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Face recognition has emerged as the most active area of research in computer vision. A variety of face
recognition methods were devised, though several challenges are imposed due to face variations such
as facial expression, pose variation and illumination variation which generate great concern in develop-
ing efficient face recognition methods. It is desirable to extract robust local descriptive features to effec-
tively represent such face variations. The essential attribute of the proposed method is to extract
directional descriptive local features based on the face image characteristics. In order to extract the
multi-resolution directional features as per the face variations, a 2-D interpolation-based separable adap-
tive directional wavelet transform (SADIWT) is proposed. For the implementation of 2-D SADIWT, a set of
seven directions with an improved quadtree partitioning scheme is proposed. Completed local binary
patterns (CLBP) superior to local binary patterns (LBP) in extracting local texture features are applied
on top level’s 2-D SADIWT sub-bands to obtain local descriptive features. Collaborative representation
classification (CRC) takes benefit of these descriptive features and leads to a very competitive classifica-
tion performance. Extensive experimental results on benchmark face databases such as ORL, FERET, CMU-
PIE, and LFW demonstrate high classification accuracy of the proposed method. A comparison with
numerous methods which include various holistic, LBP-based descriptors and representation methods
demonstrate the efficacy of the proposed method. Experiments are also conducted to exhibit the robust-
ness and discrimination capability of the proposed method for handling single image per person (SIPP)
and random block occlusion problem.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the last three decades, numerous face recognition
approaches have been devised which performwell under restricted
conditions. Face images captured under uncontrolled practical sce-
narios are influenced by different facial variations such as expres-
sions, poses, occlusions, and illumination [1]. Therefore extracting
robust features is essential for efficient face recognition systems.
Face representation and classification are the two most essential
points in the development of any face recognition system. Face
representation deals with the extraction of unique features from
the face images and performs a noteworthy function in the
improvement of performance of a face recognition system. A dom-
inant face representation methodmust be discriminative for differ-
ent subjects and invariant to different face variations. Prominent
holistic-based face representation methods comprise of Eigenfaces
using principal component analysis (PCA) [2], Fisherfaces using lin-
ear discriminant analysis (LDA) [3,4], and locality preserving pro-
jections (LPP) [5]. Generally, the holistic methods are sensitive to
the aforesaid facial variations. Among local descriptors, local bin-
ary patterns (LBP) are successfully implemented for facial feature
extraction [6,7] and offer simple implementation and tolerance
against illumination. The limitation of the LBP-based method is
its sensitivity towards the noise. To describe the local textures
more in detail, Guo et al. [8] proposed completed local binary pat-
tern (CLBP) and established its efficacy in texture feature extrac-
tion as compared to LBP. Weber local descriptors (WLD) [9] are
other powerful local descriptors. Zhang et al. [10] used the WLD
to extract local facial features from predefined facial landmarks
and efficiently captured pose-invariant features. Wang et al. [11]
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developed an effective classification method using Locality-
constrained linear coding (LLC). Although LBP, WLD, and LLC show
promising results, they still confront with many limits and chal-
lenges, such as the small sample size (SSS problem) and face
misalignment induced by pose variations [10]. Researchers applied
pre-processing methods prior to LBP computations to improve the
face recognition performance. Numerous multi-resolution analysis
(MRA) methods are combined with LBP to extract MRA-based local
descriptive features. Local Gabor binary pattern (LGBPHS) [12] is
one such eminent MRA-based local facial descriptor which combi-
nes the Gabor filters with LBP. However, LGBPHS generates large
dimension feature vector. In [13], LBP coded image of curvelet
transformed low-frequency approximation sub-band and normal-
ized mid-frequency sub-bands are considered to form the feature
set and later LPP is used for dimensionality reduction. But multi-
region local feature details are not extracted to confront different
face variations. Alelaiwi et al. [14] proposed a face recognition sys-
tem based on SPT and LBP for e-Health secured login for patients.
SPT sub-bands are generated with different scales and orientations.
LBP is applied to each of the sub-band to extract histogram fea-
tures. Later local learning based algorithm (LLB) is applied to
reduce the dimensionality of generated features. Patil et al. [15]
proposed a novel feature fusion technique and considered the con-
tourlet transform and performed multi-block LBP and multi-block
WLD histogram feature extraction. However, application of two
local descriptors increases the complexity of this method. More-
over, these methods [12–15] use MRA methods which despite cap-
turing the directional information lack the adaptation in selecting
the directional details based on the face image characteristics
and suffer from various issues such as high computational rate
and complex filter design.

Adaptive MRA methods of approximation are regarded to be
more compact than the non-adaptive ones since the optimal direc-
tions as per the image characteristics are selected adaptively
through the approximation process [17]. The prominent adaptive
MRA methods which adaptively decide filtering directions as per
the description of images have been proposed in [16–18]. Chang
et al. [16] developed a direction-adaptive discrete wavelet trans-
form (DA-DWT) for image compression where only one pair of lift-
ing step and non-interpolated integer samples are used to realized
directional lifting and Neville filters [21] are used as the prediction
and update filters. Ding et al. [17] suggested adaptive directional
lifting (ADL) based separable wavelet transform which could be
implemented with one or two pairs of lifting steps with 5/3 or
9/7 CDF wavelet filters [21]. Maleki et al. [18] proposed directional
wavelets (DIW) with megaquad partitioning algorithm in the adap-
tive directional lifting based framework to efficiently capture edge
features. Adaptive filter direction selection as per the image char-
acteristics makes these methods efficient in approximating direc-
tional features. Moreover, as a result of lifting based
factorization, perfect reconstruction is also assured and the resul-
tant multi-resolution image is absolutely compatible with that of
the conventional 2-D DWT multi-resolution image. Recently,
Muqeet and Holambe utilize the DA-DWT [16] for facial feature
extraction [19] and compared its effectiveness with famous sub-
space and non-adaptive MRA-based face recognition methods.
Very recently in [20], LBP histogram features are extracted from
the directional wavelet transform sub-bands. LDA is used as the
dimensionality reduction method.

Classification using a robust classifier is a pivotal step to attain a
superior performance for any face recognition method. Nearest
neighbor (NN) classifier [23] is the most widely used classifier
which classifies the testing face image according to the nearest
training face image. But NN classifier is unstable as it uses less
information of training set to assess the testing image. Recently,
some classification methods such as sparse representation
classification (SRC) [24], collaborative representation classification
(CRC) [25], and linear regression classification (LRC) [26] have been
devised which substantially improve the classification perfor-
mance. Zhang et al. [25] verified that CRC attains a superior classi-
fication performance as compared to SRC. While performing
classification, CRC not only considers the similarity between train-
ing samples but also considers the correlation among the training
samples. Due to this CRC can be effectively utilized for face recog-
nition even under uncontrolled environments. The performance of
LRC is confined as it does not entirely utilize the discrimination
information of the training samples. Both CRC and SRC and its vari-
ant have been extensively used in face recognition methods [27–
31]. Cao et al. [27] used the sparse representation for extraction
of illumination and pose-invariant features. Fan et al. [28]
improved the SRC method by computing the weight of training
samples and obtained superior results compared to SRC and CRC
methods. Liu et al. [29] used hierarchical multi-scale LBP and per-
formed classification using sparse coding with the application of a
matching pursuit-based greedy search approach. Wang et al. [30]
combined the Gabor wavelet transform (GWT) and CLBP features
and carried out the SRC to perform classification.

