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ABSTRACT

Algebraic Semi-Classical Model for Reaction Dynamics

Tim Wendler
Department of Physics and Astronomy, BYU

Doctor of Philosophy

We use an algebraic method to model the molecular collision dynamics of a collinear triatomic
system. Beginning with a forced oscillator, we develop a mathematical framework upon which
inelastic and reactive collisions are modeled. The model is considered algebraic because it takes
advantage of the properties of a Lie algebra in the derivation of a time-evolution operator. The
time-evolution operator is shown to generate both phase-space and quantum dynamics of a forced
oscillator simultaneously. The model is considered semi-classical because only the molecule’s
internal degrees-of-freedom are quantized. The relative translation between the colliding atom and
molecule in an exchange reaction (AB+C ⇀↽ A+BC) contains no bound states and any possible
tunneling is neglected so the relative translation is treated classically.

The purpose of this dissertation is to develop a working model for the quantum dynamics of
a collinear reactive collision. After a reliable model is developed we apply statistical mechanics
principles by averaging collisions with molecules in a thermal bath. The initial Boltzmann distri-
bution is of the oscillator energies. The relative velocities of the colliding particles is considered a
thermal average. Results are shown of quantum transition probabilities around the transition state
that are highly dynamic due to the coupling between the translational and transverse coordinate.

Keywords: algebraic, reaction, dynamics, quantum, anharmonic, triatomic, collinear
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Chapter 1

Introduction

1.1 Dissertation Goals and Results

The main goal of this dissertation is to model anharmonicity in reactive collisions. To achieve this I

build on two smaller goals: modeling the quantum dynamics of a driven anharmonic oscillator and

modelling inelastic collisions between an atom and a diatomic molecule. These goals are achieved

by exploiting algebraic properties of the time-evolution operator and the use of a mean-field theory.

An additional goal is to apply the inelastic and reactive models to a statistical distribution

of collisions. An ensemble of molecular vibrations obeying a Boltzmann distribution rearrange

after collisions with thermally averaged incoming atoms. The results of iterating this model in

an attempt to represent a Boltzmann distribution are shown as a transition probability landscape.

This landscape plot is essentially the time-dependent analysis of the transition probabilities in a

molecular collision model.

1



1.2 Methods Used 2

1.2 Methods Used

I use Lie algebras to solve the Time-Dependent Schrödinger Equation. The time-evolution oper-

ator is expressed as a product of exponentiated quantum mechanical operators. The operators are

associated with the observables of interest which in this case are position, momentum, and en-

ergy. I also use a mean-field theory when introducing an anharmonic potential which is essentially

composed of higher-order operators not in the original algebra.

1.3 My Specific Contributions

My contribution comes from the results of constructing both an inelastic and reactive collision

Hamiltonian with the Lie algebra approach. I simultaneously plot transition probabilities and

phase-space trajectories throughout the excitation. The "landscape" plots showing the quantum

dynamics of a bath of molecules leaving a Boltzmann distribution are visualizations in reactive

collision theory that are my most unique contribution.

Another important contribution of mine is obtaining results such as resonances in the trajec-

tories and population inversion of the transition probabilities in an exchange reaction: A+BC→

AB+C. These results show that the algebraic model reveals quantum dynamic details around

the reaction transition state not seen in the literature. The model can predict state-to-state transi-

tion probabilities continuously throughout the whole reaction. Its accuracy as a model is mainly

due to the coupling of the translational and transverse coordinate. Previous work [1–3] assumes

pre-calculated trajectories or just produced asymptotic state-to-state probabilities without coupling

the translational and transverse coordinate, neither of which truly reveal and resolve the quantum

dynamic details around the transition state of a collinear triatomic exchange reaction.
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1.4 New Results as Compared with Earlier Approaches

This model exploits the Hamiltonian as a generalized algebraic entity which has the potential to

obviate numerical error in quantum dynamics. We simultaneously analyze an oscillator’s mo-

tion with its quantum dynamics continuously throughout external interaction, with a more unified

model than what we’ve seen in the literature [4–6]. The model also is the first to resolve the quan-

tum dynamic details of a bath of molecules as they leave equilibrium through collisional energy

transfer. This model contains specific prediction potential as it is generalized to be able to com-

pare to femtochemistry experiments, lasing, and nuclear reactions by specifying only a handful

of parameters. Perhaps the most profound result from this work is the fact that we can predict

state-to-state transition probabilities of an inelastic collision or a reaction directly from classical

trajectories.

1.5 Description of Major Sections

In Chapter 2 I address the forced quantum oscillator and its similarity to inelastic atom/molecule

collision systems. I use a Lie algebriac approach and discuss how it is the foundation upon which

the molecular collision model is built. Chapter 3 covers the application of Lie algebra to collinear

triatomic inelastic atom/molecule collisions. Chapter 4 is where the main goal of modeling a

collinear triatomic exchange reaction is presented in detail.

Appendix A contains 4 separate computer codes that were used to generate the results of the

model as it developed from forced oscillator to reactive collision. Appendix B contains a relevant

background of molecular collision theory. This background includes specific motivations for my

approach to the reactive molecular collision. Appendix C explains quantum dynamic nuances that

are important in fully understanding the model’s results. Appendix D shows derivations of standard

algebraic expressions and explains mathematical details not shown in the main chapters.



Chapter 2

The Forced Oscillator with Lie Algebra

My initial goal is to model the exchange of energy between a quantum harmonic oscillator and a

time-dependent external driving field, using an algebraic approach. I start with the time-dependent

Hamiltonian Ĥ(t) for a driven quantum oscillator. I then find a suitable Lie algebra with which

the Hamiltonian may be expressed. This is done with linear combinations of the Lie algebra ba-

sis elements which belong to the set {â†, â, N̂,1} where â† and â are the ladder operators, and

N̂ = â†â is the number operator for the harmonic oscillator. I also construct a generalized time-

evolution operator Û(t) with the same set of basis elements. When Ĥ(t) and Û(t) are used in

the Schrödinger equation, the linear independence of these elements allows us to equate their co-

efficients and get four quantum equations-of-motion. The solutions to these equations give the

time-evolution operator the explicit form needed to simultaneously calculate both transition prob-

abilities and phase-space trajectories given the initial conditions of a driven quantum oscillator

system.

The mathematical foundation is based on the forced quantum harmonic oscillator which has

been solved many times and in many ways. My contribution comes from the Lie algebra point

of view. I simultaneously analyze the oscillator’s motion, and its quantum dynamics continuously

throughout the external interaction with a more unified model than what is seen in the literature.

4



2.1 The Foundation for Quantum Dynamics 5

The forced quantum harmonic oscillator is the launching pad for my work with molecular collisions

in the next chapter. My work is generalized and readily available for the modeling of any system

that includes an exchange of energy between a quantum oscillator and a time-dependent external

driving field. The model has the potential to apply to femtochemistry experiments, lasing, and

nuclear reactions by specifying only a handful of parameters.

My next goal is to introduce an anharmonic potential and I find it is necessary to use a set

with 5 elements, {â†, â, N̂, N̂2,1}, along with a mean-field theory as this set is not closed under

commutation. I use as a model a Morse potential where the algebra element is exponentiated. The

expansions necessary for the Hamiltonian to be a linear combination of the 5 elements are noted

as a limiting factor in the model.

There are two ideas which need to be explained in detail for this dissertation. The first is the

forced oscillator [7, 8] upon which the whole reactive collision model is built. The second is the

Wei-Norman Ansatz [9] to the Schrödinger equation. This chapter is focused on making those

concepts clear to the reader, in order to prepare them for the next chapters, where the model is

applied to molecular collisions.

2.1 The Foundation for Quantum Dynamics

The first challenge we come across when modeling a forced quantum oscillator is time-dependence.

Time-dependence in the potential of a quantum Hamiltonian introduces a host of mathematical is-

sues. We found it most helpful to research the origins of these issues in the Schrödinger picture.

Starting with the time-dependent Schrödinger equation for the time-evolution operator

ih̄
dÛ (t, t0)

dt
= Ĥ (t)Û (t, t0) , (2.1)

we end up with three general cases for time-evolution of a quantum system. These depend on the
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Hamiltonian’s time-dependence. These cases are as follows:

CASE 1 The Hamiltonian operator is independent of time. When the parameter of time is

changed, the Hamiltonian remains unchanged. The time-dependent Schrödinger equation for the

time-evolution operator is then easily solved for,

Û (t, t0) = e−
i
h̄ [Ĥ(t−t0)]. (2.2)

An example of this case is a harmonic oscillator.

CASE 2 The Hamiltonian operator depends on time, but
[
Ĥ (t1) , Ĥ (t2)

]
= 0 for any t1 and t2.

Û (t, t0) = e−
i
h̄
∫ t

t0
Ĥ(t ′)dt ′

. (2.3)

There are few systems where this case applies. One example would be a spin-magnetic moment

subjected to a magnetic field whose strength varies with time but whose direction remains the

same.

CASE 3 The Hamiltonian operator depends on time, but
[
Ĥ (t1) , Ĥ (t2)

]
6= 0 for some t1 and

t2. Appendix C.4 shows explicitly why this is an issue. An example of this case is an oscil-

lating charge in a time-dependent external electric field f (t). In this system
[
Ĥ (t1) , Ĥ (t2)

]
→

[ f (t2)− f (t1)]
(
â†− â

)
6= 0 for any t1 and t2. The formal solution for this case is the Dyson series,

Û (t, t0) = 1+
∞

∑
n=1

(
−i
h̄

)n ∫ t

t0
dt1
∫ t1

t0
dt2...

∫ tn−1

t0
dtnĤ (t1) Ĥ (t2) ...Ĥ (tn) . (2.4)

Another example of CASE 3 is the quantum dynamics of an inelastic collision, where the

Hamiltonian does not commute with itself at different times as well. A simple model of inelastic

collisions can be founded upon a Hamiltonian of the following form

Ĥ = h̄ω

(
â†â+

1
2

)
+ f (t) â+ f ∗ (t) â†. (2.5)
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This is analogous to a harmonic oscillator (diatomic molecule), in a time-dependent "dipole field"

(colliding atom). This form works well on either side of the collinear triatomic reaction (A+BC or

AB+C) separately. This similarity between the Hamiltonian for a forced oscillator and the Hamil-

tonian for an inelastic collision [10–12] is why we base our model here. For reactions however,

notice the transition state is not accessible yet, connecting the two systems smoothly is an ultimate

challenge we address later.

I do not calculate any dynamics here but rather want to emphasize the power of the time-

evolution operator Û (t, t0). All quantum dynamics of interest are found with it. Using the Ehren-

fest theorem, I show how we can explore the phase-space dynamics with the time-evolution op-

erator. I also show how to find quantum state transitions with 〈n|Û (t, t0) |m〉, where n and m are

the initial and final quantum numbers of the oscillator. The role of the time-evolution operator is

central in quantum dynamics.

The traditional approach for the theory of quantum dynamics of molecular collisions does not

involve the time-evolution operator. It is common to focus on the time-dependence of the wave

functions and not on the operators. Wave functions are not central to our calculations. Instead, we

use an algebraic approach. The general idea of quantum algebras has been around since the early

20th century. The idea of quantum dynamics using perturbations came soon after, though it focused

on wave function expansions. In 1963, James Wei and Edward Norman’s, "Lie Algebraic Solution

of Linear Differential Equations” was an important step towards using algebra to simplify quantum

dynamics. The Wei-Norman [9] result for the time-evolution operator can greatly simplify the

calculations for time-dependent systems. The method focuses on the time-evolution operator and

does not use wave functions or perturbative expansions. It relies on number states and ladder

operators. This is our motivation for using the time-evolution operator to model the quantum

dynamics of a reactive collision in this dissertation.
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2.2 The Forced Quantum Oscillator

The forced quantum oscillator or "dipole field", is the core model of what I am doing. I am

building on the dipole field model because it applies to an oscillating molecule in the presence

of an incoming atom. This problem involves a harmonically oscillating charge in the presence of

an external time-dependent field. This model has a history we can build on [13]. We refer to a

quantum mechanics textbook [7] first.

Three "pictures", or mathematical formalisms arise in traditional quantum dynamics. In the

Heisenberg picture, one keeps the states constant and lets the operators evolve in time. The

Schrödinger picture in contrast lets the states evolve while the operators stay constant. The third

picture, called the interaction picture, is a mix of the other two. When applying a fourth, more mod-

ern Lie algebraic approach, it is useful to make a rigorous comparison with the three traditional

pictures to see exactly what is new and advantageous about the approach.

The Heisenberg picture, Lie Algebra and Interaction picture all overlap at some point. It is not

always clear which is most appropriate for the quantum system in question. In the Heisenberg pic-

ture where the states are constant and the operators, x̂,p̂ etc. evolve in time, the dynamics are more

intuitive and familiar. A drawback of the Heisenberg picture is the inevitability of the transition

rates and probabilities becoming very bulky when using higher-order operators. Reviewing the

development of traditional quantum pictures becomes fruitful when we consider the Wei-Norman

Ansatz for the time-evolution operator. We then see that the time-dependence moves into the Lie

algebra parameters that give us four ODEs. This method allows easy access of transition ampli-

tudes of any order and phase-space simultaneously. We begin this section by reviewing the dipole

model in the Heisenberg picture as this is a great warm-up for the Lie Algebraic approach.
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Heisenberg Picture

We begin applying the Heisenberg picture by defining a Heisenberg algebra as the set of complex

elements {x̂, p̂,1} being closed under commutation, i.e. [x̂, p̂] = ih̄ where ih̄ is contained in the

algebra. An oscillator driven by an external field f (t) is then modeled by forming a boson algebra{
â†, â,1

}
with the linear combinations of the Heisenberg algebra basis elements x̂ and p̂

â† =

√
mω

2h̄

(
x̂− i

mω
p̂
)

and â =

√
mω

2h̄

(
x̂+

i
mω

p̂
)
, (2.6)

which satisfy the condition of an equal time commutation relation[
â(t) , â† (t)

]
= 1 (2.7)

allowing a compact Hamiltonian expression

Ĥ = h̄ω

(
â†â+

1
2

)
+ â f (t)+ â† f ∗ (t) . (2.8)

Note the higher order term â†â shows that Ĥ is not a part of the {x̂, p̂,1} algebra. The dynamics that

we are interested in are contained in the algebra, not the Hamiltonian. The equations-of-motion

are found with the Heisenberg equation-of-motion for an observable. For â the equation-of-motion

is
dâ(t)

dt
+ iω â(t) =− i

h̄
f ∗ (t) . (2.9)

Notice that with the field turned off, the solution is simply â(t) = a0e−iωt , just a phase that we

multiply the initial operator with (analog to stationary states). Also, the time-dependent part be-

comes a driving term, an indirect connection to the distant charge in motion that created this local

field. This is an inhomogeneous differential equation, which is easily solved by standard methods.

