two inequalities together gives

E 0
0 < E0 �

Z
n(r)

�
V �V 0�d3r (2.20)

E0 < E 0
0 +

Z
n(r)

�
V �V 0�d3r (2.21)

(2.22)

E 0
0 +E0 < E0 +E 0

0, (2.23)
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which is obviously an absurdly false statement. Thus, the first H-K theorem is proven because to

assume otherwise leads to an obviously false statement.

H-K’s first theorem proves that the electron density uniquely determines all other impor-

tant quantities, such as the energy, Hamiltonian operator and wavefunction, of the system. This

theorem effectively trades the need to find the many-body wavefunction for the electron density.

However, it doesn’t specify what the energy functional looks like or provide a way to find the

ground state electron density from it. Given an energy functional, the second H-K theorem pro-

vides a method for using the functional to find the ground state electron density. The second H-K

theorem is crucial to making the first theorem useful. The second theorem involves defining a key

property of the energy functional. It states that the electron density that minimizes the energy func-

tional is the density corresponding to the solution to Schrödinger’s equation for the ground-state

of the system. Put briefly, the first theorem proves that an energy functional exists, and the sec-

ond theorem provides a path towards using the functional to find the ground-state electron density.

These two theorems form the foundation of modern density functional theory.

2.2.2 Proof of second H-K theorem

The second H-K theorem, which states that the density which minimizes the energy func-

tional is the true density associated with the ground-state wavefunction, is also simple to prove.

Suppose that |Yi(|Y0i) is the ground-state wavefunction having density n(r)(n0(r)) corresponding

to the Hamiltonian H(H 0). The ground-state energy of the unprimed system is given by

Egs[n(r)] = hY|H|Yi (2.24)

= hY|T +Vee +Vext|Yi. (2.25)

Since this energy is a minimum , we know that if we insert the unprimed wavefunction into this

expression the result will be greater than this energy

Egs[n(r)] = hY|H|Yi (2.26)

< hY0|H|Y0i, (2.27)
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which means that

Egs[n(r)] < Egs[n0(r)]. (2.28)

This is really a trivial result, but reassures us that finding the density which minimizes the energy

functional will yield the density corresponding to the ground-state of the system.

2.3 The energy functional

The energy functional proved by H-K to exist can be written as

E[n(r)] = T [n(r)]+Vee[n(r)]+Vext[n(r)]. (2.29)

Here, the first term is the kinetic energy of the electrons, the second term is the energy associated

with the interacting electrons and the third term is the energy associated with the interaction be-

tween the electrons and the ions. The form of the first two functionals are unknown, with the third

functional having the form

Vext[n(r)] =
Z

n(r)Vext(r)d3r. (2.30)

Even though H-K proved that an energy functional exists, we don’t know the exact form of the

functional, and even if we did, we have no well-defined recipe for minimizing this functional

with respect to the electron density. To provide further traction to this problem Kohn and Sham

proposed solving a slightly different problem, that of N non-interacting electrons [6]. Under this

approximation, the kinetic energy functional can be written as

Ts[n(r)] = � h̄2

2m

N

Â
i
hfi|—2|fii, (2.31)

The subscript “s” is to remind us that this is not the true kinetic energy but rather the kinetic energy

of N non-interacting electrons. A considerable portion of the electron-electron interaction energy

is classical Coulomb,or Hartree energy, and can be written as

VH[n(r)] = 1
2

Z n(r1)n(r2)

|r1 � r2|
dr1dr2. (2.32)
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Putting all these pieces into the total energy functional gives

E[n(r)] = Ts[n(r)]+VH[n(r)]+Vext[n(r)]+Exc[n(r)], (2.33)

where the last term is called the exchange-correlation energy and is defined as

Exc[n(r)] = (T [n(r)]�Ts[n(r)])� (Vee[n(r)]�VH[n(r)]). (2.34)

In words, the exchange-correlation energy is the sum of the errors introduced by using a non-

interacting electron kinetic energy operator and by treating the electron-electron interaction classi-

cally.

Applying the variational principle to this functional yields a Schrödinger-like equation for

single electrons 
� h̄2

2m
—2 +Vext(r)+VH(r)+Exc(r)

�
yi(r) = eiyi(r). (2.35)

This set of equations is commonly referred to as the Kohn-Sham (KS) equations, and they are

similar in form to equation (2.6). The main difference is that there is no sum over electrons and

the equation involves single-electron wavefunctions instead of a many-body wavefunction.

Hohenberg and Kohn’s theorems, which shift the focus away from the many-body wave-

function and towards minimizing an energy functional, combined with Kohn and Sham’s approach

for minimizing the energy functional, have resolved most of the complexities associated with solv-

ing equation (2.6). The many-body Schrödinger equation has been replaced with a set of single-

electron Schrödinger-like equations, which is mathematically tractable and can be solved using

traditional numerical techniques.

However, you may notice that there is something circular about the KS equations. To define

the operator in equation (2.35) we need the electron density. But to find the density we must find

the KS wavefunctions. To break this circle, the KS equations are solved using an iterative process

(illustrated in figure 2.1). An initial electron density is chosen and used to construct the operator.

With the operator constructed, the differential equation can then be solved, and the single-particle

wavefunctions found. These wavefunctions are then used to compute a new electron charge density.

If the new density is equal to the the previous density, then the problem is solved. Otherwise, a new
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Figure 2.1: Illustration of the
self-consistent cycle used to solve
the KS equations given by equation
(2.35).

density is constructed, typically by mixing the old and new densities somehow, and the algorithm

starts over. This is called a self-consistent cycle because the convergence criteria is whether the

starting point was consistent with the end result.

Let’s review what we have learned so far. We’d like to find the ground-state energy of a

complex collection of ions and electrons but a straightforward solution is impossible because it is

a many-body problem. The theorems of Hohenberg, Kohn, and Sham show that an alternative to

solving the many-body Schrödinger equation is to minimize an energy functional with respect to

the electron density, and that this can be done by solving a set of Schrödinger-like equations for

single electrons. With the exception of the exchange-correlation energy, Exc(r), all terms in the

KS Hamiltonian operator can be easily written down.

2.4 The exchange-correlation functional

All errors introduced by considering the electrons as classical, independent particles are

accounted for in the exchange-correlation energy, and to proceed we must specify this functional.

Since everything that we know has already been written down, defining this energy is not a trivial

task. The truth is that the true form of the exchange-correlation function is simply not known and

work to find an approximate functional has been ongoing for many years.
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One common way to approximate the exchange-correlation potential is to use the exchange-

correlation potential of the uniform electron gas (n(r) = constant)

Exc(r) = Euniform electron gas
xc (r). (2.36)

While the uniform electron gas may seem unimportant for materials problems of interest, it pro-

vides a situation where the exact form of the exchange-correlation can be calculated. Since only the

local electron density is employed in the approximation, it is called the local density approximation

(LDA). The exchange energy of a uniform electron gas is known analytically to be

ELDA
x [r] = �3

4

✓
3
p

◆1/3 Z
r(r)4/3dr. (2.37)

However, the correlation energy is not known analytically except in the high and low density

regimes and approximating this functional has been accomplished through the use of quantum

Monte Carlo simultions. Various different parameterizations of the LDA are commonly used

[7–10]. For magnetic systems a local spin density approximation has been employed [11]. The lim-

itations of this approximation are well known, and generally speaking the LDA performs well for

systems whose electron density is close to uniform or that is slowly-varying. LDA-based calcula-

tions typically underestimate the bandgap in semiconductors. The LSDA has incorrectly predicted

the groundstates for certain magnetic compounds.

Improving upon the LDA has been attempted by including information about the gradient

of the electron density in the functional, i.e. Exc(r) ! Exc(r,—r). Functional paramaterizations of

this type are called generalized gradient approximations (GGA), and dozens of paramaterizations

for doing this exist in the literature [12–16]. No matter the functional employed, it is important to

remember that all are approximations to the true functionals and hence solutions to equation (2.35)

obtained by using these approximate functionals are only approximate solutions.

2.5 Practical details

One particular implementation of DFT is contained in the VASP software, which stands

for Vienna ab-initio simulation package. Since VASP was the primary tool for performing DFT
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calculations used in this work, a few practical details associated with its use will be given here.

However, some of the topics discussed here are general and used in many DFT implementations.

2.5.1 Plane wave basis and energy cutoff

The self-consistent approach for minimizing the energy functional can be broken into two

parts. First, the KS equations (Eq. 2.35) are solved and the corresponding density is computed.

Then the density is used to compute a new potential, which is then used when solving the updated

KS equations. The second part, using the density to assemble the differential operator, is trivial,

but the first part requires solving an ordinary differential equation.

One numerical approach for solving this equation involves expanding the wavefunction

using a set of basis functions. From Bloch’s theorem we know that the solutions to the equation


� h̄2

2m
—2 +Vext(r)+VH(r)+Exc(r)

�
yi(r) = eiyi(r) (2.38)

subject to periodic boundary conditions have the form

yn,k(r) = eik·run,k(r), (2.39)

where un,k(r) is a periodic function of the lattice, i.e., un,k(r) = un,k(r + R) where R is a lattice

vector. Stated in words, Bloch’s theorem indicates that each single-electron state is a product

of a planewave times a function periodic in the lattice. The periodic function is indexed by two

variables, n, and k. States associated with a single value of n vary continuously with the vector k

and form a band of states. The index n is the so-called band index because for each value of n there

are a band of electronic states. Solving equation (2.38) yields a set of n states, one for each band.

The unknown part of the Bloch function is the periodic function un,k(r) and we can express

this function using a set of basis functions, f j(r)

un,k(r) = Â
j

c j,n,kf j(r). (2.40)
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Inserting this into the Bloch functions gives

yn,k(r) = eik·r Â
j

c j,n,kf j(r) (2.41)

= Â
j

c j,n,kf̄ j,k(r), (2.42)

where f̄ j,k(r) = eik·rf j(r). In bra-ket notation this expansion can be written as

|yn,ki = Â
j

c j,n,k|f̄ j,ki. (2.43)

Substituting this into the KS equations gives

HÂ
j

c j,n,k|f̄ j,ki = enk Â
j

c j,n,k|f̄ j,ki. (2.44)

Now multiplying both sides by hf̄i,k| gives

hf̄i,k|HÂ
j

a j,n,k|f̄ j,ki = enkhf̄i,k|Â
j

a j,n,k|f̄ j,ki (2.45)

Â
j

a j,n,khf̄i,k|H|f̄ j,ki = enk Â
j

a j,n,khf̄i,k|f̄ j,ki. (2.46)

(2.47)

This can be viewed as the following generalized matrix eigenvalue problem

Ha = eSa, (2.48)

where H is a matrix with the ith row and jth column given by hf̄i,k|H|f̄ j,ki, the vector a contains

the expansion coefficients, and S is the overlap matrix between basis function i and j, hf̄i,k|f̄ j,ki.

Notice that for each choice of the vector k, the Bloch functions are slightly different and therefore

the matrices H and S are different also. For each value of k the solutions to equation (2.48) yield

n eigensolutions.
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The choice of basis function f j(r) depends on the situation under consideration. It is de-

sirable to use a basis that can approximate the solution well with a small number of functions. For

atoms and molecules, atomic-like orbitals are commonly used. For periodic, bulk solids a com-

mon choice is plane waves since they have an infinite extent. However, the nature of the electronic

wavefunction varies from the interstitial region to the core. Electrons in the interstitial region vary

very slowly, whereas in the core region the large ionic potential causes the wavefunction to os-

cillate rapidly. Because of these rapid oscillations, to approximate electronic states near the core

requires the use of many planewaves. Since the energy

E =
h̄2

2m
|k|2 (2.49)

can be associated with the wavefunction eik·r, one way to specify the number of plane waves is

to specify a cutoff energy. All plane waves with energy below the specified cutoff are used in the

expansion when constructing equation (2.48). For the VASP software, the tag used to specify the

cutoff energy is ENCUT. If a value is not specified, a default value, based on the depth of the ionic

potentials is chosen.

2.5.2 Pseudopotentials

The dimensionality of the matrices A and S in equation (2.48) are determined by the num-

ber of basis functions included in the expansion of the single-electron wavefunctions. As these

matrices get bigger, the computational cost of solving the problem increases. As was mentioned,

the core electronic states (electrons who spend their time close to the nucleus) tend to oscillate

rapidly due to the large electrostatic attraction to the nucleus. Approximating these states to a

high degree of accuracy requires that many basis functions be included. However, most of the

interesting and pertinent physical interactions in solids occur between valence states, with the core

states remaining inert. With this in mind, one way to reduce the computational burden associated

with solving equation (2.48) is to replace the true ionic potential, which diverges at the origin,

with a “pseudo”-potential. The “pseudo”-potential approximates the ionic potential very accu-

rately beyond some cutoff radius but replaces the diverging potential well near the origin with
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Vpp(r)

V (r)

Figure 2.2: The pseudopotential
(dashed, red line) is constructed
to approximate the true potential
(solid, black line) to a high degree
of accuracy outside some cutoff ra-
dius. The justification for using
such a pseudopotential is that core
electrons do not contribute signif-
icantly to the chemical bonding in
materials.

a more shallow one (see Figure 2.2). This allows the electronic wavefunctions to be accurately

approximated with a relatively few number of plane waves.

Practically speaking, a pseudopotential is generated by considering an isolated atom of a

single element. The resulting pseudopotential is transferrable, meaning it can be used without

modification in situations where the atom is placed in a complex chemical environment. Pseu-

dopotentials are classified according to how many planewave basis functions are needed to resolve

the core states. Pseudopotentials with a very shallow core potential require few planewaves and

are called soft, while pseudopotentials with deeper core potentials require more planewaves and

are termed “hard”. The most commonly used pseudopotentials are the ultrasoft pseudopotentials

(USPP) of Vanderbilt [17]. In the VASP software, a default value for the variable ENCUT is

included with each pseudopotential and is used when no value for ENCUT is explicitly provided.

2.5.3 Brillioun zone integration

The reciprocal vector k introduced in Bloch’s theorem denotes the “crystal momentum” and

is a continuous quantum variable with unique values being restricted to the unit cell in reciprocal
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space. For each choice of this vector, a different matrix A and overlap matrix S can be formed and

the solution to equation (2.48) yields a new set of one-electron states. Many important quantities

involve integrating over all unique values of the quantum number k

Z

BZ
g(k)dk, (2.50)

where BZ indicates that the integral is the first Brillouin zone, or primitive unit cell in reciprocal

space. For example, the electron density can be computed from the single-electron wavefunctions

as

Â
n

Z

BZ

�
fn,k · |yn,k|2

�
dk, (2.51)

or the sum of occupied eigenvalues

Â
n

Z

BZ

�
fn,k · en,k

�
dk. (2.52)

Here fn,k is the occupation number and the discrete sum over the band index is simply a sum over

all eigensolutions to the equation (2.48). The integral, however, is over the entire reciprocal unit

cell, and to approximate it we must employ numerical integration techniques. This requires that

we define a set of reciprocal space points, or k-points at which to find solutions to the one-electron

Schrödinger-like equations. At each chosen point, new matrices A and S are constructed and a set

of solutions to the equation (2.48) are found. Numerical integration techniques are then used to

interpolate between the chosen points and approximate the integral.

As these integrals define important physical quantities, great thought regarding the choice

of k-points and the methods for numerically evaluating these integrals has been expended. Two

of the most common methods used to construct the k-points grids are the Monkhorst-Pack [18]

(named after Hendrick J. Monkhorst and James D. Pack) and the equivalent scheme suggested by

Froyen [19]. The Monkhorst-Pack scheme subdivides each reciprocal lattice vector into a spec-

ified number of divisions, with the density of the resulting mesh being uniform. An example of

Monkhorst-Pack k-points scheme is given in figure 2.3. The figure on the left shows a rectangular

reciprocal unit cell whose reciprocal lattice vectors have been divided into 4 and 3 divisions. The

figure on the right shows a hexagonal reciprocal unit cell whose reciprocal lattice vectors have been
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divided into 4 divisions. In each case, the specific geometry of the reciprocal unit cell dictated the

mesh chosen.

Figure 2.3: Illustration of the
Monkhorst-Pack scheme for
choosing k-points. Rectangular
(left) and triangular (right)
reciprocal unit cells are shown.
For the rectangular unit cell,
the k-points mesh is defined by
dividing one lattice vector into
4 divisions and the other into
3, creating a mesh of uniform
density. For the triangular unit
cell, the mesh is defined by
dividing both lattice vectors into
4 divisions. In each case the
choice of division is dictated by
the requirement that the density
of the mesh be uniform.

The “equivalent” method was suggested by Froyen in cases where the comparison of two

energy calculations is to be considered. For example, the formation enthalpy of a binary mixture

of two elements is given by

Hformation = Ealloy � (EAxA +EB(1� xA)) , (2.53)

where EAB is the energy per unit cell of the mixture configuration, NAB is the number of atoms

in the unit cell of the mixture, and xA is the concentration of atom type A in the mixture. The

formation enthalpy is a quantity of fundamental importance as it determines the energetic stability

of a mixture. This calculation will require three first principles calcuations to be performed, and

Froyen suggests that using the same mesh for all three calculations will result in a cancelation of

systematic error and therefore a lower overall error in the formation enthalpy of the mixture. Under

the “equivalent” scheme for generating k-point meshes a set of vectors in reciprocal space are first

defined. The mesh is constructed by adding multiples of these vectors together. The chosen mesh
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must be commensurate with the reciprocal unit cell. An illustration of the equivalent scheme for

constructing k-points meshes is shown in figure 2.4.

Figure 2.4: Illustration of Froyen’s equivalent
scheme for choosing k-points. The black dots
indicate the k-points mesh with the black and
red polygons being reciprocal unit cells com-
mensurate with the mesh chosen. The mesh of
k-points shown will be used for both recipro-
cal unit cells depicted here. Using the same k-
points mesh is theorized to reduce systematic
error.

In VASP, the file used to define the set of k-points is called KPOINTS. An example of a

KPOINTS file defining a mesh of k-points under the equivalent scheme is given by:

Equivalent Kpoints 16 x 16 x 16

0

C

0.0625 0.0 0.0

0.0 0.0625 0.0

0.0 0.0 0.0625

.5 .5 .5

The first line is a comment, or title. The second line is the number of explicitly defined k-points
being supplied, and is set to 0 here since we are not providing any explicitly defined points. The
next line indicates the coordinate system that will be used to define the vectors. The next three
lines are the vectors that will be used to construct the mesh of points. The final line is also a vector
and is an offset or an amount that the mesh will be shifted. A KPOINTS file for the MP scheme
is given by:
KPOINTS File [KPPRA=6000]

0

Monkhorst-Pack

9 9 11

0 0 0

The only difference between this file and the previous one is the replacement of the three vectors

with a single set of numbers. Each number indicates the number of divisions that the corresponding

reciprocal lattice vector will be divided into. These three numbers are typically chosen to ensure

that the mesh density is uniform.
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Chapter 3

Cluster Expansion

3.1 Motivation for building a model

The DFT theorems represent a major stride in solid state theory, and DFT-based calcula-

tions are routinely used in computational materials research. However a single DFT calculation

can easily occupy multiple computer processors for days or weeks depending on the complexity of

the crystal structure, although most elemental crystal structures can be computed in a few minutes.