The motivation of the proposed method is to develop an effi-
cient facial feature extraction method which considers the differ-
ent facial variations and captures significant directional
information from the face images. Accordingly, considering the
benefit of directional lifting and adaptation in direction selection
based on the image characteristic, this paper proposes to develop
a 2-D interpolation-based separable adaptive directional wavelet
transform (SADIWT) to extract multi-resolution directional infor-
mation from the face images. While implementing 2-D SADIWT,
seven directions with an improved quadtree partitioning scheme
are proposed. The contribution of the proposed work is threefold.
At first, different multi-resolution sub-bands are obtained by
applying the proposed 2-D SADIWT. Secondly, histograms features
using sign-magnitude differences of the CLBP [8] are extracted
from the selected top-level’s 2-D SADIWT sub-bands. The 2-D
SADIWT detects the edges adaptively as per image characteristics
and the CLBP captures the distribution of various local micro-
patterns from these sub-bands, for instance, edges, spots, and flats.
Lastly motivated by the benefits offered by the collaborative repre-
sentation for efficient face classification, it is utilized to perform
robust classification. There are two benefits of the proposed
method: firstly, it can fully utilize the CLBP functionality i.e.
CLBP-based histogram features extracted from the 2-D SADIWT
sub-bands are more descriptive, illumination invariant, and can
significantly reduce redundant information and make the method
computationally efficient. Secondly, CRC can perform efficiently
on these local descriptive features and contribute to improving
the overall classification accuracy. The remaining part of the paper
is arranged as follows. Implementation of the proposed 2-D
SADIWT using proposed seven directions with an improved quad-
tree partitioning scheme and associated theory of CLBP and CRC is
explained in section 2. Further, the proposed facial feature extrac-
tion method is discussed in section 3. In section 4, parameter set-
tings are discussed and experimental results are performed on four
widely used face databases. Conclusions based on the experimental
results are discussed in section 5.
2. Materials and methods

In this section, the implementation of the proposed 2-D
SADIWT in the proposed seven directions using the improved
quadtree partitionning scheme is illustrated. A related theory on
CLBP and CRC is also explained and their individual contribution
to the proposed method is also described.
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2.1. Implementation of 2-D separable adaptive directional wavelet
transform(2-D SADIWT)

The fundamental concept of implementation of our proposed
method is to carry out transform operations on a face image at
a viable variety of possible directions while maintaining the char-
acteristics of multi-resolution, localization, and isotropy intact.
This section describes the extraction of directional details from
the face images using the proposed 2-D interpolation-based sep-
arable adaptive directional wavelet transform (SADIWT) which
considers proposed set of seven directions with an improved
quadtree partitioning scheme. The implementation of proposed
2-D SADIWT utilizes the concept of directional lifting for which
the readers are directed to [16–19]. The 2-D SADIWT still per-
forms two separable 1-D horizontal or vertical conventional lift-
ing wavelet transform [21] but consist of modification in the
prediction and update step. 2-D SADIWT is realized with only
one pair of lifting step, which means only one prediction step fol-
lowed by one update step [16]. Furthermore, the sub-pixel inter-
polation is performed for non-integer samples within the image
sampling grid. Let x½i; j� be a 2-D face image which is first decom-
posed by the 1-D SADIWT in the vertical direction and then in the
horizontal direction. Each 1-D SADIWT is factored into one lifting
stage which mainly comprises split, predict and update steps. In
the split step, the image xe½i:j� is first vertically sub-sampled to
get even xe½i; j� ¼ x½i;2j� sub-samples and odd xo½i; j� ¼ x½i;2jþ 1�
sub-samples. In the prediction step of 1-D SADIWT, odd samples
xo½i; j� are predicted from neighboring even row samples along an
optimal direction h. The prediction of each odd sample is a linear
combination of neighboring even samples with a strong correla-
tion in the direction h. Here samples from six nearest even rows
are selected to take part in the prediction step. The prediction
operator Pð�Þ and the generated high-pass signal H½i; j� are
described in (1) and (2) respectively,

PðxoÞ½i; j� ¼
XKp�1

n¼�Kp

Wp
n:x

e½iþ signðn� 1Þtanh; jþ n� ð1Þ

H½i; j� ¼ gHðxo½i; j� � PðxoÞ½i; j�Þ ð2Þ
Where signðxÞ ¼ 1 for x � 0 and �1 otherwise. 2Kp, W

p, and gH are
the length of the prediction filter, coefficients of the prediction fil-
ter, and the scaling factor respectively. Now in update step, even
samples xe½i; j� are updated from odd samples of high pass signal
along the same optimal direction h. The update operator Uð�Þ and
the generated low-pass signal L½i; j� are described in (3) and (4)
respectively,

UðHÞ½i; j� ¼
XKu�1

n¼�Ku

Wu
n �

xo½iþ signðnÞtanh; jþ n��
PðxoÞ½iþ signðnÞtanh; jþ n�

� �
ð3Þ

L½i; j� ¼ gLðxe½i; j� þ g�1
H ðUðHoÞ½i; j�ÞÞ ð4Þ

where 2Ku, Wu, and gL are the length of the update filter,
coefficients of the update filter, and scaling factor respectively.
The values of gL ¼ 1:342 and gH ¼ 0:707 are considered as given
in [16]. For the implementation of 2-D SADIWT, Neville filters with
six vanishing moments [22] are utilized as prediction and update
filters i.e. Kp ¼ Ku ¼ 3. Referring to [41] for a two channel lifting
filter bank with an order of N ¼ 6 for both dual and primal vanish-
ing moments, the prediction filter coefficients can be obtained by
considering the value of M ¼ 2 and shift s ¼ i=M ¼ �1=2 [22] as
given in (5),

PiðzÞ ¼
XN=2
i¼1

Wiðz�i þ zi�1Þ; Wi ¼
ð�1ÞiþN

2�1QN
k¼1

N
2 þ 0:5� k
� �

N
2 � i
� �

! N
2 � 1þ i
� �

!ði� 0:5Þ ð5Þ
Using (5) the coefficients of the prediction filter can be obtained
as Wp ¼ ½3;�25;150;150;�25;3�=28. Using Theorem 3 [22], the
coefficients of update filter can be obtained as Wu ¼ ½3;�25;150;
150;�25;3�=29. These filters possess linear phase characteristics
which increase their texture discrimination capability and also per-
forming lifting wavelet transform with these high vanishing
moments filters increases the approximation power of the 2-D
SADIWT. For the proposed method a set of seven directions is pro-
posed to take part in the prediction and update steps as given in (6),

H ¼ fhjh ¼ 0;�22:5;�45;�67:5g ð6Þ
These directions are considered to confirm a strong correlation
among samples and to capture dominant directional features from
the face images. It is to note that the term signðn� 1Þtanh (1) and
(3) may not always be an integer sample and does not exist on
the original image sampling grid. Consequently, an interpolation
method is carried out to estimate the intensity for these non-
integer or fractional samples. For perfect reconstruction, the integer
samples used to interpolate the fractional samples at optimal direc-
tion h have to be even sampled xe½i; j�. Generally, the interpolation is
described as,

xe½iþ signðn� 1Þtanh; jþ n� ¼
X
k

ak:xe½iþ k; jþ n� ð7Þ

where k’s are the number of integer pixels around signðn� 1Þh and
ak’s are the interpolation filtering coefficients. For prediction and
update steps samples from six nearest even rows are utilized [20].
If optimal direction crosses over the integer sample the value is esti-
mated by the nearest even sample otherwise the fractional sample
is calculated from interpolation of the two nearest even samples.
The specific is given by (8),

xe½iþ signðn� 1Þtanh; jþ n�

¼
xe½iþ signðn� 1Þtanh; jþ n�; h ¼ 0;�45
0:5:ðxe½i; jþ n� þ xe½iþ signðn� 1Þ; jþ n�Þ; h ¼ �22:5
0:5:ðxe½i; jþ n� þ xe½i� signðn� 1Þ; jþ n�Þ; h ¼ �67:5

8><
>: ð8Þ

To capture different face variations efficiently, an improved quad-
tree partitioning scheme is proposed to partition each face image
into blocks of apparent directional details. All the samples in a
quadtree partitioned block will have similar direction. The scheme
provides an effective direction assignment and henceforth increases
the efficacy of the prediction and update steps. Let each face image
x½i; j� is quadtree partitioned into non-overlapping blocks xl with the
initial block size Sini. The minimum block size value as Smin and value
of Lagrangian multiplier as c are also considered. The energy sum-
mation of the prediction error from each block is calculated as,

PEl;n ¼
X
i;j2Rl;n

jjxl ½i; j� � Rl;n½i; j�jj22 þ cDn ð9Þ

where Rl;n½i; j� are the filtered directional responses obtained by
applying the prediction filter Wp along the predefined directions
h. Dn is the number of bits spent on signaling the selection of direc-
tions. When a sample is predicted from the neighboring samples,
each candidate direction is checked and the direction with the
smallest prediction error is finally selected. The optimal direction
which gives the minimum prediction error is obtained as,

hl ¼ argminnfPEl;ng ð10Þ
The complexity of this partitioning is controlled by the value of

Lagrangian multiplier c i.e. if it is to zero a full partition quadtree is
obtained and set to 1 does not allow any partitioning [18]. But if
one follow this method and continue partitioning then a full quad-
tree will be achieved every time. This method deteriorates the
quadtree partitioning and direction assessment to each block. To



Fig. 1. Quadtree partitioning scheme and the direction estimation (ORL database).
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overcome this problem the improved quadtree partitioning
scheme is proposed to facilitate face recognition problem as
described in Algorithm 1. The above-mentioned 1-D process can
be simply extended to the 2-D process where second dimension
lifting is again performed on high-pass H½i; j� and low-pass signals
L½i; j� to generate four sub-bands i.e. LHði; jÞ, LLði; jÞ, HHði; jÞ, and
HLði; jÞ.
Algorithm 1: Improved quadtree partitioning scheme.