For instance, it can be multiplied by the integrating factor eiωt and cast into the form
d
dt

[
â(t)eiωt]=− i

h̄
f ∗ (t)eiωt , (2.10)

where choosing t0 = 0 we may easily integrate to produce the general solution

â(t) = âe−iωt− i
h̄

∫ t

0
e−iω(t−t ′) f ∗

(
t ′
)

dt ′. (2.11)
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With this and the solution for â†, if we are given an explicit field we can now find phase-space

dynamics with

〈x̂〉=
√

1
2mω

(
〈â(t)〉+

〈
â† (t)

〉)
(2.12)

and

〈p̂〉= i

√
mω

2

(〈
â† (t)

〉
−〈â(t)〉

)
. (2.13)

For many systems this is sufficient. However, to consider transition amplitudes from an energy

state |n〉→ |m〉 corresponding to the eigenstate of the number operator N̂ = â†â, a bulky calculation

(2.14) is necessary,

〈m|
[

h̄ω

(
â†â+

1
2

)
+ â f (t)+ â† f ∗ (t)

]
|n〉 . (2.14)

The linear structure in the amplitudes would also occur when taking the time-evolution operator

to be an exponential of the sum of operators. We will see how the Baker-Campbell-Hausdorff

formula (Appendix C.5) and adding a dimension to our algebra will significantly simplify this.

2.3 Lie Algebraic Approach

We are now prepared to introduce the abstract algebraic approach in full detail. Introducing a

closed Lie algebra with basis elements
{

â†, â, N̂,1
}

we will solve the Schrödinger equation for the

time-evolution operator Û(t):

i
d
dt

Û = ĤÛ . (2.15)

where we let h̄ = 1. We now take advantage of the Wei-Norman Ansatz [9]. The Wei Norman

Ansatz consists in writing the evolution operator as a product of four exponentials each one corre-

sponding to each of the elements of the basis of the Lie algebra. The operator in the exponent is

multiplied by a commuting time-dependent factor in the following way:

Û = eα1â†
eα2âeα3N̂eα4. (2.16)
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We apply the Wei-Norman Ansatz to both sides of (2.15) and invert the RHS Ansatz to get

i
(

d
dt

eα1â†
eα2âeα3N̂eα4

)
e−α4e−α3N̂e−α2âe−α1â†

= Ĥ. (2.17)

Equating coefficients of the Lie algebra elements in (2.17) produces 4 differential equations for

the time-dependent c-numbers α1(t),α2(t)α3(t), and α4(t). To massage the LHS of (2.17) into a

form where the algebraic properties may be exploited we separate the exponential terms using the

Baker-Hausdorf formula (Appendix B.5). We substitute in the specific Hamiltonian for an external

dipole field given by (2.8) for the RHS of (2.17) bringing us to

i(α̇1− α̇3α1) â† + i(α̇2 + α̇3α2) â+ i(α̇3) N̂ + i(α̇4− α̇3α2α1− α̇2α1)

= ( f (t)) â† +( f (t)) â+(ω) N̂ +
(1

2ω
)
.

(2.18)

When we equate the coefficients of (2.18), we get 4 linear equations-of-motion

α̇1 + iωα1 =− iωt (2.19)

α̇2− iωα2 = f (t)+ωα1 (2.20)

α̇4 = f (t)−ωα2 (2.21)

α̇3 =− iω. (2.22)

Now we may use a specific external field, i.e. f (t) =
√

E2
0

2mω
cosω0t and get the α solutions as

explicit functions of time corresponding to the oscillator’s dynamics.

Dipole Field Transitions

Finding the probabilities for the oscillator to gain quanta of energy from the field is the next step.

Knowing the explicit forms of these Lie coefficients we can calculate persistence amplitudes,

〈n|Û |n〉= 〈n|eα1â†
eα2âeα3N̂eα4 |n〉 (2.23)

or time-dependent transition amplitudes

〈n|Û |m〉= 〈n|eα1â†
eα2âeα3N̂eα4 |m〉 . (2.24)
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2.4 Results and Summary

We now take a look at some results of the dipole field model. In Figs. 2.1 through 2.5 we compare

phase space trajectories to the cooresponding time-dependent transition probabilities. Fig. 2.1

shows two asymptotic states of a harmonically oscillating charge, seen as small and large circles,

connected by a transient oscillation. Fig. 2.2 is the plot of an oscillator that receives a pulse of

energy from the external field and then proceeds to oscillate at a greater amplitude. We start the

quantum dynamics in a single ground state and show how higher order transitions grow in ampli-

tude after the collision in Fig. 2.3. In Fig. 2.4 we turn the external field on at t = 0 and compare the

plots of the field strength and the amplitude of the oscillator to see how they correspond in time.

Figure 2.1 Phase-space trajectories for a harmonic oscillator absorbing energy from a pulse field.
This plot shows two asymptotic states of a harmonically oscillating charge, seen as small and large
circles, connected by a transient oscillation.
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Figure 2.2 Time-dependence of the oscillator subject to an external field pulse. This is the plot of
an oscillator that receives a pulse of energy from the external field and then proceeds to oscillate
at a greater amplitude.
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Figure 2.3 Quantum transition amplitudes of an oscillator initially in the single ground state
(Appendix C.1).
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Figure 2.4 External field turns on at t = 0 and leave it on. a) we see the plots of the field strength
and the amplitude of the oscillator and how they correspond in time. b) is the phase-space plot of
the exact same event. Notice that the initial expectation value for the oscillator is not oscillating
(Appendix C.3). c) Transition probailities for gound state to nearby low energy states.
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a)
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Relative
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Initial Ground State
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Figure 2.5 a) When we include the anharmonic potential in the calculations we can see the oscil-
lator now has cusps as expected. Notice the external field

(
∝ sin(ωt)e−t2

)
contains a frequency

ω that can resonate with the oscillator. b) Transition amplitudes from ground to the first and sec-
ond excited states throughout time as the charge oscillates in the external field. Note that when the
field is turned off the phase relations are constant again unlike when the field is left on in Fig. 2.4
c).

In Fig. 2.5 we excite the anharmonic oscillator with a harmonic sinusoidal external field on

resonance. When we rearrange the Schrödinger operator equation into (2.17) we can exploit the

Wei-Norman Ansatz by equating Lie algebra coefficients. This produces the equations-of-motion

from which both phase-space dynamics and transition probabilities are derived. When we solve

the four differential equations for αi we have enough information for state-to-state transition prob-

abilities,

〈n|Û |m〉= 〈n|eα1â†
eα2âeα3N̂eα4 |m〉 (2.25)

and phase-space dynamics with

〈â〉= 〈n|Û−1âÛ |n〉 (2.26)

and 〈
â†
〉
= 〈n|Û−1â†Û |n〉 . (2.27)

I chose the driven harmonic oscillator as an example because of its similarity to an inelastic

molecular collision [10, 11]. In this chapter I introduced the important mathematical ideas needed
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to apply the theory beyond a dipole field. In the following chapters I develop some relevant exam-

ples of molecular collisions.



Chapter 3

Inelastic Molecular Collisions

I now apply the algebraic quantum dynamic model discussed in Chapter 2 to inelastic molecular

collisions. I focus on a collinear inelastic collision between a diatomic molecule and an atom.

This is generally called the Landau-Teller model because it models the diatomic molecule as a har-

monic oscillator with an exponential repulsion between the incoming atom and the closest atom

of the molecule. My contribution is threefold: a) a Lie algebraic approach to study this model, b)

the coupling between the translational and vibrational motions, solving all the equations simulta-

neously, and c) the time evolution of a thermal mixture of initial states.

The inelastic collision system behaves very similarly to the driven (atomic collision) quantum

oscillator (vibrating molecule) but a new challenge arises since it is now a three-body problem. I

begin tackling the problem by removing the center-of-mass motion for the whole system. I then

note that the translation of the atom relative to the molecule is essentially classical in nature. I treat

the vibrating molecule as an oscillating dimensionless reduced mass with quantized motion. This

combination of classical and quantum degrees-of-freedom is what is meant by "semi-classical" in

the title of this thesis.

My first contribution begins when I construct a Hamiltonian for this reduced system with Lie

algebra elements and derive four quantum equations of motion. With the solutions loaded into the

18
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time-evolution operator, I am able to plot the phase-space trajectory of the oscillator as it is excited

from a ground state. I simultaneously plot transition probabilities from this ground state to any

other state continuously throughout the excitation. I then iterate a single collision condition into

a canonical ensemble. The plots show quantum dynamics of a bath of molecules leaving thermal

equilibrium with the atoms.

My molecular collision calculations are performed non-perturbatively exploiting the algebraic

properties of the system. In particular, I consider a model Hamiltonian with time as a parametric

variable and where both the oscillator and the atomic interaction terms contain time-dependent

coefficients. The operator part of the Hamiltonian is written in terms of elements of a Lie algebra.

Given that the resulting algebra is closed under commutation, one can express the time-evolution

operator Û as a product of exponentials, each corresponding to a single generator of the algebra

[9]. Within this scheme the time-dependence is concentrated in the commuting coefficients {αi}

appearing in the exponents, as will become evident in what follows. The differential equation

fulfilled by the evolution operator Û is replaced by a set of coupled ordinary differential equations

for the α’s that can be solved numerically. Armed with Û , one can easily obtain

(a) time-dependent transition probabilities between two of the oscillator states induced by the

incoming atom

(b) the expectation value of the Heisenberg position and momentum operators

(c) a plot of the corresponding phase-space trajectory

In deriving the Hamiltonian I also make use of a shift in the oscillator frequency. I then allow

the oscillator frequency to be dependent on the distance between the incoming atom and the di-

atomic molecule’s center-of-mass. This is the result of a coupling between the classical equation

for translation and the quantum equation for the oscillator. Previous work assumes a precalculated

incoming classical trajectory for the atom [1].

In the results of this section, I develop these ideas into a working model and find the expressions
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for the transition probabilities as a function of time, as well as the time-evolution of the average

position and momentum. A temperature-dependent case of a Boltzmann distribution of initial

conditions with single and mixed states is then discussed. The promise of this work lies in the

fact that it is a unique combination of proven methods, most of which are already used by modern

molecular collision theorists [1, 10, 14].

3.1 The Coordinates

Consider a simple collinear inelastic collision between a diatomic molecule and an atom. We set

up the following coordinates [15] for the nuclei positions as in Fig. 3.1.

CBA

Figure 3.1 Initial coordinate system for a collinear triatomic system.

Classically the Hamiltonian for the Landau-Teller model would be

H1 =
p2

A
2mA

+
p2

B
2mB

+
p2

C
2mC

+VBC (xB− xC)+VAB (xA− xB) . (3.1)

Here we take the B and C atoms to be bound and the interaction between C and A to be negligible.

We may reduce the problem to two dimensions using the following Jacobi coordinates shown in

Fig. 3.2.
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y’

x’

Figure 3.2 Coordinate system after the removal of the center-of-mass.

The coordinates in Fig. 3.2 are defined as follows: y′ is the distance between the nuclei in the

diatomic molecule. Take x′ to be the distance between the A atom and the centers-of-mass of B

and C. Consider X the distance of the whole system’s center-of-mass to the origin. The explicit

equations of transformation are

y′ = xB− xC, x′ = xA− mBxB+mCxC
mB+mC

, X = mAxA+mBxB+mCxC
mA+mB+mC

µBC = mBmC
mB+mC

, µA,BC = mA(mB+mC)
mA+mB+mC

. (3.2)

Now when we transform the Hamiltonian, we can ignore the kinetic energy of the center-of-mass

and get

H2 =
p2

y′

2µBC
+

p2
x′

2µA,BC
+VBC

(
y′
)
+VAB

(
x′− µBC

mB
y′
)
. (3.3)

3.2 The Landau-Teller Model

We now choose a simple potential and the appropriate transformation to dimensionless variables x

and y. A potential appropriate for the harmonic motion of the diatomic system is given and then

transformed into y:

VBC
(
y′
)
=

1
2

µBCω
2
0
(
y′− y0

)2
=

1
2

h̄ω0y2. (3.4)

where ω0 is the natural vibrational frequency of the diatomic molecule. Isolating the vibrational

degree-of-freedom we get the dimensionless displacement

y =
√

ω0µBC

h̄

(
y′− y0

)
. (3.5)
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For the potential representing the atom/molecule interaction it is essential to transform y′ to y with

VAB

(
x′− µBC

mB
y′
)
= h̄ω0V (x− y) = h̄ω0V0e−β (x−y). (3.6)

where both V0 and β are dimensionless parameters defining the atom-diatomic interaction. After

making the change to relative dimensionless variables there appears a coupling between x and y.

These momentum operators now refer to reduced mass particles 1 and 2 at positions away from

their respective centers-of-mass like in Fig. 3.3.

y

x

1 2

.

Figure 3.3 Final coordinate system of choice.

The easy route here is to avoid solving this wave-equation and break the coordinates up into clas-

sical and quantum degrees-of-freedom. The kinetic and potential energies are now:

T̂ =
1

2m
h̄ω0 p2

x +
1
2

h̄ω0 p̂2
y (3.7)

and

V̂ = h̄ω0
1
2

ŷ2 + h̄ω0V0e−β (x−ŷ). (3.8)

Note m is now defined as a dimensionless mass used in the transformation: p̂x′→
√

µA,BCh̄ω0
m p̂x,

or explicitly m = mAmC
mB(mA+mB+mC)

. Now divide out by h̄ω0 and transform into new scaled energy

units to get our final workable semi-classical Hamiltonian of

Ĥsc =
1

2m
p2

x +
1
2

p̂2
y +

1
2

ŷ2 +V0e−β (x−ŷ). (3.9)
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At this point we interpret the x coordinate to be a classical relative translation of the atom and

molecule while ŷ is a displacement operator for the quantum vibration of the diatomic molecule.