This immediately precludes the use of DFT for performing large, exhaustive searches over many

crystal structures. Furthermore, first-principles calculations focus on the zero temperature proper-

ties of a material and provide no insight into the stability or usefulness of a material at temperatures

greater than zero Kelvin. These points illustrate that methods which use DFT only are unsuited to

explore many materials problems of practical interest.

One way to extend the reach of computational methods to include these types of calcu-

lations is to use a handful of DFT data to construct a model. The model is typically much sim-

pler mathematically than DFT and can therefore compute much faster. This speed enables large

searches over many crystal structures to be performed. Thermodynamic simulations for assess-

ing finite-temperature properties and which require millions of energy calculations, also become

accessible once a fast, accurate model becomes available.

One class of materials problems of practical interest involves exploring all crystal structures

whose atoms are constrained to lie on the sites of a parent lattice. Such materials are called deriva-

tive superstructures, and many experimentally observed crystal structures fall into this category.

Crystal structure enumeration algorithms indicate that the number of unique atomic configurations

increases exponentially with the size of the unit cell (see Figure 3.1), making it unfeasible to study

such groups of crystal structures using computationally-costly DFT-based methods alone.
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Figure 3.1: The number of
unique, fcc-based derivative super-
structures as a function of unit cell
size, ranging from 1 atom/cell to
20 atoms/cell. Since DFT-based
methods can be computationally
costly, exhaustive exploration of
derivative superstructures requires
the use of a model.

One model that is commonly used to investigate substitutional order on a lattice (derivative

superstructures) is the cluster expansion, which is an Ising-like model for atomic configurations

restricted to a parent lattice. Similar to a Fourier, or Taylor series, the cluster expansion expresses

a function as a linear combination of basis functions. Instead of taking a single number as an

argument, the cluster expansion takes an atomic configuration and returns a number, typically a

physical property of the configuration. The cluster expansion is different from these canonical

expansions only in that it uses a different set of basis functions. (This seems appropriate and

necessary when you consider that the domain of our function (all atomic configurations) is much

more complex than the simple Cartesian space used in Fourier series.)

3.2 Definition of the basis

The mathematical formalism for the cluster expansion was developed by Sanchez, Ducastelle,

and Gratias in 1984 [20] and is the foundation of modern-day cluster expansion methods. Other

noteworthy mathematical work on the topic of cluster expansion methodology can be found in

references [21] and [22]. The following is a review of the cluster expansion basis as put forth by

Sanchez et al.

Begin with a set of N lattice points, each site being occupied by one of M possible atomic

types. An occupation variable, si, is then assigned to each lattice site, i, depending on the type of

atom sitting there. The allowed values for the occupation variables are ±m,±(m � 1), . . . ,±1,0,
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G U S  L .  W.  H A R T

Early civilizations began alloying copper 
with arsenic, tin or zinc nearly 6,000 
years ago1, ushering in the Bronze Age. 

Even when more-abundant iron became a 
mainstay during the Iron Age, substitutional 
alloys of copper — in which some of the copper 
atoms were replaced with atoms of a different 
metal — were superior materials. So Roman 
foot soldiers were equipped with wrought-iron 
weapons, whereas Roman officers had swords 
made of bronze. Similarly, at the turn of the 
twentieth century, French scientists developed 
a steel that substituted some iron with vana-
dium. This alloy, which had three times the 
tensile strength of competing steels, became 
an essential ingredient of the venerable Ford 
Model T (and of early French luxury cars).

Materials substitution — the replacement of 
some of the atoms of a material with those of 
another (Fig. 1) — continues to be a key strat-
egy for developing the materials of tomorrow, 
but predicting the properties of new alloys is 
remarkably difficult. On page 740 of this issue, 
Maisel et al.2 report a method for calculating 
from first principles both the elasticity and the 
thermodynamic stability of alloys*. 

The difficulty of developing improved  
materials is a bottleneck — perhaps the main 
bottleneck — to advances in new technologies. 
In 2011, to increase the pace of materials devel-
opment, and to leverage impressive advances 
in computational materials science, US Presi-
dent Barack Obama announced the Materials 
Genome Initiative, a project that aims to create 
an infrastructure of informatics and experi-
mental tools for materials development in the 
United States3. Materials substitution is central 
to this initiative and has also been specifically 
referred to in recent calls for research proposals 
from US federal funding agencies. 

Many computational approaches have been 
developed to take advantage of the materials-
substitution strategy, but Maisel and col-
leagues’ report brings something new to such 
efforts. Their work is noteworthy because it 
demonstrates a clear correlation between the 
thermodynamic and elastic properties of alloys 
known as face-centred-cubic inter metallics, 

and because their approach can easily be 
applied to other alloy types. It therefore not 
only provides a fundamental understanding 
of the physical properties of materials, but also 
opens up opportunities for materials engineer-
ing. Using the authors’ method, it may be pos-
sible to tune the elastic stiffness of alloys using 
materials substitution. For example, alloys 
could be softened to make compounds for 
orthopaedic implants that integrate well with 
bone, in order to avoid the difficulties that 
arise when bone and implant materials have  
disparate elastic properties.

The authors’ technique extends a com-
putational methodology known as cluster 
expansion that is often used to calculate the 
properties of substitutional alloys. Cluster 
expansion involves two basic steps: first, cal-
culate the target property for a number of dif-
ferent atomic arrangements using quantum 
mechanics; and second, map this information 

onto a simple model that accounts for the 
effects of atomic substitutions. In this way, 
one essentially ‘trains’ a computational model, 
which is then used to calculate the target prop-
erty for any atomic configuration — instantly 
and with quantum-mechanical accuracy. 
Because computation of the target quantity is 
so efficient, cluster expansion can be used to 
simulate thermodynamic and kinetic proper-
ties of atomic ensembles from first principles, 
and to screen hundreds of millions of atomic 
configurations for a specific property.

Maisel and colleagues report two major 
advances in cluster expansion. First, they 
have expanded its use to calculate multiple 
properties in a single model; and second,  
they have used it to identify a specific relation-
ship between those properties. Specifically, 
they combined two cluster expansions to  
predict both the thermo dynamic stability 
and the mechanical stiffness of any atomic 

C O M P U TAT I O N A L  M AT E R I A L S  S C I E N C E

Substitution with vision
A method has been developed for predicting the stability and elasticity of certain alloys for millions of atomic configurations 
of the materials. This approach should help to identify materials with optimized properties. S L .740 

Figure 1 | Atomic configurations. Substitutional alloys are formed when a fraction of the atoms of a metal 
are replaced with different atoms. Several atomic configurations of possible alloys are depicted here for a 
hypothetical case in which the atoms of the main metal (orange) form a square lattice. Substituted atoms 
are shown in black. Maisel et al.2 report a computational technique that allows rapid prediction of both the 
elastic stiffness and the thermodynamic stability of different atomic configurations of certain alloys.

*This article and the paper under discussion2 were 
published online on 21 November 2012. 
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Figure 3.2: Thirty-five derivative super-
structures derived from a square lattice.
The atoms of each configuration lie on the
sites of a square lattice and are unique con-
figurations. Fcc, bcc, and hcp-derived su-
perstructures are commonly observed in
nature, which motivates their study in com-
putational research.

where m = M
2 (or M�1

2 ). Any atomic configuration on the lattice may be fully specified from the

vector of occupation variables, s .

The scalar product between any two functions of s , f (s) and g(s), is defined as

h f ,gi =
1

MN Â
all configs.

f (s) ·g(s), (3.1)

where the sum is over all MN configurations on the lattice. For an M-component system, an

orthonormal basis with respect to this inner product can be constructed from M other functions,

called point functions. These point functions take a single occupation variable as an argument (not

the entire vector of occupation variables needed to specify the atomic configuration), and should

also form an orthonormal set. The inner product for the point functions is very similar to equation

3.1, with the sum over all configurations being replaced with a sum over all allowed occupation

variables.

h f (sp),g(sp)i =
1
M

m

Â
sp=�m

f (sp) ·g(sp). (3.2)

A logical choice for these functions is powers of the occupation variables: 1, si, s2
1 . . . .

Using the definition of the inner product to orthogonalize the first three (for example) powers of si

via Gram-Schmidt yields the following three point functions

Q0(si) = 1, Q1(si) =

r
3
2

si, Q2(si) =
p

2� 3p
2

s2
i . (3.3)
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Additionaly point functions can be added to this set by orthogonalizing over higher powers of si.

It can be easily verified that these point functions form an orthonormal set over the space of all

possible occupation variables

hQn(sp),Qn0(sp)i =
1
M

m

Â
sp=�m

Qn(sp)Qn0(sp) = dnn0 . (3.4)

An orthonormal set of functions, P(s)
a (s), in the space of all MN configurations on the lattice can

now be constructed as products of point functions, Qn(sa), for all possible combinations of the

index n and of lattice points a . So for a cluster of lattice sites a = {1,2, . . . |a|}, and a vector of

allowed point function indices, s = {n1,n2, . . .nl} the basis functions are given by

P(s)
a (s) = Qn1(s1)Qn2(s2) . . .Qnl(sa). (3.5)

Once again it can be easily shown that these functions form an orthonormal set

hP(s)
a ,P(s0)

b i = dab dss0 . (3.6)

To better understand how these basis functions are constructed, let’s consider the square

lattice shown in figure 3.3. Remember that the functions P(s)
a are constructed by assembling prod-

ucts of point functions Qn(sa) for all possible indices n and all possible combinations of lattice

sites a . The combinations of indices determine which point functions are evaluated and the com-

binations of lattice sites determines on which lattice sites these point functions will be evaluated.

So, for example, one possible combination of lattice sites is the two sites neighboring one another

on the square lattice (see Figure 3.3). If only the zeroth and first point functions are considered

then the possible point function products are:

P(0,1)
nn (s) = Q0(s1)Q1(s2) =

r
3
2

s2 (3.7)

P(1,0)
nn (s) = Q1(s1)Q0(s2) =

r
3
2

s1 (3.8)
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1 0 0 1

0 0 1 1

s 2 {0, 1}

Figure 3.3: Illustration of all possible combi-
nations of point functions on a nearest neigh-
bor pair cluster on a square lattice. The (0,0)
combination is always a constant regardless of
atomic occupation. The (0,1) and (1,0) com-
binations are equivalent to the point cluster.
The only unique pair cluster function here is
the (1,1) combination.

P(0,0)
nn (s) = Q0(s1)Q0(s2) = 1 (3.9)

P(1,1)
nn (s) = Q1(s1)Q1(s2) =

3
2

s2s1 (3.10)

In words, the basis function P(0,1)
nn , for example, indicates that this basis function is com-

posed of the zeroth point function evaluated on the first site in the nearest neighbor pair cluster

multiplied by the first point function evaluated on the second site in the nearest neighbor pair

cluster (see figure 3.3).

As mentioned previously, for an M-component system, the first M point functions are

needed to construct the basis. Theoretically, an infinite number of these functions can be con-

structed by identifying more symmetrically unique clusters of lattice sites, and enumerating all

possible combinations of M point functions to be evaluated over those lattice sites. Figure 3.4

shows the first few unique clusters of lattice sites for the square lattice. As shown in the figure, the

zero-body, or empty cluster which is not a physical cluster of lattice sites is formally included in

the basis. A similar figure for clusters of lattice sites on an bcc lattice is given in figure 3.5. The

assembling of all unique clusters of lattice sites when constructing the basis is the origin of the

name cluster expansion. As the number of lattice sites in and spatial extent of a cluster increase

the number of unique lattice-site clusters increases dramatically.
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Increasing cluster radius

pairs

triplets

Figure 3.4: Illustration
of geometrically unique
clusters on a square lat-
tice. The cluster basis
is constructed from two
components: (i) geo-
metrically distinct clus-
ters of lattice sites (de-
picted here) and (ii)
all possible combina-
tions of point functions
on those lattice sites.

While the first M point functions are formally needed to describe an M-component system,

the inclusion of the zeroth point function, Q0(si) = 1, always results in a redundant basis func-

tion. This can be seen in the example above by noticing that the basis functions P(0,1)
nn (s) and

P(1,0)
nn (s) are equivalent to the point or on-site cluster P(1)

on�site(s) and the basis function P(0,0)
nn (s)

is equivalent to the zero-body or “empty” cluster. For the example above, the function P(1,1)
nn (s)

is the only unique basis function. In general, for an M-component system the point functions

{Q1,Q2, . . . ,QM�1} are needed to construct the basis. This means that for binary systems, only the

first point function is needed, for a ternary system, the first and second point functions are needed,

etc.

3.3 Using the basis

With the basis defined, any function of configuration s can be expressed as a linear sum

over these functions

E(s) = Â
a

Â
(s)

J(s)
a P̄(s)

a (s). (3.11)

The P̄(s)
a are averages over symmetrically equivalent versions of the P(s)

a functions (see figure 3.6)

and over all unique sites in the crystal, all sites inside the unit cell (see figure 3.7). The J(s)
a are
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of MBITs of Fig. 1, we immediately face a 
‘combinatorial explosion’ because selecting p MBITs from the 
possible 2N corresponds to a diffi cult search problem. Thus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
principles11–13, but there are well-established cases where such 
principles fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
Also, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

Our approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ}input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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Figure 3.5: Geometri-
cally unique clusters of
fcc lattice sites. The av-
erage distance from the
center of mass of the
cluster increases moving
left to right.

the coefficients associated with the clusters, and determining their values is the main goal when

constructing the model.

Constructing a cluster expansion is essentially a linear algebra problem

P̄J = E, (3.12)

where the matrix P̄ is composed of the cluster (basis) functions, P̄(s)
a (s), evaluated at the crystal

structures chosen as training data. Each row in this matrix corresponds to a crystal structure and

each column corresponds to a cluster function. The vector E contains the first-principles energies

of the crystal structures used for training data and the vector J contains the sought-after model

coefficients, sometimes referred to as ECIs or effective cluster interactions.

Since the number of possibly-relevant basis functions is much larger than the number of

DFT data points that is feasible to compute for a single system, the problem of constructing a clus-

ter expansion naturally emerges as an underdetermined problem. Without knowing how to con-

strain the solution search, solving an underdetermined problem is hard because there are an infinite

number of solutions that are consistent with the data provided. For this reason the most popular

techniques for constructing cluster expansion models enforce that the number of data points (rows

in matrix P̄) be greater than or equal to the number of basis functions considered (columns in ma-

trix P̄). This creates a determined or overdetermined system which can be solved by inverting the

matrix P̄ [23] or through standard linear algebra techniques such as singular value decomposition,

etc.
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Figure 3.6: Symmetrically equivalent versions of
the nearest neighbor pair cluster on a square lattice.
When constructing the cluster functions, the point
function products are averaged over all symmetrically
equivalent versions of the cluster. In this example
there would be four terms in the average.

Restricting the matrix P̄ to not have more columns (basis functions) than rows (DFT data

points) makes the efficient construction of a robust, predictive model very challenging. While the

number of relevant basis functions is probably not large, knowing a priori which, of the thousands

of candidates, should be included is not possible. Inevitably, the chosen truncation will include

irrelevant terms and exclude relevant ones, and the predictive quality of the model will suffer as a

result. Many approaches to solving this problem have been invented, and most modern methods

typically involve using physical intuition and/or complex algorithms to truncate the expansion.

Here we give a short review of modern techniques for truncating the expansion.

3.4 Review of current techniques

A popular method for truncating the expansion involves monitoring the predictive capacity

of the model as basis functions are added/removed from the expansion. The method begins with

an initial set of DFT data and a pool of candidate basis functions. Basis functions are added to the

expansion only if their inclusion increases the predictive capability of the model. The algorithm

terminates when none of the attempted changes produce an improvement in the model. This al-

gorithm is NP-hard and is referred to as direct optimization (DO) because it seeks to optimize the

quality of the model directly by trying every possible solution (or at least all those solutions that

can be explored in a reasonable amount of time). Unfortunately, due to the enormity of the search

space, there is no guarantee that this process will truly result in the optimal set of ECI’s.
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Figure 3.7: Illustration of how the
basis function corresponding to the
nearest neighbor pair cluster is av-
eraged over all unique sites in the
crystal. The atomic configuration
shown has two unique sites and the
unit cell is given by the rectangle.
In the figure on the left, all rotation-
ally equivalent versions of the pair
cluster are constructed (see figure
3.6). In the figure on the right, the
sites of the pair cluster are trans-
lated to the other unique lattice site.

As a result DO may miss important clusters or add clusters that should not have been in-

cluded in the model, which may result in non-physical ECI values. Additionally, adding/removing

clusters one-by-one is computationally expensive, requiring days to finish when considering very

large pools of candidate clusters.

At each iteration of the DO procedure, the quality of the current model must be assessed.

This is typically done using k-fold cross validation [24], a method devised to avoid having to

construct a costly holdout set of data for validation. K-fold cross validation is done by first dividing

the data set into k subsets. One at a time, each of the subsets is withheld from the fitting procedure

and saved to validate the model. The reduced data set is then used in the fitting procedure and the

resulting model is used to predict over the validation set. The root-mean-square error (rmse) of

the predictions made on the validation set is then computed. This is done k times, each time using

a different set for validation and computing the rmse of the validation set. The final fit-quality

measure is then computed as the average of the rmse values.

Genetic algorithms have been used with some success to select relevant clusters [25, 26].

In the genetic algorithm paradigm, the poor-quality model evolves toward a high-quality model

through a series of matings and mutations of the solution. In this approach each cluster in the

pool is thought of as a single gene in a biological genome. Each gene can take on a value of 1

or 0, where 1 indicates that the corresponding cluster is “on” or is being used in the expansion

and a 0 indicates that it is being excluded (“off”). The algorithm proceeds by constructing a

population, or pool of genomes, and then mating genomes amongst each other to create children
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Figure 3.8: Illustration of the linear algebra problem that emerges when constructing a cluster
expansion. Most notably, the problem is heavily underdetermined due to the vast number of possibly-
relevant basis functions.

genomes. The “on” genes, or clusters, are then used when fitting to the data, and a cross validation

scheme is used to assign a quality to each genome. This approach has had some success but the

time required to run increases rapidly with the size of the cluster pool and the number of fitting

structures. Additionally, this method utilizes various user-tuned parameters, further complicating

the model-building process by requiring intensive human time.