Input: Face image x½i; j�, initial block size Sini, the minimum
block size Smin for quadtree partitioning and the value of
Lagrangian multiplier c

Output: Quadtree partitioned face image and direction data.
Step 1: Quadtree partition the face image x½i; j� into several

blocks xl of size Sini
Step 2: for each block xl do
2.1. Find the filtered directional responses denoted as Rl;n

with prediction filter Wp along the predefined direction hl
2.2. Calculate the energy summation of the prediction error
energy PEl;n using (9) from the filtered directional responses
2.3. Calculate the optimal direction along which the
minimum prediction error is obtained using (10)
2.4. Quadtree partitioned each sub-block xl into four sub-
blocks xl;i; i ¼ 1; . . . ;4
2.5. Repeat step 2.1 to 2.3 and find the prediction error
energy PEðxl;iÞ

Step 3: if PEðxl;iÞ P PEðxlÞ & sizeof ðxl;iÞ ¼ Smin do
3.1. Stop partitioning
3.2. Store the optimal direction hl and corresponding
optimal block xl;i

else Repeat step 2

HH½i; j� ¼ gHH:ðHo½i; j� � P2hðHeÞ½i; j�Þ ð11Þ

HL½i; j� ¼ gHL:ðHe½i; j� þ g�1
HHðU2hðHHÞ½i; j�ÞÞ ð12Þ

LH½i; j� ¼ gLH:ðLo½i; j� � P2lðLeÞ½i; j�Þ ð13Þ

LL½i; j� ¼ gLL:ðLe½i; j� þ g�1
LH ðU2lðLHÞ½i; j�ÞÞ ð14Þ

Le½i; j� and Lo½i; j� are the even and odd columns of 1-D low-pass sig-
nal L½i; j�. Similarly He½i; j� and Ho½i; j� are the even and odd columns of
high-pass signal H½i; j�. P2h and U2h are the prediction and update
operators applied to the high pass signal H½i; j� in the second dimen-
sion lifting. P2l and U2l are the prediction and update operators
applied to the low pass signal L½i; j� in the second dimension lifting.
gLL, gLH , gHL, and gHH are the scaling factors for normalizing the
energy of four synthesis filters where gLL ¼ gL and gHH ¼ gH . In the
proposed work the same directions for first and second-
dimensional lifting are utilized [17]. 2-D Conventional lifting wave-
let transform can be viewed as a particular case of 2-D SADIWT
when direction h ¼ 0 [17]. Two face images of ORL database [32]
and their quadtree partitioning scheme with direction estimation
is presented in Fig. 1. 2-D SADIWT is described with term SADIWT
from now onwards.

2.2. Completed local binary patterns (CLBP)

The local binary pattern (LBP) [6] initially proposed for extract-
ing texture details, at present considered the most admired local
descriptor for facial feature extraction [7,12–15,20,29,30]. To allo-
cate a label for each pixel, the LBP operator uses its intensity value
as a threshold and compares it against pixel values in a 3� 3
neighborhood. Generally, the LBP is computed with P sampling
points ðxp 2 ð0 . . . P � 1ÞÞ in the neighborhood of the center pixel
xm at a radial distance by R, as given in (15) [6],

LBPP;R ¼
XP�1

p¼0

s:ðxp � xmÞ:2p; sðdiff Þ ¼ 1; ðdiff Þ P 0
0; ðdiff Þ < 0

�
ð15Þ

where sðdiff Þ is a threshold function. Fig. 2 depicts the LBP operator
and the resultant label for the center pixel xm. If the sampling points
p’s are not mapped in the neighborhood of the center pixel, they are
bi-linearly interpolated [6]. Moreover, Ojala et al. [4] introduced a
uniform patterns LBPu2

P;R where a binary pattern is uniform if it con-
tains at most two bitwise transitions from 0 to 1, or vice versa when
the binary pattern is considered circularly as given in (16),

UðLBPP;RÞ ¼ jsðxp�1 � xmÞ � sðx0 � xmÞj þ
XP�1

p¼1

jsðxp � xmÞ � sðxp�1 � xmÞj

ð16Þ
The UðLBPP;RÞ value corresponding to the uniform pattern is smaller

than two. In order to achieve rotation invariance based on LBPu2
P;R,

Guo et al. [8] defined the rotation invariant pattern LBPriu2
P;R as given

in (17),

LBPriu2
P;R ¼

XP�1

p¼0
s:ðxp � xmÞ; UðLBPP;RÞ 6 2

P þ 1; otherwise

(
ð17Þ

where UðLBPP;RÞ is calculated using (16). Thus there are P þ 2 differ-

ent LBPriu2
P;R patterns. After LBPriu2

P;R labeling of the image pixels, codes
of all pixels for an input image are collected and formed into a his-

togram [6]. A histogram of LBPriu2
P;R labeled image xLBP½i; j� can be

defined as,

Hl ¼
X

i;j
FfxLBP½i; j� ¼ lg; FfAg ¼ 1; if A is true

0; if A is false

�
ð18Þ

where l ¼ 0;1;2; . . . ;n� 1 and n is the number of different labels

produced by the LBPriu2
P;R operator and the dimension of Hl is P þ 2.

The LBP histogram Hl provides information about the local distribu-
tion of spots, edges over the entire image and can be used as an
image feature descriptor [7].

To represent the local descriptive features further completely,
Guo et al. [8] proposed CLBP where a local region is represented



Fig. 2. LBP computation.

Fig. 3. Division of difference of CLBP.

Fig. 4. CLBP patterns (From left to right: Original image, CLBP_M, CLBP_S, CLBP_C).
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by its center pixel and a local difference sign magnitude transform
(LDSMT). For a given pixel xm in the image with xp as its neighbors,
a local difference can be calculated between xp and xm given as
Dp ¼ xp � xm. This local difference characterizes the image local
structure at xm. Dp can be further divided into parts as given in
(19) [8],

Dp ¼ Sp �Mp where; Mp ¼ jDpj; and Sp ¼
1; Dp P 0
�1; Dp < 0

�
ð19Þ

where Sp is the sign component of Dp, andMp is the magnitude com-
ponent of Dp. Let CLBP S denote the LBP pattern for Sp [8]. CLBP S
operator is same as the original LBP operator which indicates the
sign (positive or negative) of difference between the center pixel
xm and local neighboring pixels xp.

CLBP S ¼
XP�1

p¼0

s:ðxp � xmÞ:2p; sðdiff Þ ¼ 1; ðdiff Þ P 0
0; ðdiff Þ < 0

�
ð20Þ

Subsequently, Guo et al. [8] defined the CLBP pattern forMp, CLBP M
which is calculated same as CLBP S but it deals with a difference of
the magnitude.

CLBP M ¼
XP�1

p¼0

tðMp;CÞ:2p; tðz;CÞ ¼ 1; z P C

0; z < C

�
ð21Þ

where C is the mean value of the Mp from the whole image. CLBP M
calculates the local variance of magnitude. The center pixel xm
which also expresses the image local gray level and consist of dis-
criminative information, can be coded as CLBP C.