Our classical equation is

m
d2x
dt2 =−∂xV0e−βxeβ 〈ŷ〉(t) = βV0e−βxeβ 〈ŷ〉(t). (3.10)

where 〈ŷ〉(t) is the time-dependent expectation value of the vibrational displacement operator ŷ.

While the quantum equation is taken to be

i
d
dt

Û (t) = ĤÛ (t) (3.11)

where the LHS has h̄ω0 divided out and applies a variable redefinition of t = t ′ω0 giving us our

workable Quantum Hamiltonian

Ĥq =
1
2

p̂2
y +

1
2

ŷ2 +V0e−βxeβ ŷ. (3.12)

Notice that the only mass left after all the transformations is associated to the translational degree of

freedom. The quantum Hamiltonian (3.12) contains no explicit mass at all. The classical variable

x is updated numerically from the classical equation-of-motion each step. Given that the motion

along the vibrational coordinate y is restricted, some approximations become appropriate at this

point. First, expansion of the exponential repulsive term

V0e−βxeβ ŷ ≈V0e−βx
(

1+β ŷ+
1
2

β
2ŷ2 + ...

)
(3.13)

gives us the truncated quantum Hamiltonian,

Ĥq =
1
2

p̂2
y +

1
2

ŷ2
(

1+β
2V0e−βx

)
+V0e−βx +β ŷV0e−βx. (3.14)

Now the quadratic term in y can be redefined with a new angular frequency of

Ω
2 (x(t)) = 1+β

2V0e−βx, (3.15)

giving us

Ĥq =
1
2

p̂2
y +

1
2

Ω
2ŷ2 +V0e−βx +β ŷV0e−βx. (3.16)
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The Landau-Teller Hamiltonian (3.16) corresponding to the quantum harmonic oscillator has the

following features: a) it is effectively time-dependent through the dependence of the classical

translational degree-of-freedom x(t); b) it involves an x dependent dynamic angular frequency

Ω(x(t)) which adapts to the ongoing translational motion; c) it includes an x dependent driving

term due to the atom-diatomic interaction.

Note the coupling of the molecule vibration ŷ to the relative translation of the colliding species

x in the last term of the Hamiltonian. In previous work [2, 16], this interaction term assumes a

precalculated trajectory (external driving field) such as sech2 (t).

It is appropriate to utilize an algebraic approach in the construction of the system dynamics at

this point. We start with a Lie algebra made of a set of the elements,
{

â, â†, N̂,1
}

, that is closed

under commutation relations,[
â, â†

]
= 1

[
â, N̂

]
= â and

[
â†, N̂

]
=−â†. (3.17)

With this particular Lie algebra it is of interest that (3.16) be rewritten in terms of the boson

operators â and â†. This is done with the ladder operator/phase-space relations in (3.18).

ŷ =

√
1

2Ω

(
â† + â

)
and p̂y = i

√
Ω

2

(
â†− â

)
(3.18)

The subtitution produces the desired quantum Hamiltonian:

Ĥ =
1
2

[
i

√
Ω

2

(
â†− â

)]2

+
1
2

Ω
2

[√
1

2Ω

(
â† + â

)]2

+V0e−βx +β

√
1

2Ω

(
â† + â

)
V0e−βx.

(3.19)

The effective frequency of oscillation now takes the functional form of

Ω(x) =
√

1+β 2V0e−βx, (3.20)

which introduces a new quadratic term in ŷ redefining the angular frequency.
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Equations of Motion

The time dependence for ŷ moves into the four Lie algebra parameters αi. We use the Ansatz of

choice [9] for the quantum equation:

Û (t) = eα1â†
eα2âeα3N̂eα4. (3.21)

This defines the general quantum solution. Inverting the Ansatz in (3.21) isolates the Hamiltonian.

In our case it is rewritten in linear and quadratic terms of boson algebra elements as

Ĥ =

(
V0e−βx +

Ω

2

)
+

(
β

√
1

2Ω
V0e−βx

)
â+

(
β

√
1

2Ω
V0e−βx

)
â† +(Ω) â†â. (3.22)

Note: ââ† = 1 + N̂. The challenging part begins as we use commutation relations (Appendix

C.4) and a few other mathematical rearrangements bringing us to the quintessential Schrödinger

equation

Ĥ = (iα̇3) â†â+(iα̇1− iα̇3α1) â† +(iα̇2 + iα̇3α2) â+(iα̇4− iα̇2α1− iα̇3α2α1)1. (3.23)

This is a standard result using the Wei-Norman Ansatz for the four dimensional Lie algebra →{
â, â†, N̂,1

}
(Appendix D.1). It is now possible to equate the Lie algebra coefficients using the

above Hamiltonian and get the following coupled equations of motion.

ẍ(t) =
1
m

βV0e−βxeβ 〈ŷ〉(t)

α̇1 =− iβ

√
1

2Ω
V0e−βx + α̇3α1 (3.24)

α̇2 =− iβ

√
1

2Ω
V0e−βx− α̇3α2

α̇3 =− i
√

1+β 2V0e−βx

α̇4 =− iV0e−βx− i
Ω

2
+ α̇2α1 + α̇3α2α1
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3.3 Results and Summary

Calculations with the current formulation are given when the time-evolution operator is found.

We can compare the collinear trajectories and phase-space to see the energy transfer details and

trajectory asymmetries by using the time-dependent expectation value for the quantum motion.

Time-dependent probability of transition between arbitrary states is also readily available when

the evolution operator is found. We show an example of this inelastic collision model in Fig. 3.4.

Notice the asymmetry in the trajectory on the left as this is much more accurate than an uncoupled

approach [2].

Figure 3.4 Here we have plotted the collinear trajectories as a function of time on the left and the
time-dependent function

∣∣〈 f |Û (t) |i〉
∣∣2 for i = 0, and f = 0,1 on the right. Notice the asymmetry

in the trajectory on the left as this is much more accurate than an uncoupled approach [2]. In
this case we used a single initial state (Appendix C.2) which is apparent in the initial transition
probabilities for the ground and first excited states as well.
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Figure 3.5 Another interesting initial condition is a linear combination of time-dependent states
(Appendix C.3). This is seen in the fact that the expectation value of the position is not zero
as would be in the previous case for an initial single state (Appendix C.1). To the right is the
expectation value of phase-space for the harmonic oscillator corresponding to the collision this
same collision.

Another interesting initial condition is a linear combination of time-dependent states shown in

Fig. 3.5. This is seen in the fact that the expectation value of the position is not zero as would

be in the previous case for an initial single state (Appendix C.1). To the right is the expectation

value of phase-space for the harmonic oscillator corresponding to the collision this same collision.

Figures 3.6-3.8 shows the probability of the single state oscillator to be found in the neighboring

states after the collision can be seen as a dynamical landscape.

If we now analyze a canonical ensemble of oscillators before and after the collision we make

use of a time-dependent probability of each oscillator state as

Pi f =
∣∣〈 f |ÛρiÛ−1 | f 〉

∣∣2 e−βEi

Z
. (3.25)

Plots in Figs. 3.6-3.8 are the distribution of states for a single state initial harmonic oscillator

at temperature 50K. The initial state is seen as a spike. Notice the higher probability for the

immediately neighboring states.
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Figure 3.6 This is the time-dependence of the transition probability for the initial single state of
n = 2 quanta. Notice during the collision the distribution is highly dispersed and messy. After
the collision the diatomic molecule has high probability to move to the immediately neighboring
states. This is not always the case, for some initial velocities the initial spike comes right back
after the collision which refers to more adiabatic conditions.
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Figure 3.7 This is the time dependence of the transition probability for the in ital single state
of n = 4 quanta. This time just after the collision the diatomic molecule has equal probability to
move to the immediately neighboring states as well as remain in the initial state.
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Figure 3.8 This is the time dependence of the transition probability for the initial state of n = 7
quanta where the plot has been rotated for a different perspective.

The Lie algebraic model has been shown to be a powerful formulation in inelastic molecular

collision modeling. Finding the time-evolution operator produces all the information we need for

both average phase-space and transitions of vibrationally excited diatomic molecules.

The Schrödinger equation in the form

i
(

d
dt

Û
)

Û−1 = Ĥ

has been shown to be a generalized tool one can tailor to a specific system. Time-resolved, infinite

order transition probability calculations are a powerful result of the operator approach. We are

now able to see details in the transition probabilities continuously through the whole collision.

This work did not assume precalculated incoming atomic trajectories seen in previous work [1].

The model couples the atomic motion to the molecule’s vibration producing assymetric collision

trajectories. The next step is to build upon this method for the reactive case.



Chapter 4

Reactive Molecular Collisions

In this chapter the collinear reactive molecular collision is developed. The same reduced mass

coordinate system used in the inelastic collision model now applies to both sides of the (Appendix

B.5). I remove the centers-of-mass and use a natural reaction coordinate system that smoothly

connects the reactant configuration to the product configuration. I take the translation along the

reaction coordinate to be classical but I quantize the transverse coordinate since it will contain

bound motion.

My contribution comes from constructing a reactive collision Hamiltonian with the same Lie

algebra approach I used in the inelastic collision model. I start with a harmonic oscillator in

the transverse direction and then move to the more realistic Morse potential where a mean field

is applied. After the working model is developed I explore resonances in the trajectories and

population inversion of the transition probabilities. I exploit the readily available state-to-state

calculations by applying the model to atomic collisions with an initial Boltzmann distribution of

molecular vibrational energies. I then discuss how the algebraic model reveals/resolves quantum

dynamic details around the A+BC→ AB+C reaction transition state. To highlight what my

research adds to the field I start with a brief historical background of theoretical reaction dynamics

relevant to my work.

30
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4.1 Brief Reactive Collision Theory Background

In the first exact quantum mechanical inelastic collision calculations [15], a set of reduced-mass

and mass-scaled Cartesian coordinates were used. Others were able to modify the potentials while

still using these coordinates thereby making them a standard [3, 17].

In the pure quantum mechanical approach it was standard to separate the dynamics into two

Hamiltonians, one for the reactant side and one for the product side [2]. This allowed asymptotic

boundary conditions for reactive scattering, though two problems emerged. The normal inelastic

approach by expansion in the reactant states led to heavy coupling between highly excited channels.

At the same time, a mixed expansion in reactant and product states raises orthogonality issues

and over-completeness in the basis set [14]. Finite difference methods were able handle these

issues but tended to obscure the physical origin of the results. It wasn’t until 1966 [18] that a

curvilinear coordinate system1 for reactive scattering was developed. Semi-classical methods are

more intuitive in this natural coordinate system. The reaction coordinate, which represents the

relative position of the colliding species, can now be treated classically. Only the coordinates

perpendicular to the reaction coordinate need quantization.

A set of "normal coordinates" different from the natural ones were later introduced [19]. In-

terestingly, no articles cite these normal coordinates. The purpose of these "normal coordinates"

was to gain a more intuitive understanding of the reaction by following the actual positions of the

atoms, which the natural coordinates do not do. In most cases it is the transition probabilities that

are needed and not the atomic motion anyway, and transition probabilities are independent of the

coordinate system used. Although intuition of the exact motion of the masses is limited using nat-

ural coordinates, the transition probabilities are considered paramount as they may be compared to

femtochemistry experiments.

1Appendix D.2
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4.2 The Reactive Collision using Lie Algebra

Reactive or rearrangement processes differ from inelastic events by the appearance of new molecu-

lar species with different masses and different coordinate systems for these new molecules. It is the

change in coordinate system which presents the most severe theoretical challenge. Mathematical

transformations to the two axes RAB and RBC used in Fig. B.7 of the Appendix are needed to make

this simulation quantitatively valid. The result of these operations is that the two new axes X and Y

become skewed at an angle β relative to each other in a new mass-skewed coordinate system [20]

seen in Fig. 4.1.

X

Y

Figure 4.1 The skewed potential energy surface showing the minimum energy pathway defining
the reaction coordinate

Highly skewed axes can have a dramatic effect on the reaction dynamics. In cases where

the transition state is closer the product channel (a "late" transition state), which would normally

channel energy into translation on a less unskewed surface, produces considerable vibrational ex-

citation. Appendix D.2 shows a derivation of natural coordinates where this angle emerges.

We now describe our reactive collision model. Fig. 4.2 shows the important steps we took to

develop the skewed reaction coordinate system needed for the model.
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s

x

Fold
Skew

energy

Figure 4.2 The development of the skewed reaction coordinate.

It is the reduced mass of all three atoms that is "sliding around on the potential energy surface".

This transformation forces us into the skewed scheme. In the far right image of Fig. 4.2 we see

two coordinates defined. The translational coordinate s is taken to be classical while the transverse

motion, x̂, is quantized. Since we are working with a semi-classical model we keep the hats on the

quantum variables and take the hats off the classical variables. From M.S. Child’s work in reactive

scattering [14] we begin with the purely quantum Hamiltonian given in (4.1).

Ĥ =− 1
2m

[
∂ 2

∂ x̂2 +
κ2

4η2

]
+V̂ (s, x̂) , (4.1)

where κ(s) is the curvature of the "fold" seen in Fig. 4.2 and η is a function of κ and x̂. Details

to the derivation of this form are in Appendix D.2. An important feature to this expression is the

coupling of the translational coordinate s and the transverse coordinate x̂ in the "centrifugal term"

κ2/4η2 because η = 1+κ (s) x̂. The word centrifugal is used here because of the term’s strong

effect on "pushing" the reaction away from the reaction coordinate as it crosses over the activated

complex or saddle point. Our chosen potential and curvature functions for the reactive collision

calculation are defined as

V̂q (x̂) =
1
2

mω (s)2 x̂2 and κ (s) = e−s2
. (4.2)

Notice the oscillator’s frequency of transverse oscillation ω is a function of the reaction coor-

dinate s. This means that the shape of the transverse oscillator adapts to the shape of the energy
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surface as we evolve along the reaction coordinate. The Hamiltonian is now expressed as

Ĥ =− 1
2m

∂ 2

∂ x̂2 −
e−2s2

8m
(
1+ e−s2 x̂

)2 +
1
2

mω (s)2 x̂2. (4.3)

We begin our approximations with an expansion of the denominator resulting in

≈− 1
2m

∂ 2

∂ x̂2 +
1
2

mω (s)2 x̂2− e−2s2

8m

(
1−2e−s2

x̂+3e−2s2
x̂2
)
. (4.4)

Redefining the harmonic oscillator frequency as

Ω
2(s) = ω (s)2− 3

4m2 e−4s2
(4.5)

creates the Hamiltonian of choice:

Ĥ =− 1
2m

∂ 2

∂ x̂2 +
1
2

mΩ
2(s)x̂2− e−2s2

8m

(
1−2e−s2

x̂
)
. (4.6)

This Hamiltonian represents a parametric harmonic oscillator with driving term on the far right.