The DO and GA methods are two commonly-used ways to optimize the cross validation

score, one measure of the quality of the model. Other methods for optimizing the CV score have

also been suggested [27, 28], and they perform reasonably well. However, all of these methods

are limited in the fact that the number of basis functions that can be considered must be less than

or equal to the number of data points available. This amounts to a heavy truncation, with many

possibly-relevant clusters being left out of consideration. While the number of relevant clusters

probably does not exceed the number of data points typically available, the probability that the

chosen truncation will include all relevant terms is very low.

Bayesian-statistics-based methods have been used to estimate ECI’s and have shown to

outperform several common methods in low-symmetry situations [29,30]. However, these methods
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require the incorporation of detailed physical intuition about the relative strength of the Js, adding

laborious, time-consuming, and system-specific requirements to the model construction process.

The second noteworthy challenge in the cluster expansion construction process is choosing

which structures to use as training data. Since the information content of a single crystal structure

varies with the truncation choice, this problem is coupled with the cluster selection problem. Most

modern efforts in cluster expansion theory have focused on the truncation problem, with little

thought regarding the choice of training structures. However, several researchers have proposed

structure selection methods aimed at minimizing the variance in the fit energies [31, 32]. These

methods typically involve iterative procedures where a fit is constructed (using costly DO or GA

algorithms) and then a set of structures are selected to be added to the training set. First-principles

calculations for the chosen structures must then be performed. This process continues until the

variance is minimized to some threshold.

With the exception of recent CE techniques based on Bayesian inference [1, 29, 30], the

model-building process of contemporary techniques are essentially the same: An initial set of

training data is generated and a fit is calculated. The predictive accuracy of the model is assessed,

and more training data is generated and added to the set of training data. This results in a more

refined, and typically more complex, model. This process is continued, with more and more terms

being included in the expansion, until a model with the desired predictive accuracy is achieved.

3.5 Conclusion

The cluster expansion model is a useful tool for exploring many material problems of prac-

tical interest, such as exhaustive searches over many candidate crystal structures and thermody-

namic simulations used for assessing finite-temperature stability and usefulness. The mathematical

foundation of the CE basis was proven by Sanchez et. al., and has been reviewed here. The basis is

constructed by first constructing a set of point functions that take a single occupation variable as an

arguement, and then forming products of these point functions over geometrically unique clusters

of lattice sites.

To date, the process of constructing a CE model has been arduous at best, requiring param-

eter tuning, lengthy iterative procedures, and complex algorithms. The most widely-used methods

for finding relevant clusters have involved direct optimization procedures or genetic algorithms.
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Both techniques fall short of providing an efficient, robust, and automatic method for constructing

these models.
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Chapter 4

Compressive Sensing

4.1 Introduction

Physical intuition and experience suggest that many important properties of materials are

primarily determined by just a few key variables. For instance, the crystal structures of intermetal-

lic compounds have been successfully classified into groups (so-called structure maps) according

to the properties of the constituent atoms. [33–36] The widely known Miedema rules relate alloy

formation energies to atomic charge densities and electronegativities. [37] Most magnets can be

described using a Heisenberg model with only a few short-ranged exchange interactions, [38] and

the formation energies of multicomponent alloys can be efficiently parameterized using generalized

Ising models (cluster expansions) with a finite number of pair and multibody interactions. [20–22]

In all these cases, enormous gains in efficiency and conceptual clarity are achieved by building

models which express the quantity of interest (typically, total energy) in a simple, easy-to-evaluate

functional form. These models can then be used to perform realistic simulations at finite temper-

atures, on large systems, and/or over long time scales, significantly extending the reach of current

state-of-the-art quantum mechanics based methods.

The conventional approach to model building starts by selecting a small, physically mo-

tivated basis set which describes the configuration of the system. The target properties are then

expressed in terms of these basis functions and the unknown coefficients are determined by per-

forming least-squares fits to the calculated or experimentally measured data. While conceptually

simple, this method is often difficult to use in practice. First, the number of unknown coefficients

has to be smaller than the number of data points, which precludes the use of very large basis sets.

Second, least-squares fitting is susceptible to noise, and there is often the possibility of “over-

fitting”—the model is trained to reproduce the fitting data, but performs poorly in a predictive ca-

pacity. Finally, finding the the optimal finite basis set is an NP-hard problem, i.e., the solution time
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Figure 4.1: (a) A
sparse signal (blue line)
like that of Eq. 4.2, uni-
form samples of the sig-
nal at the Nyquist fre-
quency (red dots), and
a few random samples
(black circles). The sig-
nal is composed of only
3 non-zero frequencies.
(b) Exact recovery of
the frequency compo-
nents of the signal using
compressive sensing.

increases faster than polynomial with the number of possible basis functions. To keep the number

of coefficients smaller than the amount of data, one must choose, based on physical intuition, which

basis functions to keep. This physical intuition in many cases may be unavailable and/or difficult to

develop; hence there is no clear path to achieve systematic improvement. Recent years have seen

numerous attempts to use machine learning algorithms (genetic programming, neural networks,

Bayesian methods, etc.) to decrease the role of intuition in model-building. [29, 30, 39–44]

We show that a recently developed technique in the field of signal processing, compressive

sensing (CS), [45] provides a simple, general, and efficient approach to model-building. [46] In-

stead of attempting to develop physical intuition for which coefficients will be most relevant, the

CS framework allows the inclusion of essentially all possible basis functions. Using very large

basis sets eliminates the need to use physical intuition to construct smaller ones. Furthermore, CS

is computationally efficient for very large problems, robust even for very noisy data, and its models

predict more accurately than current state-of-the-art approaches.

4.2 Compressive sensing: an illustration

Before demonstrating the power of compressive sensing for building physical models, we

first illustrate the concept itself with a simple time series. Discussion of compressive sensing
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requires the definition of `p norms:

kukp =

 

Â
i

|ui|p

!1/p

, (4.1)

of which the `1 (taxicab or Manhattan distance) and `2 (Euclidean; subscript 2 often omitted)

norms are special cases. The number of non-zero elements of~u is often (improperly) referred to as

the `0 “norm” even though it is not a norm in a strict mathematical sense.

In the signal processing community, compressive sensing is used to recover sparse signals

exactly with far fewer samples than required by standard spectral techniques, such as the well-

known Fourier and Laplace transforms. Consider a signal like that shown in Fig. 4.1(a) which has

the functional form:

f (t) =
N

Â
n=1

unei2pnt , (4.2)

where most of the coefficients, un, are zero (i.e., the signal is sparse). The Fourier transform is

mathematically equivalent to solving the matrix equation

A~u = ~f , (4.3)

where the matrix A is formed by the values of the Fourier basis functions at the sampling times

tm, i.e., it consists of rows of n terms of the form Amn = ei2pntm , and fm ⌘ f (tm) is the sampled

signal. The solution vector ~u contains the relative amounts of the different Fourier components,

as shown in Fig. 4.1(b). Capturing all relevant frequency components of the signal using Fourier

transform techniques requires the signal to be sampled regularly and at a frequency at least as high

as the Nyquist frequency [shown as red points in Fig. 4.1(a)], a severe restriction stemming from

the requirement that the linear system Eq. (4.3) should not be underdetermined.

However, the main idea of compressive sensing is that,when the signal is sparse, one should

be able to recover the exact signal with a number of measurements that is proportional to the

number of nonzero components, i.e., with far fewer samples than given by the Nyquist frequency.

Conceptually, this could be done by searching for a solution that reproduces the measured time

signal exactly and has the minimum number of non-zero Fourier components. Unfortunately, this

formulation results in a discrete optimization problem, which cannot be solved in polynomial time.
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Compressive sensing recasts the problem as a simple minimization of the `1 norm of the solution,

subject to the constraint given by Eq. (4.3) above:

min
u

{k~uk1 : A~u = ~f }, (4.4)

where k~uk1= Âi |ui| is the `1-norm defined in Eq. (4.1). In other words, one seeks to minimize the

sum of the components of the solution vector ~u subject to the condition that the measured signal

is reproduced exactly; this constitutes the so-called basis pursuit problem. Eq. (4.4) is a convex

optimization problem which can be solved efficiently (see Sec. 4.4). We note here that optimization

of the common sum-of-squares (`2) norm of ~u would result in a dense solution which may deviate

considerably from the original signal. [45]

As a simple illustration, the exact decomposition of an example function, shown in Fig. 4.1,

was possible via compressive sensing with only 5 random samples (black dots in figure 4.1) of the

signal, instead of the 24 equally-spaced samples (red dots in figure 4.1) needed for a discrete

Fourier transform. Quite generally, a mathematical theorem proven by Candes, Romberg, and

Tao [47] guarantees that, with an overwhelming probability, any sparse signal with S nonzero

components can be recovered from M ⇠ S logN random measurements, where N is the total number

of sensing basis functions. This very powerful result is the mathematical foundation of compressive

sensing.

Another practically important feature of compressive sensing is the ability to tolerate noise

in the input data and to deal with signals that are only approximately sparse, i.e., are dominated

by a few large terms, but also contain a large number of smaller contributions; this is the case in

almost all physics applications. It has been proven that, if the sensing matrix A obeys the so-called

restricted isometry property (RIP), an accurate reconstruction of the signal from highly under-

sampled measurements can be achieved also in the presence of both random and systematic noise.

[45,47] The RIP criterion is automatically satisfied if the measurements are chosen randomly. (see

Sec. 4.4.4 for a detailed discussion)

When applying compressive sensing to model building, two tasks must be accomplished:

(i) a basis must be chosen, and (ii) the coefficients associated with each basis function must be

determined. Mathematically, the problem is analogous to the simple Fourier example considered
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above, with the sensing matrix A being determined by the values of the basis functions at the

chosen measurement points. Below we illustrate the use of compressive sensing on two cluster ex-

pansion (CE) models of configurational energetics: [20] (i) Ag-Pt alloys on a face-centered cubic

(fcc) lattice, and (ii) protein folding energies in the so-called zinc finger motif. CE is chosen as an

example because it is conceptually simple, mathematically rigorous, and widely used in the mate-

rials community to calculate temperature-composition phase diagrams. Furthermore, CE is a strin-

gent test case for compressive sensing because a significant amount of effort has been expended

developing advanced model building techniques, which have been implemented in sophisticated

general-purpose computer codes. [24, 26, 29, 30, 44, 48–50]

4.3 Cluster Expansion

4.3.1 Energy Model

Since a formal mathematical description of CE can be found in the literature, here we only

restate its main features and refer the reader to Refs. 20–22 for detailed explanations. The CE

method uses a complete set of discrete basis functions, defined over clusters of lattice sites, which

describe the occupation of each site and thus the entire atomic configuration on the crystal. The

total energy is given by

E(s) = E0 +Â
f

P̄ f (s)Jf , (4.5)

where f represents symmetrically distinct clusters of lattice sites (points, pairs, triplets, etc.), s

denotes the atomic configuration, usually expressed by a collection of pseudo-spin variables {Si}

describing the type of atom at each lattice site, and the cluster correlations P̄ f (s) are formed as

symmetrized averages of products of these pseudo-spin variables. The key quantities in this ap-

proach are Jf , the effective cluster interactions (ECI’s): Given the ECI’s, the energy of any atomic

configuration on the lattice can be calculated rapidly from Eq. (6.1). Physical intuition based on

the concept of “near-sightedness”of screened interatomic interactions suggests that only clusters

within a limited range and involving a limited number of sites will have significant ECI’s. The

goal then is to determine which of the clusters f , out of the myriads of possible choices, contribute

significantly to the total energy of the system and to calculate the values of these coefficients.

39



Currently, the most popular approaches are based on the so-called structure inversion method

(SIM), [23] where a limited number of quantum-mechanics-based total energy calculations are

used to determine E(s) on the left-hand side of Eq. (6.1). The cluster interactions Jf are truncated

according to some recipe and their values are determined by least-squares fitting to the training

set energies E(s). The accuracy of the resulting CE depends crucially on the chosen truncation

method. Including too few interactions leads to poor predictive power because important inter-

actions are not accounted for (“under-fitting”), while choosing too many parameters Jf results in

spurious interactions and an associated decrease in predictive accuracy (“over-fitting”). Use of

least-squares fitting necessarily requires that the number of structures must exceed the number of

candidate ECIs, which is the CE analogue of the Nyquist frequency in signal processing.

In modern practice, the trial ECI’s are chosen by scanning over many possible sets of

clusters while attempting to minimize the predictive error. Ideally, the predictive error should be

calculated as the root mean square (RMS) deviation between the density functional theory (DFT)

and CE-predicted energies over a separate “hold-out” set of structures that are not used in fitting.

This approach would require tens or hundreds of additional DFT calculations and is therefore sel-

dom used in practice. Leave-one-out cross-validation (LOOCV) or k-fold cross-validation scores

are commonly used as proxies for the predictive error since they do not require the construction of

a separate hold-out set. [24]

Starting from an initial set of ECI’s (e.g., empty, point, and nearest-neighbor pair clusters),

a typical procedure for improving the model attempts to add and/or substitute clusters into the cur-

rent set, keeping changes if the predictive error is found to decrease. The procedure is terminated

when none of the attempted changes produce an improvement in the predictive accuracy. Unfortu-

nately, there is no guarantee that this process will truly result in the optimal set of ECI’s because it

is practically impossible to solve the NP-hard discrete optimization (DO) problem, especially if the

number of candidate ECI’s is large, such as required for very accurate CE’s or in situations of low

symmetry (e.g., near defects, surfaces, nano-particles). As a result, with DO, one may miss impor-

tant clusters or add clusters that should not have been included in the model, which may result in

non-physical ECI values. Additionally, adding/removing clusters one-by-one is computationally

expensive, requiring days to finish when considering very large pools of candidate clusters.
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Genetic algorithms have been used with some success, but they also require large amounts

of time to complete, especially for large cluster pools and fitting sets, and employ a host of tunable

paramters. [25,26] Other methods for optimizing the CV score have been proposed [27,28] but are

limited in the number of basis functions they can consider and require a heavy initial truncation of

the basis.

Other researchers, in an attempt to avoid predictive errors associated with incomplete dis-

crete optimization, have sought to devise direct minimization methods that automatically select

ECIs only if they are required to reproduce the energies of the training set. The first such approach

was proposed by Laks, Wei, and Zunger for pair interactions, [51] who added a distance-weighted

`2 norm of the pair interactions to the objective function. However, this approach usually results

in dense sets of long-ranged pair ECI’s and, more importantly, is difficult to extend to multibody

interactions. [52–54] Recently, a method based on Bayesian statistics was introduced to automat-

ically estimate ECI’s and shown to outperform several common methods in low-symmetry situa-

tions. [29] However, it makes use of physical intuition to construct informative prior distributions,

which are required for estimating the ECI values. It is desirable to develop methods that avoid the

use of intuition since heuristic rules, derived from experience with a few specific systems, may not

be universally valid. Design of efficient, numerically robust and physically accurate methods for

selecting the physically significant ECIs remains a challenging problem.

4.3.2 Compressive sensing cluster expansion (CSCE)

Here, we show that compressive sensing can be used to select the important ECI’s and

determine their values in one shot. The applicability of compressive sensing to CE is based on

the mathematical theorem of Candes, Romberg, and Tao, [47] which guarantees that sparse ECI’s

can be recovered from a limited number of DFT formation energies given certain easy-to-satisfy

properties of the matrix P̄ in Eq. (6.1). Adopting the common assumption that the “true” physical

ECI’s are approximately sparse, this theorem guarantees that a good approximation will be found

even in cases when the data has both random and systematic noise, e.g., due to numerical errors in

the DFT calculations or due to interactions beyond the chosen energy resolution, see Sec. 4.4.5.

There are two possible formulations for compressive sensing cluster expansion (CSCE),

both of which enforce the requirement that the cluster expansion should be as sparse as possible,

41



while resulting in a certain level of accuracy for the training set. In the first approach, one may

determine the optimal set of ECI’s from

J = argmin
J

�
||J||1 : ||E � P̄J||  e

 
, (4.6)

where the `1 norm of J’s is used as a proxy for the number of nonzero ECI’s. Solving the so-

called LASSO problem Eq. (4.6) [55, 56] offers a mathematically strict way of constructing a

minimal cluster set that reproduces the training set with a given accuracy. Of course, over- (under-

) fitting is still an issue if e is chosen too small (large), but it is physically reasonable that, given

the physical properties of the system and the size of the training set, an optimal e always exists.

Following common practice, optimal e could be found either by minimizing the LOOCV score or

the predictive RMS error over a hold-out set.

Since the inequality constraint is inconvenient to enforce during calculations, [55] here we

follow common practice in signal processing and use an unconstrained approach which minimizes

the sum of an `1 norm of the ECI’s and a least-squares sum of the fitting errors:

J = argmin
J

µ||J||1 +
1
2
||E � P̄J||2, (4.7)

where µ is a parameter that controls the accuracy of the fit versus the sparseness of the solution:

higher values of µ will result in sparser solutions and larger fitting errors (under-fitting), while

very small µ values will lead to dense solutions and degraded predictive accuracy (over-fitting).

It will be shown below in Sec. 4.4.5 that the optimal value of µ is proportional to the level of

noise (random and systematic) in the calculated formation energies. Just like e in Eq. (4.6), an

optimal µ to avoid over- or under-fitting can be chosen either by minimizing the LOOCV score

or by minimizing the rms prediction error for a separate hold-out set; it is shown below that both

approaches result in very similar values of optimal µ . Furthermore, in Sec. 4.5 we demonstrate

that CSCE is not particularly sensitive to the precise value of µ and show that there is usually a

range of µ’s that give ECI’s of similar predictive accuracy.

The main advantage of CSCE, Eqs. (4.6) & (4.7), over current CE methods is that the NP-

hard discrete optimization of the truncated ECI set is replaced by convex optimization problems

for which exact solutions may be found in polynomial time. Furthermore, the minimization of the
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`1 norm of the solution also serves to decrease the magnitude of the ECI’s, leading to “smoother”

ECI’s, increased numerical stability with respect to the noise in the training data, and eventually

more accurate predictions. In addition, the CSCE is simple to implement and use, which will facili-

tate its widespread adoption in solid state physics and other fields where configurational energetics

play a role. In Sec. 4.5 below, we illustrate the superior performance of CSCE using examples

from bulk alloys (Ag-Pt) and biology (protein folding energetics).

4.4 Practical aspects of `1-based optimization

In what follows, we review methods for solving the unconstrained minimization problem

given by Eq. (4.7), which we rewrite as:

min
u

µk~uk1 + 1
2kA~u�~f k2. (4.8)

Eq. (4.8) is referred to as the basis pursuit denoising problem. It has a tunable parameter, µ , which

controls the sparseness of the solution: smaller (larger) values of µ produce less (more) sparse

solutions.