CLBP C ¼ tðxm �miÞ ð22Þ
where mi is the mean value of the image. When P ¼ 8; R ¼ 1, and
considering the rotation invariant uniform patterns, the illustration

of CLBPriu2
P;R pattern is shown in Fig. 3. The dimension of LBPriu2

P;R

defined in (17) is P þ 2.
Thus the dimension of the histogram corresponding to

CLBP Mriu2
P;R is also P þ 2. The dimension of the histogram corre-

sponding to CLBP Sriu2P;R is also P þ 2. The dimension of the histogram

corresponding to CLBP Criu2
P;R is 2. As per the theory stated in [8],

CLBP S, CLBP M, and CLBP C histogram features can be combined
jointly or hybridly. As compared to [30], in our proposed method
the concatenation of CLBP S and CLBP M histogram features is

performed and denoted as CLBP S Mriu2
P;R . The dimension of the

histogram corresponding to CLBP S Mriu2
P;R is ðP þ 2Þ � ðP þ 2Þ.

Certainly, CLBP C also consist of some discriminative information
[8] but, including it to form the feature set will increase the feature
vector dimension and here it is to emphasize the fact that together
with sign component CLBP S, magnitude component CLBP M in
CLBP facilitate to form an efficient local feature descriptor. For
P ¼ 8; R ¼ 1, the illustration of the CLBP maps are shown in
Fig. 4 for two CMU-PIE face database images [35,36].
2.3. Classification based on collaborative representation

Wright et al. [24] developed SRC technique and achieved excep-
tional performance for face recognition. Given a test sample, SRC
represents it as a sparse linear combination of training samples.
To analyze SRC, Zhang et al. [25] developed CRC as a substitute
approach. It is verified that it is the collaborative representation
(CR), but not the l1-norm sparsity that makes CRC dominant for
face classification [25]. CRC utilize all the training face images to
linearly represent a test face image under the l2-norm minimiza-
tion solution [25]. CRC has significantly less complexity than SRC
[25]. Here the CRC method is explained and its significance is dis-
cussed in our proposed method. Assume, there are N training sam-
ples from C classes with each class having nk training samples and
Xk ¼ ½xk;1; xk;2; . . . ; xk;nk � 2 Rm�nk is the training sample matrix of kth
class and m is the dimension of the sample. In CRC any test sample
y 2 Rm�1 from kth class with a dictionary X 2 R

m�nk can be collab-
oratively represented as a linear combination of all the training
samples as given in (23),

y ¼ a1;1x1;1 þ a1;2x1;2þ; . . . ;þac;cxc;c ð23Þ
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The collaborative representation coefficient vector â is obtained
by solving the following regularization minimization objective
function [25] as given in (24),

a
^ ¼ argminafky� Xak22 þ kkak22g ð24Þ
where k is the regularization parameter. As verified by [25], CRC
uses l2-norm instead of l1-norm in the regularization solution and
a 2 Rm�1 is considered as a collaborative representation of y in
terms of X. The solution of CR with regularized least square in
(24) can be easily derived as given in (25) [25].

â ¼ ðXTX þ kIÞ�1
XTy ð25Þ

Let P ¼ ðXTX þ kIÞ�1
XT . Due to the independency of P with y, it

can be pre-calculated as a project matrix [24]. Thus, whenever test
sample arrives it is simply projected on to P via Py, which makes
CRC faster compared to SRC. Considering the l2-norm of â, CRC
uses the following classification criterion to assign the test sample
y to the kth object class based on a minimum regularized recon-
struction error [25] as given in (26)

identityðyÞ ¼ argmink
ky� Xkâkk2

kâkk2

� �
ð26Þ

If the testing feature vector is formed from a non-variant face
image, the estimated coding vector â is sparse even if l2-norm is
used for regularization term. However, the testing feature vector
extracted from face images contains various variations due to
expression, pose, and illumination. These variations may harm
the sparseness of the coding vector â. At this point, error function
can accurately estimate the error of the testing feature vector and
henceforth the identity. This fact strengthens our selection of CRC
as a classification method over SRC.

3. Proposed face recognition method

The face images are affected by numerous variations such as
expression, pose, and illumination which make the task of any face
recognition method intricate. So it is significant to devise a method
to deal with these variations efficiently. In the proposed method,
SADIWT is proposed which efficiently provides the multi-
resolution features from quadtree partitioned sub-blocks based
on the image characteristics. Moreover, CLBP is applied to the
SADIWT selected sub-bands which additionally provides the local
descriptive features from the sub-blocks of the sub-bands. Next,
CRC method is performed on these local descriptive features to
perform a robust classification which improves the overall perfor-
mance. In this section, the proposed method is illustrated which
Fig. 5. General structure of
utilizes SADIWT with proposed seven directions along with the
improved quadtree partitioning scheme and CLBP as a local feature
descriptor followed by the application of CRC for effective
classification.

Accordingly, SADIWT entails two separable transforms, i.e. sep-
arable vertical and horizontal lifting-based transform in the opti-
mal direction. 2-level decomposition of SADIWT is performed to
obtain the top-level’s low-frequency sub-band coefficient matrix
LL and high-frequency sub-band coefficient matrices (LH, HL, HH).
The LL sub-band due to SADIWT implementation retains most of
the information of the face image. But the sub-bands LH and HL
also contain edge details along horizontal and vertical directions.
Thus to efficiently capture the local descriptive features using the
CLBP, LH and HL sub-bands are also considered with LL sub-band.

HH sub-band is neglected here as it mostly contains the noise
with negligible feature information. Fig. 5 depicts the general
structure of the proposed method. As discussed in the earlier sec-
tion, the proposed improved quadtree partitioning scheme parti-
tions each face image into non-overlapping blocks and proposed
filtering directions as mentioned in (6) are correlated in each block
based upon the facial description. The prediction and update lifting
operations as given in (1) and (3) are executed in the direction of
edges in these non-overlapping blocks. Whilst performing the pre-
diction and update step, if a fractional sample arrives, a sub-pixel
interpolation scheme as described in (8) is performed to calculate
this fractional sample value. The sub-pixel interpolation is used to
improve the directional orientation property of the image. Due to
the adaptive direction selection from quadtree partitioned blocks,
dependencies observed over image discontinuities can be success-
fully de-correlated which tend to concentrate the energy of high-
frequency sub-bands into low-frequency LL sub-band [17]. More-
over, for the edges existing at diagonal directions, the SADIWT
algorithm performed along these edges also decreases the energy
in high-frequency sub-bands LH and HL. However, LH and HL
sub-band also provide information relative to the edge and contour
which can support to extract pose, expression, and illumination-
relevant feature details. With the inclusion of LH and HL sub-
bands along with LL sub-band to extract CLBP-based histogram
features, most of the details of the face variations can be acquired
to form a significant feature vector which helps to deal with vari-
ous face variations.

When applied for the whole face image CLBP histogram features
only provide the micro-pattern without describing their location
information. Sustaining the details about the local spatial relation-
ship is very important for pose and expression feature extraction.
Moreover due to pose and expression variations intra-class differ-
ences may be larger than inter-class differences which in turn
decrease the classification accuracy.
the proposed method.
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To overcome this problem one instinctive solution is to use
multi-region information, as information from different regions
provides complementary information for classification. For this,
each sub-band is equally divided into small regions. Thus, the
top level’s SADIWT sub-bands i.e. LL, LH, and HL sub-bands are
divided into k non-overlapping rectangle regions R0;R1; . . . ;Rm�1,
each of size x� y pixels. From each of these m regions, as noted

in (20) and (21) rotation invariant uniform CLBP Sriu28;1 and

CLBP Mriu2
8;1 histogram features are extracted and concatenated to

construct the resultant histogram feature CLBP S Mriu2
8;1 . The

CLBP S Mriu2
8;1 from all these regions are concatenated into a single

spatially enhanced histogram feature vector. Let LL Hl;k, LH Hl;k,
and HL Hl;k denote such concatenated spatially enhanced his-
togram feature vectors for LL, LH, and HL sub-bands respectively,

LL Hl;k ¼
X
i;j

FfLLCLBP ½i; j� ¼ lgFf½i; j� 2 Rkg ð27Þ

LH Hl;k ¼
X
i;j

FfLHCLBP½i; j� ¼ lgFf½i; j� 2 Rkg ð28Þ

HL Hl;k ¼
X
i;j

FfHLCLBP ½i; j� ¼ lgFfði; jÞ 2 Rkg ð29Þ

where, l ¼ 0;1;2; . . . ; n� 1; k ¼ 0; . . . ;m� 1. LLCLBP , LHCLBP , and
HLCLBP denote the CLBP coded image of LL, LH, and HL sub-bands
respectively. The dimension of histogram feature vector

CLBP S Mriu2
8;1 for each region is ðP þ 2Þ � ðP þ 2Þ. The histograms fea-

ture vector CLBP S Mriu2
8;1 from successive regions are concatenated

to form a feature set for a particular sub-band and its feature
dimension is calculated as ðP þ 2Þ � ðP þ 2Þ � k. Similarly, all the
histogram features from all the three sub-bands are concatenated
to form the spatially enhanced histogram feature vector CLBP S Mfv .