We now apply the Lie algebra method using the 4-dimensional algebra:
{

N̂, â, â†,1
}

. Using the

ladder operator/position-momentum relations, we explicitly rearrange the Hamiltonian to isolate

the coefficients of the Lie Algebra elements:

Ĥ = Ω(s) N̂ +

(
e−s2

4m

√
Ω(s)
2m

)
â† +

(
e−s2

4m

√
Ω(s)
2m

)
â+

(
Ω(s)

2
− e−2s2

8m

)
. (4.7)

To equate it to the standard Lie algebra coefficients, we compare each side of

Ĥ = iα̇3N̂ +(iα̇1− iα̇3α1) â† +(iα̇2 + iα̇3α2) â+(iα̇4− iα̇2α1− iα̇3α2α1) . (4.8)

where the RHS comes from (3.23) and has been verified by symbolic manipulation in a Mathemat-

ica program (Appendix A.4 and C.5). Explicitly, the whole equation is:

Ω(s) N̂ +

(
e−s2

4m

√
Ω(s)
2m

)
â† +

(
e−s2

4m

√
Ω(s)
2m

)
â+

(
Ω(s)

2
− e−2s2

8m

)
1

= iα̇3N̂ +(iα̇1− iα̇3α1) â† +(iα̇2 + iα̇3α2) â+(iα̇4− iα̇2α1− iα̇3α2α1) ,

(4.9)

where the coeffiecient are in parentheses in fron of each element of the Lie Algebra. This produces

the system of differential equations for the Lie algebra parameters,
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α̇1 =− i
e−s2

4m

√
Ω(s)
2m
− iΩ(s)α1

α̇2 =− i
e−s2

4m

√
Ω(s)
2m

+ iΩ(s)α2

α̇3 =− iΩ(s) (4.10)

α̇4 =α̇2α1 + α̇3α2α1− i
Ω(s)

2
+ i

e−2s2

8m
.

4.3 Including Anharmonic Molecular Vibrations

To complete our model we require a potential for the transverse coordinate that will result in more

realistic, anharmonic behavior [21]. There also must be a chance for complete dissociation. The

chosen potential and curvature functions for a more realistic scenario are defined as

V̂ (x) =V0

(
1− e−β x̂

)2
and κ (s) = e−s2

.

Plugging these into (4.1) we get,

Ĥ =− 1
2m

∂ 2

∂ x̂2 −
e−2s2

8m
(
1+ e−s2 x̂

)2 +V0

(
1− e−β x̂

)2
. (4.11)

Expanding the denominator and the Morse term (Appendix B.2), then redefining the harmonic

oscillator frequency like we did in (4.5) we get

Ĥ ≈− 1
2m

∂ 2

∂x2 +
1
2

mΩ
2x̂2− e−2s2

8m

(
1−2e−s2

x̂
)
. (4.12)

We move to the Lie algebra representation [22] using the position/ladder operator relations and

get:

Ĥ = Ω(s)
(
N̂
)
+

(
e−s2

4m

√
Ω(s)
2m

)
â† +

(
e−s2

4m

√
Ω(s)
2m

)
â+

(
Ω(s)

2
− e−2s2

8m

)
.
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To derive the equations of motion we equate this Hamiltonian to the standard Lie algebra coeffi-

cients derived in Appendix D.1

Ĥ = (iα̇3) N̂ +(iα̇1− iα̇3α1) â† +(iα̇2 + iα̇3α2) â+(iα̇4− iα̇2α1− iα̇3α2α1)1. (4.13)

Here are the equations of motion:

α̇1 =Ω(s)α1− i
e−s2

4m

√
Ω(s)
2m

α̇2 =Ω(s)α1− i
e−s2

4m

√
Ω(s)
2m

(4.14)

α̇3 =− iΩ(s)

α̇4 =

(
Ω(s)α1− i

e−s2

4m

√
Ω(s)
2m

)
α1 +Ω(s)α2α1− i

Ω(s)
2

+ i
e−2s2

8m
.

The solution to this system may then be used in the Wei-Norman ansatz to plot quantum dy-

namics of the reactive collision.

Mean-Field Approach

When we use the Morse potential it is inevitable that we end up with an N̂2 term. Rather than using

a larger algebra to include this term we may construct a mean field Hamiltonian [8] starting with

Ĥ =− 1
2m

∂ 2

∂ x̂2 −
κ2

8m(1+κ x̂)2 +V̂ (s, x̂) . (4.15)

We expand the denominator and the Morse term and redefine the oscillating frequency using
1
2

mω
2 = D0α

2−3
κ4

8m
(4.16)

and

ω (s) =

√
2
m

(
D0α2−3

κ4

8m

)
. (4.17)

One way to apply a mean field here is to consider the coefficient for the N̂2 term in a general

Morse spectrum. Direct comparison of the current Hamiltonian with the standard Morse potential

eigenvalues [23] via mean field gives us:
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Ĥ = ω (s)
(

N̂ +
1
2

)
−χ

(
N̂ +

1
2

)2

+
κ3

4m
x̂+V0e−γs2

− κ2

8m
. (4.18)

Then we move to the Lie algebra representation using the position/ladder operator relation,

Ĥ = ω (s)
(

N̂ +
1
2

)
−χ

(
N̂ +

1
2

)2

+
κ3

4m

√
1

2mω (s)

(
â† + â

)
+V0e−γs2

− κ2

8m
. (4.19)

We now want to compare two different mean field approximations: The first method using

mean field theory is to let N̂→
〈
N̂
〉

and absorb the term into the harmonic oscillator frequency.

Ĥm = Ω(s)
(

N̂ +
1
2

)
+

κ3

4m

√
1

2mΩ(s)

(
â† + â

)
+V0e−γs2

− κ2

8m
. (4.20)

where the anharmonic parameter χ is included in Ω(s). Combining Lie Algebra with the Wei-

Norman Ansatz brings us to

(Ω(s)) N̂ +

(
κ3

4m

√
1

2mΩ(s)

)
â† +

(
κ3

4m

√
1

2mΩ(s)

)
â+
(

V0e−γs2
− κ2

8m
+

Ω(s)
2

)
1,

= (iα̇3) N̂ +(iα̇1− iα̇3α1)a† +(iα̇2 + iα̇3α2)a+(iα̇4− iα̇2α1− iα̇3α2α1)1. (4.21)

where the RHS of (4.21) is the same as in (3.23). Equating the coefficients produces

α̇1 =i
κ3

4m

√
1

2mΩ(s)
− iΩ(s)α1

α̇2 =− i
κ3

4m

√
1

2mΩ(s)
+ iΩ(s)α2 (4.22)

α̇3 =− iΩ(s)

α̇4 =− iV0e−γs2
− i

κ3

4m

√
1

2mΩ(s)
α1 + i

κ2

8m
− i

Ω(s)
2

,

where

Ω(s) = ω (s)−χ

〈
N̂ +

1
2

〉
= ω (s)−χn−χ

1
2
+χα1α2, (4.23)

and

ω (s) =

√
2
m

(
D0α2−3

κ4

8m

)
. (4.24)
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In this approximation the new effective frequency Ω(s) becomes a function of the initial vi-

brational state n. Thus the parametric oscillator adapts also to the chosen initial state through the

mean field 〈N̂〉. The mean-field form of the number operator〈
N̂
〉
= n−α1α2 (4.25)

was verified by the computer algebra algorithm seen in Appendix A.4.

The other way we derive a mean-field Hamiltonian is by adding an N̂2 to the Lie algebra.

keeping the N̂2 term in the Hamiltonian, and appending this operator to the Lie algebra basis.

The new set is no longer a basis for a Lie algebra as the commutation relations do not close in

a finite number of steps. The new self-consistent approximation comes from forcing the closure

by using expectation values of N̂ within the commutation relations, keeping the Morse oscillator

anharmonicity in the Hamiltonian. Starting again from (4.19), we can derive the equations of

motion the same way. To do this, we note the canonical coefficients for the new 5 dimensional Lie

algebra derived in Appendix D.1.3 are needed producing

α̇1 =− i
κ3

4m

√
1

2mω (s)
+α1 (iχ− iω (s))+ i2α1χ 〈N〉

α̇2 =− i
κ3

4m

√
1

2mω (s)
−α2 (iχ− iω (s))− i2α2χ 〈N〉

α̇3 =iχ− iω (s) (4.26)

α̇4 =iχ

α̇5 =− iV0e−γs2
+ iχ

1
4
− iω (s)

1
2
+ i

κ2

8m
− iα1

κ3

4m

√
1

2mω (s)

as our equations of motion. Note that with the new algebra
〈
N̂
〉
,〈â〉 ,

〈
â†〉 are all the same as those

derived in the previous applications in this dissertation.

In this section we introduced anharmonic behavior into the transverse coordinate. This involved

two important steps, one was redefining the oscillation frequency to be dependent on the transverse
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coordinate and the other using a mean field.

4.4 Results and Summary

In this section we examine results obtained using the current model. We start with a few standard

results to show how the results can be physically relevant and then we move to discuss more

peculiar results such as resonance. In the first result shown in Fig. 4.3 we start with a single initial

vibrational state for the reactant molecule. After the reaction we see a coherency in the vibration

of product molecule.

Figure 4.3 The simultaneous collinear trajectory plots and the corresponding transition amplitude
using a harmonic oscillator transverse coordinate. The reactant diatomic molecule starts in the
ground state. The product molecule gains quanta of energy from the reactive collision.

Fig. 4.6 below is a result that shows how coupling of the translational and transverse coordinates

can produce interesting trajectories not seen in previous models.

Most bulk reaction calculation methods assume the transition state can only be crossed once.

We show that there are initial conditions, on the molecular scale, where the reaction goes back
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0   0

0    1

0    2

Figure 4.4 Plots of the collinear trajectories of s and x̂ from a calculation using mean field theory
(4.22) to account for and anharmonic potential.

Figure 4.5 The results of applying the harmonic reactive case to an ensemble of collisions. Notice
how the collision time in the left plot corresponds to the exact time the Boltzmann distribution is
lost on the right plot.

and forth across the potential energy surface saddle point many times. Fig. 4.7 shows resonance

around that point from our calculations.

We apply an anharmonic potential in Fig. 4.4 and in Fig. 4.5 the harmonic case is applied to a

Boltzmann distribution of molecular energies. The s line in Fig. 4.7 represents where the reaction

is relative to the saddle-point which is at zero. Notice how s crosses zero and then comes back The
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Figure 4.6 Here we see a strong coupling appear as a resonance in the translational coordinate
s. The plot on the right reveals a brief moment where the state-to-state transition probabilities are
slightly inverted. The the parameters chosen in this particular calculation limit the total quanta of
vibration number to be 3 before dissociation.

5 10 15 20

X2

X1

1

2

Figure 4.7 Simultaneous plots of the classical and quantum coordinates resonating around the
transition state using (4.26).

x line represents how far the reaction has strayed from the minimum energy pathway or reaction

coordinate.

In this chapter we saw how the Lie Algebraic method can be applied to inelastic and reactive

collisions. The mean field method was needed when we tried to include anharmonic potentials for

the x̂ coordinate. We also added N̂2 to our algebra which required us to re-derive new standard
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coefficients. We also see a simplification in non-equilibrium quantum statistical analysis as the

density matrix elements are easily calculated from previous code.



Chapter 5

Summary of Dissertation

When two molecules collide, the interaction is either elastic, inelastic, or reactive. This depends

on vibrational energy changes in the molecules and whether there is a rearrangement of the atoms

into new species. Beginning with inelastic collisions, we developed a mathematical framework

upon which reactive collisions may be accurately modeled.

We used an algebraic method to model molecular collision dynamics. An algebraic structure

called the vibron model [18] works as a simple interpretation of a molecule’s inner dynamics.

Applying Schrodinger’s equation and matching coefficients of algebra elements reveals the dif-

ferential equations-of-motion for each atom in the two colliding species. These equated coeffi-

cients are also used to calculate transition probabilities between the internal quantum states of the

molecules. It is then possible to compare the trajectories of the atoms with the quantum dynamics

of the chemical bonds during the whole collision, which is usually calculated using purely classical

approaches.

In our calculations, not all degrees-of-freedom are treated quantum mechanically. For an in-

elastic collision of an atom and a diatomic molecule, it is not essential to quantize the translational

degree of freedom. It is sufficient to treat the relative molecular distance as a classical translational

coordinate. However, it’s essential we quantize the harmonic motion of the diatomic molecule.

43
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To this end, we explored how the Hamiltonian for a simple triatomic collision is similar to that of

an oscillator in a dipole field. We then moved to the more realistic Morse potential to model the

diatomic molecule’s vibration. Anharmonic behavior emerges and the ability to model complete

dissociation of the molecule opens up the door to reactive scattering.

With the Mathematica code optimized for the inelastic and reactive cases, we iterated the model

to apply it to an ensemble of atomic collisions with a Boltzmann distribution of molecular vibra-

tional energies. We zoomed in to the non-equilbirium regime and resolved quantum details of

the transition state not seen in the literature. Future developments include applications to larger

molecular collisions and nuclear reactive scattering.



Appendix A

Computer Code

These 4 programs are referred to through out the dissertation. The first is used in Chapter2, the

second is used in Chapter 3, the third is used in Chapter 4, and the fourth is used in all cases.