4.4.1 Fixed-point continuation

The fixed-point continuation (FPC) method of Hale, Yin, and Zhang [57] is an iterative

algorithm that starts from ~u0 = 0 and attempts to improve the objective function by following the

gradient of the `2 term:

~gk = AT (A~uk �~f ) (4.9)

uk+1
n = shrink

⇣
uk

n � tgk
n,µt

⌘
(4.10)

where k = 0,1,2, . . . is the iteration number and the shrinkage operator is defined as

shrink(y,a) := sign(y)max(|y|�a,0) . (4.11)

In other words, shrinkage decreases the absolute magnitude of y by a and sets y to zero if |y|  a .

The iterations are stopped when the `• norm, or maximum component value, of the gradient drops
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below the shrinkage threshold,
1
µ

||~g||• �1 < dg, (4.12)

and the change in the solution vector is sufficiently small,

k|~uk+1 �~uk||
||~uk||

< du. (4.13)

The sensing matrix should be normalized in such a way that the largest eigenvalue aA of ATA is

less than or equal to 1; this is easily accomplished by dividing both A and ~f by
paA. The step size

t in Eq. (4.10) is given by

t = min(1.999,�1.665
M
N

+2.665), (4.14)

where M and N are the number of equations and the number of expansion coefficients, respectively.

4.4.2 Bregman iteration

While the FPC algorithm is generally applicable to any problem of type Eq. (4.8) and is

guaranteed to converge, in practice it has a serious shortcoming: very small values of µ are needed

to recover the exact solution to the basis pursuit problem without noise, Eq. (4.4), which cause an

associated increase in the number of FPC iterations. To alleviate the need to use small µ’s, Yin

et al. [58] proposed an efficient iterative denoising algorithm for finding the solution to Eq. (4.8),

which has the additional benefit of yielding the exact solution to the basis pursuit problem Eq. (4.4)

for zero noise. This so-called Bregman iteration involves the following two-step cycle:

~f k+1 = ~f +(~f k �A~uk), (4.15)

~uk+1 = argmin
u

µk~uk1 + 1
2kA~u�~f k+1k2, (4.16)

starting from ~f 0 = 0 and~u0 = 0. A key feature of the algorithm is that the residual after iteration k

is added back to the residual vector ~f k+1 for the next iteration, resulting in efficient denoising and

rapid convergence. [58] Each minimization in Eq. (4.16) can be performed using the fixed-point

continuation (FPC) method proposed by Hale, Yin, and Zhang. [57] The main advantages of the
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Bregman iteration are faster convergence and the ability to use µ values that are several orders of

magnitude larger than those required for direct application of the FPC method.

4.4.3 Split Bregman iteration

For very large problems (i.e., large sensing matrices A), the FPC optimization steps in the

Bregman iterative method progress very slowly. The problem becomes severe when the condition

number computed from the nonzero eigenvalues of ATA becomes large. Indeed, FPC is essen-

tially a steepest descent method combined with an `1 shrinkage step, and the number of required

steepest descent iterations increases linearly with the ratio of the largest-to-smallest eigenvalues

of ATA. [59] An improved Bregman algorithm, which eliminates the hard-to-solve mixed `1 and

`2 minimization problem in Eq. (4.16), was proposed by Goldstein and Osher. [60] It carries the

name of “split Bregman” iteration because it splits off the `1 norm of the solution from the objec-

tive function and replaces it with the variable ~d, which is designed to converge towards the `1 term,

limk!•(~dk � µ~uk) = 0. A least-squares `2 term is added to the objective function to ensure that
~d = µ~u in the limit:

~u = argmin
u,d

k~dk1 + 1
2kA~u�~f k2 + l

2 k~d � µ~uk2. (4.17)

A key advantage of this formulation is that the minimization involving the quadratic form kA~u �
~f k2 does not contain `1 terms and can be performed efficiently using standard convex optimization

techniques, such as Gauss-Seidel or conjugate gradients (CG), [59] while the `1 minimization with

respect to ~d at a fixed ~u contains an `2 term that is diagonal in the components of ~d and can be

solved easily (see below). The full split Bregman iterative algorithm proceeds as follows:

~uk+1 = argmin
u

1
2kA~u�~f k2 + l

2 k~dk � µ~u�~bkk2, (4.18)

~dk+1 = argmin
d

k~dk1 + l
2 k~d � µ~uk+1 �~bkk2, (4.19)

~bk+1 = ~bk + µ~uk+1 � ~dk+1, (4.20)

starting from ~d0 = 0, ~b0 = 0, and ~u0 = 0. We use the conjugate gradient method to perform

the `2 minimization in Eq. (4.18). The second step, Eq. (4.19), separates into individual vector
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components and can be solved explicitly using shrinkage as

dk+1
n = shrink

⇣
µuk+1

n +bk
n,1/l

⌘
. (4.21)

The final step of the split Bregman cycle, Eq. (4.20), adds back the residual deficit in the `1 term,

in complete analogy with the Bregman iteration Eq. (4.15). The results do not depend on the value

of the parameter l , although an unsuitable choice will lead to very slow or failed convergence. We

find that in practice an optimal l can easily be found from a few trial runs at a fixed value of µ , and

then kept fixed for any µ . Just like FPC, the split Bregman iteration provides an exact solution to

the basis pursuit denoising problem Eq. (4.8), but in contrast to the Bregman approach of Sec. 4.4.2,

small values of µ may be needed to solve the noiseless basis pursuit problem Eq. (4.4). In practice,

we find that the convergence rate of the split Bregman method is almost always faster than those

of the Bregman or FPC algorithms, and greatly so for large, ill-conditioned sensing matrices.

4.4.4 Choice of structures for CSCE

An important practical question regards the best strategy for choosing structures s to in-

clude in the training set. Mathematical theorems from compressive sensing provide a definite

answer to this question. The key idea is the notion of coherence between the measurement and

representation basis. The representation basis F = {f j} is used to express the signal as a sparse

series expansion (e.g., plane waves form the representation basis for the Fourier series), while the

measurement basis Y = {yk} contains all possible measurements. For the Fourier example in

Sec. 4.2, the measurement basis is given by delta functions, i.e., signal values at certain points in

time. Assuming that both y j and fk are normalized and orthogonal, the coherence is defined as the

maximum overlap between them: [61]

n(F,Y) =
p

N max
j,k

|hf j,yki|. (4.22)

In the Fourier example of Sec. 4.2, the scalar products are all |hf j,yki| = N� 1
2 , which corresponds

to the lowest possible coherence, n = 1. In contrast, the highest possible value n =
p

N would

be obtained by directly measuring the amplitudes of the individual sinusoidal components of the
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signal, i.e., if plane waves were chosen as the measurement basis functions. Coherence is key in

determining the number of measurements required to recover a given sparse signal with S nonzero

components: the higher the coherence, the higher the required number of measurements. More

quantitatively, the probability of correct signal recovery from M measurements exceeds 1 � d if

the number of measurements satisfies M � Cn2(F,Y)S log(N/d ), where C is a constant and S

is the number of nonzero components; [62, 63] a similar result holds for compressive sensing

in the presence of noise. This expression shows that the worst possible strategy for recovering

sparse signals is to choose the same measurement basis as the one used in sparse representation

(n(F,Y) ⇡
p

N), since this would require a number of measurements equal to the number of

unknown coefficients, N.

In cluster expansion, the representation basis are formed by symmetry-distinct cluster types

and the measurements are represented by structures s . The corresponding representation basis

functions are Kronecker deltas, fg( f ) = d f g, where f and g are cluster numbers. The measurements

are represented by symmetry-inequivalent structures s , and the corresponding basis functions are

given by normalized rows of the cluster correlation matrix, i.e., ys ( f ) = P̄ f (s)/
q

Â f 0 P̄ f 0(s)2.

The coherence is given by the maximum scalar product between the two, which is

n(F,Y) =
p

N max
s , f

|P̄ f (s)|q
Â f 0 P̄ f 0(s)2

. (4.23)

Because random matrices with independent identically distributed (i.i.d.) entries are inco-

herent with almost any representation basis, they occupy a special place in compressive sensing.

If the possible measurements are designed by selecting N uniformly distributed random vectors on

the unit sphere, followed by subsequent orthogonalization, the coherence between F and Y is on

the order of
p

2logN. [45] This suggests the following simple strategy for selecting structures for

CSCE:

• Generate M uniformly distributed random vectors ys ( f ) on the unit sphere (s = 1, . . . ,M)

• Orthogonalize ys ( f )

• Match each ys ( f ) onto a real structure s with normalized correlations P̄ f (s)/
q

Â f 0 P̄ f 0(s)2

approximating ys ( f ) as closely as possible
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The last step can be conveniently performed by enumerating all possible ordered structures up to

a certain size of the unit cell using the methods of Refs.64, 65 and then choosing the best matches

from this list. We stress that the somewhat counterintuitive strategy of selecting random structures

follows from the general mathematical properties of `1-based compressive sensing and represents

the best possible method for choosing structure sets for CSCE.

Parenthetically we note that selecting structures at random makes for a remarkably sim-

ple approach to generating input data. The “structure selection” problem, that is, deciding which

structure to use to train the model, has been a vexing problem in the cluster expansion community

since cluster expansions first began to be trained with first-principles data. At first, structures that

were easy to calculate (few atoms per unit cell) were selected. In later years, more sophisticated

approaches came to be used [32, 66]1 , but a simple, easy-to-implement solution has remained

elusive. Compressive sensing not only solves the “cluster selection” problem (because it makes

unbiased selections from a huge set of clusters) but also overcomes the structure selection prob-

lem because it dictates that the best strategy is to select ordered structures with pseudorandom

correlations.

4.4.5 Effect of noise and its relation to optimal µ

The lone adjustable parameter, µ , should be chosen to achieve the optimal balance between

the sparseness of the ECI’s and the RMS fitting error for the training set. The effect of µ on the

calculated ECI’s is most transparently seen by analyzing the FPC equations (4.9) and (4.10), which

show that µ controls the energy cutoff for the gradient of the `2 norm of the residuals: components

of ~g with absolute values |g f |  µ will be set to zero by the shrinkage operator and therefore will

be excluded from the model. In what follows, we show that the optimal value for µ is proportional

to the level of noise (random and systematic) in the training data.

We first consider the relation between the normalized sensing matrix A in Eq. (4.9) and the

CSCE correlation matrix P̄: they are related by A= P̄/
paP̄, where aP̄ is the largest eigenvalue of

P̄P̄T . The corresponding relation for the measurement vectors is ~f = E/
paP̄. The distributions of

the extremal eigenvalues for ideal random matrices are known from the theory of principal compo-
1Teck Tan and Duane Johnson recently developed an as-yet-unpublished method for structure selection that applies

fractional factorial design to the structure selection problem (private communication)
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nent analysis. [67] However, it is not immediately clear that the eigenvalue distributions found for

i.i.d. random matrices will be directly applicable to the CSCE correlation matrices P̄ because the

correlation values for real structures are neither independent nor identically distributed, and hence

the entries of P̄ are only approximately i.i.d. We have numerically calculated the distribution of

the largest eigenvalue of P̄P̄T using subsets of 1  M  500 fcc-based ordered structures with 12

or fewer atoms in the unit cell. [64] We considered N = 986 correlations (up to six-body terms)

and averaged the calculated eigenvalues over 1000 subsets randomly drawn from the above list of

10850 structures. We find that, for a fixed N, the average value of aP̄ increases linearly with the

number of structures M. Therefore, A µ P̄/
p

M.

(a)M (b)M
(c)

M

Figure 4.2: kJexact � Jfitk1(solid) and kJfitk0(dashed) vs log10µ for the short-ranged pair model with
M = 200 (a) and M = 400 (b). Random uniform noise of ⇠ 10%(blue circles), 20% ( green squares),
and 50% (red “x”s) of the noiseless energies was added to the fitting structures. (c) kJexact �Jfitk1 vs the
number of fitting structures and the noise level. Each point represents an average over ⇠100 different
subsets of M structures.

Random noise: Here we demonstrate that CSCE is not only stable with respect to noise in

the input data, but that it can also filter out the effects of noise on the calculated ECI’s. We assume

that the DFT formation energies E(s) contain random noise which is represented by a vector ~he

of length M and i.i.d random components with variance e2
rand. The contribution of ~he to the FPC

gradient in Eq. (4.9) is given by

dg f µ � 1
M

M

Â
s=1

P̄ f (s)he(s), (4.24)
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where the factor 1/M comes from the fact that both the sensing matrix A and the measurement

vector ~f are related to the correlation matrix P̄ and input energies E by a normalization factor

1/
paP̄. If the structures are chosen randomly according to the prescription outlined in Sec. 4.4.4,

then P̄ f (s) 2 [�1,1] are approximately i.i.d. Hence, the individual terms under the summation

sign in Eq. (4.24) will be randomly distributed with a mean of zero and a variance proportional

to e2
rand. To deduce the behavior of dg f in the limit of large M, one can apply the central limit

theorem (CLT) of classical statistics, which states that the average of M random terms is normally

distributed with a variance that is given by the variance of the individual terms divided by M, i.e.,

the variance of dg f is proportional to e2
rand/M. It then follows from the properties of the normal

distribution that the average `1 norm of the noise term in the gradient decreases with the size of the

training set as

||dg f ||1 µ erandp
M

. (4.25)

This relation demonstrates an important noise-tolerance aspect of CSCE, which guarantees that the

true physical ECI’s will be recovered even if the training data sets contains uncorrelated random

noise of arbitrary magnitude, provided that the number of data points is sufficiently large. The

practical significance of this feature cannot be overstated: not only is CSCE stable with respect

to random noise, but an absolute numerical accuracy in the DFT energies is not even needed to

recover the correct ECI’s!2 Equation (4.25) also offers guidance for choosing µ to smooth the

effect of random noise: as long as µ ' ||dg f ||1, the contribution of noise to the gradient will be

zeroed out in the shrinkage step [Eq. (4.10)] and will not affect the calculated ECI’s. In practice,

however, the optimal value of µ is difficult to determine using Eq. (4.25) because the level of noise

in the DFT formation energies is not known a priori, and approaches based on optimizing the

predictive error are more practical.

Systematic noise: We next consider the effect of systematic noise due to errors in the ECI’s,

which we denote by dJf . These errors contribute a term dE(s) = Â f P̄ f (s)dJf to the residual,

and the corresponding error in the FPC gradient is given by

dg f µ �Â
f 0

hP̄ f P̄ f 0 idJf 0 , (4.26)

2This applies only to random numerical errors in the DFT formation energies and excludes systematic errors, such
as those due to the approximate nature of the exchange-correlation functionals.
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where we have introduced a correlation matrix for cluster correlations P̄ calculated over the train-

ing set:

hP̄ f P̄ f 0 i =
1
M

M

Â
s=1

P̄ f (s)P̄ f 0(s). (4.27)

This matrix is of fundamental importance for CSCE because it describes how the value of one ECI

is affected by errors in the other ECI’s, or the degree of cross-contamination between systematic

ECI errors. Minimum sensitivity to cross-contamination is achieved when hP̄ f P̄ f 0 i is diagonal, but

the latter case is impossible to realize in practice due to the fact that there are rather pronounced

correlations between the cluster averages in real structures. In the best case scenario, the correlation

matrix hP̄ f P̄ f 0 i will be approximately diagonal if the training set structures are chosen randomly

according to the algorithm proposed in Sec. 4.4.4. Indeed, if the average cluster correlations P̄ f (s)

are approximately i.i.d., the off-diagonal elements of the correlation matrix hP̄ f P̄ f 0 i tend to zero

with increasing M, while the diagonal elements remain O(1):

hP̄ f P̄ f 0 i =

8
><

>:

hP̄2
f i for f = f 0

O
⇣

1p
M

⌘
for f 6= f 0

. (4.28)

Hence, in the limit of large M, CSCE based on a randomly chosen training set cleanly separates

the contributions of the systematic ECI errors to the gradient, i.e., the ECI error for cluster f only

affects the component f of the gradient, enabling accurate recovery of the correct solution. This

is an important feature for any physics model-building approach because it guarantees the stability

of the solution with respect to the interactions that are not represented within the chosen basis set.

Furthermore, these considerations offer another insight into the physical meaning of the parameter

µ: it can be used to filter out the cross-contamination due to effects of systematic noise if chosen

as

µ ⇠ ||d~J||•p
M

, (4.29)

where ||d~J||• is the magnitude of the largest error in the cluster interactions. Since the diagonal

contribution to the gradient remains constant with increasing M, successively smaller ECI’s can be

extracted by increasing the size of the training set M and simultaneously decreasing the value of µ

according to Eq. (4.29). Unfortunately, the practical value of this expression is limited because the
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ECI errors are not known, and approaches based on minimizing the prediction errors or CV scores

should be used instead.

The preceding analysis shows that µ can be interpreted as a parameter controlling the

filtering of the noise in the calculated energies, including both random noise due to numerical

errors in the DFT formation enthalpies and systematic noise due to cluster interactions that are not

recoverable using the given structure set. Expressing the total noise level as a sum of random and

systematic contributions, e2 = e2
rand +e2

syst, the effect of both is expected to decrease as the inverse

of the size of the training set, and the optimal value of µ is expected to vary as 1p
M

. We note here

that the Bregman and split Bregman iterations contain additional noise-filtering steps [Eqs. (4.15)

and (4.20)] which add back the residual to the residual of the next iteration. As a result, the optimal

value of µ will in general vary between the different `1 optimization approaches, even though the

solutions and the predictive errors are practically the same. [58, 60]

4.5 Applications

4.5.1 Short-ranged pair model with noise

We first work with an ad-hoc cluster expansion example where we choose a set of sparse

coefficients and then use them to compute the energies of various crystal structures for use as input

to CSCE. The advantage of this approach is that knowing the exact solution a priori allows us to

easily determine the accuracy of the solution found by CSCE and determine how numerical noise

influences the performance of the algorithm. While this example is certainly not representative of

any real alloy system, it clearly illustrates some key features of the method, particularly how CS

performs with noisy data.

Using the UNCLE [26] framework the following clusters on an fcc lattice were enumerated:

141 pairs, 293 triplets, 241 four-bodies, 87 five-bodies, and 222 six-bodies (986 clusters in total,

including the onsite and empty clusters). The coefficients of the three shortest nearest-neighbor

pairs were chosen as 10, 4, and 1, respectively; all other coefficients were set to zero. Uniformly

distributed random noise equal to ⇠ 10%, 20%, and 50% of the noiseless energies was added to

the computed energies E(s). We emphasize that these noise levels significantly exceed typical
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numerical errors in the calculated formation enthalpies from state-of-the-art quantum mechanics

codes.3

The values of each of the 986 basis functions were computed for all structures in the train-

ing set, thus forming the sensing matrix, A. The rows of the sensing matrix, A, which each rep-

resent a training set structure, were constructed by drawing randomly from a uniform distribution

on [�1,1]. For real systems, such as Ag-Pt in the next section, these rows should be mapped onto

real crystallographic configurations as described in Sec. 4.4.4. However since the quality of the fit

for the short-ranged pair case was found to be unaffected by this mapping, either favorably or ad-

versely, we chose to simply use the random vectors themselves in order to simplify computations.