CLBP S Mfv ¼ ½LL Hl;k; LH Hl;k;HL Hl;k� ð30Þ
As each face image is resized to 128� 128 pixels uniform size for
face images of all the face databases. Each of the generated SADIWT
sub-bands (LL, LH, HL) is of size 32� 32 pixels. In our proposed
method each of these sub-bands is divided into k ¼ 16 regions with
x� y ¼ 8� 8 pixels region and thus the combined dimension of
CLBP S Mfv is 10� 10� 16� 3 ¼ 4800. To notify once again only
the sign component CLBP S and the magnitude component
CLBP M of the CLBP operator are considered to obtain the histogram
features. This representation not only captures the local texture
edge details but also considers the magnitude variance of the three
sub-band coefficients. As a result, multi-resolution analysis based
dense local variations in terms of CLBP-based histogram features
are efficiently extracted.

Algorithm 2 explains the different steps of the proposed
method. To reduce the dimension of the histogram feature vectors,
PCA is applied while performing the CRC. Considering the class
label of training image as input, the objective of face classification
method is to discriminate the class of a test face image. Thus, refer-
ring to the previous theory of CRC, there are C classes with each
class having nk training samples. Every training sample xk;nk is
obtained from the learning stage of the CLBP histogram feature
extraction step which is a one dimensional feature vector
CLBP S Mfv . Thus the feature vector dictionary obtained from C
classes is described as Xk ¼ ½xk;1; xk;2; . . . ; xk;nk � 2 R

m�nk , where m is

the dimension of each feature vector CLBP S Mfv . Let y 2 R
m�1 is

the testing feature vector from the kth class obtained from the test-
ing stage of the CLBP histogram feature extraction step. According
to CRC once the dictionary X is learned from the training dataset
Xk, the collaborative representation coefficient vector â of the test
feature y can be computed by solving the regularization minimiza-
tion objective function as mentioned in (24). The solution of â can
be easily calculated using (25). Considering the l2-norm of â, CRC
uses the classification criterion mentioned in (26) to assign the test
sample y to the kth class. Thus finally, the test feature is classified
as the existing class via collaborative representation coding.

Algorithm 2: Proposed face recognition method.

Input: Train image, test Image, SADIWT decomposition level J,
CLBP block size, the value of k for CRC

Output: Classification accuracy
Step 1: Preprocessing
1.1. Read input face image X
1.2. Perform RGB to gray level conversion if the face image
is not grayscale
1.3. Resize the image to 128� 128 pixel resolution

Step 2: Computation of SADIWT sub-bands
for a number of decomposition level J do
2.1. Perform steps 1 to steps 3 of Algorithm 1 to obtain the
quadtree partitioned image and direction data
2.2. Perform the SADIWT decomposition with the prediction
and the update operations in the selected directions in the
selected block
2.3. Obtain SADIWT sub-bands (LL, LH, HL) and proceed
with LL sub-band for the next decomposition level

end for
Step 3: Completed Local Binary Patterns(CLBP)

Computation
3.1 Consider the top-level’s (LL, LH, HL) sub-bands and split
each sub-band into non-overlapping regions Rk each with
size 8� 8

for each sub-band do
for each sub-block within the sub-band do
for each coefficient value within the sub-block do

3.2. Compute the CLBP Mriu2
8;1 and CLBP Sriu28;1 histogram

features from each region Rk using (20) and (21)
respectively

3.3. Concatenate the CLBP Sriu28;1 and CLBP Mriu2
8;1 histogram

features form each region to form one histogram feature

vector CLBP S Mriu2
8;1 ¼ ½CLBP Sriu28;1 ;CLBP Mriu2

8;1 �
3.4. Concatenate all such CLBP S Mriu2

8;1 multi-region
histogram feature vectors to form the enhanced histogram
feature vector for LL, LH, and HL sub-bands using (27)–(29)
respectively

end for end for end for
3.5. Concatenate all the sub-band histogram feature vectors
LL Hl;k, LH Hl;k, and HL Hl;k to form the spatially enhanced
histogram feature vector CLBP S Mfv using (30)

Step 4: Collaborative representation Classification (CRC)
4.1. Save the feature vector CLBP S Mfv to train feature
vector database CLBP S Mtrain

4.2. Perform dimensionality reduction using PCA [2] for the
CLBP S Mtrain feature vector database
4.3. Save the CLBP S Mtrain feature vector database to
reduced feature database Xk in the CRC method
4.4. Repeat Step 1 to 3 on each test image to obtain the
discriminant test feature vector y in the CRC method
4.5. Normalize the columns of Xk and y to have the unit l2-
norm
4.6. Find the collaborative representation using (25) and
output the identity of the test feature y using (26) and thus
calculate the classification accuracy



Fig. 6. (a) the representation coefficients obtained by CRC and (b) the final
representation coefficients obtained by the proposed method.
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Fig. 6 depicts the coding coefficients for a test face image belonging
to the first class from the FERET face database [33,34]. These coeffi-
cients are obtained by CRC and the proposed method on 1000 train-
ing images of 200 subjects from FERET face database. Fig. 6(a)
shows the CRC representation coefficient for this test image. Fig. 6
(b) shows the final representation coefficient for the test image
using the proposed method. A legal test image has non-zero repre-
sentation entries mostly concentrated on one subject, whereas an
illicit test image has coefficients distributed widely among multiple
subjects. Without any pre-processing step and considering only the
raw samples, the CRC method produces large non-zero coefficients
entries corresponding to training samples from many different
classes for few numbers of training samples from each class.
Whereas, in our proposed method the local discriminant feature
vectors obtained from the former step when applied for CRC,
improve its performance and thus the test image can be repre-
sented by a lesser number of elements of the dictionary as shown
in Fig. 6(b). For most of the test samples, the same result can be
achieved in many experiments on the face databases. Obviously,
the class-wise reconstruction errors of our proposed method will
also exhibit its superior representation ability for classification
tasks.

4. Experimental results

In this section, the performance of the proposed method is val-
idated with variations in expression, illumination, and pose and
compared it with various contemporary methods. Face databases
composed under controlled conditions such as ORL [32], FERET
[33,34], and CMU-PIE face database [35,36] are used. Face database
such as LFW database [37–39] is also considered to demonstrate
the performance of the proposed method for face images captured
in un-controlled scenarios. Since proposed method utilizes CLBP
histogram feature extraction from SADIWT sub-bands with CR
classification, it is compared with various methods which not only
include holistic and LBP-based descriptors but also include various
representation methods. These methods include NN [23], LDA [3],
LPP [5], LBP [7], WLD [9], SRC [24], CRC [25], LLC [11], LRC [26], and
SRC-GSLBP [29]. A comparison with few LBP-based non-adaptive
MRA face recognition methods such as LGBPHS [12], CTLBP [13],
SPT-LBP [14], and GTCLBPSRC [30] is also additionally reported
here. All the experiments randomly select few face images to form
the training set and select remaining face images to form the test
set. Each experiment is repeated 10 times and the average classifi-
cation accuracy is recorded. PCA is used as the dimensionality
reduction method for CRC, SRC, LRC, and in our proposed method.
For SRC implementation the l1 ls [40] package is used.
4.1. Parameter settings

All experiments are conducted using MATLAB R2014a on a stan-
dard i3-2120, 3.30 GHz machine with a 2.0 GB RAM and 64-bit
operating system. Some parameter settings are required to effi-
ciently implement SADIWT method. The decomposition level J to
perform SADIWT is selected as two for all the databases. To effi-
ciently capture the local directions from the quadtree partitions
blocks, initial block size Sini, minimum block size Smin, and the value
of Lagrangian multiplier are also selected. With reference to
[19,20], Sini ¼ 8� 8 pixel size is selected for all the databases. In
addition, the value of the Lagrangian multiplier as 9 and the value
of minimum block size Smin ¼ 4� 4 pixel size is selected for all the
databases [19,20]. Extensive experiments are conducted to verify
the effectiveness of these values and established to be optimum
for all the databases. The size of the region for extracting the CLBP
local feature descriptor is considered as 8� 8 pixels. For NN, LDA,
and LPP based methods the NN classifier with Euclidean distance
measure is used. For LBP and LGBPHS images are partitioned into
the 8� 8 pixel regions. For LGBPHS, filters at five different scales
and eight orientations are applied [12]. For LBP method, uniform
pattern LBPu2