A.1 Standard Dipole Program

m = 1; wz = 2; l = 3; T = 12 Pi; ImageY = 400; ImageX = 500; W = 1; E0 = 1;

(*Functions={ [[1]] Heaviside at time t = B softness A , \ [[2]] Rectangle in at time t = B out M seconds later, [[3]] Turn on \ an oscillating

field at time t = B with softness A,[[4]] Periodic \ Bumps to spikes Spikiness B,[[5]] Sweep up and down frequencies, \ [[6]] Sweep down and up

frequencies ,[[7]] sweep from down to up, \ [[8]] sweep from up to down, [[9]] Gaussian pulse wave packet, [[10]] \ Sech squared *)

F[t_, A_, B_, E0_, M_, wz_] := {E0*.5 (Tanh[A (t - B)] + 1) , E0*.5 (Tanh[A (t - B)]) + E0*.5 (-Tanh[A (t - B - M)]), E0 .5 (Tanh[A (t - B)]

+ 1) Cos[wz t], E0*.5 (Tanh[A t] + 1) Sin[wz t]^(2 B), E0 Sin[ A t^(1 + Exp[-(t - B)^2])], E0 Sin[ A t^(2 - Exp[-(t - B)^2])], E0 Sin[ wz (t - B)

(Tanh[(A /20) (t - B)] + 2)], E0 Sin[ wz (t - B) (-Tanh[(A /20) (t - B)] + 2)], E0 Sin[wz ( t - B)] Exp[-(t - B)^2], E0 Sech[A (t - B)]^2}[[10]];

Amp[m_, n_] := Sqrt[m! n!] Exp[a4[t]] Exp[ a3[t] n] Sum[(a2[t]^k/k!) ( a1[t]^(m - n + k)/((m - n + k)! (n - k)!)), {k, 0, n}];

Prob[m_, n_] := (Abs[Amp[m, n]]^2)/(Sum[Abs[Amp[j, n]]^2, {j, 0, 8}]); X := Sqrt[ 1/(2 m W)] (a1[t] - a2[t]); P := -I Sqrt[(m W)/2] (a1[t] +

a2[t]);

Manipulate[ Module[{alpha = NDSolve[{I a1’[t] == W a1[t] + F[t, A, B, E0, M, wz], I a2’[t] == F[t, A, B, E0, M, wz] - I W a2[t] , a3’[t]

== -I W , a4’[t] == -I F[t, A, B, E0, M, wz] a1[t] - I/2 W, a1[-T] == u, a2[-T] == -u, a3[-T] == 0, a4[-T] == 0}, {a1, a2, a3, a4}, {t, -T,

T}, MaxSteps -> 90000]}, Grid[ {{Show[ Plot[{Evaluate[Re[X] /. alpha], F[t, A, B, E0, M, wz]}, {t, -T, T}, PlotRange -> {-1, 1.2}, Frame

-> True, PlotStyle -> {{Thick, Black}, {Thick, Black, Opacity[.6]}}, PlotLabel -> Style["Sech Pulse Adiabatic Limit", Large]], ImageSize ->

{ImageX, ImageY}], Show[ParametricPlot[{Evaluate[{Re[X], Re[P]} /. alpha]}, {t, -T, T}, PlotRange -> All, PlotStyle -> Thick, PlotLabel ->

Style["Sech Pulse Adiabatic Limit Phase space", Large], Frame -> True, FrameLabel -> {"<x>(t)", "<p>(t)"}], ImageSize -> {ImageX, ImageY}],

Show[Plot[{Evaluate[Prob[0, 0] /. alpha], Evaluate[Prob[1, 0] /. alpha], Evaluate[Prob[2, 0] /. alpha], Evaluate[Prob[3, 0] /. alpha], Evalu-
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ate[Prob[4, 0] /. alpha], Evaluate[Prob[5, 0] /. alpha]}, {t, -T, T}, PlotRange -> {-.1, 1.1}, Frame -> True, FrameLabel -> {"Transition Probability",

"Time"}, PlotLabel -> Style["Step Field Adiabatic Limit Transitions", Large], PlotStyle -> {{Thick, Black, Opacity[1]}, {Thick, Black, Opac-

ity[.8]}, {Thick, Black, Opacity[.6]}, {Thick, Black, Opacity[.4]}, {Thick, Black, Opacity[.2]}, {Thick, Black, Opacity[.1]}}], ImageSize ->

{ImageX, ImageY}]}}]], {{A, .16}, .1, 5}, {{B, 0}, 0, 2}, {{u, 0}, -2, 2}, ControlPlacement -> Top]

A.2 Bath of Inelastic Collisions

mA = 1; mB = 3; mC = 1; m = (mA mC)/(mB (mA + mB + mC)); a = 1.3; V = 1.5; ImageY = 300; ImageX = 400; x0 = 40; T = 40; Freq = 2*10^12;

NS = 10; Temp = 100; h = 6.626*10^-34; k = 1.381*10^-23; v0 = -4;

Ω:= Sqrt[1 + a^2 V Exp[-a x[t]]]; f1 := a V Exp[a Sqrt[1/(2 Sqrt[1 + a^2 V Exp[-a x[t]]])]] Exp[-a x[ t]]; yavt := (α1[t] - α2[t])/ Sqrt[2 Ω];

pavt := -I (α1[t] + α2[t]) Sqrt[Ω/2]; BoltzTrans := v[t]^2 Exp[-(m v[t]^2)/Temp]; vavt := v[t];

ZP[T_, NS_] := Sum[Exp[-(h Freq (n + 1/2))/(k T)], {n, 0, NS}]; Z[T_] := 1/(2 Sinh[(h Freq)/(k T) ]);

Amp[m_, n_] := Sqrt[m! n!] Exp[α4[t]] Exp[ α3[ t] n] Sum[(α2[t]^k/k!) ( α1[ t]^(m - n + k)/((m - n + k)! (n - k)!)), {k, 0, n}];

PBF[T_, f_, NS_] := 1/ZP[T, NS] Sum[ Abs[Amp[f, n]]^2 Exp[-(h Freq (n + 1/2))/(k T)], {n, 0, NS}];

LieEqns = {x’[t] == v[t], v’[t] == 1/m a V Exp[-a x[t]] Exp[ a Sqrt[1/2 Ω] (α1[t] - α2[t])], α1’[ t] == -I f1 -I Ω α1[t], Sα2’[ t] == -I f1 +I Ω

α2[t], α3’[t] == -Ω, α4’[ t] == -I V Exp[-a x[t]] -I Ω: 2 -I f1 α1[t]};

Manipulate[Module[ {sol = NDSolve[ Join[LieEqns, {x[0] == x0, v[0] == Velocity, α1[0] == 0, α2[0] == 0, α3[0] == 0, α4[0] == 0}],

{x, v, α1, α2, α3, α4}, {t, 0, T}, MaxSteps -> 50000]}, Grid[{{Show[ Plot[{Evaluate[Re[yavt] /. sol], Evaluate[Re[x[t]] /. sol]}, {t, 0,

T}, PlotRange -> {-3, 8}, PlotStyle -> Thick, AxesLabel -> {Style[Time, Large], Style[Distance, Large]}], ImageSize -> {ImageX, ImageY}],

Show[{ListPlot3D[ Table[PBF[Tempa, n, NS], {t, 0, T}, {n, 0, NS}] /. sol, PlotRange -> All, PlotStyle -> Yellow, AxesLabel -> {Style[States,

Large], Style[Time, Large], Style[Transitions, Medium]}, Mesh -> {Range[0, NS], 0}]}, ImageSize -> {ImageX, ImageY}], Show[Plot3D[

PDF[MaxwellDistribution[Abs[v[t]]], v] /. sol, {v, 0, 20}, {t, 0, T}, PlotRange -> All, PlotStyle -> Green, AxesLabel -> {"Speed Distribution",

Time, number}, Mesh -> {Range[0, 20], 0}], ImageSize -> {ImageX, ImageY}]}, {Show[ Plot[{Evaluate[Abs[v[t]] /. sol], Evaluate[Abs[v[0]]

/. sol]}, {t, 0, T}, PlotRange -> {0, 5}, PlotStyle -> {Thick, Dashed}, AxesLabel -> {Time, velocity}], ImageSize -> {ImageX, ImageY}],

Show[{ContourPlot[ y^2 + 4 Exp[-.3 x + .3 y], {x, -10, 30}, {y, -3, 3}, ContourShading -> None, Contours -> 30], ParametricPlot[{Re[x[t]],

Re[yavt] } /. sol, {t, 0, T}, PlotStyle -> {Thick, Black}]}, ImageSize -> {ImageX, ImageY}], Show[Plot[{PDF[MaxwellDistribution[Abs[v0]], v],

PDF[MaxwellDistribution[Abs[v[T] ]], v] /. sol}, {v, 0, 20}], ImageSize -> {ImageX, ImageY}]}}]], {{Velocity, v0}, -6, -.5}, {{Tempa, Temp},

1, 400}, ControlPlacement -> Top]

A.3 Reactive Collision Calculation

ma = 1; mb = 1; mc = 1; M = ma + mb + mc;(* Masses of atoms in kg *)

m = (ma mc)/(mb (ma + mb + mc)); (* Reduced mass of triatomic system in dimensionless \ units *)

Ix = 400; Iy = 300; (* Plot display sizes *)

V0 = 1; γ= 1;(* Parameters of classical reaction coordinate \ potential *)

D0 = 4; β= 2; χ := β^2/(2 m);(* Parameters of \ quantum Morse potential *)
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Γ= 0;(* Free energy for reaction coordinate *)

b = 6; (* Shape of curvature *)

BL = 0.;(* Location of max curvature along reaction coordinate *)

n = 0;(* Initial quantum state *)

Nmax = Floor[1/β Sqrt[8 m D0] - 1/2];(* Highest bound quantum state *)

T = 20;(* Time window of calculated dynamics *)

V[x_, s_] := V0 Exp[-γ s^2] - Γ Tanh[s] + D0 (1 - Exp[-β x])^2;(* Potential energy of system *)

pVs[x_, s_] := D[V[x, s], s];(* Precalculated partial derivative *)

θ [k0_, b_] := Integrate[ k0/(1 + b^2 (s + BL)^2), {s, -Infinity, Infinity}];(* Mass scaled coordinates assymptotic angle *)

κ[s_] := κ0/(1 + b^2 (s + BL)^2);(* Curvature as a function of classical coordinate *) \

κ0 = k0 /. Solve[θ [k0, b] == ArcTan[Sqrt[M mb/(ma mc)]], k0][[ 1]];(* Curvature coefficient calculated from masses *)

Re[θ [κ0, b] 360/(2 Pi)];(* Mass scaled coordinates assymptotic angle \ specified *)

pks[s_] := D[κ[s], s];(* Precalculated partial derivative *)

Amp[m_] := Sqrt[ m! n!] Exp[α5[ t]] Exp[α4[t] n^2] Exp[α3[ t] n] Sum[(α2[t]^k/ k!) ( α1[t]^(m - n + k)/((m - n + k)! (n - k)!)), {k, 0,

n}];(* Transition amplitude of diatomic molecule *)

Pif[m_] := Abs[Amp[m]]^2 ;(* Transition probability *)

ω[s_] := Sqrt[2 D0 β^2/ m - (3 κ[s]^4)/(4 m^2)];(* System zero point frequency as a function \ of classical coordinate *)

xavt := (α1[t] - α2[t]) Sqrt[ 1/(2 ω[s[t]] m)];(* Expectation value of quantum postion operator *)

pavt := -I (α1[t] + α2[t]) Sqrt[ m ω[s[t]] / 2];(* Expectation value of quantum momentum operator *)

h := κ[s[t]]^3/(4 m) Sqrt[ 1 /(2 m ω[s[t]])];(* Function used multiple times *)

Nave := n - α1[t] α2[t];

LieEqns = {

s’[t] == ps[t]/(m ((1 +κ[s[t]] xavt))^2), ps’[t] == (xavt ps[t]^2/((m (1 + κ[s[t]] xavt)^3 ))) pks[ s[t]] - pVs[xavt, s[t]],

α1’[ t] == -I h + α1[t] (I χ- I ω[s[t]] ) + 2 I α1[t] χNave,

α2’[ t] == -I h -α2[t] (I χ- I ω[s[t]] ) - 2 I α2[t] χ Nave,

α3’[t] == I χ- I ω[s[t]] ,

α4’[t] == I χ ,

α5’[ t] == -I V0 Exp[-γ s[t]^2] + .25 I χ- .5 I ω[ s[t]] + I κ[s[t]]^2/(8 m) - I α1[ t] h};(* System of coupled partial differential equations *)

Manipulate[Module[{Solution = NDSolve[Join[LieEqns, { s[0] == -6, ps[0] == v, α1[0] == Combo, α2[0] == -Combo, α3[0] == 0, α4[0]

== 0, α5[0] == 0}], {s, ps, α1, α2, α3, α4, α5}, {t, 0, T}, MaxSteps -> 10000, Method -> {StiffnessSwitching, Method -> {ExplicitRungeKutta,

Automatic}}, AccuracyGoal -> 3, PrecisionGoal -> 3]}, Grid[{{Show[ Plot[Evaluate[{Re[xavt], Re[s[t]]} /. Solution], {t, 0, T}, PlotRange -

> {-4, 4}, PlotStyle -> Thick], ImageSize -> {Ix, Iy}], Show[Plot[{Pif[0] /. Solution, Pif[1] /. Solution}, {t, 0, T}, PlotRange -> {-.1, 1.1},

PlotStyle -> {Thick}], ImageSize -> {Ix, Iy}], Show[{ContourPlot[V[x, s], {x, -.4, 1}, {s, -8, 8}, PlotRange -> {{-.4, 1}, {-8, 8}}, Contours ->

20], ParametricPlot[{-\[Kappa][s] + 1, s}, {s, -6, 6}, PlotStyle -> {Blue, Thick}], ParametricPlot[ Evaluate[{Re[xavt], Re[s[t]]} /. Solution], {t, 0,

10}, PlotStyle -> {Red, Thick}]}, ImageSize -> {Ix, Iy}]}}]], {{v, .88, "Starting Speed"}, .1, 6, Appearance -> "Labeled"}, {{Combo, 0, "Starting

Combo"}, 0, 1, Appearance -> "Labeled"}, ControlPlacement -> Top]
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A.4 Computer Algebraic Manipulations

by Ty Beus and Manuel Berrondo
(*The program should work for any given Lie Algebra.*)

basis = {aa, a, num, num2, id};

nobasis[x_] := And @@ (FreeQ[x, #] & /@ basis);

(* properties of commutators *) (* id is the identity opertor *)

Clear[X];

X[a, aa] = id;

X[a, num] = a;

X[aa, num] = -aa;

X[a, num2] = 2*nav*a; (* a**num+num**a;*)

X[aa, num2] = -2*nav*aa; (* -aa**num-num**aa; *)

X[x_, id] := 0;

X[id, x_] := 0;

X[x_, x_] = 0;

X[c_?nobasis, x_] := 0;