Figures 4.2(a) and 4.2(b) illustrate the performance of CS by showing two quantities: 1)

the `1-norm of the difference between the exact and fitted coefficients (kJexact � Jfitk1), and 2) the

number of non-zero coefficients (`0-norm of the solution, kJfitk0). We varied µ to investigate it’s

optimal values for a given noise level. Each data point in Fig. 4.2 was obtained by averaging over

approximately 100 different sets, each of size M = 200 or 400.

The curves in Fig. 4.2 exhibit a series of plateaus, each one indicating a region over which

the extracted solution remains practically unchanged. Notice, for example, the plateau located

between log10 µ = �0.75 and log10 µ = �0.4 in the kJfitk0 vs. µ curve for M = 200 and the lowest

noise content (circle markers). This plateau indicates that CSCE has extracted three non-zero

coefficients. Furthermore, the value of kJexact � Jfitk1 drops close to zero in this range, indicating

that CSCE has found essentially the exact answer. Using values of µ below the optimal range

results in sharp increases in both the number of nonzero coefficients and in the error kJexact �Jfitk1,

indicating overfitting.

Conversely, µ values above the optimal range result in fewer non-zero coefficients and an

incremental increase in kJexact �Jfitk1, probably indicating underfitting. As a function of increasing

µ , one first obtains a plateau where the CS reproduces the two largest expansion coefficients (10

and 4), followed by another plateau where only the largest coefficient is reproduced. This example

illustrates the important point that CS is largely insensitive to the choice of µ—the ability to recover
3In our estimation, numerical errors in the calculated DFT formation energies are only a few meV/atom for the

case of Ag-Pt compounds considered in Sec. 4.5.2.
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the correct solution does not depend on the exact value of µ , as long as it lies within an optimal,

but broad, range.

Upon increasing the noise in the fitting data at a fixed data set size [compare the curves

marked by circles and squares in Fig. 4.2(a)], the plateaus in kJfitk0 vs µ become narrower until

the highest plateau, corresponding to full recovery of the true solution, disappears completely (“x”

markers in Fig. 4.2). At the same time, the minimum in the error kJexact �Jfitk1 vs. µ is increasing

incrementally. This displays the robustness and stability of CS—even at a very high noise level we

are able to recover the majority of the signal content.

The shift towards higher values of optimal µ upon increasing noise level in Fig. 4.2 is con-

sistent with the physical interpretation of µ as the threshold for noise filtering given in Sec. 4.4.5.

We also note that an increase in the number of structures M tends to slightly lower the optimal µ ,

which can be attributed to a fuller recovery of the correct solution and an associated decrease in

the systematic noise.

Figure 4.2(c) displays kJexact �Jfitk1, averaged over approximately 100 random subsets, as

a function of M, the number of fitting structures, and the noise level. Here we see the same plateau

structure found in Fig. 4.2(a), with the lower (blue) plateau indicating essentially an exact fit.

This plot demonstrates that, for all noise levels considered (up to as high as 50% of the noiseless

energies!), there remains a training set size for which the exact solution will be recovered.

4.5.2 Actual alloy example: Ag-Pt

Having explained the basic properties of CSCE for a model system, we now test its perfor-

mance on real DFT data for binary Ag-Pt alloys on a face-centered cubic (fcc) lattice. Ag-Pt was

chosen due to a report of unusual ordering tendencies [68] which are non-trivial to reproduce with

current state-of-the-art CE methods. The energies of more than 1100 Ag-Pt fcc-based crystal struc-

tures4 were calculated from the density-functional theory (DFT) using the VASP software. [69, 70]

We used projector-augmented-wave (PAW) potentials [71] and the generalized gradient approx-

imation (GGA) to the exchange-correlation functional proposed by Perdew, Burke and Ernzer-

hof. [12] To reduce random numerical errors, equivalent k-point meshes were used for Brillioun
4Such a large number of structures was only chosen to test the performance of different CE methods and is several

times larger than typical training set sizes used in state-of-the-art CE methods.
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CSCE predictive errors for Ag-Pt Figure 4.3: Root-mean-square errors
for the prediction set (black line with
empty squares) and the leave-one-out
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blue line) as functions of the parame-
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lated from the variance in the predicted
LOOCV scores over these sets. Predic-
tive errors for the hold-out set and the fit-
ting errors for the training set were aver-
aged over 500 different sets of 100 (400)
structures; the corresponding error bars
are smaller than the size of the symbols.

zone integration. [19] Optimal choices of the unit cells, using a Minkowski reduction algorithm,

were adopted to accelerate the convergence of the calculations. [72] The effect of spin-orbit cou-

pling was not included in our calculations because it’s effect was shown to be a simple tilt of the

calculated energies, as explained in Ref.73.

Out of a total of approximately 1100 structure energies calculated for this system, 250 were

chosen at random to be held out of the fitting process and used for prediction. This “holdout” set

remained unchanged for all fitting sets chosen. Of the remaining 850 data points available for

fitting, subsets of up to N = 400 were chosen to be used as CSCE training data.

We start by illustrating the performance of two different methods for selecting the optimal

value of µ . First, we varied µ and calculated the standard LOOCV score over 10 different ran-

domly drawn subsets of M structures; the results are shown by blue curves in Fig. 4.3. It is seen

that the LOOCV scores reach their minima at µ ⇡ 4 and 2 meV/atom for M = 100 and 400, re-

spectively, which we interpret as the optimum µ’s providing maximum predictive power. Second,

we calculated the average prediction errors for all structures left out of the fitting set, which are

represented by the black dotted lines in Fig. 4.3. We see that the RMS errors for the prediction

set largely follow the same behavior as the LOOCV scores, reaching minima at nearly identical µ

values.
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As expected, fitting errors for the training set (not shown here) decrease monotonically

with decreasing µ and are significantly smaller than either the LOOCV scores or prediction errors

for the hold-out set. The leveling off in both the prediction errors and the LOOCV score at small

values of µ can be explained by noting that CSCE fits the training set perfectly and further decrease

of µ does not bring about noticeable changes in the calculated ECI’s. We note that this behavior

is different from the short-ranged pair model in the previous section, where decreasing µ below

the optimal range caused a rapid deterioration in the accuracy of the calculated ECI’s. We attribute

this difference to the lower level of noise in the Ag-Pt case, so that the range of µ’s that leads to

acceptable ECI’s is much wider than at the 20-50% noise level for the short-ranged pair model.

To compare the performance of CSCE with other established methods, a discrete optimiza-

tion (DO) scheme as implemented in the state-of-the-art ATAT software package, [24,48] was used.

Note that the ATAT program is capable of employing advanced algorithms beyond minimization

of the LOOCV score to ensure that the ground state line is reproduced correctly and to determine

which structures should be used as input. In order to make a straightforward comparison between

CSCE and DO and to ensure a reasonable fit construction time for this problem, we only used the

LOOCV-based DO functionality of ATAT. Since the DO method for N = 986 clusters on a training

set of a few hundred structures takes several days to complete, averages were taken over only 10

training sets of size M (except for M = 400 when we used 42 different training sets to perform

statistical analysis of the calculated ECI’s). In order to simulate building a complicated unknown

model, we deliberately avoided applying physical intuition (e.g., picking short-range interactions)

and simply performed the optimizations with minimal restrictions. The maximum number of re-

ported ECI’s was capped to M/4 for ATAT-based DO. For CSCE, we used a fixed µ = 8 meV/atom

and computed solutions for 500 randomly chosen training sets of M structures.

Figure 4.4 shows a box and whisker plot of the RMS errors over the prediction set for CS

solutions and the mean RMS values for the DO solutions (box-and-whiskers were not used for

DO solutions due to the small number of DO fits). Each box and whisker represents RMS values

for approximately 500 different fits. We see that CSCE achieves an RMS error value much lower

(2.8 meV/atom) than LOOCV-based DO (6.8 meV/atom). Furthermore, Fig. 4.4 shows that the

`1 norm of the solution increases almost linearly for the DO fit, while it levels off for the CSCE
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Figure 4.4: Results from com-
pressive sensing and leave-one-out
cross-validation for the fcc-based,
Ag-Pt alloy system. The solid
line gives the root-mean-square
(RMS) errors for predictions made
on a constant holdout set for CS
(box and whisker) and leave-one-
out cross-validation (squares). The
dashed lines give the `1-norm of the
solution vector for both methods.

fit, indicating that the latter is converging towards a stable solution, while the former keeps adding

large ECI’s, a behavior suggestive of over-fitting.

4.5.3 Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different training sets can be computed in

a few minutes. The results of all these fits can be analyzed statistically to determine which coeffi-

cients are consistently identified as contributors and to eliminate artifacts due to a particular choice

of the training set. This functionality, the ability to gather enough data in a reasonable amount of

time to perform statistical analyses, is a significant advantage of CSCE over (slower) DO methods

that can be used to gain insight into the probability distributions for the cluster interactions. These

distributions can be used to quantify the uncertainty in the CSCE predictions for physical proper-

ties that go beyond a simple LOOCV score or an RMS prediction error. For instance, one can draw

ECI’s from the calculated distributions and generate ground state convex hulls with statistical error

bars on each structure, quantifying the uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were computed for Ag-Pt. Most of the re-

sulting distributions had only one sharp peak at zero, indicating that, independently of the choice

of the training set, they were almost never selected by CSCE and therefore should be set to zero.

Several ECI’s exhibited a unimodal distribution with nonzero mean, which were interpreted as

strongly significant nonzero interactions. Finally, a fraction of the ECI’s showed bi-modal distri-
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Figure 4.5: Comparison of the interaction coefficients found using the DO method implemented in
ATAT software and compressive sensing. The upper pane shows a comparison of two typical fits from
CS and ATAT. The lower pane shows the coefficients that were found to be statistically relevant from
both methods. The x-axis is the cluster radius, which is defined as the average distance from the center
of mass of all cluster vertices. (Blue dots were placed on the x-axis even for clusters not found to be
relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair
interaction coefficients found by both methods are similar. As the number of vertices increases, CS
finds coefficients in harmony with physical intuition, while DO finds spurious, long-ranged three- and
four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size
of the fitting set increases. (note: Triplets and quadruplets are shown on a scale from -20 to 20 meV,
different from the scale used for the pairs.)
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butions with two peaks of comparable weight and one of the peaks centered at zero energy. Since

the latter ECI’s were selected by CSCE with an approximately 50% probability, they belong to the

class of “marginal” interactions which were counted as significant only if their distribution mean

was greater than one standard deviation. To make a fair comparison between CSCE and the DO

method implemented in the ATAT program, the same statistical criteria for determining relevant

coefficients was used for the DO fits, even though data for only 42 fits were available.

Figure 4.5 gives a comparison of the CS-determined coefficients and those found by DO.

The upper pane compares a typical DO fit with a typical CSCE fit, while the lower pane gives a

comparison of statistically relevant ECI’s from both methods. The CSCE-derived ECI’s appear to

evolve towards one specific solution as the size of the fitting set increases, indicating convergence

of the solution. Notice also that the magnitudes of the CSCE coefficients decrease as the spatial

extent of the cluster increases and as the number of cluster vertices increases (note that triplets

and quadruplets are shown on a scale from -20 to 20 meV, as opposed to -50 to 50 meV for

pairs). This is in harmony with long-standing claims in the CE community, and it confirms that a

stable solution has been found. DO-determined clusters follow this pattern for pair clusters only.

At higher vertex numbers, a typical DO fit finds non-physical, spurious coefficients for three-

and four- body interactions. The set of statistically-relevant DO coefficients appear to be lacking

several important interactions, specifically short-ranged three- and four-body interactions. This

indicates that: (i) current DO methods are much too slow to be able to gather enough statistics to

do a meaningful statistical analysis, and/or (ii) current DO methods are very sensitive to the choice

of the training set and fall short in their ability to identify physically relevant interactions without

user guidance.

Note that the mathematical framework of CS has no knowledge of the spatial extent or

geometry of the cluster functions. Remarkably, the dominant expansion coefficients, regardless

of spatial extent, are efficiently retrieved using CS. In cases where a purely real-space cluster

expansion fails to converge, CS may fail to construct a suitable model, but it could be combined

(as has been done with other approaches) with reciprocal-space fomulations. [51, 54, 74, 75]

Figure 4.6 shows the results of a ground state search performed by using the statistically

significant M = 400 coefficients to predict the energies of all fcc-based superstructures up to 12

atoms. Error bars were calculated from randomly drawn sets of M = 400 structures. The ground
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state line in this figure is consistent with first-principles data for this system, which finds the same

ground states as in Fig. 4.6, with a few degenerate structures lying on the convex hull between

c = 0.4 and 0.5.

This example shows that, in comparison with traditional cluster selection methods, CS is

not only simpler and faster (less than a minute on a single CPU for CS versus days for LOOCV

at M = 400), but also produces more physical solutions that result in a significant improvement in

physical accuracy.

4.5.4 Protein folding application

We now turn to a technically much more challenging case—that of protein design in biol-

ogy. Modeling the protein folding energies in the zinc-finger motif represents a technically difficult

test case with applications in biology. [76, 77] One of the key problems in protein design is to find

the sequence of amino acids (AAs) which stabilizes a particular 3D structure, or folding. Physics-

based energy functionals are considered to be some of the most-promising methods in protein

design since they link the stability of the the folded 3D structure to the total free energy, accurately

accounting for electrostatics, van der Waals interactions, and solvation effects. However, their use

is problematic due to the astronomical number of possible AA sequences for even very short pro-

teins. It was shown [76, 77] that the CE model can be generalized to describe protein energetics,

allowing very fast direct evaluation of the protein energy as a function of its sequence.
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Figure 4.7: Predictive perfor-
mance of CS for protein energetics
in the zinc-finger structure (shown
in the inset).

Here, we use the data from Ref. 76 for the so-called zinc-finger protein fold and closely

follow exactly the same computational procedures as employed in that study. The fitting is done

using a basis of approximately 76,000 clusters and energies of 60,000 AA sequences; a separate

set of 4,000 AA sequence energies is used to test the predictive power of the CE model. The very

large size of the problem presents a severe test to the conventional LOOCV-based model building

approach, requiring running times of several weeks on parallel computers with user-supervised

partial optimization. [76] We chose the highly efficient split Bregman iteration [60] for solving

the basis pursuit denoising problem in Eq.(4.8), which allows us to perform a full optimization

in approximately 30 minutes on a single 2.4 GHz Intel Xeon E5620 processor. Figure 4.7 shows

that for the physically important negative-energy configurations, we are able to achieve an RMS

predictive error of 2.1 kcal/mol with 3,100 model parameters, significantly better than the RMS

error of 2.7 kcal/mol with approximately 6,000 parameters obtained using the LOOCV method in

Ref.76. Since the predictive errors are Gaussian-distributed with a mean of zero, the statistical un-

certainty in the predictive error due to the finite size of the prediction set (> 1000 negative-energy

structures) can be calculated using standard statistical formulas for the c2-distribution; they are

found to be less than 1% of the calculated RMSE. These results show that the computational effi-

ciency, conceptual simplicity and physical accuracy of the `1-based minimization shows promise

for future applications in protein design.
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4.6 Conclusion

In conclusion, compressive sensing can be straightforwardly adopted to build physical

models that are dominated by a relatively small number of contributions drawn from a much

larger underlying set of basis functions. Compressive sensing is applicable to any “sparse” basis-

expansion problem, a broad class of problems in physics, chemistry and materials science. Com-

pressive sensing allows the identification of relevant parameters from a large pool of candidates

using a small number of experiments or calculations—a real paradigm shift from traditional tech-

niques. Furthermore, many other scientific problems that do not appear to be a basis pursuit prob-

lem may be recast as one, in which case CS could efficiently provide accurate and robust solutions

with relatively little user input. With the huge amount of experimental and computational data in

physical sciences, compressive sensing techniques represent a promising avenue for model build-

ing on many fronts including structure maps, empirical potential models, tight binding methods,

and cluster expansions for configurational energies, thermodynamics and kinetic Monte Carlo.

In the arena of cluster expansion, compressive sensing provides a simple solution to two

challenges: “cluster selection” and “structure selection.” Cluster selection is effectively solved

because compressive sensing can select clusters efficiently from a very large set (thousands or tens

of thousands). Essentially, it allows the user to specify a cluster set so large that it encompasses

every physically-conceivable interaction. The second challenge, structure selection, is overcome

by the fact that compressive sensing requires that input structures simply be chosen randomly from

configuration space.
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Chapter 5

Bayesian Compressive Sensing

5.1 Introduction

Technological advances are driven by the discovery and development of high-performing

materials. Discovering these materials is perhaps the single largest bottleneck to technological

developments. Due in large part to advances in computing power, computational methods play an

increasingly important role in the discovery process. Results from calculations and simulations

guide experimental work and provide insight into avenues for future materials research.

The well-known density functional theory (DFT) is an example of a recent methodological

stride in computational materials research. Developed in the 1960’s, this theory paved the way to

accurate and efficient calculations of materials’ properties. Steady advances in computing power

have made these calculations more affordable computationally, and therefore more viable as a way

to probe nature for high-performing materials. This is manifest by recent high-throughput studies

that identify new materials and uncover new properties through brute-force calculation of all likely

candidates. Results from these studies have been fruitful and illustrative. [78–80]

Although useful for some purposes, high-throughput DFT studies are far from exhaustive

in their scope of search, and provide no thermodynamic information about the material. To extend

computation’s reach, a common approach is build a model, trained from DFT data but which is

much faster. These models can quickly calculate important physical quantities for millions of

candidate structures. A whole host of thermodynamic simulations also become available once a

fast, reliable model is constructed.

Here we employ a Bayesian implementation of compressive sensing (BCS) to construct

cluster expansion models. BCS addresses, in a mathematically rigorous fashion, two major and

long-standing challenges in the cluster expansion community, namely the basis selection problem

and the choice of training data problem. BCS provides a parameterless framework, considerable
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speed up over current techniques, and error estimates on coefficient values. A re-weighting scheme

(section 5.4.1) is wrapped around the BCS framework to further enhance the sparsity (quality) of

the solutions and reduce start-to-finish time. Most impressive is the fact that re-weighted-BCS-

constructed cluster expansion models exhibit a convergence of the solution to a very physical

model that predicts more accurately than all other modern-day methods.