8;1 is used [7] and NN classifier with Chi-square dis-
tance measure is adopted. For WLD, a patch size of 3� 3 pixel is
considered for coding and generated histograms of differential
excitation and orientation component are concatenated into a 2-
D histogram [20]. For SRC-GSLBP, hierarchal multiscale LBP is used
to form the feature set and SRC with matching pursuit-based
greedy search strategy is implemented with reference to the orig-
inal paper. The value of regularization parameter k in SRC, CRC, LLC,
and in our method is set to 0.01, 0.01, 0.001, and 0.01 respectively
to obtain the best results [10]. For CTLBP similar methodology is
adopted as mentioned in [13] to form the feature set and LPP is
applied with NN classifier. For SPT-LBP similar feature extraction
steps are applied. LLB is used to reduce the feature dimension
along with Chi-square as the similarity measure [14]. For imple-
menting GTCLBPSRC with reference to the original paper, Gabor fil-
ters with five orientations and four scales are used and all three
CLBP components are used to form the histogram features. Regu-
larization parameter for GTCLBPSRC is set to 0.01 [30].

4.2. Experiment on the ORL face database

The ORL database is composed of 400 face images from different
subjects (10 different images per subject) with some variations in



Fig. 7. Sample face images of a subject from the ORL face database.
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pose and facial expressions. Each image is resized to 128� 128
pixel size. Fig. 7 suggests some sample images of a subject. A ran-
dom subset with L (L = 2, 3, 4, 5) images per subject is selected to
form a training set and the remaining images per subject are
selected to form a testing subset. This procedure is repeated ten
times and the average classification accuracies are listed in Table 1.
The results demonstrate the effectiveness of the proposed method
in capturing directional MRA-based local descriptive features for
faces with variations in expression and pose. For a small database
like the ORL database, it is apparent that high accuracy is achieved
by all the methods as the number of subjects in the testing set is
not very high. With the increase in the number of training samples
the classification accuracy also increases for all methods but the
proposed method yields superior result even for fewer numbers
of training samples. To capture the spatial structure information
related to expression and pose, SADIWT sub-bands are split into
8� 8 pixel regions and CLBP-based histogram features are
obtained from these regions. The multi-region enhanced histogram
features add local discrimination and application of CRC on these
features improves the classification accuracy.

Improvement of 20.35%, 17.91%, and 16.95% is reported over
NN, LDA, and LPP respectively if two samples per subject are ran-
domly used to form the training set. Improvement of 9.18% and
7.65% is observed over LBP and WLD respectively when the num-
ber of training samples per subject is randomly selected as five.
Table 1
Classification accuracies of different methods on the ORL face database (%).

Number of training samples per subject 2 3 4 5

NN 70.59 74.30 80.42 84.21
LDA 72.75 75.07 82.33 85.33
LPP 73.60 78.53 88.47 91.70
LBP 68.44 78.21 87.08 89.00
WLD 73.13 81.43 87.50 90.50
SRC 81.31 83.14 85.83 87.50
CRC 81.25 83.21 88.33 88.50
LLC 83.72 86.71 90.33 91.40
LRC 75.89 80.23 84.47 86.50
SRC-GSLBP 85.31 90.20 95.23 97.00
LGBPHS 83.06 85.86 93.75 95.00
CTLBP 82.81 87.86 94.50 95.50
SPT-LBP 86.04 89.22 93.66 97.18
GTCLBPSRC 86.25 89.57 94.58 97.50
Proposed method 88.62 91.28 95.83 98.00

Fig. 8. Sample face images of a subje
Improvement of 10.71%, 9.69%, 6.73%, and 11.73% over SRC, CRC,
LLC, and LRC is observed when the number of training samples
per subject is randomly selected as five. LGBPHS, CTLBP, and SPT-
LBP methods do not offer adaptive direction estimation relating
to face variations whereas SADIWT method performs direction
adaptation effectively with face variations. When the number of
training samples per subject is randomly selected as two, improve-
ment of 6.27%, 6.55%, and 2.91% is observed over LGBPHS, CTLBP,
and SPT-LBP respectively. LGBPHS is computationally expensive.
CTLBP uses only the LBP coded image of the approximation sub-
band and does not consider the multi-region information. SPT-
LBP method exhibits comparable classification accuracy but the
feature selection process is threshold dependent. The proposed
method consists the benefit of performing rapid classification
using CRC over SRC which is used as the classification method in
SRC-GSLBP and GTCLBPSRC. An improvement of 3.7% and 2.67%
is observed over SRC-GSLBP and GTCLBPSRC respectively when
the number of training samples per subject is randomly selected
as two. The proposed method has the benefit of rapid classification
due to CRC as compared to SRC-GSLBP and GTCLBPSRC.
4.3. Experiment on the FERET face database

The FERET database consists of 14,126 facial images from 1199
subjects, which are dissimilar across ethnicity, gender, and age.
This database is selected to consider a large number of face images
with pose and expression variation. A subset of this database is
adopted which includes 200 subjects with expression and pose
variations [10,29,30]. Each subject has seven images that differ
from each other in pose (left and right tilting with 15� and 25�),
one frontal image with expression variation and one frontal image
with illumination variation. Face images of a subject are as shown
in Fig. 8. Each image is resized to 128� 128 pixel size. A random
subset with L (L = 3, 4, 5) images per subject is selected to form a
training set and the remaining images per subject are selected to
form a testing subset. This procedure is repeated for ten times
and the average classification accuracies are listed in Table 2. Sim-
ilar to ORL database a comparison is also performed with various
methods to establish the efficacy of the

proposed method. Extraction of multi-region CLBP histogram
features from SADIWT sub-bands and application of CRC improves
the classification accuracy substantially. The proposed method
achieves highest classification accuracy even for fewer numbers
ct from the FERET face database.



Table 2
Classification accuracies of different methods on the FERET face database (%).

Number of training samples per subject 3 4 5

NN 22.54 31.13 44.33
LDA 27.00 34.75 49.50
LPP 39.41 58.00 63.51
LBP 34.67 57.00 59.50
WLD 44.82 57.28 61.41
SRC 32.18 44.86 54.64
CRC 35.16 47.75 56.50
LLC 36.52 49.60 58.30
LRC 31.91 42.24 53.00
SRC-GSLBP 56.32 69.00 75.25
LGBPHS 48.67 59.50 69.25
CTLBP 49.10 67.12 73.75
SPT-LBP 63.07 74.30 78.65
GTCLBPSRC 61.67 71.80 80.10
Proposed method 63.50 74.67 80.25

Table 3
Classification accuracies of different methods on the CMU-PIE face database (%).

Number of training samples per subject 5 6 7 8

NN 70.08 75.41 78.36 82.25
LDA 81.05 82.63 84.31 87.66
LPP 82.23 83.69 85.63 88.70
LBP 81.12 85.57 88.62 90.71
WLD 84.56 86.76 90.44 91.43
SRC 85.40 87.39 88.27 90.53
CRC 86.41 87.77 89.83 91.48
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of training images as compared to other methods. When the num-
ber of training samples per subject is randomly selected as three,
the proposed method suggests an impro-vement of 64.50%,
57.48%, and 37.93% over NN, LDA, and LPP respectively. LBP and
WLD also demonstrate a reduced performance as compared to
the proposed method. When the number of training samples per
subject is randomly selected as five an improvement of 31.91%,
29.59%, 27.35%, and 33.95% in classification accuracies of SRC,
CRC, LLC, and LRC can be observed respectively which confirm
the effectiveness of the proposed method over these classification
methods.