X[x_, y1_ + y2_] := X[x, y1] + X[x, y2];

X[c_?nobasis * x_, y_] := c*X[x, y];

X[x_, c_?nobasis] := 0;

X[y1_ + y2_, x_] := X[y1, x] + X[y2, x];

X[y_, c_?nobasis * x_] := c * X[y, x];

X[x_, y_] := -X[y, x] /; OrderedQ[{y, x}];

collC[x_] := Collect[x, basis];

(* properties of noncommutative product *)

prot = Unprotect[NonCommutativeMultiply];

(* mixed properties *)

X[x_ ** y_, z_] := x ** X[y, z] + X[x, z] ** y;

X[x_, y_ ** z_] := y ** X[x, z] + X[x, y] ** z;

X[x_ * y_, z_] := x ** X[y, z] + X[x, z] ** y;

X[x_, y_ * z_] := y ** X[x, z] + X[x, y] ** z;

id ** x_ := x;

x_ ** id := x;

(-y_ ) ** z_ := -y ** z;

y_ ** (-z_) := -y ** z;

c_?nobasis ** z_ := c* z;

z_ ** c_?nobasis := c* z;

(c_?nobasis * p_) ** z_ := c* (p ** z);
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z_ ** (c_?nobasis * p_) := c* (z ** p);

(y1_ + y2_) ** z_ := y1 ** z + y2 ** z;

z_ ** (y1_ + y2_) := z ** y1 + z ** y2;

y_ ** -z_ := -y ** z;

Protect[ Release[prot]];

dim = Length[basis];

αα= Table[α[i][t], {i, dim}];

dαα= D[αα , t];

(* "Hamiltonian:"*)

hamOsc = (num + (1/2)*id) ω;

ham0 = hamOsc + χ (num2 + num + (1/4)*id ) ω;

ham = ham0 + g[t] (a + aa)

(*ep×Q*)

(* note M = px operator when the thing it is being applied to is in vector form under the Lie algebra basis *)

expCross[P_, Q_] := Module[{v, MTr},

MTr = Table[ Coefficient[X[P, basis[[i]]], basis[[j]]], {j, dim}, {i, dim}];

v = Table[Coefficient[Q, basis[[j]]], {j, dim}];

MatrixExp[MTr, v].basis]

(* DUInvU writes U’*U^-1 in terms of the Lie algebra *)

DUInvU[Alg_] := Module[{v, dimA}, dimA = Length[Alg]; Sum[v = Reverse[dαα][[i]]*Reverse[Alg][[i]];

For[j = dimA - i + 1, j >= 1, j–, v = expCross[αα[[j]]*Alg[[j]], v]]; v , {i, dimA}]]

(* "Find U’ in terms of the Lie algebra" *)

DUInvUsol = collC[DUInvU[basis]]

(* "Find the Differential Equations for α’s" *)

(* U’*U^-1 + I*H = 0 we match Lie coefficients to set up differential equations to find α’s*)

eq1 = Flatten[ Table[{Coefficient[DUInvUsol + I*ham, basis[[i]]] == 0}, {i, dim}]];

rhs = Flatten[dαα/. Solve[eq1, dαα]];

eom = Table[dαα[[i]] == rhs[[i]], {i, dim}]

initCond = Table[αα[[i]] == 0 /. t -> 0, {i, dim}];

eqsD = Join[eom, initCond];

(* sol=FullSimplify[DSolve[eqsD,αα ,t]] *)



Appendix B

Background of Molecular Collision Theory

I have found the following topics to be essential in understanding why the model developed in this

dissertation is important.

B.1 Collisions in the Bulk

In a gas there are relatively large amounts of space between the colliding gas particles. At STP1,

the mean-free-path of diatomic nitrogen is three orders of magnitude greater than its Van der Waals

radius. There exists distinct time scales with which molecules are in and out of contact with each

other. We want to model what happens while they are in contact. We develop a detailed model for

single collisions because the large mean-free-path validates the iteration of single collisions when

modeling macroscopic gas properties. There is behavior in the macroscopic world that is explained

only by the theory of individual molecular collisions.

Equations of state, like the ideal gas law, are sufficient in explaining macroscopic variable

relations, like temperature and pressure. However, the ideal gas law does not include interactions

1IUPAC established standard temperature and pressure (informally abbreviated as STP) as a temperature of 273.15

K (0 °C, 32 °F) and an absolute pressure of 100 kPa (14.504 psi, 0.987 atm, 1 bar)
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between the gas particles, which can be a limiting factor. The Van der Waals equation is a step

toward a more correct equation of state, as it takes into account the nonzero size of molecules and

the interactions between them.

It is necessary to include energy transfer and relaxation of internal degrees-of-freedom for

accurate predictions of interacting systems. In some cases, such as population inversion for lasing,

combining statistical mechanics principles with details of the individual molecular collisions is

the only way to explain certain macroscopic behavior. Acknowledgment of complex molecular

interactions in a gas is essential in the agreement of theory and experiment in some cases.

There are three ways molecules collide: elastically, inelastically, and reactively. In the elastic

collisions the relative translational kinetic energy before and after the collision is the same. In the

case where the translational kinetic energy changes, this would be considered an inelastic colli-

sion, as the initial and final states of the species internal degrees-of-freedom are different. Inelastic

collisions are most noticeable when the relative translational kinetic energy changes significantly.

During an inelastic molecular collision, any or all of the electronic, rotational, vibrational, and

translational energies of the colliding species can change. In a reactive collision, even more possi-

ble outcomes arise. Not only is it possible for all these internal degrees-of-freedom to change state,

but now they’re redistributed in a new molecule. The reactive collision is what we aim to model in

this dissertation.

B.2 The Molecular Forces Involved

Imagine a vibrating diatomic molecule mathematically reduced to a single oscillating mass µ .

Treating this system as simple harmonic oscillator has its limitations. There are features of this

diatomic molecule that Hooke’s law fails to model such as the observed uneven spectrum of energy

levels. The Morse potential [21](h̄ = 1),
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VM = D0
(
1− e−αx)2

, (B.1)

produces the Morse spectrum

EM = ω

(
n+

1
2

)
−ωχ

(
n+

1
2

)2

, (B.2)

where

ω = 2α

√
D0

2µ
and ωχ =

α2

2µ
(B.3)

for an oscillating reduced mass µ . The Morse Potential is more accurate for the interaction of atoms

in diatomic molecules than the harmonic oscillator [8,9,13] . It allows for three important dynamic

results: simple harmonic motion at low energies, anharmonic at high energies, and dissociation at

super high energies.

For example, Fig. B.1 shows the potential energy for the HCl molecule, fit to experimental

data. The Morse potential produces vibrational spectra for diatomic molecules so well that it is the

choice analytic form for the convergence of theoretical and experimental standards in the field of

molecular spectroscopy. NIST provides molecular data in terms of the simple fitting parameters

D0 and α for the spectrum of a Morse potential2.

In our calculations there are also weaker intermolecular forces to consider called Van der Waals
2http://webbook.nist.gov/cgi/cbook.cgi?ID=C7647010&Mask=1000
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Figure B.1 The Morse potential energy function for an HCl molecule. The dotted line represents
the dissociation energy of 36,000 cm−1. The zero-point energy of 3000 cm−1 is shown with the
red line. This figure was generated with data from NIST.

forces3. Generally the intermolecular forces are repulsive for collinear inelastic collisions and can

be modeled with exponential functions, such as in the Landau-Teller model. However, in reactive

collisions a potential energy surface with a saddle-point (activation energy), models the collision

where the asymptotic reactant and product channels are on either side.

B.3 The Potential Energy Surface

For all molecular interactions there exists a potential energy "surface” for the electronically adia-

batic motion of the nuclei. In a collinear triatomic collision the potential energy surface is easily

visible because there are only two degrees-of-freedom. To begin deriving a potential energy sur-

face for our collinear triatomic system, we first define the coordinates to be separations between

3The Nobel Prize in Physics 1910 was awarded to Johannes Diderik van der Waals "for his work on the equation

of state for gases and liquids".
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particles: RAB and RBC, in Fig. B.2.

CBA

Figure B.2 Collinear coordinates for a triatomic system.

These collinear coordinates will be used for both the inelastic and reactive cases in this dis-

sertation. It is a one-dimensional space with two degrees-of-freedom RAB and RBC, excluding the

centers-of-mass.

B.3.1 The Motivation Behind the Collinear Triatomic System

The energy spacing for rotational spectra of diatomic molecules is continuous compared to the

vibrational energy spacings. In general, the energy levels involved in V-T (vibration-to-translation)

transfer are far greater than those in any energy transfer involving rotations. The R-T (rotation-

to-translation), T-R (translation-to-rotation), R-V (rotation-to-vibration), and V-R (vibration-to-

rotation) energy transfers are all assumed to be adiabatic because of these large differences in time

and energy scales.

THE STERIC FACTOR

In many systems there are favored orientations for the reaction to occur. For example, each of

the four sides of the methane has a cone-of-acceptance that represents the solid angles in which

Methane is most vulnerable to reacting.

A reaction where one of the Hydrogen atoms in the methane is replaced by an incoming free

hydrogen, is most likely to occur when the incoming Hydrogen approaches the methane along

the axis of one of these cones. One axis in particular is in yellow in Fig. B.3. If we were to
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calculate reactive collision rates for methane we would calculate the dynamics along this yellow

axis. We calculate the dynamics along this collinear coordinate because this is the orientation

where a reaction is most likely to occur.

Figure B.3 Cones of acceptance for a methane moleucule shown in grey. Shown in yellow is the
prefered axis along which one may construct a collinear collision calculation.

We choose to calculate reactive collisions in a linear triatomic system oriented in a particular

way because it enhances the probability of a reaction. Using the other orientations would most

likely result in an inelastic collision rather than reactive scattering.

B.4 Inelastic Collisions

A simple example of a triatomic inelastic collision would have a potential energy surface with an

oscillator valley in RBC, and a repulsive exponential wall in RAB at only one end of the valley. This

surface is shown as a contour plot in Fig. B.4. The classical motion of the three atoms can be
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reduced to that of a single mass m sliding across this frictionless surface [12, 24]. The motion of

the colliding particles is then interpreted by imagining this single-mass as a bobsled on a track.

Slant

Figure B.4 The contour plot of the potential energy surface for a collinear triatomic inelastic
collision.

A good example of this bobsled trajectory is seen in the yellow line in Fig. B.4. In this case, the

sled has the initial condition (orange arrow) of being at the bottom of the valley and far away from

the wall. Physically, this transforms back to atom A being very far away from, but approaching,

the non-oscillating diatomic molecule BC. When the sled goes up the exponential wall, the slant

in the potential energy surface pushes it to the side. It is due to this push, that as the sled goes back
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down it is also sliding back and forth across the valley. This corresponds to vibrationally exciting

the BC molecule. The velocity in the RAB direction decreases as this inelastic collision has resulted

in T-V (translational to vibrational) energy transfer. It is important to note that the transformation

into the "single mass" coordinates produces a slight slant in the repulsive wall seen on the left side

of Fig. B.4. Without this slant, vibrational excitation would be more difficult.

To summarize, in nonreactive collisions, particles collide somewhere between elastically and

inelastically, never resulting in dissociation of bonded atoms. At one end of the spectrum, the elas-

tic collisions involve no exchange of energy between the two colliding particles. At the other end,

inelastic collisions do exchange energy. Therefore some degrees-of-freedom lose or gain energy

during an inelastic collision. The energy terms E in Fig. B.5 each have a subscript denoting the

type of energy they represent. The subscripts are e,t,r, and v, which stand for electronic, trans-

lational, rotational, and vibrational respectively. Fig. B.5 is a depiction of the process we are

focusing in on.

After the inelastic collision, the density of each of these states changes. For example, in Fig.

B.5 the methane molecule could lose some translational energy giving it to one of the normal vi-

brating ammonia modes. The collinear triatomic system can be seen by freezing out the appropriate

degrees of freedom in the intermediate stage of Fig. B.5 during the small time-scale in which the

reaction takes place. In this dissertation we develop a mathematical model that follows the details

of how the vibrational state changes throughout the collision by focusing on the collinear triatomic

system.
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Figure B.5 A schematic for energy transfer during an inelastic molecular collision.

B.5 Reactive Collisions

Consider a non-reacting mixture of two different molecules. If there exists a different molecular

configuration that is lower in energy, then there exists an activation energy which is necessary to

add to the system in order for the individual molecules to recombine into this new stable configu-

ration. This new configuration is obtained by following a "reaction coordinate," which smoothly

connects reactants to products. Upon recombining, new bonds form and the system will release the

"exergic" energy, which is the activation energy plus the free energy seen as a drop after passing

the transition state of the reaction coordinate in Fig. B.6.
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Energy

Reaction Coordinate

Free Energy

Activation Energy

Exergic Energy

Transition State

Reactants

Products

Figure B.6 The reaction coordinate dependance on energy.

The depiction of the energy levels in a reaction in Fig. B.6 is oversimplified. A real reaction

coordinate is a curve in higher dimensional space extracted from the potential energy surface. The

reaction coordinate is a minimum energy pathway (the red line in Fig. B.7) between reactant and

product channels that has a local maximum (activation energy). The simplest surface on which

to visualize a reactive collision is a collinear triatomic system. Fig. B.7 is a contour plot of

the potential energy surface for 3 hydrogen atoms interacting. With three atoms in a collinear

configuration, we can model the collision dynamics with a single mass on a frictionless surface

just like the inelastic example above, except this surface has a saddle point over which a reaction

can occur.

Note the reflection symmetry across RAB = RBC as expected for three hydrogen atoms. You

can also see the Morse potential shape in the valleys where the individual diatomic molecules

are isolated (top left and bottom right). Also note that there is not a specific trajectory shown on

this surface like on the inelastic surface contour plot in Fig. B.4. This contour place is a cartoon

representation for the real surface which would essentially be skewed into a mass-scaled coordinate

system. The red line is the minimum energy path from the reactant channel, across the saddle point,

and into the product channel. This path will be used as a curvilinear "reaction" coordinate later on.
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Reactants
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Figure B.7 A contour plot of the potential energy surface for the interaction of 3 hydrogen atoms.