5.2 The cluster expansion

One commonly used model for exploring substitutional order in materials is the cluster

expansion, which provides a fast, accurate way to compute the total energy of all atomic config-

urations on a parent lattice. [20–22] The cluster expansion is constructed by first assigning each

atomic type a pseudo-“spin” variable. Any atomic configuration on the parent lattice can then be

specified using a vector of pseudo-spin variables. The physical quantity of interest is then ex-

pressed as a linear combination of basis functions, an idea very analogous to a Taylor or Fourier

expansion

E(s) = E0 +Â
f

P̄ f (s)Jf . (5.1)

Here the argument to the function, s , is a vector of pseudo-spin variables indicating the atomic

occupation on the parent lattice sites. The vector s represents a specific structure (unit cell and

atomic configuration). The P̄ f are the basis functions, often referred to as cluster functions, with

each function corresponding to a cluster of lattice sites. For binary systems, these basis functions

are evaluated by averaging over products of pseudo-spin variables (For higher component systems,

the basis is more complex). The Jf are the expansion coefficients and finding their values is the

critical task when constructing a cluster expansion.

The cluster expansion is essentially a linear algebra problem

P̄J = E, (5.2)

with E containing the first-principles training data, and J the sought-after coefficients (ECI’s).

Early in the development of cluster expansion, the ECI’s were found by directly inverting Eq. 6.5.

This so-called structure inversion method (SIM) [23] is conceptually appealing, but in practice the

resulting model has poor predictive capability. As the CE method developed, the best practice that
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emerged was to generate more fitting data than fitting variables (more elements in the vector E than

in the ECI’s vector J). This results in an overdetermined problem that can be solved by singular

value decomposition or related methods. Before discussing fitting approaches in more detail, we

point out that whatever the details of the fitting procedure are, any method must deal with two

difficulties: (1) The expansion given in Eq. 6.1 must be truncated to a finite (and typically small)

number of terms, and (2) a choice must be made about which structures (among a practically

infinite set) should be used as training data (to generate the vector E). The expansion must be

severely truncated so that it has fewer terms than the number of training structures (maintaining an

overdetermined problem), and the training structures should be chosen to minimize the predictive

errors. Mathematically speaking, the choice of the training structures is not independent of the

truncation.

Both of these difficulties are challenging. The first is difficult because the number of rel-

atively short-ranged clusters is enormous (see Fig. 5.1) so a robust distance- or hierarchy-based

truncation method is not apparent. It is difficult to avoid truncating relevant terms inadvertently.

There are several contemporary approaches to truncation problem [24–29, 51–54]. The second

challenge, choosing the structures to be used as training data, depends on the first. The optimal

choice of training structures depends on the truncation. Some approaches attempt to choose train-

ing structures so as to minimize the variance in predictive errors. [31, 32, 50] Others, based on the

early work of Garbulsky, [81] attempt to bias the training set to reproduce the correct ordering of

low-energy states. [26]
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With the exception of recent CE techniques based on Bayesian inference [1, 29, 30], the

model-building process of contemporary techniques are essentially the same: An initial set of

training data is generated and a fit is calculated. The predictive accuracy of the model is assessed.

More training data is added and a more refined model is generated. This process is continued, with

more and more terms being included in the expansion, until a model with the desired predictive

accuracy is achieved.

5.3 Compressed sensing

Compressed sensing (CS) turns this iterative approach inside out and provides a robust ex-

pansion in one shot. The iterative approach starts with a simple model (severely truncated) that

becomes more and more complex as the training data is expanded. At each stage, the truncation

problem becomes more and more difficult. But CS starts with an infinite set of essentially untrun-

cated models, all of which are consistent with the training data, and then discards all of the models

except the one which is the most physical.

The number of unique, potentially-relevant clusters is typically very large, and considering

all possible clusters suggests solving a highly underdetermined version of equation (6.5) (Many

more columns [clusters] than rows [structures] in the matrix P̄). This is accomplished using com-

pressed sensing (a.k.a. compressive sampling), a new technique born in the signal processing
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community that solves the heavily under-determined problem by constraining the solution search

to those solutions with the smallest `1 norm

min
J

{kJk1 : P̄J = E}, (5.3)

where kJk1 indicates the `1 norm of vector J, a specific case of the more general `p norm

kukp =
�
Â |ui|p�1/p

. (5.4)

The key idea in compressive sensing is the assumption that the solution vector is sparse,

or has few non-zero components. The `1 norm constraint has been used for years as a sparsity

measure and is used here to direct the solution search towards the most sparse solution. Since CE

models are known to be sparse, CS provides a fast, robust, and efficient way to detect relevant

clusters and to compute their corresponding coefficients.1

Figure 5.2 illustrates CS for the simple two-dimensional underdetermined problem 10y +

7x = 20. The straight line in the figure represents all possible solutions corresponding to this

system. The circle (diamond) is a constant `2 (`1) norm surface. A sparse solution to this system

is one where one of the unknowns is non-zero and the other is zero, in other words it is where the

straight line intersects one of the axes. The intersection of the solution curve and the constant `2

norm curve will always occur off-axis yielding a dense solution. The intersection of the solution

curve and the constant `1 norm curve will occur on one of the axes, and therefore yield a sparse

solution. Constant `p surfaces where 0 < p  1 can enhance the sparsity, but finding the global

minimum is an NP-hard, non-convex optimization problem.

The mathematical framework of compressive sensing, put forth by Candes, Romberg, and

Tao [47], guarantees the recovery of sparse ECI’s from a small number of first-principles total

energies given certain properties of the matrix P̄ in Eq. (6.5). The mathematical theorems from

compressive sensing require that the matrix P̄ in Eq. (6.5) take on a certain form, namely that the

rows be independent and identically distributed (i.i.d). ( For a more complete description of this
1The sparsity of a solution, or the number of non-zero components, is commonly referred to as the `0 norm even

though this function is not well-defined mathematically. For this reason, the `1 norm has been used in place of the `0
norm as a sparsity-promoting function for decades.
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condition see reference 47.) This simple requirement provides a mathematically sound solution

to the question of which structures should be used in the training set. To ensure that the rows of

the matrix P̄ are independent, structures whose correlation vectors are composed of random draws

from a uniform distribution should be used as training data. A more detail description of how this

is done in practice can be found in reference1.

The CS-mandated requirement that the rows in the matrix P̄ be uncorrelated from one

another allows the training set structures to be chosen once at the beginning of the model building

process instead of using iterative procedures to build up the training set over time. This feature of

CS-based CE models provides a very automatic and hands-off framework to the model building

process, a sharp contrast to current state-of-the art methods.

The solution to Eq 6.3 was shown to be exact with overwhelming probability if the number

of function samples, m, satisfies

m � C · µ2(P,Y) ·S · logn. (5.5)

where C is some positive constant, n is the number of basis functions being included and S is the

sparseness of the solution vector. (An S-sparse solution vector has S non-zero coefficients.) The

function µ(P,Y) is a measure of the correlation between training set structures. Eq. (5.5) provides

a lower bound on the number of training data points needed to recover the relevant ECIs from a

large pool of candidates.

The CS paradigm is uniquely well-suited to the challenges in cluster expansion construc-

tion. Not only does compressive sensing solve the cluster selection problem by allowing the inclu-

sion of essentially all clusters, but compressive sensing also gives a well-defined prescription for

selecting training data as well as a lower bound on how many are needed ( Eq. (5.5)).

Various mathematical techniques exist for solving an underdetermined linear system sub-

ject to a constraint. One such method recasts the constrained minimization problem of Eq. 6.3 as

the unconstrained minimization problem

min
J

{µkJk1 +kPJ�Ek2
2}. (5.6)
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This equation is referred to as the basis pursuit de-noising problem, and one efficient way to a

solution is an iterative procedure put forth by Yin et al. [58] The sparseness of the solution can

be tuned by varying the parameter µ . Smaller(Larger) values of µ mean that the `1-norm term

will be weighted less(greater) than the `2-norm term and will therefore result in less(more) sparse

solutions.

5.4 A Bayesian Implementation

A recently-developed Bayesian implementation of CS [82, 83] provides a parameterless

framework (automatic), error values on coefficients, and a considerable speed up from current CE

construction techniques. When coupled with the re-weighting scheme put forth by Candes et. al

and outlined in section 5.4.1, BCS enhances sparsity and reduces the total start-to-finish time.

A more complete description of BCS can be found in the Appendix and in reference 82.

Here we highlight some key points of the method, assuming that the reader has some prior (no pun

intended) knowledge of Bayesian statistics.

The key to merging compressive sensing and Bayesian statistics lies in the choice of prior

distribution on the coefficients, J. The Laplace distribution is well known to promote sparsity by

placing a large probability mass at the origin thus favoring zero-valued coefficients. However, the

Laplace distribution is not conjugate to the normal distribution, which is used as the likelihood. In

order to represent the prior information about the coefficients using a Laplace distribution while

also preserving conjugacy Babacan et. al. employ a hierarchical approach. In the approach, the

prior distribution on the coefficients is chosen to be N (0,g) (conjugate to the normal likelihood

employed), and the hyperprior on g is chosen to be Laplace. Due to the conjugacy of the prior with

the likelihood, the posterior distribution on the coefficients is know to be Gaussian with covariance

matrix

S =
⇥
bPT P+G

⇤�1
, (5.7)

and mean vector

µ = SbPT E, (5.8)

where

G = diag
✓

1
gi

◆
. (5.9)
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The parameter b is the inverse variance on the likelihood and gives an estimate to the error in the

training data. Once accurate values for these parameters are obtained, the resulting distribution

provides the desired estimates on the model coefficients. However, notice that the expressions for

S and µ depend on other parameters that have been introduced, namely g and b . Expressions for

these parameters are provided through a type II maximum likelihood procedure. In this procedure,

analytic expressions for the parameters are obtained by maximizing the joint probability distribu-

tion p(y,g,b ) with respect to each parameter individually. The full mathematical details for this

process can be found in reference [82].

It turns out that the expressions b and g are dependent on one another. This suggests an

iterative procedure for estimating their optimal values. This is done by initially setting all gi = 0.

At each iteration a gi is selected and it’s value is computed. It is informative to notice that the

value of the parameters gi determines whether basis function i should be included in the model.

If gi = 0, µi = 0 and the coefficient corresponding to basis function i is identically 0, and thus

removed from the model. The remaining parameters are then updated using the newly-computed

value of gi. This procedure continues with coefficients being added/removed/re-estimated at each

iteration until adding new coefficients does not significantly improve the model.

The update of S would normally require a costly inverse (especially costly for problems

involving large cluster pools). However, updating a single gi at each iteration allows for a very

efficient update of this matrix. Instead of computing an inverse at each iteration, the relevant

entries in the matrix are simply updated. The speed of this implementation hinges critically on this

idea. Additionally, since sparse solutions are expected, the matrix S can be represented with far

fewer dimensions than what would normally be required. The matrix S contains information about

the spread, or uncertainty, in the value of the coefficients.

5.4.1 Enhancing the sparsity through re-weighted `1 norm minimization

The `1 norm is the best, albeit less-than-perfect, measure of sparsity available and has been

used for years in this capacity. The more accurate measure of sparsity is given by the `0 norm,

which counts the number of non-zero elements in a vector. However, the `0 norm is not a norm in

a strict mathematical sense and its use in optimization algorithms is not possible.
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One drawback with using the `1 norm as a measure of sparsity is its dependence on the

magnitude of the coefficients. The `1 norm favors solutions with smaller-magnitude coefficients

over solutions that are equally sparse (or even slightly more sparse), but whose coefficients have

larger magnitudes. To address this imbalance, Candes et al. proposed a weighted formulation of

the `1 minimization which penalizes all non-zero coefficients equally. [84] Under this approach

the `1 constrained minimization problem is solved iteratively with the model coefficients being

weighted at each iteration according to

w(l+1)
i =

1
|Ji|(l) + e

, (5.10)

where the index i indicates the basis function being weighted and l is the iteration index. These

weights put large and small magnitude coefficients on equal footing by suppressing the contribution

of large magnitude coefficients to the `1 norm. As explained in reference [84], this weighting can

be easily enforced by multiplying the sensing matrix by the inverse of the weight matrix

P̄(W (l))�1, (5.11)

where W is a diagonal matrix with the weights of Eq. (5.10) on the diagonal. Re-weighting was

found to increase sparsity and decrease the number of required function measurements.

5.5 Application

Here we demonstrate re-weighted `1 minimization through Bayesian compressive sensing

on cluster expansion models for the binary systems: Cu-Pt, Ag-Pt, and Ag-Pd. Pt group metal

alloys have application in catalysis and jewelry, which motivated their study here. Additionally, an

alternate implementation of CS was recently used to study Ag-Pt, and a direct comparison to this

alloy was desired.

Using the UNCLE software approximately 1000 clusters were enumerated, with approx-

imately the same number from each order up to six-body clusters. For each alloy system, the

chemical energies of crystal structures were calculated from the density-functional theory (DFT)

using the VASP software. [69, 70] We used projector-augmented-wave (PAW) potentials [71] and

the generalized gradient approximation (GGA) to the exchange-correlation functional proposed by
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Figure 5.3: Comparison between re-weighted Bayesian compressive sensing and genetic algorithm
methods for constructing a cluster expansion model for the binary systems Cu-Pt, Ag-Pt, and Ag-Pd.
The solid curves indicate rmse values over a holdout set. The dashed curves represent the `1 norm of the
solution vectors. Approximately 100 BCS fits were performed at each training set size, and the results
of these fits are depicted using box-and-whiskers. Due to it’s high computational cost, only 5 GA fits
were performed, and hence GA results are not depicted using box-and-whiskers.

Perdew, Burke and Ernzerhof. [12] To reduce random numerical errors, equivalent k-point meshes

were used for Brillioun zone integration. [19] Optimal choices of the unit cells, using a Minkowski

reduction algorithm, were adopted to accelerate the convergence of the calculations. [72] The ef-

fect of spin-orbit coupling was not included in our calculations because it’s effect was shown to be

a simple tilt of the calculated energies, as explained in Ref.73.

In the absence of the re-weighting procedure, many fits, each using a different training

set, must be constructed and the results analysed statistically to identify dominant coefficients.

This is needed to increase sparsity and eliminate spurious interactions. However, the re-weighting

procedure employed here results in a significant enhancement of sparsity, eliminating the need to

average over many solutions. Hence, the results stated below are the exact solutions returned from

the re-weighted BCS framework with no post processing whatsoever.

To compare to currently used methods in the cluster expansion community we use the

UNCLE code, which uses a genetic algorithm (GA), for the cluster selection/fitting process. GA

parameters were set to values that would enable a reasonable computation time and produce typical

quality results: 3 populations, 100 generations with 30 children per generation, and a modest

mutation rate. While re-weighted BCS is able to consider very large cluster pools, the GA slows

considerably as the size of the cluster pool grows. To make a fair comparison, we have used a

pool of ⇠ 1000 clusters for both methods. BCS fits for approximately 100 different choices of the
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training set were performed. Due to the high computation cost of a GA fit, fits for only 5 different

training set choices were performed with the GA.

The CS paradigm considers all clusters in the pool equally with no explicit restriction on

which, or how many, clusters should be used. To make a fair comparison with the genetic algo-

rithm, the maximum number of model coefficients that the GA was allowed to use was set to be

500. In every fit depicted here, the number of model coefficients found was less than 500.

Figure 5.3 give comparisons between GA fits and re-weighted BCS fits for the binary sys-

tems Cu-Pt, Ag-Pt, and Ag-Pd respectively. Notice that for every system the root-mean-square

error(rmse) over the holdout set is lower for BCS fits for all sizes of the training set. While the

rmse of the GA fits is not terrible, the `1-norm of the solution vector for GA solutions is consid-

erably larger than those from BCS-fits. This is indicative of overfitting and does not foster any

confidence that the correct solution has been found. In contrast, the `1-norm for BCS fits is rel-

atively small and levels off as more training data is added. This is convincing evidence that the

solution is converging, and the physical model is being recovered.

Another key feature of BCS is the efficiency of the algorithm. For the three systems dis-

cussed here BCS fits were constructed in a fraction of the time needed for the GA. BCS required

on the order of minutes to construct 100 fits, whereas the GA needed ⇠ 24 hours for a single fit.

5.6 Conclusion

It has been shown that the CS paradigm is uniquely well-suited to building CE lattice

models. Re-weighted BCS-based provides a fast, efficient, and parameterless framework for con-

structing CE models. These models are constructed in a fraction of the time required by current

state-of-the art techniques and with minimal time and effort required by the user. BCS-constructed

CE models converge to a solution which is very inline with widely-held intuition about the na-

ture of physically relevant interactions and predict more accurately than any other modern CE

construction method.

From a broader perspective the CS paradigm is poised to have a big impact on compu-

tational physics problems of all types. The CS-paradigm is well suited to tackle any highly-

underdetermined linear problem: Ax = b where x is known to be sparse. One possible application

is the expansion of high-throughput databases to include lattice models. This approach relies
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heavily on being able to automatically perform first-principles calculations, and has hitherto not

involved using the database information to build materials models. This is mostly due to the high

human time cost required to construct such models. However, the hands-off nature of BCS-based

CE models will allow materials models to be added to the high-throughput scope of work. In addi-

tion to vast amounts of first-principles data, soon high-throughput databases will include accurate

lattice models for a diverse array of materials.
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Chapter 6

CEFlash: high-throughput CE model construction

6.1 Introduction

The discovery and synthesis of new, high-performing materials has fueled and will con-

tinue to fuel technological advances. The role of computation in this discovery process has been

significant and promises to expand even further. This is mostly due to increases in computing

power over the last half century that make materials simulations and calculations more feasible

and affordable.

One recently-emerged technique for uncovering new materials is the so-called high-throughput

approach. In this approach, the results of experimental work is combined with first-principles

methods to automatically, and intelligently scan over all candidate materials in search of new, ad-

vanced materials. In one specific implementation, all experimentally-observed crystal structures

are compiled into a database. The energies of these crystal structures are computed, using DFT,

for all possible combinations of atomic constituents. The resulting database of first-principles in-

formation can then be mined for interesting, new materials. Since hundreds of thousands of DFT

calculations are being performed, an automatic framework for performing these calculations is

vital to the success of the approach.

The success of the high-throughput approach is evident from the numerous fruitful studies

and discoveries already made. These include the discovery of materials candidates for topological

insulators [78], thermoelectrics [85], and piezoelectric material [86]. Verification of such predic-

tions by experimental research has not yet been accomplish.

Many materials problems find themselves well beyond the scope of DFT-based methods.

This could be because exploring the finite-temperature properties of a material, something beyond

the scope of time-independent DFT, is required or simply because the search space of interest

is enormous. For example, exploring all derivative superstructures of a parent lattice can eas-
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ily involve consideration of millions of crystal structures, something well beyond the scope of

computationally-costly DFT-based approaches.

One way to approach such problems is to use a handful of DFT data to build a model,

which is much simpler mathematically. The model can typically compute much faster, making it

well-suited for performing large, exhaustive searches over many crystal structures. Additionally,

thermodynamic simulations, which can require millions of energy calculations, become accessible

once an accurate, fast model is constructed. One model commonly used to explore substitutional

order in materials is the cluster expansion, which explores all crystal structures whose atoms lie

on the sites of a common, parent lattice. The cluster expansion expresses the energy of an atomic

configuration as a sum of contributions from localized clusters of atoms, and can compute the

energies of millions of atomic configurations in only minutes.