The LBP-based non-adaptive MRA methods such as LGBPHS,
CTLBP, and SPT-LBP do not provide adaptation in selecting a
direc-tion within a block of samples and also have a limitation in
terms of high computational cost and complex filter design. More-
over, LBP-based local histogram features, when extracted from
LGBPHS, CTLBP and SPT-LBP sub-bands, do not suffice in represent-
ing the features as compared to our proposed method. The
improvement of our method over LGBPHS, CTLBP, and SRC-GSLBP
is 13.71%, 8.10%, and 6.23% respectively if the number of training
samples per subjects is randomly selected as five. A comparison
with recently proposed GTCLBPSRC also confirms the efficacy of
the proposed method. Here we report an improvement for less
number of samples but as the number of samples increases,
GTCLBPSRC provides a close classification accuracy to proposed
method but at the expense of more computational time. Thus with
this set of the experiment, we can demonstrate that the proposed
method also works well for a database with a large number of face
images under pose and expression variations.
LLC 83.60 85.62 88.20 90.58
LRC 83.53 84.53 86.48 88.48
SRC-GSLBP 87.25 91.12 92.60 94.34
LGBPHS 86.47 89.23 92.14 93.37
CTLBP 85.30 90.70 91.25 93.69
SPT-LBP 88.00 92.04 93.35 95.20
GTCLBPSRC 88.66 92.30 94.10 95.37
Proposed method 88.97 92.61 94.57 96.02
4.4. Experiment on the CMU-PIE face database

This database is considered to assess the adequacy of our pro-
posed method under the state of illumination with pose variations.
This is a large database which contains 41,368 face images of 68
subjects. The face images exhibit 13 dissimilar poses and 43
Fig. 9. Sample face images of a subject fro
dissimilar illumination variations with 4 dissimilar expressions
[35,36]. For our experimentation, the database considered here is
a subset of CMU-PIE database of one near frontal pose C05 wherein
all the images are under different illuminations and expressions
[28]. The subset C05 incorporates 68 subjects and each subject
has 49 face images. Each image is manually aligned and resized
to 128� 128 pixel size. Fig. 9 gives some samples face images of
a subject from this database.

A random subset with L (L = 5, 6, 7, 8) images for each subject is
selected to form the training set, and the remaining images for
each subject are selected to form the testing set. Table 3 enumer-
ates the classification accuracies for different methods. It is evident
that the proposed method surpasses different methods. This is
because the foremost challenge of this database is illumination
and expression and the proposed method can make an adaptive
selection of best lifting direction from the proposed direction set
as given in (6) and uses interpolated samples to predict as per local
characteristics of the face image. The proposed directions are ade-
quate to reap all the essential illumination and expression relevant
information from the face images. The interpolation is performed
at the spatial resolution of seven directions which preserves the
local details of illumination-variant features. The CLBP operator
sufficiently extracts local structural details from the SADIWT
sub-bands. Moreover, CRC on receiving such local descriptive fea-
tures assures efficient classification. Hence establishes our method
efficient in approximating the illumination and expression related
features. NN, LDA, LPP fail to represent the illumination and
expression related features as these methods treat the face image
as a whole and provide reduced performance. LBP andWLD do pro-
vide multi-region information and show some improvement but
still drop behind to the proposed method. For LBP and WLD
improvement of 5.5% and 4.78% is observed when the number of
training samples per subject is randomly selected as eight.

For SRC, CRC, LLC, and LRC an improvement of 5.71%, 4.72%,
5.67%, and 7.85% respectively, can be observed when the number
of training samples is randomly selected as eight. Illumination
m the CMU-PIE Pose05 face database.



Table 4
Classification accuracies of different methods on the LFW-a face database (%).

Number of training
samples per subject

3 4 5 6 7

NN 7.11 12.85 14.43 15.23 19.19
LDA 8.59 13.35 15.21 18.35 22.47
LPP 9.61 14.50 18.14 22.67 26.70
LBP 21.97 23.10 29.24 37.18 41.14
WLD 22.06 24.72 30.20 39.92 43.09
SRC 23.67 31.25 35.64 42.38 47.90
CRC 27.30 34.60 38.73 43.19 48.73
LLC 26.90 31.31 34.44 41.73 46.10
LRC 25.16 30.43 32.23 35.71 40.09
SRC-GSLBP 30.42 37.13 39.40 44.20 54.05
LGBPHS 23.60 32.67 34.93 38.84 42.33
CTLBP 25.66 34.28 38.49 41.14 46.62
SPT-LBP 31.03 37.80 40.10 45.51 54.60
GTCLBPSRC 31.55 38.27 40.42 45.63 55.00
Proposed method 32.64 39.66 42.91 46.52 56.11
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and expression mainly affect the edge manifold of the image.
LBP-based non-adaptive MRA methods such as LGBPHS, CTLBP,
SPT-LBP, and GTCLBPSRC do not consider edge manifolds
adaptively and extracted histogram features do not capture such
details efficiently. We observe improvement over SRC-GSLBP and
GTCLBPSRC which depicts the effectiveness of the generated
histogram features using the proposed method for illumination
and expression-variant face images.

4.5. Experiment on the LFW face database

The LFW [37–39] is a huge database which contains 13,233 face
images of 5749 eminent personalities in unconstrained conditions
with extreme variations of pose, orientation, illumination, expres-
sion, accessories, and background which makes it a challenging
database for face recognition [37]. In the present work, an aligned
version LFW-a of the LFW database is selected [38]. LFW-a aligns
all the images using a commercial face alignment software [39].
A subset is created which collects no less than 10 dissimilar images
of 158 subjects from the LFW-a database as mentioned in [10,31].
Some examples of this subset are presented in Fig. 10. Each image
is resized to 128� 128 pixel size.

A subset with L (L = 3, 4, 5, 6, 7) images per subject is randomly
selected to form the training set, and rest images per subject are
selected to form the testing set. Classification accuracies of differ-
ent methods are listed in Table 4. Since the images are collected in
the unconstrained environment the classification accuracies are
low in this database. Due to large face variations, this database
imposes an immense challenge, but the result of our proposed
method is excep-tionally promising. The adaptation of directional
selection as per the image characteristics allows the sub-bands of
SADIWT to preserve most of the directional information from the
face images and in turn capture the face variations in a great detail.
Additionally, owing to the application of CLBP on SADIWT sub-
bands, pose, illumination and facial expression details can be suc-
cessfully extracted and an efficient feature descriptor is composed.
Moreover, considering these efficient local descriptive features as
input, CRC improves the overall classification accuracy of the pro-
posed method. Our proposed method exhibits an improvement of
65.80%, 59.95%, 52.41%, 26.68%, and 23.20% in classification accura-
cies for NN, LDA, LPP, LBP, and WLD respectively when the number
of training samples per subject is randomly selected as seven.

Similarly, when five samples for each subject are selected ran-
domly, we observe improvement of 16.94%, 9.74%, 19.74%, and
24.89% over SRC, CRC, LLC, and LRC respectively. Specifically, the
improvement in performance demonstrated by our method is sig-
nificant for less number of training images. For instance, when
training images per subject are three our method achieves a classi-
fication accuracy of 32.64% which is higher than the classification
accuracy achieved by other methods. It is evident from Table 4 that
our method outperforms LGBPHS, CTLBP, and SPT-LBP methods in
extracting local directional multi-resolution features and demon-
strates improvement of 27.69%, 21.38%, and 4.94% respectively
when three samples per subject are selected randomly to form
Fig. 10. Sample face images of a subje
the training set. We observe comparable improvement over SRC-
GSLBP and GTCLBPSRC which depicts the effectiveness of sparse
representation methods. But due to CRC implementation, the com-
putation time is less for our proposed method. This experiment
demonstrates the effectiveness and robustness of the proposed
method for face recognition in the unconstrained condition. Here
one point needs to be emphasized that strict and standard features
will create sparser coefficients with collaborative representation
(CR) which improves the classification accuracy.

4.6. Single image per person (SIPP)

Due to non-availability of training face images, practical face
recognition system usually suffers from single image per person
(SIPP) problem [25]. To solve the lack of samples problem, CRC uti-
lizes the training faces from all the classes to represent the test
face. The collaborative representation algorithm helps to reduce
the representation error. This fact strengthens the decision to
select CRC as the classification method in our proposed method.
Here, to validate this and to handle the SIPP we conducted this
experiment.