Modern molecular spectroscopy techniques (femtochemistry) allow conditions for a reaction

to be observed in detail. When isolated, the reactant and product species have unique vibrational

spectra. When mixed, the reaction A+BC→AB+C takes place and their spectral features combine,

and new lines may appear. These spectral changes continue to appear even after the forward

reaction is over. The "?" in Fig. B.8 is the spectrum of the transition state for the reaction. This is

the spectrum that femtochemistry experiments try to resolve.

CBACBA CBA

+ + =

CBA

no 
vibrational 
spectrum

no 
vibrational 
spectrum

?

Figure B.8 The emission spectra at each three important comfigurations through out a reaction.
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In dynamic equilibrium, the rate at which product species are being formed equals the rate

at which the reactant species are being formed, A+BC⇀↽AB+C. This means there is a steady

occurrence of the transition state. Ambitious experimental scientists such as Zewail who was

awarded the 1999 Nobel Prize in Chemistry have shown that we can observe this transition state

with fluorescence [25].

To summarize, imagine a chemical reaction between carbon monoxide and nitrous oxide:

CO+N2O→ CO2 +N2. (B.4)

Fig. B.9 is a cartoon depiction of the dynamics of (B.4). After the reaction, the occupancy

of each of these states changes. In this dissertation we attempt to model the reactive collision

to include the details on how the vibrational state changes by focusing on the collinear triatomic

system.

B.6 Non-equilibrium Statistical Mechanics

To truly take advantage of our calculation we apply it to an ensemble of collisions. Consider a

bath of diatomic molecules and atoms in thermal equilibrium as they repeatedly collide with each

other. In a thermally equilibrated microcanonical ensemble all 4 degrees-of-freedom, electronic,

translational, rotational, and vibrational each share 1/4 of the total energy.

Etot = Ee +Et +Er +Ev (B.5)

In our work, we only consider two terms, translational and vibrational. The atom-atom colli-

sions are taken to be elastic, therefore, over the duration of the atom-diatom collision, there is no
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Figure B.9 A schematic of energy transfer during a reactive molecular collision.

change in the Maxwell-Boltzmann speed distribution of the atoms. In our calculations, we con-

sider a canonical ensemble of oscillators initially in thermal equilibrium, exchanging energy with

a heat bath (collisions with the atoms). During this energy exchange via inelastic collisions, they

temporarily leave thermal equilibrium with the bath.

The equipartition theorem tells us that initially under thermal equilibrium the average energy

for each oscillator is 1
2kT and for each relative translational kinetic energy is 1

2kT . Therefore,

just after an inelastic collision, the average for the whole ensemble of both degrees-of-freedom
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unequally divides the total kT energy. However, upon relaxation back to thermal equilibrium,

the equipartition becomes valid again. It must then be stated that the mean kinetic energy of gas

molecules is not the same thing as a distribution of energies. It is the distribution that leaves thermal

equilibrium.

A distinction between microcanonical and canonical ensembles is essential here. If we consider

the whole system, a microcanonical ensemble, we stay on a constant energy surface in phase-

space. In microcanonical ensembles, an average overall system temperature may be undefined. We

assume no initial thermal equilibrium, as it is necessary that the two degrees-of-freedom be unequal

in energy for any net microscopic dynamics to take place. During this process of relaxation, while

thermal equilibrium occurs, an overall system temperature becomes defined.

We treat the system as a canonical ensemble of oscillators disturbed by collisions, so the op-

posite occurs. In this case, we begin with a defined temperature in the form of a Boltzmann dis-

tribution of initial conditions for the bath of harmonic oscillators. Then the system leaves thermal

equilibrium after this statistical ensemble of single inelastic collisions takes place. It is important

to note that the whole system is in thermal equilibrium the whole time as the rate at which inelastic

collisions are forcing V-T transfers stays equal to the rate at which inelastic collisions are forcing

T-V transfers. Since V-T relaxation is usually significantly slower than V-V relaxation, we essen-

tially have a negligible deviation from thermal equilibrium between the two interacting harmonic

oscillator baths over the duration of the atom-diatom collision. This is one of many adiabatic

approximations needed in this calculation. Among the others are Born-Oppenheimer (electronic

adiabaticity), T-T relaxation (assumed to be much slower) and R-R relaxation (assumed to be

much faster). A formal derivation of a canonical ensemble is done by taking the partial trace of a

microcanonical ensemble, integrating out the heat bath degrees-of-freedom.

After an inelastic collision, the original Maxwell-Distribution for the relative speeds f (v,T ) ∝

v2e−
mv2
kT will redistribute in general, depending on if the collision is a T-V transfer(a) or a V-T
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transfer(b) seen in Figure B.10.

Figure B.10 Redistribution of particles initially in thermal equilibrium.

On the other hand, the Maxwell-Boltzmann distribution for the diatomic molecule vibrational

states g(n,T ) ∝ e−
h̄ω(n+ 1

2)
kT , in general, is redistributed the opposite way in Figure B.11. This is the

distribution we use in our calculations.
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Figure B.11 Corresponding shift in distribution of oscillator states.

B.6.1 Canonical Ensemble of initial conditions

The goal of this dissertation is to be able to apply calculations of many single collisions to a canon-

ical ensemble, and this involves partition functions. The quantum harmonic oscillator partition

function in the limit of infinite oscillators is

Z (T ) =
1

sinh
( h̄ω

kT

) . (B.6)

The Boltzmann distribution for this canonical ensemble of Q.H.O. is

Ξ =
1
Z

e−h̄ω(n+ 1
2)/kT . (B.7)

The transition amplitude for the oscillator to move from n to m is found with computer algebra

systems to be
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A =
√

m!n!eα4enα3 ∑
αk

2
k!

α
m−n+k
1

(m−n+ k)!(n− k)!
. (B.8)

We may then iterate over all possible combinations to get

Pi f = |A|2 e−h̄ω(n+ 1
2)/kT . (B.9)



Appendix C

Essentials of Quantum Dynamics

I have found that the following appendix entries are very important for understanding the results

of this dissertation.

C.1 Stationary States

A quantum state can be made of single “kets” |ψ1〉, "bras” 〈ψ1| or “wave functions” ψ1 (x). These

are defined as “single states”. A quantum state may also be composed of a “superposition” of kets

|Ψ〉(t) =
∞

∑
n=0

cn |ψn〉e−
i
h̄ Ent (C.1)

bras

〈Ψ|(t) =
∞

∑
n=0

cn 〈ψn|e−
i
h̄ Ent (C.2)

or wave functions, which are just bras or kets projected into position or momentum space

〈x|Ψ〉(t) = Ψ(x, t) =
∞

∑
n=0

cnψn (x)e−
i
h̄ Ent (C.3)

When squaring the wave function new properties emerge.

|〈Ψ|Ψ〉|2 = ∑n,m cn 〈ψn|ψm〉c∗me−
i
h̄ (En−Em)t

= ∑n cnc∗n 〈ψn|ψn〉+∑m6=n cnc∗m 〈ψn|ψm〉e−
i
h̄ (En−Em)t

(C.4)
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The second term in eqn. (C.4) carries the time-dependence. If only one coefficient is nonzero

the probability will be independent of time and the associated state is called "stationary”. When

more than one coefficient is nonzero that a superposition is squared and the second term carries the

“interference” between the superposed states. The state then has "coherent” behavior as the phase

information is carried in the double sum.

C.2 Graphical Explanation of Stationary States

The solutions to Schrodinger’s Time-Independent Equation,

Ĥ Ψ = EΨ (C.5)

are stationary states. In figure C.1 we have plotted probability densities for the harmonic oscillator

at 8 different energies. Stationary states are defined by a single energy. For example, the quantum

harmonic oscillator single state energy is depicted as the darker horizontal red line at n = 2. Since

this is the time-independent solution, the darker vertical red line representing the expectation value

never moves. The lighter red lines in figure C.1 are upper and lower bounds of uncertainty and

they never move either. Also, note that as you increase energy levels for single states the position

expectation value stays centered right at zero, while the uncertainties broaden.

X

n=0

1

3

4

5

6

7

2

Figure C.1 Expectation values for energy and position in a harmonic oscillator.
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Figure C.2 shows an anharmonic oscillator potential and the first 5 energy eigenstates for the

potential. Consider a single state of energy 2. As in figure C.1 with the solution being time-

independent the horizontal and vertical red lines never move. This asymmetric potential shape

causes different energy levels to have different position expectation values seen in the green (n= 0)

and blue (n = 4) lines though. Note that as the energy goes up the position expectation values get

further away from the energy minimum.

Figure C.2 Expectation values for energy and position in an anharmonic oscillator.

C.3 Dynamic Quantum States

It is more difficult to calculate quantum mechanics when the potential is time-dependent. This

results in coherent behavior in the wave function. Stationary states are no longer the solution when

the Hamiltonian includes time-dependent terms. This dependency produces eigenstates with time-

dependent expectation values, or coherency. The Time-Dependent Schrodinger Equation (TDSE)

is

ih̄
d
dt

Ψ = ĤΨ. (C.6)

In these calculations we must consider uncertainty between position, momentum, energy, and time.
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Eqn. (C.7) is the general probability density solution to eqn. (C.6).

Ψ
∗ (x, t)Ψ(x, t) = ∑c∗ncnψ

∗
n (x)ψn (x)+∑

m
∑
n

c∗mcmψ
∗
m (x)ψ (x)ei2π

Em−En
h̄ t (C.7)

The first sum contains terms from the stationary state, time-independent solution. In quantum

dynamics the second sum becomes non-zero revealing coherence.

C.4 Commutation Problems in Time

Here we demonstrate how a time-dependent Hamiltonian can come across commutativity issues.

Consider the Hamiltonian for an oscillator influenced by an external field. Let’s see if this Hamil-

tonian at time t1 commutes with itself at any other time t2.

Ĥ = N̂ +
1
2

h̄ω + f (t) â+ f (t) â† (C.8)

[
Ĥ (t1) , Ĥ (t2)

]
=

[(
â†â+ f (t1) â+ f (t1) â†

)
,
(

â†â+ f (t2) â+ f (t2) â†
)]

(C.9)

=
[
â†â, f (t2) â

]
+
[
â†â, f (t2) â†

]
+0 (C.10)

+
[

f (t1) â, â†â
]
+
[

f (t1) â, f (t2) â†
]
+0 (C.11)

+
[

f (t1) â†, â†â
]
+
[

f (t1) â†, f (t2) â
]
+0 (C.12)

= â( f (t1)− f (t2))+ â† ( f (t2)− f (t1)) (C.13)

So we see in eqn. (C.14) that if the driving function is not constant through time than the Hamilto-

nian will not commute with itself at any other time.

[ f (t2)− f (t1)]
(

â†− â
)
6= 0 (C.14)
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C.5 The Baker Campbell Hausdorff formula

When comparing exponential structures of the form

eAeB = eA+B (C.15)

where A and B are operators, knowledge of the commutation relations between A and B is crucial.

If the two operators commute then the above expression is correct. However, if the two operators

do not commute then we end up with a more general form in eqn. (C.16).

eAeB = eA+B+λ (C.16)

where λ ensures the right terms cancel with the left terms upon expansion. Now if the commutator

of the two operators commute with the operators then the following is true:

eAeB = eA+B+ 1
2 [A,B]. (C.17)

We can also iterate this process for a product of many exponents

eV1eV2...eVN = ei∑k Vke
1
2 ∑k,n[Vk,Vn] (C.18)

For example, let N = 3 in eqn. (C.18):

eA1eA2eA3 = eA1+A2+
1
2 [A1,A2]eA3 = eA1+A2+A3e

1
2 [A1,A2]+

1
2 [A1,A3]+

1
2 [A2,A3]. (C.19)

C.5.1 Commutation using the Cross-Product

For the next exercise, let us introduce a binary operation notation for the commutator. Given two

operators P and Q we denote the product as:

P×Q = [P,Q] = PQ−QP (C.20)

This product is anticommutative, non-associative, and satisfies the Jacobi identity. Powers corre-

sponding to this product are denoted in the usual way as nested commutators:

P× (P×Q) = [P, [P,Q]] (C.21)

The Baker-Hausdorf formula can thus be written as:
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eP×Q = ePQe−P (C.22)

C.5.2 Applying the Baker Campbell Hausdorff Formula and other tricks

For this dissertation we needed to rearrange: iα̇2eα1â†
âe−α1â†

and iα̇3eα1â†
eα2âN̂e−α2âe−α1â†

. To

do this we use the BCH formula with cross-product antisymmetric product super-operator which

is defined as

eXYe−X = eX×Y. (C.23)

The fact that since
[
â, ∂

∂ â

]
.
=−1 ,

[
â, â†] .

= 1 allows us to say: â†→− ∂

∂ â . This may be applied by

seeing that if in general

eγ
d
dx f (x) = f (x+ γ) , (C.24)

then

e−α1
d

dâ×â = â−α1.

This brings the expression to

iα̇2 (â−α1)+ iα̇3eα1â†× (eα2â×N̂
)
. (C.25)

Using an expansion we see the higher order terms vanish resulting in

eα2â×N̂ .
= N̂ +α2â× N̂, (C.26)

because â×
(
â× N̂

)
= 0. We are thus able to construct a Schrodinger equation that is easily

separable into isolated Lie algebraic parameter coefficients.

.



Appendix D

Lie Algebra and other Mathematical Tools

D.1 Deriving the Lie Algebra Details

Here we explicitly calculate the expressions associated with the Lie algebraic method needed for

reference. Consider the transition probability from state n to m of a charged oscillator in a time-

dependent dipole field.

〈m|Û |n〉= 〈m|eα1a†
eα2aeα3Neα4 |n〉

= eα3neα4 〈m|eα1a†
eα2a |n〉

= eα3neα4 〈m|eα1a†
eα2a 1√

n!
a†n |0〉

= eα3neα4
(

eα∗1 a |m〉
)† 1√

n!
eα2

∂

∂a† a†n |0〉

= eα3neα4

(
1√
m!

(
a† +α1

)m
|0〉
)† 1√

n!

(
a† +α2

)n
|0〉

(D.1)

Insert a binomial expression for cleanliness

73
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〈m|Û |n〉= eα3neα4

 1√
m!

m

∑
l=0

 m

l

(â†
)m−l

α
l∗
1 |0〉


†

1√
n!

n

∑
k=0

 n

k

(â†
)n−k

α
k
2 |0〉

= eα3neα4

 1√
m!

m

∑
k=0

 m

k

(â†
)m−k

α
k
1 |0〉


†

1√
n!

n

∑
k=0

 n

k

(â†
)n−k

α
k
2 |0〉

= eα3neα4
1√
m!