Mathematically, the cluster expansion can be expressed as:

E(s) = Â
a

Â
(s)

J(s)
a P̄(s)

a (s) (6.1)

Here s represents any atomic configuration restricted to live on the parent lattice. The P̄(s)
a are

the basis functions and the J(s)
a are the expansion coefficients. From a practical perspective, the

problem of constructing a cluster expansion is a linear algebra problem:

P̄J = E (6.2)

with the matrix P̄ containing the values of the cluster functions (columns) over a set of training

data (rows), and the vector E containing the energies of the training set structures. The vector

J contains the sought-after model coefficients and obtaining their values is the main goal when

constructing the model.

Previously, the inclusion of materials models, like the cluster expansion, in high-throughput

databases has not been possible. This is mostly because the model building process has not been

automatic, and instead required the user to spend many hours constructing a high-quality model

for a single system. This high human-time cost associated with constructing a CE model stems

from two long-standing challenges. First, the terms in the cluster expansion must be truncated to

a finite number. This is challenging because there is no way to know a priori which terms, from a
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candidate pool of thousands, will contribute significantly to the model for a given system. Second,

a set of crystal structure to be used for training data must be selected. Since the information content

for a crystal structure is dependent upon the chosen basis, choosing an optimal set of training data

is not independent of the choice of clusters used.

Various techniques exist for addressing these challenges [24–29, 51–54], but the paradigm

for all of them is essentially the same: (i) Heavily truncate the expansion using physical intuition

and/or an algorithm so that the matrix P̄ is either fully determined or over-determined. (ii) Solve

the resulting linear algebra problem by inverting the matrix P̄ or through singular value decompo-

sition or related techniques. Many methods for truncating the model have been proposed but none

provide a robust, efficient way to guarantee the inclusion of all relevant terms. Furthermore, most

modern methods are human-time intensive and/or computationally costly.

Since the number of basis functions, P̄(s)
a , that may be relevant is much larger than the

number of first-principles data points that is feasible to calculate for a single system (thousands vs.

hundreds), the natural form of equation (6.5) is the under-determined form. In this case, the number

of basis functions considered, M, is much greater than then number of training data available, N

( N ⌧ M). However, without a well-defined constraint, solving an under-determined system is

impossible since there are an infinite number of solutions consistent with the data.

A recently-emerged technique from the signal processing community, compressive sens-

ing (CS), provides a robust, efficient method for solving the heavily under-determined problem

presented by the cluster expansion. CS solves the under-determined problem by constraining the

solution search to those with the fewest number of non-zero components. A “minimal-component”

model is expected to be of high quality because long-standing physical intuition says that the phys-

ical properties of a material are governed by relatively few interaction types. Mathematically, CS

seeks to minimize the `1 norm of the solution vector, a quantity that has long been used to enforce

sparsity:

min
J

{kJk1 : P̄J = E} (6.3)

The CS paradigm solves the cluster selection problem by including essentially all possible

clusters, and guarantees the recovery of a sparse solution from a small set of training data. Further-
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more, CS provides a well-defined recipe for choosing training data by placing a requirement on the

form of the sensing matrix. The CS paradigm is backwards from all other modern CE-construction

methods. Other methods start with a small set of training data, and fitting to this data produces a

very simple, yet poorly-predicting model. The complexity of the model continually increases as

more and more data is added to the training set. In contrast, CS begins with all models consistent

with the training data, and throws out all but the simplest, most physical model.

CS provides a robust, efficient, and parameterless (automatic) framework for constructing

highly-accurate cluster expansion models. Instead of needing days or weeks to construct a model,

CS constructs them in seconds. Instead of requiring lengthly iterative processes for building up a

training set (with costly first-principles calculations required at each iteration), CS generates one

set of training structures at the outset. When combined, these two key qualities of CS enable the

inclusion of CE models in high-throughput databases.

6.2 Large-scale construction of cluster expansion models

Constructing CE models for virtually all binary alloys is a huge endeavor, requiring mil-

lions of cpu hours. Since the endeavor is so large and will require millions of DFT calculations,

it is critical to ensure that all aspects of the process are efficient, accurate, and well thought out

before embarking. Some logical questions that need answering include the following: (i) What is

the best way to choose training structures? (If we get this one wrong then we will waste millions

of cpu hours) (ii) When performing DFT calculations, what k-points scheme should be used to

minimize systematic errors and ensure a highly accurate result? (iii) Is the orthogonality of the

unit cell vectors important to the quality of the result? The following is a discussion of some of

these questions.

6.2.1 Training set selection

The theorems that form the foundation of CS guarantee the recovery of a sparse solution

from a small number of training structures. To make this possible, CS requires that the function

samples must be incoherent. This is essentially a requirement on the form of the matrix P̄, and

is key to defining a well-defined recipe for choosing the best set of training data. Whereas other

modern cluster expansion construction techniques iteratively add to the training set, each addition
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being determined by the current-iteration fit, the CS paradigm allows an optimal set of training

data to be assembled once without future modification or augmentation. Since this recipe is going

to be used to choose training structures for thousands of binary system, ensuring that it is correct

and efficient is of high importance.
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Figure 6.1: Simple one dimensional function representing a signal in time. The red dots are regular
samples according the Nyquist’s theorem. The figure on the right is a plot of the sensing matrix A from
Eq. (6.5)

To illustrate the concept of coherence, let’s first consider the simple one dimensional func-

tion given in figure 6.1. In traditional Fourier analysis, this function is expressed as a linear com-

bination of Fourier functions:

f (t) = Â
n

anexp(�i2pnt) (6.4)

and the coefficients are found by solving the linear problem:

Ax = b (6.5)

where the matrix A, sometimes called the sensing matrix, contains the chosen Fourier basis func-

tions evaluated at a set of sample points. According to Nyquist’s theorem, the function must be

sampled regularly and at a rate equal to twice the maximum frequency component present in the
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signal. For the function found in figure 6.1 no frequency component greater than 5 Hz is present,

and therefore the function was sampled at a rate of 10 Hz, indicated by the red dots.

A plot of the matrix A for this set of function samples is given in figure 6.1. This is a 10 x 10

matrix where each row corresponds to a sample location, and each column corresponds to a fourier

cosine function. The symmetry of the matrix illustrates that the information content in the samples

chosen is low. Specifically, note that there is no way to distinguish basis functions 1�5 from 5�10

based on this set of function samples. If the function of interest contained frequencies higher than

5 Hz, the solution to equation (6.5) would not result in successful retrieval of the function. The fact

that a set of function samples gives redundant information about basis functions is called aliasing

and is illustrated in figure 6.2. Inclusion of yet more Fourier basis functions would be futile as the

sampling scheme employed would not produce any new information about those basis functions

either.
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Figure 6.2: The red dots indicate regular
samples over the function domain. The blue
(black) curve is a cosine function with fre-
quency 2 (28) Hz. Due to the sampling rate
employed here, the information contained in
the samples is redundant between the two ba-
sis functions shown. This is known as alias-
ing.

The function sampling method put forth by Nyquist was designed to extract only the infor-

mation content needed and no more. This is effective and efficient for problems where the relevant

basis functions are known and all that is lacking is their associated coefficients. However for many

problems of practical interest, such as the cluster expansion, the relevant basis functions cannot

be easily identified and only a large pool of contenders can be constructed. In such cases it is

desirable to maximize the information content in the function samples. This is the objective of the

CS requirement that the function samples be “incoherent”.
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Figure 6.3: Sensing matrix constructed by sampling the function at random locations in its domain. The
function on the right contained frequencies: 3, 4, and 7. Recovery of this signal with a 10 x 10 sensing
matrix would not be possible with standard Fourier transform tequniques. However, by ensuring that
the entries in the sensing matrix are random, the signal can be recovered exactly.

One proposed way to achieve a high level of incoherence is to endeavor to construct the

matrix A such that its entries are randomly drawn numbers on a uniform distribution. [62] This

can be a challenge depending on the range of the basis functions. In figure 6.3 is shown a function

which contains frequencies greater than 5 and a sensing matrix that was constructed by choosing

the sample locations randomly from a uniform distribution. To recover this signal using traditional

Fourier techniques would require knowing the highest frequency present in the function and adjust-

ing the sample rate in accordance with Nyquist’s theorem. However, by ensuring that the sensing

matrix is composed of uniformly-distributed random numbers allows the full frequency spectrum

of the function to be retrieved.

For the cluster expansion model, constructing the matrix P̄ such that its entries are random

draws from a uniform distribution is more challenging than the fourier example. This is because

the cluster function values form a discrete, non-uniformly distributed set. Figure 6.4 gives the

distribution of values for the first, second, and third nearest neighbor cluster functions for all fcc-

derived superstructures with 12 atoms/cell or less. Clearly the allowed values are not uniformly

distributed, and there are also values which never occur. Furthermore, the values of the cluster

functions are correlated to one another, further complicating the task of choosing training data.

One method for choosing training structures which produce an approximately random sens-

ing matrix was given in reference [1]. In that method, vectors of uniformly distributed numbers
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were first normalized (i.e. random vectors on a hypersphere) and the structure whose vector of

cluster functions was closest to this vector was added to the training set. The metric used for

measuring the distance between two vectors was the norm of the difference of the two vectors.

p
v1 ·v2 (6.6)

Another method for accomplishing this involves orthonormalizing the random vectors be-

fore matching them to real crystal structures. The exact recipe for doing this proceeds as follows:

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Figure 6.4: Histograms of the value of the 1st, 2nd, and 3rd, nearest neighbor pair cluster functions over
all fcc-derived superstructures up to 12 atoms/cell. Most noteworthy is the fact that the cluster function
values are not uniformly distributed. Also, note that there are regions of values which never occur
over this set of structures. These points make it challenging to construct a sensing matrix composed of
random, uniformly distributed entries.
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Structure selection procedure

Begin with zero training structures

• Generate a random vector p on the unit hypersphere.

• Orthogonalize p to an orthogonalized version of the current sensing matrix P̄.

• Normalize p

• Find the nearest crystal structure to the orthonormalized p .

• Add the structure to the training set.

• Update the matrix P̄.

To investigate which method for picking training data results in the most incoherent, or

uncorrelated set of data, several approaches were compared:

• The approach defined in this work.

• The approach of reference1

• Picking structures randomly.

Randomly picked structures were chosen by simply choosing a random integer from 1 to

M where M is the number of candidate training structures. The quality of each set of training struc-

tures was measured by computing the cross correlation between structures. This is accomplished

by taking the dot product of each structure’s cluster functions (row in matrix P̄) with every other

structure in the training set. For vectors that are very close to one another, the dot product will

be close to one, while vectors which are nearly orthogonal will be close to zero. For N training

structures, this results in an N x N matrix, the off-diagonal entries of which give a measure of how

correlated the set of structures are.

The results of this comparison is given in figure 6.5. The matrices depicted on the left

hand side of the figure are the cross-correlation matrices, and the histograms on the right give
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Figure 6.5: Comparison of three different training set selection methods: choosing structures at ran-
dom (top), the method of reference1 (middle), and the method discussed in this chapter (bottom). The
matrices depicted on the left are cross correlation matrices, and the off-diagonal terms are indicative of
how correlated structures are to one another. The histograms on the right show the distribution of off-
diagonal cross correlation values. The method described in this work yields lower off-diagonal cross
correlations and therefore lower-coherence sets of training structures.
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the distribution of the off-diagonal cross correlation values for each structure selection method.

Clearly, choosing structure numbers at random leads to the poorest cross-correlation values. A

small improvement can be achieved using the method of reference 1, as demonstrated by the fact

that the maximum and mean ODCC are slightly lower. Further improvement is achieved with the

method put forth in this chapter, and this method will be employed for the current high-throughput

work.

For a given lattice type, the set of training structures need not be different between choices

of constituent atoms. For example, the training set for an fcc Ag-Pt binary system can be the same

set used for Cu-Au on the same lattice. This is analogous to constructing a Fourier expansion

for two different functions over the same domain. Although the functions being estimated are

different, the locations in the domain where the function is sampled need not be different for the

two functions. This means that sets of training structures can be constructed once at the outset for

each lattice system that will be considered. First-principles calculations for this set of structures

can be performed, using the high-throughput framework, for all binary systems of interest.

6.2.2 Choice of k-points

DFT calculations require the evaluation of Brillouin zone integrals, which are typically ap-

proximated using numerical techniques. In the case of a periodic configuration of atoms, we can

restrict our numerical integration to be over the repeating unit in reciprocal space, or the first Bril-

louin zone. Numerically evaluating these integrals requires that we first construct a grid of points

inside the first Brillouin zone. The single-electron Schrödinger-like equations are then solved at

each of these points and the results are used when evaluating the integral. This set of points used

in Brillouin zone integration is sometimes referred to as k-points.

Two of the most common methods used to construct the k-points grids are the Monkhorst-

Pack [18] (named after Hendrick J. Monkhorst and James D. Pack, developers of the method) and

the equivalent scheme suggested by Froyen. [19] The Monkhorst-Pack scheme subdivides each

reciprocal lattice vector into a specified number of divisions. The divisions are chosen such that the

resulting mesh is uniform. An example of the Monkhorst Pack k-points scheme is given in figure

6.6. The figure on the left shows a rectangular reciprocal unit cell whose reciprocal lattice vectors

have been divided into 4 and 3 divisions. The figure on the right shows a hexagonal reciprocal unit
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cell whose reciprocal lattice vectors have been divided into 4 divisions. In each case, the specific

geometry of the reciprocal unit cell dictated the mesh chosen.

Figure 6.6: Illustration of the
Monkhorst-Pack scheme for choos-
ing k-points. Rectangular (left) and
triangular (right) reciprocal unit cells are
shown. For the rectangular unit cell, the
k-points mesh is defined by dividing one
lattice vector into 4 divisions and the
other into 3, creating a mesh of uniform
density. For the triangular unit cell, the
mesh is defined by dividing both lattice
vectors into 4 divisions.

The equivalent method was suggested by Froyen in cases where the comparison of two

energy calculations is to be considered. For example, the formation enthalpy of a binary mixture

of two elements is given by

Hformation = Ealloy � (EAxA +EB(1� xA)) , (6.7)

where EAB is the energy per unit cell of the mixture configuration, NAB is the number of atoms

in the unit cell of the mixture, and xA is the concentration of atom type A in the mixture. The

formation enthalpy is a quantity of fundamental importance as it determines the energetic stability

of a mixture. This calculation will require three first principles calcuations to be performed, and

Froyen suggests that using the same mesh for all three calculations will result in a cancelation of

systematic error and therefore a lower overall error in the formation enthalpy of the mixture. Under

the “equivalent” scheme for generating k-point meshes a set of vectors in reciprocal space are first

defined. The mesh is constructed by adding multiples of these vectors together. The chosen mesh

must be commensurate with the reciprocal unit cell. An illustration of the equivalent scheme for

constructing k-points meshes is shown in figure 6.7.

Choosing an optimal set of k-points is of high importance for high-throughput database

construction. Choosing a very dense mesh can increase the computational burden, and may not
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Figure 6.7: Illustration of Froyen’s equivalent scheme for
choosing k-points. The black dots indicate the k-points mesh
with the black and red polygons being reciprocal unit cells
commensurate with the mesh chosen. The mesh of k-points
shown will be used for both reciprocal unit cells depicted
here. Using the same k-points mesh is theorized to reduce
systematic error.

result in a meaningful increase in accuracy. However, a poor choice here can result in a low-

quality result which will be of little or no use. For these reasons, we felt it important to investigate

the systematic errors due to k-points choices. One way to determine the error associated with the

choice of k-points for a single unit cell geometry is given as follows:

• Consider a binary mixture of two atomic types, possibly a derivative superstructure of an

fcc, bcc, or hcp lattice.

• Replace atoms of type B with atoms of type A. This results in a lattice of all A atoms, but uses

a much larger unit cell than what is necessary. This tricks the DFT code into thinking it is

computing the energy of a large unit cell crystal structure, when it is actually only computing

the energy of a lattice of A atoms.

• Compute the energy of this configuration.

• Compute the energy of a lattice of A atoms using the primitive unit cell.
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• Compute the difference in energy from these two calculations. Any differences in these

two energies represents systematic numerical errors which can be attributed to the k-points

scheme used.

This procedure was carried out for three schemes for choosing k-points: MP with a mesh

density of 6000 KPPRA and 1000 KPPRA and the equivalent scheme proposed by Froyen. Unit

cells corresponding to fcc, bcc, and hcp-derived superstructures were used. The results of this

comparison is given in figure 6.8.

MP-6000 KPPRA

MP-10000 KPPRA

Equivalent 

(fcc) (bcc) (hcp) (hcp)

Figure 6.8: Comparison of sys-
tematic errors associated with
the choice of k-point meshes.
Three methods for choosing k-
point meshes are depicted: MP
with a density of 600 KPPRA,
and 10,000 KPPRA and the
equivalent scheme of Froyen.
Clearly the equivalent scheme
results in smaller systematic er-
ror. However for high enough
densities the MP method ap-
pears to be sufficiently accurate.

Clearly, the equivalent scheme results in the lowest level of error for all lattice systems

and atomic types depicted here. The low-density MP schemes yield relatively high levels of error.

Increasing the density to 10,000 KPPRA lowers the error considerably. For Ag (fcc) and Fe (bcc)

the error level for MP 10000 KPPRA is sufficiently low as to not produce concern. The level of

error present in the hcp systems remain slightly higher for the MP 10000 KPPRA scheme. The

reason for this is unknown to the authors.

Implementation of the equivalent scheme introduces some unwanted book-keeping com-

plexities and tasks. For each mixture calculation performed, a pure A (B) calculation must be
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performed using the same k-points mesh used for the mixture. Since the MP 10,000 KPPRA er-

rors are not significant, this scheme for generating k-points will be used to avoid such complexities.

Figure 6.9: Illustration
of two different choices
of unit cell for the same
2D atomic configuaration.
The unit cell on the left has
the shortest, most orthog-
onal lattice vectors. The
unit cell on the left pro-
vides a perfectly correct
description of the crystal,
but this choice of unit cell
should not be used in DFT
calculations.

Another source of error in DFT calculations is the shape of the unit cell. For any given

atomic configuaration, there are an infinite number of unit cells that can be used to represent the

crystal structure. For example, figure 6.9 illustrates two choices for representing the same 2d

atomic configuration: vertical stripes. The choice on the left represents the shortest, and most

orthogonal choice, and is the recommended choice for DFT calculations. While the choice on the

right is a perfectly correct unit cell choice, it’s lattice vectors are longer, and less orthogonal than

the choice on the left. Althought the exact reason is not known, it is well known that for DFT

calculations the shortest, or most orthogonal, set of lattice vectors should be used.