One image per subject is selected randomly as the training
image and rest images per subject are selected as the test images.
It is shown in Table 5 that performance of the proposed method is
better than different comparative methods for all the databases.
LDA, LPP, and CTLBP cannot deal with SIPP problem, thus their
results are not reported here. For FERET database, improvement
of 19.08%, 8.05%, and 5.51% is observed for SRC-GSLBP, SPT-LBP,
and GTCLBPSRC respectively. Whereas, for LFW-a database,
improvement of 15.08%, 14.03%, and 9.06% is observed for SRC-
GSLBP, SPT-LBP, and GTCLBPSRC respectively. Thus for SIPP prob-
lem, the improvement of our method is noticeable for all the data-
bases. This is due to the fact that SADIWT extracts directional
multi-resolution features and the CLBP when performed on
SADIWT sub-bands, extract local descriptive features. Additionally,
ct from the LFW-a face database.



Table 5
Classification accuracies for SIPP for different face databases (%).

Method ORL FERET CMU-PIE LFW-a

NN 58.80 18.24 7.71 4.41
LBP 57.24 29.20 10.47 6.52
WLD 62.13 32.50 12.00 7.12
SRC 65.28 31.74 19.52 8.20
CRC 66.67 31.91 20.40 9.35
LLC 67.82 32.40 17.22 8.80
LRC 63.58 28.43 15.65 6.22
SRC-GSLBP 72.20 45.23 25.00 13.68
LGBPHS 67.95 37.18 24.40 9.07
SPT-LBP 73.77 51.40 26.05 13.85
GTCLBPSRC 74.00 52.82 26.45 14.65
Proposed method 75.83 55.90 27.02 16.11
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CRC considers the correlation among these local descriptive
features which eventually increase the classification accuracy.

4.7. Face recognition with occlusion

In order to further analyze the robustness of the proposed
method with occlusions, an experiment is conducted on LFW-a
face database. A randomly located square block with ‘‘Baboon”
image is inserted into the test images as an adjoining block occlu-
sion from 10% to 40% [24]. To perform this experiment seven ran-
domly selected images per subject are used as training images and
the rest three images are used as test images. Fig. 11 illustrates the
face image from LFW-a face database with blocking occlusion ratio
of 10%, 20%, and 30%.

Table 6 illustrates the classification accuracies of different com-
parative methods with blocking occlusion ratio from 10% to 40%.
With the increase of image occlusion rate from 10% to 40%, one
can observe a descending tendency in the classification accuracy.
For a complex database like this and even in the presence of
Fig. 11. Examples of random partial block occlusion.

Table 6
Classification accuracies of different methods for random partial occlusions on LFW-a
face database (%).

Method 10% 20% 30% 40%

NN 13.29 12.45 6.85 4.43
LDA 16.11 13.34 11.40 6.25
LPP 23.32 19.66 15.12 9.80
LBP 38.90 27.75 24.83 16.29
WLD 40.08 31.43 27.69 21.42
SRC 43.23 40.56 32.85 22.77
CRC 44.72 41.77 33.54 23.00
LLC 42.12 39.29 29.85 20.08
LRC 38.27 34.77 27.54 18.50
SRC-GSLBP 49.40 44.86 40.20 31.91
LGBPHS 40.59 35.40 29.33 22.00
CTLBP 44.84 41.14 37.76 29.11
SPT-LBP 48.32 45.80 39.87 32.25
GTCLBPSRC 49.00 46.64 40.08 32.66
Proposed method 51.68 47.46 44.52 33.12
extreme occlusion our method delivers reasonable classification
accuracy. Though SRC-GSLBP, SPT-LBP, and GTCLBPSRC can achieve
comparable classification accuracy, even at 40% occlusion the pro-
posed method still performs better. For our proposed method, the
results indicate that the correlation information maintained by
CRC compensates the occluded part information in the test images
and helps to improve the classification accuracy of the proposed
method.

4.8. Comparison with the different direction sets

In order to verify the validity of the proposed direction set in the
implementation of SADIWT, a comparison is established with other
adaptive directional transform methods such as DIW with five
directions [18] and ADWT with nine directions [19] and Similar
settings are considered from section 4.1 such as decomposition
level, initial block size Sini, and the value of the Lagrangian multi-
plier. Furthermore, for a fair comparison similar settings for CLBP
and CRC are also applied for histogram feature extraction and clas-
sification respectively.

To perform this experiment, for all the databases five randomly
selected images per subject are used as the training images and the
rest images are used as the test images. Results illustrated in
Table 7 demonstrate that the proposed direction set considers
the face image characteristics more efficiently as compared to
the direction set of [18,19]. The local edges and boundaries of the
face image provide descriptive features which are efficiently cap-
tured with the proposed direction set with sub-pixel interpolation
step. Improved quadtree partitioning scheme and SADIWT per-
formed in the adaptively selected optimal direction within the
optimal block increases the classification accuracy. The directions
mentioned in [19] only consider the distant integer samples which
result in directions that are too sparse to characterize the original
image features. For ORL and FERET databases the improvement in
classification accuracy is 2.55%, 2.43% respectively over ADWT. For
CMU-PIE database the improvement over ADWT and DIW is 3.5%
and 2.61% respectively. For the LFW-a database, the methods using
the direction set [18,19] provides close accuracies to the proposed
method but proposed method performs better.

This improvement indicates that more directions increase the
computational complexity and fewer directions cannot extract
essential characteristics from face images. The proposed method
with proposed seven directions with interpolation-based SADIWT
and improved quadtree partitioning scheme helps to improve the
performance reasonably.

4.9. Computational complexity

Consecutively, to demonstrate that the proposed method is
computationally efficient, the computation time for feature extrac-
tion step of various comparative methods is calculated. Table 8
shows the computation time of various comparative methods to
process the ORL database face image of size 128� 128 pixel reso-
lution. Only feature extraction step is applied i.e. no further classi-
fication step is applied. Mainly those methods are considered
which require the pre-processing at the feature extraction step.
One can see the proposed method has a comparable computational
Table 7
Classification accuracies for different directions set (%).

Database ADWT DIW Proposed method

ORL 95.50 97.00 98.00
FERET 78.30 79.14 80.25
CMU-PIE 85.82 86.65 88.97
LFW-a 41.50 41.22 42.91



Table 8
Comparison of different methods in terms of
computation time for ORL database.

Method Computation Time (s)

LBP 0.6
WLD 0.72
SRC-GSLBP 1.4
LGBPHS 1.8
CTLBP 1.1
SPT-LBP 1.18
GTCLBPSRC 2
Proposed method 1.2
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time for feature extraction compared with different methods. The
GTCLBPSRC method has the highest computation time.

5. Conclusion

In this paper, a face recognition method based on a proposed
implementation of interpolation-based SADIWT is presented. In
the implementation of SADIWT, we proposed to apply seven direc-
tions with an improved quadtree partitioning scheme to extract
directional multi-resolution features from face images containing
different face variations. Completed local binary patterns (CLBP)
are applied on the selected top-level’s SADIWT sub-bands to
extract the multi-region local descriptive features in terms of spa-
tially enhanced histogram features. In the proposed method we
used CRC as the classification method which when performed on
the local descriptive features obtained from the previous step
demonstrate an efficient classification and improves the classifica-
tion accuracy with great extent.

Experiments conducted on ORL, FERET, CMU-PIE, and LFW-a
databases demonstrate the efficacy of our proposed method. The
classification accuracy of the proposed method is compared with
various methods which include holistic, prominent representation
and some LBP-based non-adaptive MRA methods. The proposed
method offered an improvement over NN, LDA, and LPP methods
for all the databases. Representation methods, for instance, SRC,
CRC, LLC, and LRC are also implemented and compared with the
proposed method. A comparison with LBP-based non-adaptive
MRA methods such as LGBPHS, CTLBP, SPT-LBP, and GTCLBPSRC
also demonstrates the efficiency of the proposed method.

Based on the experiments performed on different databases
particularly for complex face variations, such as CMU-PIE and
LFW-a, the proposed method achieves significantly higher classifi-
cation accuracy and outperforms other comparative even for a
fewer number of training samples. This work also demonstrates
the robustness and discrimination capability in handling SIPP and
random block occlusion problem. In a nutshell, this work provides
an effective face recognition method under the influence of expres-
sion, illumination, and pose variation and presents SADIWT as an
alternate efficient adaptive MRA method for feature extraction.
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