1√
n! ∑

k,l

 m

l


 n

k

α
l
1α

k
2

((
â†
)m−l

|0〉
)†(

â†
)n−k

|0〉

= eα3neα4
1√
m!

1√
n! ∑

k,l

 m

l


 n

k

α
l
1α

k
2

√
(m− l)!

√
(n− k)!〈m− l|n− k〉

We let l = m−n+ k, substitute in l, and collapse one sum

= eα3neα4
1√
m!

1√
n! ∑

k

 n

k


 m

m−n+ k

α
m−n+k
1 α

k
2 (n− k)!

= eα3neα4
1√
m!

1√
n! ∑

k

n!
k!(n− k)!

m!
(m−n+ k)!(m− (m−n+ k))!

α
m−n+k
1 α

k
2 (n− k)!

Cleaning up binomials we get

= eα3neα4
√

m!
√

n!∑
k

1
k!

1
(m−n+ k)!(n− k)!

α
m−n+k
1 α

k
2 .

We can now square the expression for the probability.∣∣〈m|Û |n〉∣∣2 = ∣∣∣∣∣eα3neα4
√

m!
√

n!∑
k

1
k!

1
(m−n+ k)!(n− k)!

α
m−n+k
1 α

k
2

∣∣∣∣∣
2

(D.2)
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D.1.1 Ladder Operator Expectation Values

Here we find the expectation values of the position and momentum operators in arbitrary state |n〉

using the Lie algebraic method. The relationship between position/momentum and ladder

operators is

x̂ =
√

Ω(s)
2m

(
â† + â

)
p̂x =−i

∂

∂x
= i
√

mΩ(s)
2

(
â†− â

)
â =

√
mΩ(s)

2

(
x̂+ i

mΩ(s) p̂x

)
â† =

√
mΩ(s)

2

(
x̂− i

mΩ(s) p̂x

) .

We begin by finding 〈â〉 with

〈n|Û−1âÛ |n〉= 〈n|e−α4e−α3N̂e−α2âe−α1â†
âeα1â†

eα2âeα3N̂eα4 |n〉 . (D.3)

e−α4 commutes with everything so

〈n|Û−1âÛ |n〉= 〈n|
(

e−α3N̂×
(

e−α2â×
(

e−α1â†×â
)))
|n〉

= 〈n|
(

e−α3N̂× (e−α2â× (â+α1)
))
|n〉

= 〈n|
(

e−α3N̂× (â+α1)
)
|n〉

= 〈n|(âeα3 +α1) |n〉= α1
√

(D.4)

Now find
〈
â†〉
〈n|Û−1â†Û |n〉= 〈n|e−α4e−α3N̂e−α2âe−α1â†

â†eα1â†
eα2âeα3N̂eα4 |n〉

= 〈n|
(

e−α3N̂×
(

e−α2â×
(

e−α1â†×â†
)))
|n〉

= 〈n|
(

e−α3N̂×
(

e−α2â×â†
))
|n〉

= 〈n|
(

e−α3N̂×
(

e−α2â×â†
))
|n〉

= 〈n|
(

e−α3N̂×
(

â†−α2

))
|n〉

= 〈n|
(

â†e−α3−α2

)
|n〉

(D.5)

〈
â†
〉
=−α2

√
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Therefore

〈x̂〉=
√

1
2mω

(α1−α2) and 〈p̂〉=−i

√
mω

2
(α1 +α2) .

D.1.2 Harmonic Algebra Wei-Norman Coefficients

To find Û for a harmonic system consider the Lie Algebra with elements
{

â†, â, N̂,1
}

. The Wei

Norman Ansatz in normal ordering is

Û (t) = eα1â†
eα2âeα3N̂eα4 (D.6)

where the functions αi (t) are time-dependent. Invert the operator equation

i
dÛ
dt

Û−1 .
= Ĥ (t) (D.7)

where Û−1 = e−α4e−α3N̂e−α2âe−α1â†
and expand it into 4 terms.

i
(

d
dt

eα1â†
eα2âeα3N̂eα4

)
e−α4e−α3N̂e−α2âe−α1â†

= iα̇1â†ÛÛ−1

+ iα̇2eα1â†
aeα2âeα3N̂eα4e−α4e−α3N̂e−α2âe−α1â†

+ iα̇3eα1â†
eα2âNeα3N̂eα4e−α4e−α3N̂e−α2âe−α1â†

+ iα̇4ÛÛ−1

(D.8)

Note that the motivation of the inversion is purely algebraic. Upon inspection this quickly collapses

to

= iα̇1â† + iα̇2eα1â†
âe−α1â†

+ iα̇3eα1â†
eα2âN̂e−α2âe−α1â†

+ iα̇4.

Applying Appendix (C.5.2) we get to the middle two terms and we get

i
dÛ
dt

Û−1 = iα̇1â† + iα̇2 (â−α1)+ iα̇3eα1â†× (eα2â×N̂
)
+ iα̇4. (D.9)

Next we find, eα2â×N̂ .
= N̂+α2â× N̂+ α2

2 â×
(
â× N̂

)
+ ... but run into â×

(
â× N̂

)
= 0, this looks

like:

i
dÛ
dt

Û−1 = iα̇1â† + iα̇2 (â−α1)+ iα̇3eα1â†× (N̂ +α2â× N̂
)
+ iα̇4 (D.10)
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= iα̇1â† + iα̇2 (â−α1)+ iα̇3eα1â†×N̂ + iα̇3α2eα1â†× (â× N̂
)
+ iα̇4 (D.11)

= iα̇1â† + iα̇2 (â−α1)+ iα̇3a† (â−α1)+ iα̇3α2 (â−α1)+ iα̇4 (D.12)

This gives us the standard Lie algebraic form in eqn. (C.37) which we can equate to any Hamil-

tonian composed of Lie Algebra with elements
{

â†, â, N̂,1
}

and retrieve the desired 4 differential

equations-of-motion.

Ĥ = i
dÛ
dt

Û−1 = i(α̇1− α̇3α1) â† + i(α̇2 + α̇3α2) â+ i(α̇3) N̂ + i(α̇4− α̇3α2α1− α̇2α1)1 (D.13)

The RHS of eqn. (C.37) agrees with the computer algebra done in the program from A.4.

D.1.3 Anharmonic Algebra Wei-Norman Coefficients

When considering anharmonic potentials for the quantized variable, it is necessary to add an ele-

ment to the algebra we used in the harmonic case. Using the Wei-Norman Ansatz for this higher

order algebra be write,

Û (t) = eα1â†
eα2âeα3N̂eα4N̂2

eα5. (D.14)

We begin by inverting eqn. (C.38) in the Time-Dependent Schrodinger Equation for the Time-

Evolution operator, i
( d

dtÛ
)

Û−1 = Ĥ to get

i
(

d
dt

eα1â†
eα2âeα3N̂eα4N̂2

eα5

)
eα1â†

eα2âeα3N̂eα4N̂2
eα5 = Ĥ, (D.15)

The motivation of the inversion is purely algebraic as it sets the equation up for matching coef-

ficients of the Lie algebra elements. Equating coefficients of the 5 Lie algebra elements in eqn.

(C.39) we expect 5 non-linear coupled equations for the αs. The LHS separated into terms col-

lapses to a landmark point in our calculation of

iα̇1â† + iα̇2eα1â†
âe−α1â†

+ iα̇3eα1â†
eα2âN̂e−α2âe−α1â†

+ iα̇4eα1â†
eα2âN̂2e−α2âe−α1â†

+ iα̇5.

(D.16)

The inside three terms we use the Baker-Hausdorff formula with cross-product antisymmetric

product super operators eXYe−X = eX×Y rewritten as
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i
(

d
dt

Û
)

Û−1 = iα̇1â† + iα̇2eα1â†×â+ iα̇3eα1â†× (eα2â×N̂
)
+ iα̇4eα1â†× (eα2â×N̂2)+ iα̇5 (D.17)

Now with the help of the computer algebra system we get

= iα̇1â† + iα̇2 (â−α1)+ iα̇3
(
N̂−α1â† +α2â−α1α2

)
+

iα̇4
(
N̂2−2α1â† 〈N̂〉+2α2â

〈
N̂
〉
−2α1α2

〈
N̂
〉)

+ iα̇5

=
(
iα̇1− iα1α̇3− i2α1α̇4

〈
N̂
〉)

â† +
(
iα̇42α2

〈
N̂
〉
+ iα̇2 + iα̇3α2

)
â+(iα̇3) N̂ +(iα̇4) N̂2 +(

iα̇5− iα̇42α1α2
〈
N̂
〉
− iα̇3α1α2− iα̇2α1

)
1

D.2 Natural Coordinate Transformations

To begin a simple derivation of natural coordinates [16] we start with the coordinates used in the

reactant channel. For these reactant channel coordinates we take the B and C atoms to be bound and

the interaction between A and C to be negligible. We may reduce the problem to two dimensions

using the following reduced mass coordinates x and y depicted in figure D.3.

y’

x’

Figure D.1 Collinear coordinates for the reactants.

Note that the center-of-mass coordinate has been removed. Now when we transform the Hamil-

tonian, we can ignore the kinetic energy of the center-of-mass to get

Hr =
p2

x
2µ

+
p2

y

2m
+VBC (x)+VAB

(
y− µ

mB
x
)

(D.18)
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where µ = mBmC
mB+mC

m = mA(mB+mC)
M M = mA +mB +mC .

Since we are considering a reaction we may also express the atomic positions in terms of a

product coordinate system seen in figure D.4.

CA B

Figure D.2 Collinear coordinates for the products.

where the same Hamiltonian may be expressed in the new variables x′ and y′ as

Hp =
p2

x′

2µ ′
+

p2
y′

2m′
+VAB

(
x′
)
+VBC

(
y′− µ ′

mB
x′
)
, (D.19)

where the masses take on the new form µ ′ = mAmB
mA+mB

m′ = (mA+mB)mC
M

.

The coordinates are defined as follows: x and x′ are the distances between the nuclei in the

diatomic molecule. y and y′ are the distances between the atom and the diatomic molecule’s center-

of-mass. Natural coordinates are designed to pass smoothly from the reactant coordinates to the

product coordinates. The origin of these natural coordinates comes from “wrapping” the Morse

potential reaction function into a curved function of r and mass scaled vibrational coordinates seen

in figure D.5.
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Figure D.3 Curvillinear coordinates and the Frenet frame.

M.S. Child et. al. derive this through a series of orthogonal and canonical transformations.

The result is a clean kinetic energy term allowing the Hamiltonian to be expressed in terms of the

dihedral coordinates s and x classically as

H =
1

2m

(
1

η2 P2
s +P2

x

)
+V (s,x) , (D.20)

where

η = 1+κ (s)x (D.21)

and κ (s) is a curvature function describing the shape of the reaction coordinate as you move along

the translational degree-of-freedom. For a thorough derivation we choose to compare directly to

M.S. Child[16] and let x→ ρ , y→ r and x′→ ρ ′, y′→ r′. The reactant and product coordinates
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are then related through the transformation given in eqn. (C.51).

 r′

ρ ′

=

 −
mA

mA +mB
− mBM
(mA +mB)(mB +mC)

−1
mC

mB +mC


 r

ρ

 (D.22)

To keep the single mass “bobsled” dynamic interpretation we need to reduce the kinetic energy

to be for a single mass. It is therefore necessary to reduce the kinetic energy to a form invariant to

any orthogonal transformation on (r, ρ̃). Starting with the reactant channel (eqn. (6.47)) we get:

T =
1
2

mṙ2 +
1
2

µρ̇
2→ 1

2
m
(
ṙ2 + ˙̃ρ

)
=

1
2m

(
p2

r + p2
ρ̃

)
(D.23)

where

ρ̃ =

√
µ

m
ρ. (D.24)

We are then able to see the asymptotes (reactant and product channels) of this skewed coordi-

nate system are given by


ρ̃ = 0 =⇒ rA→ ∞

ρ̃ =

√
MmB

mAmC
r =⇒ rC→ ∞

(D.25)

A similar scaling on the product side, designed to accommodate the change in translational

reduced mass yields

r̃′ =

√
m′

m
r ρ̃

′ =

√
µ ′

m
ρ
′ (D.26)

which are orthogonal transformations of (r, ρ̃). This method introduces an angle of skew,

χ = tan−1
√

MmB

mAmC
. (D.27)

This angle allows us to express the whole transformation as:
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 r̃′

ρ̃ ′

=

 cos χ sin χ

sin χ −cos χ


 r

ρ̃

 . (D.28)

T may then be expressed for the whole reaction as:

T =
1

2m

(
˙̃r′2 + ˙̃ρ ′2

)
=

1
2m

(
p2

r̃′+ p2
ρ̃ ′

)
. (D.29)

The coordinates of a point P in this system are precisely defined by the distance perpendicular

to the path x, and the distance along the path s. By this definition the Cartesian coordinates (r, ρ̃)

at point P in figure A.5 , abbreviated~r, may be written

~r =~a+ x~ρx (D.30)

and the dihedral (~ρs,~ρx) is tied to the plane curve C by the Frenet formula

d~ρx

ds
= κ~ρs (D.31)

linking the change ~ρxto the curvature κ (s) of C, and the requirement that as the dihedral moves

along the path

d~a
ds

=~ρs. (D.32)

The next step is to determine the momenta (Ps,Px) conjugate to (s,x), for which purpose we

use a classical generator of the form

F3 =−~p ·~r =−~p · (~a+ x~ρx) (D.33)

so that in light of the above two first order differential equations
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Ps =−
∂F3

∂ s
= ~p ·

(
∂~a
∂ s

+ x
∂~ρx

∂ s

)
= (1+κx)~p ·~ρs = (1+κx)~ps (D.34)

Px =−
∂F3

∂x
= ~p ·~ρx = px (D.35)

Here we distinguish between the new conjugate momenta (Ps,Px) and the components (ps, px) of

the old linear momentum ~p along (~ρs,~ρx). It remains to note that (ps, px) may be obtained by an

orthogonal transformation of
(

pr, pρ̃

)
in the kinetic energy, hence

T =
1

2m

(
p2

s + p2
x
)
=

1
2m

(
1

(1+κx)2 P2
s +P2

x

)
(D.36)

which is the kinetic part of eqn. (C.49).
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