The exact origin of the error associated with the unit cell shape is not known. A large-scale

quantifying investigation of this effect will not be given here. Instead we simply point out that

when performing DFT calculations, the unit cell vectors ought to be as short, or as orthogonal, as

possible. This can be done using a variety of algorithms in the category of lattice basis reduction.

For the current work, the unit cells for all calculations will be reduced using an algorithm put forth

by Nguyen and Stehle. [72]
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BCS-based CE models for four binary systems
System No. holdout

str.
No. fitting str. rmse over

holdout set
(meV/atom)

kJk1
(meV/atom)

kJk0

100 4.436 293.2 49.04
200 3.578 322.4 59.85
300 3.117 354.2 42.57

Ag-Pt 300 400 2.750 386.9 52.65
500 2.607 397.9 57.08
600 2.519 410.9 61.82
700 2.448 420.7 66.88
100 8.115 352.0 59.89

Ag-Al 85 200 4.604 433.9 99.48
300 3.910 480.3 89.55
100 5.750 397.1 45.74
200 4.178 439.9 40.11
300 3.510 486.2 38.63

Cu-Pt 150 400 3.133 515.9 45.73
500 2.928 536.4 50.88
600 2.795 551.5 55.77
100 2.893 201.2 40.7
200 2.438 220.2 27.6
300 2.122 240.4 35.09

Ag-Pt 500 400 1.965 249.6 41.39
500 1.874 254.8 45.48
600 1.810 260.1 49.82
700 1.766 262.7 52.75

Table 6.1: Model-quality results for the binary systems Ag-Pt, Ag-Al, Cu-Pt, and Ag-Pt on an fcc
lattice. The rms, kJk1, and kJk0 are averages over 100 different choices of training set.

6.3 Lattice models for all binary alloys: results from a few select systems

To illustrate the feasibility of automatically constructing CE models for many binary sys-

tems, we have chosen to exhibit four systems: Ag-Al, Ag-Pd, Ag-Pt, and Cu-Pt. Pt group metal

alloys are of high importance for catalysis and jewelry, motivating their study here. Furthermore,

CE models for these systems have been constructed previously using other methods, and a com-

parison to these results was wanted.

For each system, between 800 and 1300 data points were generated. From this large data

set, up to 800 were put in a pool to be used for training data, with the rest being held out and

used to validate the model. From the pool of training data, subsets of up to 700 data points were
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selected to be used to train the model. One hundred different choices of training set were chosen,

and results from each of the 100 models were averaged over.

Figure 6.10: Ground state search over all fcc-derived superstructures up to 12 atoms/cell for the binary
system Ag-Pt. The green line is the convex hull and indicates the ground states of the system.

The quality of the fit was measured by using the model to predict the energies of all crystal

structures in the holdout set. The root mean square (RMS) of the error in these predictions was

then calculated:

Erms =

s
1
N

N

Â
i
(E(DFT)(si)�E(Pred)(si))2 (6.8)

Other fit-quality indicators provided are the `1 and `0 norms of the solution vector. The

`0 norm indicates how many basis functions were used in the model, and the `1 norm indicates

whether large-magnitude coefficients are being added to the model as more training data is used.

Steady, and large increases in the `1 norm indicate a lack of model convergence. A summary of

the results for these four systems is given in table 6.1

For every system explored here, the rmse over the holdout set reaches very low values (⇠ 2

meV/atom) as the number of training structures increases. The `1 and `0 norm also exhibit a con-

vergence of the solution. The weighted BCS framework for constructing the models is automatic

and efficient, requiring only minutes to construct model for 100 different choices of training data.

The results of CE models for all binary alloys and for all relevant lattice types will soon be

made available to the scientific community. This will include fit-quality statistics, like those shown
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in table 6.1, ground-state-search results, like those shown in figure 6.10, and a data file containing

the model details (see Figure 6.11).

Figure 6.11 is a small snippet of the file containg the details of the model. This file pro-

vides the coordinates for the vertices of the cluster as well as the Chebychev, or so-called “point”

functions, that are to be evaluated on those vertices, and the coefficient asssociated with the cluster

function. The center-of-mass distance, or average distance from the center-of-mass to the cluster

vertices, is also given and provides a measure of the spatial extent of the cluster. With the contents

of these files the model can be reconstructed and used to perform thermodynamic simulations,

custom searches over sets of derivative-superstructures, or other useful things.

#--------------------------------------------------------

# Cluster number: in this list | original in clusters.out

7 8

# J (coefficient value in meV)

4.71184838529987

# Number of vertices

2

# Average Distance

0.86602500

# Damping

0.00000000

# Vertices: (x,y,z) | d-vector label | s-index

-1.00000000 1.00000000 1.00000000 1 1

0.00000000 0.00000000 0.00000000 1 1

#--------------------------------------------------------

# Cluster number: in this list | original in clusters.out

8 15

# J (coefficient value in meV)

2.80288524645545

# Number of vertices

2

# Average Distance

1.22474500

# Damping

0.00000000

# Vertices: (x,y,z) | d-vector label | s-index

0.00000000 0.00000000 0.00000000 1 1

1.00000000 1.00000000 -2.00000000 1 1

#--------------------------------------------------------

Figure 6.11: This is a snippet of the file
which provides a list of all relevant clus-
ter functions and their coefficients. Infor-
mation provided in this file includes the co-
ordinates of the cluster vertices, point func-
tions to be evaluated on each cluster vertex,
and the associated model coefficient. Soon
models for hundreds of alloy systems will
become available to the general public.

6.4 Summary and Outlook

Automatic construction of large databases of materials information is becoming a valuable

asset to the materials science community. They require litte human time to construct and provide
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valuable insight and direction in the search for new, high-performing materials. Until now, these

databases have consisted of DFT calculations only, leaving out valuable materials models because

it was not automatic to construct them.

Due to the discovery of CS as an automatic, efficient, and robust way to construct CE mod-

els, the inclusion of materials models in materials databases is now very feasible. The CS paradigm

allows very accurate models to be constructed very efficiently and using a reasonable amount of

data. Essentially, once the DFT data is available, the construction of the model is instantaneous

and effortless. The work to construct CE models for all relevant (not phase separating) binary sys-

tems has begun, and these models will soon be available to the scientfic community. A database of

ternary CE models is set to begin following the binary model database.

Mass production of materials models is a novel endeavor and represents a significant stride

in materials research. Soon, instead of spending days or weeks to construct a reliable model, mate-

rials scientist can visit the database and gain access to a model for the system they are interested in.

Using the model, they can perform large, exhaustive searches, perform thermodynamic simulations

to extract important, finite-temperature properties of the material and other things.
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Chapter 7

Conclusion

7.1 Summary

In the arena of materials science, computational research is becoming a valuable partner to

experimental studies. This is due in part to theoretical strides that have made finding the ground-

state properties of a collection of atoms possible, and in part to computational advances that have

made such calculations computationally viable. One mainstay of computational materials science

is density functional theory which provided an alternative to solving the many-body Schrödinger

equation. This single theoretical stride enables the accurate calculation of the physical properties

of materials of all kinds.

The cluster expansion is a fast, accurate model that has shown itself to be very useful

in materials research. It’s computational speed allows the exploration of millions of derivative

superstructures in only minutes. It also makes thermodynamic simulations, such as Monte-Carlo,

metadynamics, and Wang-Landau feasible. However, choosing how to truncate the expansion

and which crystal structures to use for training data have been difficult challenges to overcome.

Modern techniques for addressing these challenges have fallen short in their ability to address

these challenges, and usually require complex algorithms and many user hours. This has prevented

the inclusion of CE models in large-scale materials databases. Chapter 3 discussed the cluster

expansion in more detail and explained the challenges associated with constructing one in practice.

Compressive sensing, a newly emerged technique from the signal processing community

solves, in robust mathematical fashion, the most glaring challenges in the CE community, making

the construction of CE models fast and automatic. Chapter 4 of this dissertation discussed the

mathematical foundation of CS as proposed by Candes. et. al and provided a mathematical recipe

for implementing the CS paradigm (put forth by Yin et. al). A comparison between this implemen-

tation of CS and the direct optimization approach was made for two systems of practical interest:
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the binary system: Ag-Pt, and a protein folding problem. The quality of the model was found to be

much better than the DO approach and the time needed to construct the model was much shorter

(hours vs. days). This chapter was published in the Physical Review B in February 2013.

Chapter 5 discussed a Bayesian implementation of CS, which offers a parameterless frame-

work, error bars on predictions made and vast speed increases over current state-of-the-art methods.

Bayesian CS was used to construct models for three binary metallic: Ag-Pt, Ag-Pd, and Cu-Pt. A

comparison to the genetic algorithm was used as a way to compare against currently-used methods.

The accuracy of the models was measured by predicting the energies of a holdout set of structures.

In each case, BCS-based CE models were more physical in nature and predicted more accurately

than the GA method. Furthermore, the time required to construct the model was vastly different,

with the GA requiring 24 hours for a single fit and BCS needing only minutes to construct a hun-

dred fits. This chapter will soon be submitted to a reputable scientific journal for review and we

expect it will be published soon after.

The speed, accuracy, and automatic nature of CS-based CE models makes including them

in large-scale materials databases feasible. Hitherto this has not been possible mostly because

constructing a materials model, such as the cluster expansion, has not been automatic. Chapter 6

of this dissertation discussed this endeavor and the challenges it faced as well as some example

system for illustration.

7.2 Outlook

Previously, the construction of lattice models, such as the cluster expansion required days

or weeks of parameter tuning, algorithmic iterations, and first-principles calculations. For this rea-

son, large-scale construction of lattice models for many binary or ternary systems was not feasible.

However, the content of this dissertation illustrates that CS is an efficient, robust, and automatic

tool for building accurate CE models, making the model-building process effortless and virtually

hands-off. Chapter 6 of this dissertation discussed how CS constructed CE models for all inter-

metallic binary alloys will be automatically constructed using an automatic framework. No doubt

this will be a multi-year endeavor, with lattice models becoming available steadily over that time.

Soon lattice models for all interesting binary alloy systems will be available to the entire scientific
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community. Such a feat has not been accomplished previously and will no doubt be a great benefit

to the community at large.

Soon after lattice models for all binary systems are completed, work will commence on

lattice models for all interesting ternary systems. The number of ternary systems of interest is

much larger and therefore the project will take considerably longer.

From a broader perspective, this dissertation has proven compressive sensing to be a viable

theoretical tool for scientists of all disciplines. Compressive sensing is a promising tool for any

highly-underdetermined problem of the form

Ax = b (7.1)

if the solution vector, x, is expected to be sparse. Any problem that can be massaged into this form

can be solved efficiently and automatically using compressive sensing. While we have demon-

strated CS to be effective for constructing cluster expansion models, we expect that in the future

many other important physical problems will be tackled using compressive sensing as the main

tool.
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Appendix A

Bayesian Statistics

The whole discipline of Bayesian statistics is founded on one theorem, Bayes’ theorem,

which is a simple statement of conditional probability:

P(a|b) =
P(b|a)P(a)

P(b)
(A.1)

In words this theorem states that the probability of a given that b is true is proportional

to the probability of b given that a is true. This rule can be easily applied to answer questions

involving simple yes/no events. For example, if a corresponds to actually having breast cancer and

b corresponds to receiving a positive test result for breast cancer, then the result of Bayes’ rule

would give the probability that a person who receives a positive test result actually has cancer. In

this case, each term in Bayes’ rule is a single number, the probability of the corresponding event.

When the problem of interest is not a simple yes/no question, the terms in Bayes’ rule be-

come distributions. In this case, the argument to the distribution P(a|b) is a and the parameter(s)

for the distribution is b (in general there may be multiple parameters). The first term in the numer-

ator on the left hand side, P(b|a), is called the likelihood and the other term(s) in the numerator,

P(a) in the case of (A.1), is called a prior distribution. The denominator is simply a number that

ensures that the posterior distribution, the result of Bayes’ rule, is normalized to 1.

As an example, consider a simple study on heights of university students. It seems reason-

able that these heights be random draws from a normal distribution

y ⇠ N (µ,s2). (A.2)
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Figure A.1: Illustration of Bayes’ rule. It
is reasonable to assume that the distribution
of University students’ heights be a Normal
(Gaussian) distribution. However, the location
and width of this distribution are unknown.
Shown are three possible Normal distributions
that could represent these heights. Bayes’
rule provides distributions on these values, the
mean and width of the likelihood, indicating
what values are likely for these parameters.
Bayes’ rule weighs both the data provided and
the prior information about the parameters of
interest.

The width and location of this distribution are unknowns and obtaining estimates to their values

are provided by Bayes’ theorem. This normal distribution is the likelihood in Bayes’ rule, which

takes the following form for this problem

p(µ,s2|y) µ p(y|µ,s2)p(µ)p(s2), (A.3)

with

p(y|µ,s2) = N (µ,s2). (A.4)

Since there are two parameters in the likelihood, there must also be two prior distributions, one for

each parameter. These distributions, p(µ) and p(s2), are a priori knowledge about the values of µ

and s and are chosen using physical intuition about the situation. The posterior distribution,p(µ,s2|y),

appropriately weights information from the priors and the data to provide inference on the value

and uncertainty of the parameters µ and s2.

The choice of prior distribution can greatly affect the computational complexity of the

problem. Choosing a conjugate prior distribution will result in a known posterior distribution.

Conjugate in this context means that the prior and the posterior belong to the same family of

distributions. If the prior is conjugate then when the product of the prior distribution and the

likelihood is formed, the resulting distribution is recognizable. For example, if I multiply a normal
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likelihood,

N (y|µ,s2) =
1p

2ps2
e� 1

2s2 (y�µ)2
, (A.5)

with an inverse gamma distribution,

g(µ|a,b ) =
b a

G(a)
µ�a�1e� b

µ , (A.6)

the result is an inverse gamma distribution with the parameters

an = a +
n
2

bn = b +
Ân

i=1(yi � µ)2

2
, (A.7)

which means that the mean, variance, and form of the posterior distribution are known. If a non-

conjugate prior is chosen, retrieving the posterior distribution requires costly sampling algorithms

such as Metropolis-Hasting.

A.1 Bayesian compressive sensing

Here we highlight some of the key points of a Bayesian implementation of compressive

sensing put forth by Babacan et al.. [82, 83] Framed in the context of cluster expansion, Bayes’

rule becomes

p(J,b |E) µ p(E|J,b )p(J)p(b ), (A.8)

where p(E|J,b ) is the likelihood and p(J) and p(b ) are prior distributions. The result of Bayes’

rule, or posterior distribution p(J,b |E), provides an a posteriori estimate on the parameters of

interest. In this case those parameters are the model coefficients J and the variance on the training

data b .

The key to merging compressive sensing and Bayesian statistics lies in choosing appro-

priate distributions for the r.h.s. of Eq. (A.8). The training data are independent and Gaussian
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distributed with mean P̄J and variance b�1

p(E|J,b ) = N (E|P̄J,b�1). (A.9)

To ensure conjugacy in the analysis of b , the prior p(b ) was chosen to be a gamma distribution.

The prior distribution p(J) contains the a priori knowledge about the value of the model coeffi-

cients and this choice is key to implementing the CS paradigm. It is well known that the Laplace

distribution is a sparsity-promoting prior and is formally equivalent to the convex optimization

problem of equation (6.3).

p(J|l ) =
l
2

exp
✓

�l
2

kJk1

◆
(A.10)

The Laplace distribution enforces the `1 norm constraint by placing a large probability

mass at zero so that signal coefficients close to zero are preferred. Furthermore, the Laplace prior

is log-concave, which produces a unimodal posterior distribution and therefore eliminates local

minima.

However, the Laplace distribution is not conjugate to the normal likelihood employed here

and it’s use as the prior would add considerable computational complexity. To maintain conju-

gacy while still modeling the coefficients with a Laplace distribution, Babacan et. al employ a

hierarchical approach. The prior distribution is chosen to be Normal

p(J|g) =
N

’
i=1

N (Ji|0,gi), (A.11)

which is conjugate to the Normal likelihood. A prior distribution on the parameter g , or hyperprior,

is then chosen to be a Laplace distribution

p(gi|l ) =
l
2

exp
✓

�lgi

2

◆
, (A.12)
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so that when the prior and the hyperprior are multiplied together and g is integrated out the resulting

distribution is Laplace

p(J|l ) =
Z

p(J|g)p(g|l )dg = ’
i

Z
p(Ji|gi)p(gi|l )dgi (A.13)

=
l N/2

2N exp
⇣
�

p
lkuk1

⌘
. (A.14)

Eq. (A.8) has now become

p(J,g,b ,l |E) µ p(E|J,b )p(J|g)p(g|l )p(b )p(l ), (A.15)

with the Bayesian framework now providing a posteriori estimates on the parameters g and l in

addition to J and b .

By preserving conjugacy on the model coefficients J, the exact form of the conditional

posterior distribution p(J|g,b ,l ,E) is known to be Gaussian with mean vector

µ = SbPT E, (A.16)

and covariance matrix

S =
⇥
bPT P+G

⇤�1
, (A.17)

where

G = diag
✓

1
gi

◆
. (A.18)

Once accurate values for these parameters are known, the resulting distribution provides the sought-

after estimate of the model coefficients. However, notice that these parameters are dependent on the

parameters g and b . To estimate the values of g and b Babacan et al. employ a type II maximum

likelihood procedure where the conditional posterior distribution p(b ,g,l |E), is first assembled

algebraically. The maximum of the distribution is then found by taking partial derivatives of the

distribution w.r.t each parameter in turn. This process yields algebraic expressions for the values
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of the parameters which maximize the distribution. These expressions all depend on the other pa-

rameters in the model, which suggests an iterative process where the most current version of the

set of parameters is used to update the remaining, out-of-date, parameters.

One obvious problem with the iterative process described above is that at each iteration it

requires the solution of a system of N equations, where N is the number of basis functions to be

considered ( a large number for cluster expansion models). To avoid the computationally expensive

inverse found in Eq. (A.17) Babacan et al. update a single gi per iteration. This leads to a very

efficient update of the matrix S and the mean vector µ . It is insightful to note that if gi = 0 then

µi = 0 and the corresponding model coefficient is 0. Since we expect sparse solutions, many of the

gi’s are expected to be zero, and the covariance matrix and mean vector can be represented with far

fewer dimensions than N.

The algorithm proceeds by beginning with the zero model, all gi’s are set to zero (all model

coefficients are zero), and proceeds as follows.
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Bayesian Compressive Sensing

• set all gi = 0

• While not converged do:

1. Choose a basis function to consider, gi.

2. Compute the value of gi which maximizes the posterior distribution, g(m)
i .

– If g(m)
i < 0: prune gi out of the model(set g1 = 0).

– If g(m)
i > 0 and gi = 0: Add gi to the model.

– If g(m)
i > 0 and gi > 0: Re-stimate the value of gi

3. Update all other parameters.(S, µ , l )

• end While
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